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1. Introduction

In this paper, we study the existence of invariant measures of the stochastic Lorenz
system

dx = σ(y − x)dt +
√

2γ1 dB1,

dy = x(ρ− z)dt − y dt +
√

2γ2 dB2, (1.1)

dz = xy dt − βz dt +
√

2γ3 dB3,

where the Bi, i = 1, 2, 3, are independent, standard Brownian motions and σ, ρ,β, γi

are constants. We assume that σ > 0 and ρ ≥ 0, while for the diffusion parameters
γ1, γ2, γ3 ≥ 0 we require γi > 0 for at least one index i, which means that the system
is genuinely stochastic. If β > 0, it is known that (1.1) possesses a normalizable
invariant measure (see, for example [25]) and the long-term dynamics has been
extensively studied. In this paper, we focus on a degenerate damping factor β ≤ 0,
and we investigate whether the presence of noise plays a nontrivial role in stabilizing
the dynamics.

Previous literature

The deterministic version of Eq. (1.1); that is, when γi = 0 for i = 1, 2, 3, has a long
history as a canonical example of a chaotic dynamical system. Originally (1.1) was
derived from the Boussinesq approximation of Rayleigh–Bénard convection [23]. It
is understood as a projection of the Boussinesq equation onto one Fourier direction
with wavenumber k, in which case x represents the convection rate, and y and z
describe the horizontal and vertical temperature variations, respectively. In this
framing as a simple model for convection, σ corresponds to the Prandtl number, ρ
is a rescaled Rayleigh number and β is an aspect ratio depending on k.

While β is a strictly positive parameter in the original derivation of (1.1), if
the Rayleigh number is large, a typical assumptions for turbulent flows, and k is
large, then β ≈ 0. Thus, it is natural to investigate the system with β = 0. On the
other hand, practical numerical considerations lead to the so-called Homogeneous
Raylegh–Bénard (HRB) system, where a linearly unstable term, an analogue of the
case when β ≤ 0, appears in the temperature equation. See, for example [4] and a
related two-dimensional ODE stochastic model in [3]. Furthermore, equations with
similar structure to HRB also appear in a certain zero Prandlt limit which models
mantle convection, see, for example [30, 34]. Thus, both HRB and the zero Prandlt
limit provide additional motivation for studying the parameter range β ≤ 0 in (1.1).

It is worth emphasizing that noise must be present in (1.1) for there to be any
hope that this system would posses any (globally) stable statistics when β ≥ 0.
Indeed, in the absence of noise when β < 0, the system (1.1) has initial conditions
(x0 = y0 = 0, z0 %= 0) leading to infinite time blow-up. On the other hand, if
β = 0, then all points on z-axis are equilibria, and therefore there is no compact
global attractor. Nevertheless, in both cases, the set of initial conditions leading to
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blow-up (or equilibria) sit on a lower-dimensional subset of the phase space. One
may therefore inquire if there are suitable noise perturbations which kick trajec-
tories off of these meager subsets of the phase space stabilizing the dynamics and
leading formation of statistically steady states.

The topics studied in this paper for β ≤ 0 fall into a larger class of “stabilization-
by-noise” problems. Such problems have been investigated in a variety of contexts.
Let us next briefly recall those works closely related to our setting. Motivated by
convection models in [16, 17], the effect of additive noise on unbounded solutions
was studied. From another perspective advocated recently in [9], the range β ≤ 0
above provides a turbulence analogue of a class of core models in non-equilibrium
statistical mechanics describing coupled oscillators with heat baths at different tem-
peratures [7, 8, 11, 12, 29]. Similar to such works on heat baths, one associates a
natural energy functional with (1.1) which is “approximately conserved” but which
is not globally dissipative. In particular, dissipation naturally acts on the x and y
directions, but not necessarily on the z-direction, unless of course β > 0. However,
when β ≤ 0, either there is no explicit dissipation (β = 0) or there is in fact a
source of linear instability (β < 0), so it is unclear whether the dissipation in x
and y, coupled with the noise, can propagate the dissipation to the z-direction.
Let us finally mention that it is known that an arbitrary small additive noise can
avert deterministic finite-time blow-up and lead to stable dynamics, see, for exam-
ple [1, 2, 5, 10, 13, 22, 31]. The presence of noise can also induce stable oscillations [3]
among other behaviors [21].

Statement of the main results

In view of the above discussions, we aim to answer the following question in this
paper:

For what values of β ≤ 0 and γ1, γ2, γ3 ≥ 0 does (1.1) possess an invariant

probability measure? (Q)

Recall that in our context, there is at least one index i such that γi > 0. The answer
to this question is known to be affirmative for β > 0 and, in fact, in this case the
system is geometrically ergodic when γ1 > 0 and either γ2 > 0 or γ3 > 0; see, for
example [25]. Thus, our focus in this paper is on the case when β ≤ 0, where the
associated deterministic dynamics does not possess a compact global attractor.

Let us now present the main results in the paper concerning the stochastic
stability of (1.1) which addresses most of (Q).

Theorem 1.1. Consider (1.1) and assume σ > 0, ρ ≥ 0 and γ1, γ2, γ2 ≥ 0 with at
least one index i for which γi > 0. For any value of β ≤ 0, the stochastic dynamics
is globally defined (non-explosive in the sense of (2.4)).

