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Abstract. Aggregation is a fundamental behavior for swarm robotics
that requires a system to gather together in a compact, connected clus-
ter. In 2014, Gauci et al. proposed a surprising algorithm that reliably
achieves swarm aggregation using only a binary line-of-sight sensor and
no arithmetic computation or persistent memory. It has been rigorously
proven that this algorithm will aggregate one robot to another, but it
remained open whether it would always aggregate a system of n > 2
robots as was observed in experiments and simulations. We prove that
there exist deadlocked configurations from which this algorithm cannot
achieve aggregation for n > 3 robots when the robots’ motion is uniform
and deterministic. In practice, however, the physics of collisions and slip-
ping work to the algorithm’s advantage in avoiding deadlock; moreover,
we show that the algorithm is robust to small amounts of noise in its
sensors and in its motion. Finally, we prove that the algorithm achieves
a linear runtime speedup for the n = 2 case when using a cone-of-sight
sensor instead of a line-of-sight sensor.
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1 Introduction

The fields of swarm robotics [5, 14, 15, 24] and programmable matter [2, 18, 33]
seek to engineer systems of simple, easily manufactured robot modules that
can cooperate to perform tasks involving collective movement and reconfigu-
ration. Our present focus is on the aggregation problem (also referred to as
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“gathering” [8, 16, 19] and “rendezvous” [9, 34, 35]) in which a robot swarm
must gather together in a compact, connected cluster [3]. Aggregation has a
rich history in swarm robotics as a prerequisite for other collective behaviors
requiring densely connected swarms. Inspired by self-organizing aggregation in
nature [6, 12, 13, 25, 27, 29], numerous approaches for swarm aggregation have
been proposed, each one seeking to achieve aggregation faster, more robustly,
and with less capable individuals than the last [1, 11,17,26,28].

One goal from the theoretical perspective has been to identify minimal capa-
bilities for an individual robot such that a collective can provably accomplish a
given task. Towards this goal, Roderich Groß and others at the Natural Robotics
Laboratory have developed a series of very simple algorithms for swarm behav-
iors like spatially sorting by size [7, 23], aggregation [21], consensus [32], and
coverage [31]. These algorithms use at most a few bits of sensory information
and express their entire structure as a single “if-then-else” statement, avoiding
any arithmetic computation or persistent memory. Although these algorithms
have been shown to perform well in both robotic experiments and simulations
with larger swarms, some lack general, rigorous proofs that guarantee the cor-
rectness of the swarm’s behavior.

In this work, we investigate the swarm aggregation algorithm of Gauci et
al. [21] (summarized in Section 2) whose provable convergence for systems of
n > 2 robots remained an open question. In Section 3, we answer this question
negatively, identifying deadlocked configurations from which aggregation is never
achieved. Motivated by the need to break these deadlocks, we corroborate and
extend the simulation results of [20] by showing that the algorithm is robust to
two distinct forms of error (Section 4). Finally, we prove that the time required
for a single robot to aggregate to a static robot improves by a linear factor when
using a cone-of-sight sensor instead of a line-of-sight sensor; however, simulations
show this comparative advantage decreases for larger swarms (Section 5).

2 The Gauci et al. Swarm Aggregation Algorithm

Given n robots in arbitrary initial positions on the two-dimensional plane, the
goal of the aggregation problem is to define a controller that, when used by each
robot in the swarm, eventually forms a compact, connected cluster. Gauci et
al. [21] introduced an algorithm for aggregation among e-puck robots [30] that
only requires binary information from a robot’s (infinite range) line-of-sight sen-
sor indicating whether it sees another robot (I = 1) or not (I = 0). The controller
x = (v`0, vr0, v`1, vr1) ∈ [−1, 1]4 actuates the left and right wheels according to
velocities (v`0, vr0) if I = 0 and (v`1, vr1) otherwise. Using a grid search over a
sufficiently fine-grained parameter space and evaluating aggregation according
to a dispersion metric, they determined that the best controller was:

x∗ = (−0.7,−1, 1,−1).

