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Abstract— Elastic actuation can improve human-robot inter-
action and energy efficiency for wearable robots. Previous work
showed that the energy consumption of series elastic actuators
can be a convex function of the series spring compliance. This
function is useful to optimally select the series spring com-
pliance that reduces the motor energy consumption. However,
series springs have limited influence on the motor torque, which
is a major source of the energy losses due to the associated
Joule heating. Springs in parallel to the motor can significantly
modify the motor torque and therefore reduce Joule heating,
but it is unknown how to design springs that globally minimize
energy consumption for a given motion of the load. In this
work, we introduce the stiffness design of linear and nonlinear
parallel elastic actuators via convex optimization. We show
that the energy consumption of parallel elastic actuators is
a convex function of the spring stiffness and compare the
energy savings with that of optimal series elastic actuators.
We analyze robustness of the solution in simulation by adding
uncertainty of 20% of the RMS load kinematics and kinetics
for the ankle, knee, and hip movements for level-ground human
walking. When the winding Joule heating losses are dominant
with respect to the viscous losses, our optimal PEA designs
outperform SEA designs by further reducing the motor energy
consumption up to 63%. Comparing to the linear PEA designs,
our nonlinear PEA designs further reduced the motor energy
consumption up to 31%. From our convex formulation, our
global optimal nonlinear parallel elastic actuator designs give
two different elongation-torque curves for positive and negative
elongation, suggesting a clutching mechanism for the final
implementation. In addition, the different torque-elongation
profiles for positive and negative elongation for nonlinear
parallel elastic actuators can cause sensitivity of the energy
consumption to changes in the nominal load trajectory.

I. INTRODUCTION

Elastic actuation can enable a safe physical interaction
between human and robots [1]-[4], and reduce the robot
energy consumption [5], [6]. Series elastic actuators (SEAs)
[7] and parallel elastic actuators (PEAs) [8], [9] are typical
configurations for elastic actuation in applications requiring
high torque-to-weight ratio and energy efficiency, such as
robotic prostheses and exoskeletons. Through series connec-
tions with the motor, SEAs can modify the motor torque
and velocity to reduce the motor peak power and improve
the motor energy efficiency by proper tuning of the spring
elongation [10], and also improve torque tracking at low
frequencies [11]. For tasks compensating static torques at a
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joint, e.g., gravity compensation, SEAs have limited abilities
to reduce the motor energy consumption under large devia-
tions of the initial position, due to their inability to provide
the required static torque [8].

Our previous work formulated the SEA motor energy
consumption as a convex function of the series spring
compliance when the motion of the load is periodic [12],
and proposed an optimization framework for robust-feasible
SEA designs that satisfy all the actuator constraints despite
uncertainties in load kinematics and kinetics, unmodeled
dynamics, and limited manufacturing precision of the spring
[13]. However, series elasticity does not reduce considerably
the motor torque and the associated Joule heating losses [13].

PEAs also have the potential to reduce energy consump-
tion and improve energy efficiency of the motor [14]. By
placing the auxiliary spring in parallel with the motor, PEAs
can compensate for gravitational loads and decrease the
torque load on the motor [15], [16]. Such PEA designs can
reduce the energy consumption by up-to 80% for prostheses
[17], [18] and exoskeletons [19]. In addition, nonlinear
PEAs can substantially lessen the actuator requirements for
applications like prostheses [9].

Our contribution

In this paper, we formulate the energy consumption of both
linear and nonlinear PEAs as a convex function of the parallel
spring stiffness (Sec. II). We use the convex formulation to
find global optimal PEA designs, and compare the energy
consumption of optimal PEAs against optimal SEAs in the
presence of load kinematic and kinetic uncertainties (Sec.
IIT). The paper has the following organization. Sec. II-A.1
will cover the electro-mechanical model of PEAs. Sec. II-
A.2 will cover the actuator constraints of PEAs. Sec. II-B
will cover the the convex formulation of energy consump-
tion. Sec. III presents the energy consumption comparison
between the rigid actuator, the optimal SEA, and the optimal
PEA designs in the presence of tracking uncertainty in load
kinematics and kinetics.