(i) If β = 0, γ1 > 0, then (1.1) has a unique invariant probability measure.
(ii) If β = 0, γ1 = 0, and one of γ2, γ3 is positive, then (1.1) does not possess an

invariant probability measure.
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(iii) Finally, if β < 0, then for any K ⊆ R3 compact, there exists (x, y, z) /∈ K such
that

E(x,y,z)ξK = ∞,

where

ξK = inf{t ≥ 0 : (xt, yt, zt) ∈ K}. (1.2)

Consequently, if we furthermore assume that γ1 > 0 and either γ2 > 0 or
γ3 > 0, then (1.1) does not possess an invariant probability measure.

Remark 1.1. Depending on which noise parameters γi are positive, the issue of
uniqueness of invariant measures for the system (1.1) can also be subtle. In the
recent interesting paper [6], it is shown that when β > 0, γ1 = γ2 = 0 and γ3 > 0,
then invariant measures can either be unique or not, and the uniqueness depends
on the magnitude of the non-zero noise parameter γ3 > 0.

Overview of the analysis

Since the coefficients of Eq. (1.1) are globally smooth (C∞) functions, the proof of
well-posedness of (1.1) follows immediately once one establishes absence of finite-
time explosion. In our case, non-explosivity is then concluded by using the nat-
ural Lyapunov function associated to the dynamics. See Proposition 3.1 for fur-
ther details. However, since β ≤ 0, this natural function is not robust enough to
determine the existence/non-existence of an invariant probability measure precisely
because of the absence of explicit dissipation in the z-direction. Thus, we cannot
use this function directly to answer our main question.

To this end, the typical route used to conclude existence/non-existence of an
invariant probability measure is to estimate, for a big compact set K ⊆ R3, the
expectation of the random variable ξK as in (1.2). Indeed, if one can show that
(x, y, z) )→ E(x,y,z)ξK

a is bounded on compact sets in R3, then an invariant proba-
bility measure can be constructed using a slight modification of the cycle argument
of Khasminskii [19]. See also [20, 28]. On the other hand, if there is sufficient noise
in the system (1.1) by way of hypoellipticity and support properties of the solution,
then global finiteness of the function E(x,y,z)ξK for some K compact is equivalent to
the existence of an invariant probability measure [20]. Thus our arguments center
around determining whether or not this expectation can be shown to be globally
finite.

Our approach to estimating E(x,y,z)ξK relies on detailed Lyapunov constructions.
Specifically, to show the expectation is bounded on compact sets, we seek a C2

function V : R3 → R with V (x, y, z) → ∞ as |(x, y, z)| → ∞ and such that

LV ≤ −c + d K (1.3)

aE(x,y,z) denotes the expectation with respect to the process (xt, yt, zt) started at (x, y, z) at time
zero.
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for some c, d > 0 and some compact set K ⊂ R3. In the above, L is the infinitesimal
generator of (1.1) defined in (3.1). While the above Lyapunov criteria is quite
standard to show existence of an invariant probability measure (see, for example
[19, 26, 28]), we will see that Lyapunov constructions can also be employed to
establish non-existence. Following [35] and generalizations more recently appearing
in [11, 19], Theorem 2.1 identifies a condition guaranteeing infinite expected return
times depending on the existence of two test functions, V1, V2 : R3 → R satisfying
Lyapunov-like conditions.

Regarding the existence of an invariant probability measure when β = 0, we
construct a suitable Lyapunov function V satisfying (1.3) by pivoting off of the
natural Lyapunov function one uses to show well-posedness, namely

H(X) = H(x, y, z) := x2 + y2 + z2 − 2(σ + ρ)z. (1.4)

Here, a direct computation, see (3.1), leads to

LH = −2(σx2 + y2) − 2βz2 + 2β(σ + ρ)z + 2(γ1 + γ2 + γ3), (1.5)

which reveals the necessity of adding supplemental terms to H , seeking a Lyapunov
function of the form H + ψ, in order to achieve (1.3) for the region where x, y are
bounded but where |z| is large; that is, (1.3) requires L(H + ψ) to be uniformly
negative off of a compact set. The definition of the supplemental perturbation ψ
makes use of certain rescalings of the dynamics at large values, allowing one to
better parse relevant terms in a neighborhood of the point at infinity. Note that
these asymptotics initially yield a piecewise definition of the perturbation ψ which
must be smoothly interpolated so that it is globally C2. The detailed derivation of
ψ and the motivation behind the scalings we choose are carried out in Sec. 4.

To extract Theorem 1.1(iii), we again employ Lyapunov methods in order to
estimate the expected return time to a given compact set K. The principal obser-
vation leading to the proof is that the function M given by

M(X) = M(x, y, z) = 2σz − x2 (1.6)

satisfies

LM = 2σ(|β|z + x2) − γ1. (1.7)

Now, if it were the case (although it is far from true) that the set {(x, y, z) : σz ≥ x}
is invariant for the dynamics, then (1.6) and (1.7) would together imply that the
solution is growing exponentially in this region, provided z > 0 is large enough
initially. The proof then nontrivially modifies this initial observation to conclude
the result, even in the presence of noise or dynamics effects that can steer the
process in and out of this region. See Sec. 6 for further details.

Finally, to treat the borderline case β = 0 when γ1 = 0, we proceed with a
direct approach. For example, when γ1 = β = 0 but either γ2 or γ3 are strictly
positive we again use of the test function M defined in (1.6). At least formally,
(1.7) and Dynkin’s formula immediately implies that Ex ≡ 0 if the initial condition
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is distributed as an invariant state. However, this produces a contradiction to the
structure of (1.1), since if γ2 > 0, then y is nontrivial, leading to non-zero derivative
of x. On the other hand, if γ3 > 0 and y = 0, then z evolves as a Brownian motion,
which is not a normalizable invariant. Similar direct argumentation can be employed
to show that when γ2 = γ3 = β = 0 and γ1 > 0, then the only stationary solution
is an Ornstein–Uhlenbeck process concentrated on the x component.