Thus, when no robot is seen, a robot using x∗ will rotate around a point c that
is 90◦ counter-clockwise from its line-of-sight sensor and R = 14.45 cm away at



a speed of ω0 = −0.75 rad/s; when a robot is seen, it will rotate clockwise in
place at a speed of ω1 = −5.02 rad/s. The following three theorems summarize
the theoretical results for this aggregation algorithm.

Theorem 1 (Gauci et al. [21]). If the line-of-sight sensor has finite range,
then for every controller x there exists an initial configuration in which the robots
form a connected visibility graph but from which aggregation will never occur.

Theorem 2 (Gauci et al. [21]). One robot using controller x∗ will always
aggregate to another static robot or static circular cluster of robots.

Theorem 3 (Gauci et al. [21]). Two robots both using controller x∗ will al-
ways aggregate.

Our main goal, then, is to investigate the following conjecture that is well-
supported by evidence from simulations and experiments.

Conjecture 1. A system of n > 2 robots each using controller x∗ will always
aggregate.

Throughout the remaining sections, we measure the degree of aggregation in
the system using the following metrics:

– Smallest Enclosing Disc (SED) Circumference. The smallest enclosing disc
of a set of points S in the plane is the circular region of the plane containing
S and having the smallest possible radius. Smaller circumferences correspond
to more aggregated configurations.

– Convex Hull Perimeter. The convex hull of a set of points S in the plane is
the smallest convex polygon enclosing S. Smaller perimeters correspond to
more aggregated configurations. Due to the flexibility of convex polygons,
this metric is less sensitive to outliers than the smallest enclosing disc which
is forced to consider a circular region.

– Dispersion (2nd Moment). Adapting Gauci et al. [21] and Graham and
Sloane [22], let pi denote the (x, y)-coordinate of robot i on the continu-
ous plane and p = 1

n

∑n
i=1 pi be the centroid of the system. Dispersion is

defined as:
n∑
i=1

||pi − p||2 =
n∑
i=1

√
(xi − x)2 + (yi − y)2

Smaller values of dispersion correspond to more aggregated configurations.
– Cluster Fraction. A cluster is a set of robots that is connected by means of

(nearly) touching. Following Gauci et al. [21], our final metric for aggregation
is the fraction of robots in the largest cluster. Unlike the previous metrics,
larger cluster fractions correspond to more aggregated configurations.

We use dispersion as our primary metric of aggregation since it is the metric
that is least sensitive to outliers and was used by Gauci et al. [21], enabling a
clear comparison of results.



3 Impossibility of Aggregation for n > 3 Robots

In this section, we rigorously establish a negative result indicating that Conjec-
ture 1 does not hold in general. This result identifies a deadlock that, in fact,
occurs for a large class of controllers that x∗ belongs to. We say a controller
x = (v`0, vr0, v`1, vr1) ∈ [−1, 1]4 is clockwise-searching if vr0 < v`0 < 0. In other
words, a clockwise-searching controller maps I = 0 (i.e., the case in which no
robot is detected by the line-of-sight sensor) to a clockwise rotation about the
center of rotation c that is a distance R > 0 away.4

Theorem 4. For all n > 3 and all clockwise-searching controllers x, there exists
an initial configuration of n robots from which the system will not aggregate when
using controller x.

Proof. At a high level, we construct a deadlocked configuration by placing the
n robots in pairs such that no robot sees any other robot with its line-of-sight
sensor — implying that all robots continually try to rotate about their centers
of rotation — and each pair’s robots mutually block each other’s rotation. This
suffices for the case that n is even; when n is odd, we extend the all-pairs con-
figuration to include one mutually blocking triplet. Thus, no robots can move
in this configuration since they are all mutually blocking, and since no robot
sees any other they remain in this disconnected (non-aggregated) configuration
indefinitely.

In detail, first suppose n > 3 is even. As in [21], let r denote the radius
of a robot. For each i ∈ {0, 1, . . . , n2 − 1}, place robots p2i and p2i+1 at points
(3r · i, r) and (3r · i,−r), respectively. Orient all robots p2i with their line-of-sight
sensors in the +y direction, and orient all robots p2i+1 in the −y direction. This
configuration is depicted in Fig. 1a. Due to their orientations, no robot can see
any others; thus, since x is a clockwise-searching controller, all robots p2i are
attempting to move in the −y direction while all robots p2i+1 are attempting
to move in the +y direction. Each pair of robots is mutually blocking, resulting
in no motion. Moreover, since each consecutive pair of robots has a horizontal
gap of distance r between them, this configuration is disconnected and thus
non-aggregated.