Notation

In this paper, R; and R denote the set of non-negative
and positive real numbers. Bold lower-case characters repre-
sent column vectors in R™, and matrices in R™”*™ are in bold
upper-case characters. The subindex in a; refers to the i-th
element of the vector a. We use 1 to represent a vector with
all its elements equal to 1 and dimensions to be interpreted
by the context. We use b = abs(a) to represent a vector b
with entries equal to the element-wise absolute value of a.
The term diag(x) refers to the square matrix with the vector
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Fig. 1: Electro-mechanical diagram of an PEA. PEA refers to the combina-
tion of electric motor, mechanical transmission, and the spring in parallel
connection with the load. (1) and (3) model the PEA’s dynamics.

x along the diagonal. The matrix inequality A = 0 indicates
that the matrix A is positive semidefinite.

II. OPTIMAL STIFENESS DESIGN OF PEAS

In this section, we derive the electro-mechanical model
of PEAs in Sec. II-A.1, and formulate the motor energy
consumption of PEAs for both linear and nonlinear spring
designs using the electro-mechanical model (Fig. 1). We
formulate the motor energy consumption assuming that: i)
the load kinematics and kinetics are periodic; ii) the inertial
and viscous friction torques fully capture the dynamics of
the transmission, e.g., backlash and Coulomb friction are
negligible; and iii) the winding temperature does not change
significantly during operation.

A. Dynamic model and actuator constraints of PEAs

1) Electro-mechanical modeling: Similar to the derivation
of the electro-mechanical model in [8], [13] and using the
Newton—Euler equations, we derive the equations of motion
of the motor as:

1
Tm = InGm + bnGm — ;(n +7p), (1)
T = —kpdp = —kpai, )

where I, € R, is the rotor inertia of the motor; b, €
R, the motor’s viscous friction coefficient; r € R the
reduction ratio of the transmission; gp, Gm, Gm € R are the
position, velocity, and acceleration of the motor, respectively;
Tp, Tm, TI € R are the parallel spring torque, motor’s electro-
magnetic torque, and load torque, respectively; k, € R
is the stiffness of the parallel spring. The load trajectory is
assumed to be known with some uncertainty and is defined
as the set of variables qi, ¢i, gy, 7.

Using the Kirchhoff’s voltage law across the motor’s
winding, we model the electrical behavior of the PEA’s motor
with the following equation:

. di
Vs = imRm + Lmﬁ + Vemf,

~ i Bm + Vemf 3)

where vs € R is the voltage of the source, ¢;;, € R is the mo-
tor current, R, € R, is the motor resistance, Ly, € Ry
is the motor inductance, and vens € R is the electromotive

voltage of the motor. Similar to [20], we assume that the
voltage drop across the motor’s inductance is negligible
compared to the voltage drop across the winding resistance.
In SI units, the electromagnetic torque and electromotive
voltage relate to motor current and speed as follows:

Tm = ktim7 Vemf = ktdm; (4)

where ki € Ry is the motor torque constant. Substituting
the electromotive voltage and motor current in (4) into (3),
we express electromagnetic torque as a function of supplied
voltage and motor speed

ki . k2
m = Us—05— — qdm—5 - 5
7 s Ry d Ry )

In this paper, we will use the motor constant k, =
ktRal/ % to calculate Joule heat losses in Sec. II-B. This
electro-mechanical model (3) and (5) also applies to brush-
less permanent magnet DC motors, by using the direct-
quadrature transformation [21], [22].

2) Actuator constraints as functions of spring stiffness:
Similar to the case of SEA covered in [13], the PEA’s motor
and spring also have four types of actuator constraints: i) the
RMS motor torque should not exceed the continuous torque,
i.e., rms(Tn) < Teont tO constrain the motor winding tempera-
ture; ii) the motor velocity should not exceed the maximum
velocity, i.e., |gm| < ¢max to constrain the motor velocity;
iii) the motor torque should not exceed the maximum motor
torque, i.e., |Tm| < Tmax; and iv) the motor torque and velocity

should satisfy the inequality [23]: |7y| < RL"“US — %Mm"

B. Convex formulation of energy consumption

In this section, we formulate the motor energy consump-
tion for PEAs as a convex function of the parallel spring
stiffness using the electro-mechanical model in Sec. II-A.1.
Sec. II-B.1 and Sec. II-B.2 show convexity for linear and
nonlinear parallel springs, respectively.