Organization

The rest of the paper is organized as follows. Section 2 provides a self-contained
summary of some general results on Lyapunov methods for Itô diffusions. Section 3
contains the details for non-explosivity and conditions for the uniqueness of invari-
ant measures for (1.1). The results of this section also imply the uniqueness part of
Theorem 1.1(i) when γ1 > 0 and either γ2 > 0 or γ3 > 0. In Sec. 4, we carry out the
construction and rigorous analysis of a Lyapunov function leading to the existence
of an invariant probability for (1.1) in the case when β = 0 and γ1 > 0. The main
result in this section, Proposition 4.1, in particular establishes the existence part of
Theorem 1.1(i). In Sec. 5, we prove Theorem 1.1(ii) and establish uniqueness of the
invariant measure when β = 0, γ1 > 0 and γ2 = γ3 = 0, thus finalizing the proof of
Theorem 1.1(i). Finally, in Sec. 6, we prove Theorem 1.1(iii). This proof also relies
on Lyapunov constructions.

2. Methodological Foundations: Lyapunov Techniques

This section presents some general results on Lyapunov methods for Itô diffusions,
providing the foundation for our analysis in later sections. To keep the paper self-
contained, we present detailed proofs for some results familiar to specialists, but
which are dispersed in literature under varied sets of assumptions.

Let Mnk denote the set of n × k matrices with entries in R. Given any F ∈
C2(Rn; Rn) and G = (G1, . . . , Gk) ∈ C2(Rn; Mnk), let Xt be the process on Rn

satisfying the Itô stochastic differential equation

dXt = F (Xt)dt + G(Xt)dBt = F (Xt)dt +
k∑

l=1

Gl(Xt)dBl
t. (2.1)

Here, Bt = (B1
t , . . . , Bk

t )T is a standard k-dimensional Brownian motion defined on
a filtered probability space (Ω,F , {Ft}t≥0, P), where E denotes the corresponding
expected value. We denote by L the infinitesimal generator of the process Xt acting
on functions V ∈ C2(Rn; R), namely,

LV (X) := F (X) ·∇V (X) +
1
2
(GGT )(X)∇2V (X)

=
n∑

j=1

Fj(X)∂Xj V (X) +
1
2

n∑

i,j=1

k∑

l=1

GilGjl(X)∂2
XiXj V (X). (2.2)

Let B be the Borel σ-field of subsets of Rn.
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Although globally defined solutions of (2.1) in time are not guaranteed for gen-
eral C2 drifts F and diffusions G, there are unique pathwise solutions defined until
the first time τ in which the process leaves every bounded domain in space. Specif-
ically, given a fixed initial condition X , if we define stopping times

τn := inf{t ≥ 0 : |Xt| ≥ n}, and τ := lim
n→∞

τn, (2.3)

then solutions exist and are unique for all times t < τ , P-almost surely. We call τ
the explosion time of the process Xt and say that Xt is non-explosive if

PX{τ < ∞} = 0 for all initial conditions X ∈ Rn. (2.4)

In the above (2.4), the notation PX means the process Xt has X0 = X ∈ Rn.
If Xt is non-explosive, solutions of (2.1) exist and are unique for all times t ≥ 0

almost surely. Moreover, Xt generates a Markov process and we define the transition
probability measure Pt as Pt(X, ·) = PX{Xt ∈ ·}. The Markov semigroup Pt acts
on bounded, B-measurable functions V : Rn → R via

PtV (X) = EXV (Xt) =
∫

Rn

V (Y )Pt(X, dY ), X ∈ Rn, (2.5)

and on borel measures π according to

πPt(A) =
∫

Rn

π(dX)Pt(X, A), A ∈ B. (2.6)

We say that a positive measure π is an invariant measure for Pt if πPt = π for
all t ≥ 0. An invariant measure π for Pt with π(Rn) = 1 is called an invariant
probability measure for Pt.

The next result outlines the criteria for a process defined by (2.1) to be both
non-explosive and have finite expected returns to a compact set.

Proposition 2.1. Given F, G ∈ C2, the following statements hold for solutions Xt

of (2.1) and the corresponding infinitesimal generator L defied in (2.2):

(a) Suppose that there exist a function V ∈ C2(Rn; R) such that V (X) → ∞ as
|X | → ∞ and constants c, d > 0 with the global bound

LV (X) ≤ cV (X) + d for all X ∈ Rn. (2.7)

Then Xt is non-explosive, namely (2.4) holds.
(b) Suppose that Xt is non-explosive and that there exist a function V ∈

C2(Rn; [0,∞)), a compact set K ⊆ Rn and constants c, d > 0 such that

LV (X) ≤ −c + d1K(X) for all X ∈ Rn. (2.8)

If

ξK := inf{t ≥ 0 : Xt ∈ K} (2.9)

denotes the first hitting time of K by Xt, then

EXξK ≤ V (X)
c

, (2.10)

for all X ∈ Rn.
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The proof of the proposition above is a straightforward application of Itô’s
formula and can be found in a number of references, see, for example [19, 26, 28].
To illustrate the basic idea, we provide details for part (b).