It remains to consider when n > 3 is odd. Organize the first n− 3 robots in
pairs according to the description above; since n is odd, we have that n−3 must
be even. Then place robot pn−1 at point (3r(n2 −1)+

√
3r, 0) with its line-of-sight

sensor oriented at 0◦ (i.e., the +x direction), robot pn−2 at point (3r(n2 −1),−r)
with orientation 240◦, and robot pn−3 at point (3r(n2 − 1), r) with orientation
120◦, as depicted in Fig. 1b. By a nearly identical argument to the one above,
this configuration will also remain deadlocked and disconnected.

Therefore, in all cases there exists a configuration of n > 3 robots from which
no clockwise-searching controller can achieve aggregation. ut
4 Note that an analogous version of Theorem 4 would hold for counter-clockwise-

searching controllers if a robot’s center of rotation was 90◦ clockwise rather than
counter-clockwise from its line-of-sight sensor.
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Fig. 1: The deadlocked configurations described in the proof of Theorem 4 for
(a) n > 3 even and (b) n > 3 odd that remain non-aggregated indefinitely.

We have shown that no clockwise-searching controller (including x∗) can be
guaranteed to aggregate a system of n > 3 robots starting from a deadlocked
configuration, implying that Conjecture 1 does not hold in general. Moreover,
not all deadlocked configurations are disconnected: Fig. 2 shows a connected
configuration that will never make progress towards a more compact configura-
tion because all robots are mutually blocked by their neighbors. Notably, these
deadlocks are not observed in practice due to inherent noise in the physical e-
puck robots. Real physics work to aggregation’s advantage: if the robots were to
ever get “stuck” in a deadlock configuration, collisions and slipping perturb the
precise balancing of forces to allow the robots to push past one another. This
motivates an explicit inclusion and modeling of noise in the algorithm, which we
will return to in the next section.

Aaron Becker had conjectured at Dagstuhl Seminar 18331 [4] that symmetry
could also lead to livelock, a second type of negative result for the Gauci et al.
algorithm. In particular, Becker conjectured that robots initially organized in a
cycle (e.g., Fig. 3a for n = 3) would traverse a “symmetric dance” in perpetuity
without converging to an aggregated state when using controller x∗. However,



Fig. 2: A connected deadlocked configuration that remains non-compact.

simulations disprove this conjecture. Fig. 3b shows that while swarms of various
sizes initialized in the symmetric cycle configuration do exhibit an oscillatory
behavior, they always reach and remain near the minimum dispersion value in-
dicating near-optimal aggregation. Interestingly, these unique initial conditions
cause small swarms to reach and remain in an oscillatory cycle where they touch
and move apart infinitely often. Larger swarms break symmetry through colli-
sions once the robots touch.

4 Robustness to Error and Noise

Motivated by the role of collisions and perturbations in freeing swarms from
potential deadlocks, we next investigate the algorithm’s robustness to varying
magnitudes of error and noise. Our simulation platform models robots as circular
rigid bodies in two dimensions, capturing all translation, rotation, and collision
forces acting on the robots. Forces are combined and integrated iteratively over 5
ms time steps to obtain the translation and rotation of each robot. Fig. 4 shows
each of the four aggregation metrics for a baseline run on a swarm of n = 100
robots with no explicitly added noise. All four metrics demonstrate the system’s
steady but non-monotonic progress towards aggregation. Smallest enclosing disc
circumference, convex hull perimeter, and dispersion show qualitatively simi-
lar progressions while the cluster fraction highlights when individual connected
components join together.