1) Linear PEAs: Neglecting backlash at the transmission,
the motor position, velocity, and acceleration are

dm = T'q1, q.m = qu, C'I'm = TQL (6)
Substituting (6) and (2) into (1), we write the electromagnetic

torque of the motor as the following affine function of spring
stiffness:

. . 1
Tm =ImGm + dmGm — ;(7’1 +7p),
— (@) kp + (Inrdi + burg —nr ") . (7)
b

Joule heating and the rotor mechanical power represent
most of the energy consumption of an electric motor [20].
Therefore, using (5), we derive the expression of motor
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where we assume that the load kinematics and kinetics are
periodic and the parallel spring is conservative. Thus, for
periodic motion, the energy from the inertial torques becomes
zero and there is no energy stored or dissipated by the spring.

Substituting (6) and (7) into (8), we write the motor
energy consumption as the following quadratic function of
the parallel spring stiffness:

ty
En =/ <k2 + by — Tldl) dt,
to

=a0k§ + 2bokp + co )

where

ty b2
co = / <k2 + b2 — qul) dt.
to m

The second derivative of the quadratic function (9) is non-
negative, i.e., dQEm/dk:g = 2ag > 0; thus, (9) is a convex
function of &, [24].

We formulate the actuator constraints covered in Sec.
II-A.2 as affine and quadratic inequalities of the parallel
spring stiffness k. The motor kinematics are independent
of kp, as shown in (6). Therefore, we only consider actuator
constraints on: 1) the RMS motor torque; ii) the motor torque;
and iii) the motor torque and velocity. In our formulation,
we rewrite (6) and (7) in vector form, discretizing time in n
samples,

dm = 7q, q.m:'erl, qm:rdh (10)
T = (@r™") ky + (ImrGi + burgy — mir ™) . (11)
b

We use (11) to write the RMS motor torque constraint as the
following quadratic inequality of spring stiffness:

\/ T T~ < Teom,

al a; kX +2bl ar ky+ bl b, <7h.n.  (12)

Tm_

Similarly, we use (11) and (10) to write the motor torque,
and torque-velocity constraints as the following affine in-
equality of spring stiffness:

ar, leax - bTm
I bl )
a, 1k R tvs — b, —rk2R G
a 1kR-1vs — b, +rk2R-1q
Tm < m Us Tm t “'m
—ar, kp B 1k7tRn_11”s + b'rm - Tkt2Rﬂ_11q1 (1
—a,, 1Ry, vs + b, + 1k Ry g

To simplify notation, we lump the affine inequalities (13),
and (14) as

Mk, < pi, 5)

where M, p; € R™, and m is the number of rows that
results from stacking the affine inequalities vertically. The
inequalities (15) and (12) represent our complete set of
constraints.

The optimal linear parallel spring that minimizes energy
consumption is the solution to the following convex opti-
mization program:

min}'cmize aoklf + 2bgkp + co
P
subject to  a’ _ar, k:2 + 2bT ar,kp + b! b, < 72

Mk, < p. (16)

2) Nonlinear PEAs: In order to formulate the convexity of
the motor energy consumption for nonlinear PEAs, we dis-
cretize the continuous-time spring stiffness using n samples.
The expression for the discrete-time spring stiffness vector,
k, € RY, is:

o dmy,
A I
¢ ddy,

Tpi

:_.77/6.:17...7”.
Opi

kp

This definition applies for 5[”- # 0. For an energetically
conservative spring, Spi = 0 implies that 75,; = 0.

Utilizing the electro-mechanical model in Sec. II-A.1, we
derive the motor velocity and acceleration as

Qm = a, dm =C, (17)

where a = q;r and ¢ = qr. Substituting (17) into (1), we
derive the motor’s electromagnetic torque as

Tm = e+ Fky, (18)

where € = I,c + bpa — 77—t and F = diag(q)r—*.

Similar to [13], using numerical integration and substi-
tuting (17) and (18) into (8), we approximate the energy
consumption as

E, ~ (Tgrmkrf + bnG G — rqu]) At

=k, Gky + hk, +w, (19)



where
G = (F"Fk;?) At,
h = (2¢" Fk;?) At,

w= (e’eky? +bma’a — 1 q) At.