Proof of Proposition 2.1(b). Take ξ := ξt,n,K := t ∧ τn ∧ ξK with τn defined as
in (2.3). If X ∈ K, then EXξK = 0 and (2.10) follows. Otherwise, 1K(X) = 0 and
by Dynkin’s formula and (2.8), we have

0 ≤ EXV (Xξ) = V (X) + EX

∫ ξ

0
LV (Xs)ds ≤ V (X) − cEXξ, (2.11)

for any t ≥ 0 and n ≥ 1. Rearranging and using V ≥ 0 produces the estimate

EXξt,n,K ≤ V (X)
c

. (2.12)

Passing n → ∞ and then t → ∞ using both monotone convergence and non-
explosivity, that is, τn → ∞ a.s., gives the desired bound (2.10).

The next result provides the criteria we use in Sec. 6 to show that the expected
return time to compact sets is infinite for some initial data in the case when the
parameter β < 0 in Eq. (1.1). While the result presented here can be traced back
to at least [35] we believe it deserves further attention as a powerful tool for the
study of stochastic (in)stability. Note that the original formulation in [35] imposes
more hypotheses on the process Xt than needed; for example a uniform elliptic-
ity assumption for the generator L was imposed in [35]. This was noticed in the
paper [11], where a generalization of the results from [35] is stated. Here, we pro-
vide the details for this generalization and also phrase the conclusions in a slightly
different way. See also [19, Lemma 3.11].

To formulate the result, for R > 0 we let

ξR = inf{t ≥ 0 : |Xt| ≤ R}, (2.13)

that is, ξR is the first hitting time of the closed ball of radius R > 0 centered at
the origin in Rn. This is a small abuse of notation, see ξK in (2.9) above, but there
should not be any confusion given the context.

Theorem 2.1. Suppose that there exist V1, V2 ∈ C2(Rn; R) satisfying the following
properties :

(p1) lim sup
|X|→∞

V1(X) = ∞.

(p2) V2 is strictly positive outside of a compact set.

(p3) lim sup
S→∞

max|X|=S V1(X)
min|X|=S V2(X)

= 0.

(p4) There exists R > 0 such that

LV1(X) ≥ 0 and LV2(X) ≤ 1 (2.14)

for every |X | ≥ R, where L is the generator for (2.1) given in (2.2).
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Then, there exists M ≥ 0 such that

EX∗ξR = ∞, whenever |X∗| ≥ R and V1(X∗) ≥ M. (2.15)

Proof. First notice that, given V1, V2 ∈ C2(Rn; R) and R satisfying (p1)–(p4), one
can add a negative constant to V1 to obtain

V1(X) ≤ 0, for every |X | ≤ R (2.16)

and a positive constant to V2 so that

V2(X) ≥ 0 for every X ∈ Rn. (2.17)

Since an addition of constants does not affect (p1)–(p4) we proceed assuming (2.16)
and (2.17).

Let us fix an arbitrary |X∗| ≥ R such that V1(X∗) > 0. Invoking (p1) we can
choose a sequence of points xk ∈ Rn, k = 1, 2, . . . , such that x1 = X∗, R < |xk| <
|xk+1| for all k and such that 0 < V1(xk) ↑ ∞ as k → ∞. Let τ ′k = inf{t ≥ 0 : |Xt| ≥
|xk|} and recalling (2.13) define functions uk(X, t) by

uk(X, t) = EX(τ ′k ∧ ξR ∧ t). (2.18)

Note that, in particular, since xk is an increasing sequence, we have the relationship

0 ≤ uk(X, t) ≤ uk+1(X, t) (2.19)

for all X and all k ∈ N, t ≥ 0.
Define Mk = max|Y |=|xk| V1(Y ). Note that M1 > 0 and by passing to the

relevant subsequence of xn’s via (p1) we can assume that Mk+1 > Mk for all k. Let

λk := M−1
k min

|Y |=|xk|
V2(Y ) =

min|Y |=|xk| V2(Y )
max|Y |=|xk| V1(Y )

(2.20)

and consider the functions

V (k, X) := λkV1(X) − V2(X) =
min|Y |=|xk| V2(Y )
max|Y |=|xk| V1(Y )

V1(X) − V2(X), (2.21)

for each k ∈ N. In view of assumption (p3), after passing to a subsequence, and
recalling our choice of X∗ such that V1(X∗) > 0 we have that

lim
k→∞

λk = ∞ and lim
k→∞

V (k, X∗) = ∞. (2.22)

Furthermore, with (2.16) and (2.17), we see that V (k, X) is non-positive on the
boundary of the annulus Ak := {X : R < |X | < |xk|}, namely

V (k, X) ≤ 0 for every X ∈ {Y ∈ Rn : |Y | = R or |Y | = |xk|}, (2.23)

for every n.
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Next, by Dynkin’s formula and then invoking (p4) produces

−EX∗V (k, Xτ ′
k∧ξR∧t) = −V (k, X∗) − EX∗

∫ τ ′
k∧ξR∧t

0
LV (k, Xs)ds

= uk(X∗, t) − V (k, X∗)

+ EX∗

∫ τ ′
k∧ξR∧t

0
(L(V2 − λkV1)(Xs) − 1)ds

≤ uk(X∗, t) − V (k, X∗)

for any k ∈ N, t ≥ 0. Note that if EX∗

(
ξR ∧ τ ′k

)
= ∞ for some k ∈ N, the desired

result follows from the monotone convergence theorem after passing k → ∞. Thus,
we are left with the case EX∗(ξR ∧ τ ′k) < ∞, and in particular P(ξR ∧ τ ′k < ∞) = 1
for all k. For fixed k, V (k, ·) is bounded and continuous on Ak, and therefore by
the monotone and dominated convergence theorem after passing t → ∞ we obtain

−EX∗V
(
k, Xτ ′

k∧ξR

)
≤ EX∗

(
ξR ∧ τ ′k

)
− V (k, X∗). (2.24)

Since ξR ∧ τ ′k < ∞ is almost surely bounded, (2.23) produces the inequality

V (k, X∗) ≤ EX∗

(
ξR ∧ τ ′k

)
≤ EX∗ξR (2.25)

valid for all k ∈N. Thus, using (2.22) we conclude (2.15), completing the proof.