We study the effects of two different forms of noise: motion noise and error
probability. For motion noise, each robot at each time step experiences an applied
force of a random magnitude in [0,m∗] in a random direction. The parameter
m∗ defines the maximum noise force (in newtons) that can be applied to a robot
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Fig. 3: (a) An example symmetric configuration of n = 3 robots that was conjec-
tured to produce livelock. (b) Dispersion over time for swarms of n = 3 (purple),
n = 5 (magenta), and n = 10 (orange) robots with symmetric initial configura-
tions analogous to that of Fig. 3a. Dashed lines show the theoretical minimum
dispersion value for the given system size.

in a single time step. For error probability, each robot has the same probability
p ∈ [0, 1] of receiving the incorrect feedback from its sight sensor at each time
step; more formally, a robot will receive the correct feedback I with probability
(1−p) and the opposite, incorrect feedback 1− I with probability p.5 The robot
then proceeds with the algorithm as usual based on the feedback it receives.

In general, as the magnitude of error increases, so does the time required
to achieve aggregation. The algorithm exhibits robustness to low magnitudes of
motion noise with the average time to aggregation remaining relatively steady
for m∗ ≤ 5 N and increasing only minimally for 5 ≤ m∗ ≤ 20 N (Fig. 5a). With
larger magnitudes of motion noise (m∗ > 20 N), average time to aggregation
increases significantly, with many runs reaching the limit for simulation time
before aggregation is reached. A similar trend is evident for error probability
(Fig. 5b). The algorithm exhibits robustness for small error probabilities p ∈
[0, 0.05] with the average time to aggregation rising steadily with increased error
until nearly all runs reach the simulation time limit. Intuitively, while small
amounts of noise can help the algorithm overcome deadlock without degrading
performance, too much noise interferes significantly with the algorithm’s ability
to progress towards aggregation.

5 Our formulation of an “error probability” p is equivalent to “sensory noise” in [21]
when the false positive and false negative probabilities are both equal to p.
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Fig. 4: Time evolutions of the four aggregation metrics for the same execution
of x∗ by a system of n = 100 robots for 300 seconds with no explicitly added
noise. Dashed lines indicate the optimal value for each aggregation metric given
the number of robots n.

5 Using a Cone-of-Sight Sensor

We next analyze a generalization of the algorithm where each robot has a cone-
of-sight sensor of angle β instead of a line-of-sight sensor (β = 0). This was
left as future work in [21] and was briefly considered in [20] where, for each
β ∈ {0◦, 30◦, . . . , 180◦}, the best performing controller xβ was found via exhaus-
tive search and compared against the others. Here we take a complementary
approach, studying the performance of the original controller x∗ as β varies.

We begin by proving that, in the case of one static robot and one robot
executing the generalized algorithm, using a cone-of-sight sensor with size β > 0
can improve the time to aggregation by a linear factor (as a function of the
initial distance between the two robots) over the original algorithm. This result
follows from the fact that progress towards aggregation is achieved when the
moving robot is rotating in place, moving its center of rotation closer to the
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Fig. 5: The time required to reach aggregation for different magnitudes of (a)
motion noise and (b) error probability for systems of n = 10 (purple), n = 25
(magenta), n = 50 (red), and n = 100 (orange) robots. Each experiment for a
given system size and noise strength was repeated 25 times (scatter plot); average
runtimes are shown as solid lines. We consider systems that are within 15% of
the minimum dispersion value as aggregated. The dashed line at 300 seconds
indicates the cutoff time at which the run is determined to be non-aggregating.

static robot. With a line-of-sight sensor, the further the two robots are from
each other, the smaller the moving robot’s rotation in place. However, with a
cone-of-sight sensor, the moving robot is guaranteed to rotate in place a fixed
amount each time it sees the static robot, guaranteeing at least constant progress
towards aggregation with each revolution.

Theorem 5. One moving robot using a cone-of-sight sensor of size β ∈ (0, π)
will always aggregate with another static robot in

m <

⌈
(d0 −R− ri − rj)(R+ 2ri)

2
√

3Rri sin((1− 1/
√

3) · β/2)

⌉
rotations around its center of rotation, where d0 is the initial value of ||pj −ci||.