The Hessian of the quadratic function (19) is a positive semi-
definite function of k,, i.e., dQEm/dk:g = 2G = 0. Thus the
quadratic function (19) is a convex function of kj [24].
Similar to Sec. II-B.1, we formulate the RMS motor
torque, the motor torque, and the motor torque-velocity
constraints covered in Sec. II-A.2 as affine and quadratic
inequalities of the discrete-time spring stiffness vector k.
In our formulation, we use (18) to write the RMS motor
torque constraint as the following quadratic inequality of

spring stiffness:
\/ Tngn_l < Teonts

k, F"Fky+2e" Fk,+e'e <72, n. (20)

Similarly, we use (17) and (18) to write the motor torque,
and torque-velocity constraints as the following affine in-
equality of spring stiffness:

F _]—Tmax — e
<
|:_F:| Ry < _17-max + 6:| ’ @D
F [1k Ry v, — e — rk2R; G
F 1k R-'v, — e + rk’R-1q
< m t m
_F kp < 1k R vs +e —rkiR g 22)
—F |1k Ry v + e + kiR gy

To simplify notation, we lump the affine inequalities (21),
and (22) as

Mk, < pn, (23)

where M, € R™*"™ p, € R™, and m is the number of rows
that results from stacking the affine inequalities vertically.
(23) and (20) represent our complete set of constraints.

The optimal nonlinear parallel spring that minimizes en-
ergy consumption is the solution to the following convex
optimization program:

minimize k] Gky + hk, +w
P
subject to k) F'Fk,+2e" Fk,+e'e <7i.n
M, k, < p,. (24

III. SIMULATION RESULTS AND DISCUSSION

In this section, we used the convex optimization program
(16) and (24) to minimize the energy consumption of PEAs
accomplishing various tasks. We defined the motion tasks
from the load position and torque trajectories for the ankle,
knee, and hip joints of humans walking on level ground,
as reported in [25] and discretized over n = 1000 samples.
Each trajectory also satisfied our RMS torque, motor speed-
torque, and spring elongation constraints. Table I summa-
rizes the actuator parameters for our simulations. In all
simulations, CVX (Matlab Software for Disciplined Convex

Programming) executed the solvers Mosek [26] with pre-
cision settings cvx_precision default. The source
code for all simulations is available in the GitHub repos-
itory, https://github.com/UM-LoCoLab/Convex_
Optimization_for_ PEAs.git.

TABLE I: PEA simulation parameters. These values match the knee-ankle
actuators experimentally validated in [21].

Parameter Value
Motor inertia, I, (kg - m?) 1.2 x 1074
Viscous friction, by (N - m - s/rad) 0.16 x 10~3

Transmission ratio, r 50

Motor torque constant, k¢ (N-m/A) 0.14
Terminal resistance, Rp, (£2) 0.279
Motor constant, km (N - m/(W?)) 0.265
Max. velocity, ¢max (rad/s) 342.9
Max. motor torque, Tmax (N - m) 4.02
Cont. torque, Tcont (N - m) 1.1
Voltage, Vi, (V) 48

For each motion task, we compared the motor energy
consumption of optimal PEA designs with both the optimal
SEA designs and rigid actuators. We generated the global
optimal SEA designs by applying the method presented in
[13]. The method in [13] minimizes the SEA version of
the cost functions (9) and (19) when the spring is in series
with the load, and the optimization variable is the spring
compliance instead of stiffness.

In addition, to validate the robustness of our global opti-
mal PEA designs under uncertainties in the kinematics and
kinetics of the load, for each motion task, we simulated both
ideal and imperfect trajectory tracking cases. We simulated
the imperfect tracking cases with Monte Carlo simulations,
by adding an additive uncertainty of 20% of the RMS load
kinematics and kinetics for position, velocity, acceleration,
and torque of the load. This uncertainty was a sample of a
uniformly distributed probability distribution. Consequently,
the variation over a stride for a specific joint could reach 20%
of the corresponding RMS value, which is comparable to the
coefficient of variation reported in [25]. For each imperfect
tracking case, we ran 10000 trials for every Monte Carlo
simulation, and reported the energy consumptions with both
the mean and standard deviation. The mean value of our
random experiments converged within +2% deviation with
this number of Monte Carlo trials.