In summary, Proposition 2.1 and Theorem 2.1 provide a basis for analyzing
the expected return time to compact sets for general diffusions of the form (2.1).
For our purposes here we can then appeal to general results found in e.g. [20, 27]
to conclude either the existence or the non-existence of an invariant probability
measure for Pt. Note however that, at this step in the analysis, we further require
that Pt maintain certain support and regularity properties.

In order to restate the results from [20, 27], we need the following definitions.

Definition 2.1. Suppose that A is a differential operator defined on an open subset
U ⊆ Rn. We say that A is hypoelliptic on U if for any distribution u defined on an
open subset V ⊆ U such that Au ∈ C∞(V ), we have u ∈ C∞(V ).

Definition 2.2. We say that Xt satisfying (2.1) is nice diffusion if it is non-
explosive as in (2.4) and the following conditions are met:

(i) F ∈ C∞(Rn; Rn) and G ∈ C∞(Rn; Mnk);
(ii) The operators L,L∗,L±∂t,L∗±∂t are hypoelliptic on the respective domains

Rn, Rn, Rn×(0,∞), Rn×(0,∞) where L∗ denotes the formal adjoint of L with
respect to the L2(Rn; dx) inner product.

(iii) supp(Pt(X, ·)) = Rn for all t > 0, X ∈ Rn.b

bRecall that, given a probability measure µ on Rn,

supp(µ) := {x ∈ Rn : µ({y : |y − x| < ε}) > 0, for every ε > 0}. (2.26)

In particular, supp(µ) = Rn if µ is continuously distributed and its density is almost surely positive.
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Note that hypoellipticity of A on U intuitively means that A has a local smooth-
ing effect on U reminiscent of elliptic operators. Hypoellipticity of L,L∗,L±∂t,L∗±
∂t implies their smoothing properties and, in addition, the probability density func-
tions of the associated stochastic differential equations exist and are smooth in all
variables (forward, backward and time). Furthermore, if an invariant probability
measure exists, hypoellipticity guarantees the existence and smoothness of an invari-
ant probability density. This is the reason we assume condition (ii) in Definition 2.2.

Proposition 2.2. Suppose that Xt is a nice diffusion according to Definition 2.2.
Then we have the following:

(a) There is at most one invariant probability measure for Pt.
(b) Pt has an invariant probability measure if and only if there exists R > 0 such

that EXξR < ∞ for all X ∈ Rn and the mapping X )→ EXξR is bounded on
compact subsets of Rn. In the above, we recall that ξR is the return time defined
in (2.13).

The proof of Proposition 2.2 combines results scattered in the literature;
cf. [18–20, 24, 27, 28]. Part (a) of the result is a standard consequence of ergodic
decomposition, see, for example [28, Proposition 8.1]. For part (b), if there exists
R > 0 such that EXξR < ∞ for all X ∈ Rn and the mapping X )→ EXξR is
bounded on compact subsets of Rn, the unique invariant probability measure can
be constructed using Khasminskii’s cycle argument as in [19, 28]. The remaining
implication in part (b) is more subtle, as it relies on the dichotomy between transient
points and recurrent points for degenerate diffusions. This was established in [20].

We next recall a set of criteria which can be used to establish the smoothness
and positivity hypothesis of Definition 2.2 required for Proposition 2.2. First, we
formulate in our setting [14, Theorem 2.9] which is a combination of Hörmander’s
hypoellipticity theorem [15], ensuring the existence and smoothness of a density
(with respect to Lebesgue measure on Rn), with the support theorems of Stroock
and Varadhan [32, 33], relating positivity of the density to controllability. By [14],
for (1.1), one can use certain Lie brackets as in [15] to obtain both the regularity
of the density and support of the transition measure.

To formulate the result, let us introduce preliminary definitions and notations
following as closely as possible the formulations in [14]. Recall that the Lie bracket
of (smooth) vector fields

U(X) =
n∑

j=1

U j(X)
∂

∂Xj
, W (X) =

n∑

j=1

W j(X)
∂

∂Xj
, (2.27)

is given by

[U, W ](X) =
n∑

j=1

n∑

k=1

(
Uk(X)

∂W j(X)
∂Xk

− W k(X)
∂U j(X)
∂Xk

)
∂

∂Xj
. (2.28)
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We then introduce, for any vector fields U and W and any m ≥ 2

ad0U(W ) = W, ad1U(W ) = [U, W ], admU(W ) := ad1U(adm−1U(W )).
(2.29)

When W is a polynomial vector field (that is, W depends polynomially on the
components of X), for any X ∈ Rn we denote

n(X, W ) := max
j=1,...,n

deg(pj) where pj(λ) := W j(λX). (2.30)

For any collection of vector fields G on Rn we define

cone≥0(G) =






N∑

j=1

λjUj : {λ1, . . . ,λN} ⊂ [0,∞), {U1, . . . , UN} ⊂ G




 . (2.31)

For simplicity and in the view of (2.1), we restrict to the case when the diffusion
coefficients G are independent of X and the drift F is a polynomial. Let

G0 := span{G1, . . . , Gk} (2.32)

and starting at j = 1 we definec

GO
1 := G0 ∪

{
adn(G,F )G(F ) : G ∈ G0, n(G, F ) is odd

}
,

ḠO
1 :=

{
G ∈ GO

1 : G is a constant vector field
}
,

GE
1 :=

{
adn(G,F )G(F ) : G ∈ G0, n(G, F ) is even

}
,

G1 = span
(
GO

1

)
+ cone≥0

(
GE

1

)
.