Proof. Consider a robot i executing the generalized algorithm at position pi
with center of rotation ci and a static robot j at position pj . As in the proofs
of Theorems 5.1 and 5.2 in [21], we first consider the scenario shown in Fig. 6
and derive an expression for d′ = ||pj − c′i|| in terms of d = ||pj − ci||. W.l.o.g.,

let ci = [0, 0]T and let the axis of the cone-of-sight sensor of robot i point
horizontally right at the moment it starts seeing robot j. Then the position of
robot j is given by

pj =

 rj cos(α/2+γ)
sin(α/2)

−
(
R+

rj sin(α/2+γ)
sin(α/2)

) .
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Fig. 6: The setup considered in the proof of Theorem 5. Robot i is moving and
has a cone-of-sight sensor with size β while robot j is static.

Substituting this position into the distance d = ||pj − ci|| yields

d2 =

(
rj cos(α/2 + γ)

sin(α/2)

)2

+

(
R+

rj sin(α/2 + γ)

sin(α/2)

)2

= R2 +
2Rrj sin(α/2 + γ)

sin(α/2)
+

r2j

sin2(α/2)
.

Using a line-of-sight sensor, robot i would only rotate α before it no longer sees
robot j; however, with a cone-of-sight sensor of size β, robot i rotates α + 2γ
before robot j leaves its sight, where γ is the angle from the cone-of-sight axis
to the first line intersecting pi that is tangent to robot j. With this cone-of-sight
sensor, c′i is given by

c′i =

[
R sin(α+ 2γ)

R(cos(α+ 2γ)− 1)

]
.



Substituting this new center of rotation into the distance d′ = ||pj − c′i|| yields

d′ =

√√√√√√√√
(
rj cos(α/2 + γ)

sin(α/2)
−R sin(α+ 2γ)

)2

+

(
−
(
R+

rj sin(α/2 + γ)

sin(α/2)

)
−R(cos(α+ 2γ)− 1)

)2

=

√√√√√√√√
r2j cos2(α/2 + γ)

sin2(α/2)
− 2Rrj cos(α/2 + γ) sin(α+ 2γ)

sin(α/2)
+R2 sin2(α+ 2γ)

+
r2j sin2(α/2 + γ)

sin2(α/2)
+

2Rrj sin(α/2 + γ) cos(α+ 2γ)

sin(α/2)
+R2 cos2(α+ 2γ)

=

√
R2 +

r2j

sin2(α/2)
+

2Rrj(sin(α/2 + γ) cos(α+ 2γ)− cos(α/2 + γ) sin(α+ 2γ))

sin(α/2)

=

√
d2 +

2Rrj(sin(α/2 + γ − (α+ 2γ))− sin(α/2 + γ))

sin(α/2)

=

√
d2 − 4Rrj sin (α/2 + γ)

sin(α/2)
.

Note that this relation contains the result proven in Theorem 5.1 of [21] as
a special case by setting β = 0 (and thus γ = 0), which corresponds to a
line-of-sight sensor. To bound the number of d → d′ updates required until
d ≤ R + ri + rj (i.e., until the robots have aggregated), we write the following

recurrence relation, where d̂m = d2m and d̂m > (R+ ri + rj)
2:

d̂m+1 = d̂m −
4Rrj sin (α/2 + γ)

sin(α/2)
.

Observe that α is the largest when the two robots are touching, and — assuming
ri = rj , i.e., the two robots are the same size — it is easy to see that α ≤ π/3.
Also, γ is at least 0 and at most β/2; thus, by supposition, γ < π/2. Thus, by
the angle sum identity,

d̂m+1 < d̂m −
4Rrj cos(α/2) sin(γ)

sin(α/2)
.

Again, since α ≤ π/3, we have cos(α/2) ≥
√

3/2. By inspection, we also have
sin(α/2) < rj/(dm −R), yielding

d̂m+1 < d̂m − 2
√

3R(dm −R) sin(γ).