TABLE II: Optimal linear spring stiffness designs for the ankle, knee, and
hip movements for level-ground human walking (in N-m/rad). For these
motion tasks, we used the load position and torque trajectories reported in
[25]. The dash for walking knee movements under fast cadence represents
that the global optimal linear PEA design is infeasible.

ankle hip knee
Walking speed SEA PEA SEA  PEA SEA PEA
slow 154.6  249.1 | 406.4 40.2 | 133.2 7.27
normal 164.6  213.5 | 483.8 55.8 | 137.6 15.35
fast 195.3 179.4 | 460.7 95.2 | 430.8 -
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Fig. 2: Normalized energy consumption of the motor with linear (left) and nonlinear (right) spring designs compared to the energy consumption of the
rigid actuator. We reported the values of linear spring stiffness in Table II. Each bar represents the mean value of energy consumption, and the green lines
on each bar represent the nominal value of energy consumption with no tracking uncertainty. In addition, the error bars represent two times the standard
deviation of energy consumption with tracking uncertainties. For the fast-walking knee motion, we found that both global optimal linear and nonlinear
PEA designs were infeasible. Therefore, we left blank for the energy consumption of both linear and nonlinear PEAs.

A. Optimal PEAs for hip and ankle movements
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Fig. 3: The motor energy consumption from Joule heating and viscous
friction. For ankle and hip movements, the ratio between the energy
from Joule heating to viscous friction ranges from 2.2 to 27.4. For knee
movements, the ratio between the energy from Joule heating to viscous
friction for slow and normal cadences are 0.6 and 0.9, respectively.

1) Linear PEAs: The linear PEAs outperformed the non-
linear SEAs for hip and ankle movements by reducing the
energy consumption of the motor up to 34% from the rigid
actuator case under ideal load kinematic and kinetic tracking,
and up to 32% + 6% under the aforementioned uncertainties
in the load kinematics and kinetics (Fig. 2a and Fig. 2c). The
additional energy savings of PEAs were possible because
the energy losses from Joule heating represented most of the
energy losses during hip and ankle movements, as shown in
Fig. 3. Parallel springs had a higher influence on the motor
torque than series springs; thus, PEAs were advantageous to
modify the associated Joule heating.

2) Nonlinear PEAs: The nonlinear PEAs outperformed
the nonlinear SEAs for hip and ankle movements by reducing
the energy consumption of the motor up to 64% from the
rigid actuator case under ideal load kinematics and kinetics
tracking, and up to 59% =+ 4% in the presence of tracking
uncertainty (Fig. 2b and Fig. 2d). Similar to the linear spring
case in Sec. III-A.1, PEAs had more influence in motor
torque and the corresponding Joule heating than the SEAs.

Our global optimal nonlinear PEA designs provided dif-
ferent elongation-torque curves for positive and negative
elongations. For example, Fig. 4a shows an optimal PEA



design with a piece-wise expression of 7, = f(p) for the
hip movement under fast cadence, suggesting a clutched PEA
design with a torque offset for the mechanical implementa-
tion. Fig. 4c illustrates the implications of this discontinuity
in the motor torque by comparing the torque profiles for the
linear and the nonlinear PEA.
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(a) Optimal linear and nonlinear parallel springs for the hip movement under fast
cadence.
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(c) Motor torque profile for the optimal linear and nonlinear PEA designs under ideal
tracking, and the optimal nonlinear PEA design under imperfect tracking.

Fig. 4: Elongation-torque, load position, and motor torque profiles for
the PEA designs optimized to perform the hip motion at fast cadence.
Discontinuities in motor torque profile occurred at instances when the load
position trajectory crossed zero. The uncertainties in load position when it
crossed zero led to significant deviation in motor torque.

For hip motion, even though the nonlinear PEAs outper-
formed nonlinear SEAs under ideal tracking, the tracking
uncertainty caused a large variation in the motor energy
consumption, which could be higher than the nonlinear
SEAs or even the rigid actuators. This sensitivity of the
energy consumption to poor tracking was mostly due to the

optimal torque-elongation PEA profile. Analyzing Fig. 4a,
the stiffness of the PEA increased as 6, — 0% however,
the stiffness approached 0 as §, — 07. Such discontinuity
can cause large variations in energy consumption, especially
when the elongation of the spring is small in either direction,
as a small deviation in §, would lead to a significant deviation
in 7,. As shown in Fig. 4, when the load position trajectory
crossed zero in Fig. 4b, e.g., at 0.26 and 0.63 seconds, the
added uncertainties caused large deviations from the nominal
motor torque in Fig. 4c. In addition, large spring stiffness
under negative elongation (Fig. 4a) led to large uncertainties
in motor torque than under positive elongation. Ultimately,
this piece-wise feature in the optimal torque-elongation PEA
profile led to significant sensitivity of the motor energy
consumption to poor tracking. In future work, we will add a
constraint so that the torque-elongation curve of the spring
is smooth.