(2.33)

We then proceed iteratively to define, for j ≥ 1

GO
j+1 := GO

j ∪
{
adn(G,F )G(H) : G ∈ ḠO

j , H ∈ Gj , n(G, H) is odd
}
,

ḠO
j+1 :=

{
G ∈ GO

j+1 : G is a constant vector field
}
,

GE
j+1 := GE

j ∪
{
adn(G,F )G(H) : G ∈ ḠO

j , H ∈ Gj , n(G, H) is even
}
,

Gj+1 := span
(
GO

j+1

)
+ cone≥0

(
GE

j+1

)
.

(2.34)

The following summarizes results in [14]; cf. [15, 28, 32, 33].

Theorem 2.2. Consider {Xt}t≥0 solving (2.1) under the assumption that F is a
polynomial, that Gk is constant, i.e. X-independent, and suppose furthermore that
the resulting dynamics is non-explosive as in (2.4). Assume that

span




H ∈
⋃

j≥1

GO
j : H is a constant vector field




 = Rn, (2.35)

then {Xt} is a nice diffusion in the sense of Definition 2.2.

cNote that in (2.33) and (2.34), we treat constant vector fields G as a vector in Rn when computing
n(G, F ).
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Remark 2.1. The condition (2.35) is special case of the Hörmander (parabolic)
sum-of-squares condition, which asserts that if vector fields produced by the iterated
Lie brackets

G1, . . . , Gk, [G1, F ], . . . , [Gk, F ], [[G1, F ], F ], [[G1, F ], G1] . . . (2.36)

span all of Rn then the generator L given by (2.2) along with L∗, L ± ∂t, L∗ ± ∂t

are all hypoelliptic as in (2.1). See [15] and more recently the treatment in [28].

3. Non-Explosivity and Uniqueness Results

In this section, we now return to the specific setting (1.1) and establish, subject to
a non-degeneracy condition on the noise, the hypoellipticity and irreducibility of
(1.1). Specifically, we establish that (1.1) satisfies Definition 2.2 via Theorem 2.2
when γ1 > 0 and at least one of γ2, γ3 is strictly positive.

Let {Xt}t≥0 denote the process (xt, yt, zt) solving (1.1), and we will reuse the
notations τn, τ,L,Pt, etc. from Sec. 2 for {Xt}t≥0. In particular, note that (1.1)
has infinitesimal generator

L = σ(y − x)∂x + [x(ρ − z) − y]∂y + [xy − βz]∂z + γ1∂
2
x + γ2∂

2
y + γ3∂

2
z . (3.1)

We now formulate the first result of this section.

Proposition 3.1. For any values σ, ρ,β ∈ R and any γ1, γ2, γ2 ≥ 0 the process
{Xt}t≥0 defined by (1.1) is non-explosive in the sense of (2.4). Moreover, if σ > 0
and either γ1, γ2 > 0 or γ1, γ3 > 0, then (1.1) is a nice diffusion in the sense of
Definition 2.2. Hence, in particular, the hypotheses of Proposition 2.2 are satisfied
for (1.1) if γ1, γ2 > 0 or γ1, γ3 > 0.

Proof. We first prove that {Xt}t≥0 is non-explosive with the aid of Proposition 2.1.
Defining H as in (1.4) we find that (1.5) holds. Thus, taking V = H we obtain (2.7)
from (1.5) with Young’s inequality, and the first assertion follows.

To prove that {Xt}t≥0 is a nice diffusion we proceed via Theorem 2.2. Adopting
the geometric notations as in (2.27), we have

F = σ(y − x)∂x + [x(ρ− z) − y]∂y + [xy − βz]∂z,

G1 =
√

2γ1∂x, G2 =
√

2γ2∂y, G3 =
√

2γ3∂y.

Our task is now to exhibit a sequence of allowable Lie brackets between these fields
to obtain the spanning condition (2.35).

Start with the case γ1, γ2 > 0 and by viewing G1 as the vector (
√

2γ1, 0, 0)T ,
we have F (λG) = (−λσ

√
2γ1,λρ

√
2γ1, 0)T , and therefore, cf. (2.30), n(G1, F ) = 1.

Hence, by (2.33), we find that

G′
1 := ad1G1(F )

= [G1, F ] = −
√

2γ1σ∂x +
√

2γ1(ρ− z)∂y +
√

2γ1y∂z ∈ GO
1 . (3.2)
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Next, from n(G2, G′
1) = 1 and (2.34) it follows

G̃3 := ad1G2

(
G′

1

)
=
[
G2, G

′
1

]
=
√

2γ1γ2∂z ∈ GO
2 . (3.3)

Thus, we have found G1, G2, G̃3 ∈
⋃

j≥1 GO
j which together span R3 and hence

satisfy (2.35), completing the proof in the first case.
Next, assume γ1, γ3 > 0. As above again n(G1, F ) = 1 and (3.2) holds true. On

the other hand, n(G3, G′
1) = 1 and we compute

G̃2 := ad1G3

(
G′

1

)
=
[
G3, G

′
1

]
= −

√
2γ1γ3∂y ∈ GO

2 . (3.4)

Here, we found the spanning set G1, G̃2, G3 ∈
⋃

j≥1 GO
j satisfying (2.35) as required

by Theorem 2.2. The proof is now complete.