Let k1 > 1 be a constant such that ri = rj = R/k1, which must exist since
ri, rj , and R are constants and ri = rj < R. Since the robots have not yet
aggregated, we have dm > R+ ri + rj = (1 + 2/k1)R. We use this to show

R <
dm

1 + 2/k1
= k2dm,



where k2 = 1/(1 + 2/k1) < 1 is a constant. Returning to our recurrence relation:

d̂m+1 < d̂m − 2
√

3R(dm − k2dm) sin(γ) = d̂m − 2
√

3Rdm(1− k2) sin(γ)

Recalling that d̂m = d2m, we have

dm+1 <

√
d̂m − 2

√
3Rdm(1− k2) sin(γ) < dm −

√
3R(1− k2) sin(γ),

where the second inequality can be verified by squaring both sides and noting
that R > 0, 1 − k2 > 0, and γ ∈ (0, π/2). As a final upper bound on dm+1, we
lower bound the angle γ as a function of the constant size of the cone-of-sight
sensor β as γ ≥ (1− 1/

√
3) · β/2 (see [10] for a complete derivation), yielding

dm+1 < dm −
√

3R(1− k2) sin((1− 1/
√

3) · β/2).

This yields the solution

dm < d0 −m
√

3R(1− k2) sin((1− 1/
√

3) · β/2), dm > R+ ri + rj

The number of d → d′ updates required until d ≤ R + ri + rj is now given by
setting dm = R+ ri + rj in this solution and solving for m, which yields

m <

⌈
d0 −R− ri − rj√

3R(1− k2) sin((1− 1/
√

3) · β/2)

⌉
=

⌈
(d0 −R− ri − rj)(R+ 2ri)

2
√

3Rri sin((1− 1/
√

3) · β/2)

⌉
,

concluding the proof. ut

We note that this bound on the number of required updates m has a lin-
ear dependence on d0 while the original bound proven in Theorem 5.2 of [21]
for line-of-sight sensors depended on d20, demonstrating a linear speedup with
cone-of-sight sensors for n = 2 robots. However, simulation results show that
as the number of robots increases, the speedup from using cone-of-sight sen-
sors diminishes (Fig. 7). All systems benefit from small cone-of-sight sensors —
i.e., β ∈ (0, 0.5) — reaching aggregation in significantly less time. With larger
systems, however, large cone-of-sight sensors can be detrimental as robots see
others more often than not, causing them to primarily rotate in place without
making progress towards aggregation. This highlights a delicate balance between
the algorithm’s two modes (rotating around the center of rotation and rotating
in place) with β indirectly affecting how much time is spent in each.

6 Conclusion

In this paper, we investigated the Gauci et al. swarm aggregation algorithm [21]
which provably aggregates two robots and reliably aggregates larger swarms in
experiment using only a binary line-of-sight sensor and no arithmetic computa-
tion or persistent memory. We answered the open question of whether the algo-
rithm guarantees aggregation for systems of n > 2 robots negatively, identifying



Fig. 7: The effects of cone-of-sight sensor size on the algorithm’s time to aggre-
gation for systems of n = 10 (purple), n = 25 (magenta), n = 50 (red), and
n = 100 (orange) robots. Each experiment for a given system size and sensor
size was repeated 25 times (scatter plot); average runtimes are shown as solid
lines. We consider systems that are within 15% of the minimum dispersion value
as aggregated. The dashed line at 300 seconds indicates the cutoff time at which
the run is determined to be non-aggregating.

how deadlock can halt the system’s progress towards aggregation. In practice,
however, the physics of collisions and slipping work to the algorithm’s advan-
tage in avoiding deadlock; moreover, we showed that the algorithm is robust to
small amounts of noise in its sensors and in its motion. Finally, we considered a
generalization of the algorithm using cone-of-sight sensors, proving that for the
situation of one moving robot and one static robot, the time to aggregation is
improved by a linear factor over the original line-of-sight sensor. Simulation re-
sults showed that small cone-of-sight sensors can also improve runtime for larger
systems, though with diminishing returns.

In the full version of this work [10], we additionally introduced a noisy, dis-
crete adaptation of the Gauci et al. algorithm in an effort to formally prove its
convergence when noise is explicitly modeled as a mechanism to break deadlock.
However, both the original algorithm and this discrete adaptation progress to-
wards aggregation non-monotonically, complicating analysis techniques relying
on consistent progress towards the goal state. It is possible that a proof showing
convergence in expectation can be derived, but we leave this for future work.
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