B. Optimal PEAs for knee movements

As shown in Fig. 2e, for the knee movements, the linear
PEAs were able to reduce the energy consumption of the
motor up to 14% from the rigid actuator case under ideal
load kinematics and kinetics tracking, and up to 11% =+ 22%
under the aforementioned uncertainties in the load kinematics
and kinetics. The nonlinear PEAs (Fig. 2f) were able to
reduce the energy consumption of the motor up to 46%
from the rigid actuator case under ideal load kinematics
and kinetics tracking, and up to 28% =+ 30% under the
aforementioned uncertainties in the load kinematics and
kinetics. The optimized PEA designs failed to outperform
the optimal SEA designs in energy consumption reduction,
since the energy losses from Joule heating were not dominant
compared to that from viscous friction, as shown in Fig. 3.
Since PEA designs cannot modify the motor velocity while
SEA designs can, PEAs are not as advantageous as the SEAs
for walking knee movements using the motor configuration
in Table I. This fact also encourages the combination of serial
and parallel springs, since such elastic actuator designs can
modify both the motor torque and velocity simultaneously;
thus, they are advantageous to further reduce the motor en-
ergy consumption for motion tasks with comparable energy
losses from Joule heating and viscous friction.

C. Linear PEAs vs. Nonlinear PEAs

For walking ankle movements under normal cadence,
compared to the linear PEAs, the nonlinear PEAs further
reduced the motor energy consumption around 34% under
ideal load kinematics and kinetics tracking, and around
25% + 6% in the presence of tracking uncertainty (Fig. 2a
and Fig. 2b). For walking hip movements under normal
cadence, compared to the linear PEAs, the nonlinear PEAs
further reduced the motor energy consumption around 11%
under ideal load kinematics and kinetics tracking, and around
4% =+ 13% in the presence of tracking uncertainty (Fig. 2¢
and Fig. 2d). For walking knee movements under normal
cadence, compared to the linear PEAs, the nonlinear PEAs
further reduced the motor energy consumption up to 38%



under ideal load kinematics and kinetics tracking, and up to
20% =+ 14% in the presence of tracking uncertainty (Fig. 2e
and Fig. 2f). Similar to the case in Sec. III-A.2, nonlinear
PEAs had the potential to further reduce motor energy con-
sumption from linear PEAs; however, the discontinuity in the
torque-elongation PEA profile led to significant sensitivity
of the energy consumption to poor tracking. Since trajectory
tracking will always be prone to error for any motion task,
it is beneficial to constraint the optimal nonlinear torque-
elongation curve to be smooth.

IV. CONCLUSIONS

We formulated the PEA motor energy consumption as a
convex function of parallel spring stiffness, and compare the
optimal PEA and SEA energy consumption in the presence
of tracking uncertainties. In addition to ideal load kinematics
and kinetics tracking cases, we also added an additive
uncertainty of 20% of the RMS load kinematics and kinetics
for the ankle, knee, and hip movements for level-ground
human walking. When the winding Joule heating losses are
dominant with respect to the viscous losses, our optimal
PEA designs outperform SEA designs by further reducing
the motor energy consumption up to 63%. Comparing to
the linear PEA designs, our nonlinear PEA designs further
reduced the motor energy consumption up to 31%. From
our convex formulation, the global optimal nonlinear parallel
elastic actuator designs give two different elongation-torque
curves for positive and negative elongation, suggesting a
clutching mechanism for final implementation. In addition,
the difference between the designs for positive and negative
elongation for nonlinear parallel elastic actuators can cause
large deviations from the ideal tracking case. These suggest
further studies on robust optimal design of PEAs and experi-
mental validations of such designs. They also suggest studies
on a combination of series and parallel elastic actuators, and
the corresponding convex formulation.
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