4. Positive Recurrence in the Absence of Damping

In this section, we study the dynamics (1.1) in the case when β = 0 and γ1 > 0.
Our goal is to show that (1.1) has globally finite expected returns to some compact
set by constructing a Lyapunov function V satisfying the condition (2.8) in Propo-
sition 2.1(b). In turn, this result immediately implies the existence part of Theorem
1.1(ii) as well as the uniqueness in the case when either γ1, γ2 > 0 or γ1, γ3 > 0 by
way of Proposition 3.1.

We state the main result of this section precisely as follows:

Proposition 4.1. Consider (1.1) in the case when σ > 0, β = 0, ρ ∈ R, γ1 > 0
and γ2, γ3 ≥ 0. Then, there exists an R > 0 such that for any S > 0

sup
|X|≤S

EXξR < ∞, (4.1)

where ξR is return time to the ball of radius R as defined in (2.13). Furthermore,
when we make the additional assumption that either γ2 > 0 or γ3 > 0 then (1.1)
has a unique invariant probability measure.

Regarding the organization of the section, Secs. 4.1–4.3 contain the derivation
of a Lyapunov function V : R3 → R leading to (4.1) and the quantitative estimates
implying (2.8). The rigorous proof of Proposition 4.1 is given in Sec. 4.4.

4.1. Derivation of the Lyapunov function

In order to simplify our analysis slightly, we begin with the preliminary observation
that it is sufficient to address special case when ρ = 0 in (1.1); namely,

dx = σ(y − x)dt +
√

2γ1dB1,

dy = −xz dt − y dt +
√

2γ2 dB2, (4.2)

dz = xy dt +
√

2γ3 dB3.

Indeed, in the rest of this section, we proceed to construct a function V ∈
C2(R3; [0,∞)) such that for some constants c, d > 0 and some compact set K ⊆ R3
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we have

MV ≤ −c + d1K, (4.3)

where M is the infinitesimal generator of (4.2) given by

M = σ(y − x)∂x − (xz + y)∂y + xy∂z + γ1∂
2
x + γ2∂

2
y + γ3∂

2
z .

Having found such a V , we obtain by way of Proposition 2.1(b) that

EX ξ̃K ≤ V (X)
c

, where ξ̃K := inf{t ≥ 0 : X̃t ∈ K}

and X̃t = (x̃t, ỹt, z̃t) obeys (4.2). Clearly Xt = (x̃t, ỹt, z̃t + ρ) satisfies (1.1) in the
general case for any ρ ∈ R. Thus, if for any R > ρ we denote

ξR := inf{t ≥ 0 : |Xt| ≤ R}, ξ̃R := inf{t ≥ 0 : |X̃t| ≤ R − ρ},

then we have ξR ≤ ξ̃R. Thus, by choosing R > 0 sufficiently large so that K ⊂ BR−ρ

we obtain that ξR ≤ ξ̃R ≤ ξ̃K, so that

EXξR ≤ EX ξ̃R ≤ V (X)
c

(4.4)

allowing us to conclude (4.1) as desired in Proposition 4.1.
In order to find V satisfying (4.3), we first use the natural Lyapunov function

for (4.2) when β > 0. Indeed, defining

H̃(x, y, z) = x2 + y2 + z2 − 2σz + κ0,

where κ0 > 0 is large enough so that H̃ ≥ 0. Observe that H̃ provides a good initial
guess for V since

M(H̃) = −2σx2 − 2y2 + 2(γ1 + γ2 + γ3), (4.5)

and therefore we have the desired inequality (4.3) on the set where |(x, y)| :=√
x2 + y2 is large. More specifically, for the region

R0 = {x2 + y2 ≥ R0}

with a sufficiently large R0 ≥ 1 depending only on γ1 + γ2 + γ3 > 0, we have

M(H̃) ≤ −(γ1 + γ2 + γ3) in R0. (4.6)

However, (4.6) does not imply the bound (4.3) if |(x, y)| is small (and |z| is large).
To fix this issue, we seek for a lower-order perturbation ψ of H̃ encapsulating

averaging effects of the dynamics. More specifically, we start with H̃ and find a
function ψ ∈ C2(R3; R) satisfying

lim sup
|X|→∞

ψ(X)
H̃(X)

= 0, (4.7)

so that V := H̃ +ψ satisfies V ≥ 0 and (4.3) for some c, d > 0 and the compact set

K := {x2 + y2 ≤ R0, |z| ≤ R3} (4.8)

for suitable choices of R0, R3 ≥ 1.
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Note that, with this strategy, because H̃ satisfies (4.5) on R0, we should nat-
urally set ψ = 0 on R0. On the other hand, when x2 + y2 ≤ R0 and |z| is large,
we should seek a nontrivial perturbation ψ through a scaling analysis to identify
dominant terms in M.

4.2. Scaling arguments and definition of ψ

To see how to define ψ on the complement of R0, it is helpful to first heuristically
analyze the dynamics when |z| is large and x and y are bounded. To this end,
consider the scaling transformation

Tλ(x, y, z) = (λ−αx, y,λz),

where λ > 1 is large and α ∈ [0, 1]. We apply Tλ to the generator M to formally
see how the dynamics behaves as z gets large. Observe that

Tλ ◦M = σ(yλα − x)∂x − (λ1−αxz + y)∂y + λ−1−αxy∂z + γ1λ
2α∂2

x

+ γ2∂
2
y + λ−2γ3∂

2
z

∼ λ1−αxz∂y + γ1λ
2α∂2

x, (4.9)

whenever λ5 1 and α > 0.
Observe that there are two regimes depending on α. If α ∈ [0, 1/3), the most

significant term in (4.9) is λ1−αxz∂y. Hence, the dominant dynamics of (4.2) is
given by

Ẋ = 0, Ẏ = −XZ, Ż = 0

and we expect such an approximation to be valid in the region

R1 :=
{
x2 + y2 ≤ R0, |x||z|1/3 ≥ R1, |z| ≥ R3

}
, (4.10)

where R0, R1, R3 ≥ 1 are large constants to be determined below. This suggests
that we search for a function ψ = ψ1 such that the infinitesimal generator of (4.10)
applied to ψ1 is negative

−xz∂yψ1 = −κ1,

where κ1 > 2(γ1 +γ2 +γ3) is a constant. Note that this equation gives the following
particular solution:

ψ1 = κ1
y

xz
.

In addition, on the set R1 and positivity condition (4.7) holds and (M is the
generator of (4.2))

M(ψ1)
κ1

= −σ(y − x)y
x2z

− 1 − y

zx
− y2

z2
+ 2γ1

y

x3z
+ 2γ3

y

xz3

≤ −1 + C
R3

0

R1
, (4.11)
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where we used that on R1 one has |z| 13 ≥ R1
R0

and Ri ≥ 1 for each i = 0, 1, 3. Note
that the constant C = C(σ, γ1, γ3) > 0 is independent of R0, R1, R3, and κ1. Thus,
for sufficiently large R1 depending on R0, we obtain

M(ψ1) ≤ −1
2
κ1 in R1.

Consequently, for any fixed R0 ≥ 1, we can choose a suitably large κ1 ≥ 1∨ (4(γ1 +
γ2 + γ3)) and R1 ≥ 1 so that

M(H̃ + ψ1) ≤ −κ1

2
on the region R1. (4.12)

Next, assume α ∈ (1/3,∞) and observe that the dominant term in (4.9) is
γ1λ2α∂2

x. See Remark 4.1 which discusses the boundary case α = 1/3, where the
two terms in (4.9) balance. Therefore, the main contribution of the dynamics of
(1.1) in the region

R2 =
{
x2 + y2 ≤ R2, |x||z|1/3 ≤ R1, |z| ≥ R3

}
,

is given by the SDE

dX =
√

2γ1 dB1, Ẏ = 0, Ż = 0. (4.13)

In the definition of R2, the constants R2 and R3 are considered sufficiently large,
possibly depending on R0.d Thus, as above, in R2, we should look for ψ = ψ2 such
that

γ1∂
2
xψ2 = −κ2,

where again κ2 ≥ 1 ∨ (4(γ1 + γ2 + γ3) is a large free parameter we can adjust as
needed later. Note that a particular solution of this partial differential equation is

ψ2 =
κ2

2γ1

(
4R2

1

|z|2/3
− x2

)
.

The solution is chosen such that it satisfies

|ψ2| ≤ C
κ2R2

1

|z|2/3
whenever |x||z|1/3 ≤ 2R1. (4.14)

As in the previous case, one can easily check (4.7); that is, ψ2 is dominated by
H̃ for large values of (x, y, z) ∈ R2. Moreover, ψ2 satisfies, for z %= 0

M(ψ2) = −κ2 −
κ2σ

γ1
x(y − x) − 4R2

1κ2

3γ1

xy sgn(z)
|z|5/3

+
10κ2R2

1

9
γ3

γ1

1
|z|8/3

.

Also, in R2, using that |x| ≤ R1/|z|1/3 and Ri ≥ 1 for i = 1, 2, 3, we have

κ2σ

γ1
|x(y − x)| ≤ 2κ2σ

γ1

R1R
1/2
2

|z|1/3
≤ 2κ2σ

γ1

R2
1R2

R1/3
3

.

dNote that the additional parameter R2 can be simply taken as R0 in our preliminary analysis.
However, it will play an important role later when we need to glue our Lypunov function V
together to obtain a C2 function.
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J. Földes, N. E. Glatt-Holtz & D. P. Herzog

Since the other terms (except −κ2) have |z| to some power in the denominator,
they are straightforward to estimate. Overall, it follows

M(ψ2) ≤ −κ2

(
1 − CR2

1R2

R
1/3
3

)
, (4.15)

where the constant C = C(σ, γ1, γ3) is independent of R1, R3, R3, and κ2. Hence,
given R2, R1 ≥ 1, we choose large R3 ≥ 1 and κ2 ≥ 1 ∨ (4(γ1 + γ2 + γ3)) so that

M(H̃ + ψ2) ≤ −κ2

2
in R2. (4.16)

Let us now make the preliminary definition

V := H̃ + R1ψ1 + R2ψ2 (4.17)

and notice that the complement of compact region K =
{
x2 + y2 ≤ R0, z ≤ R3

}
,

as in (4.8) satisfies

KC ⊆ R0 ∪R1 ∪R2

provided R2 ≥ R0. Thus, setting aside the issue of differentiability of V , we can
choose values for R0, R1, R2, R3 ≥ 1 with R2 ≥ R1 and values for κ1,κ2 ≥ 4(γ1 +
γ2 + γ3) such that a combination of (4.6), (4.12) and (4.16) leads to (4.3).

The following section addresses the smoothness issue for V defined as (4.17)
by replacing indicator functions with smooth cutoff functions. We also provide the
estimates for the additional terms produced when the operator M acts on these
smooth cutoffs.

Remark 4.1. One may be concerned that, when defining ψ1 and ψ2 we neglected
the effective dynamics of (1.1) in the critical region α = 1/3. This is not a problem
because the function ψ2 is independent of y, and therefore it solves the associated
PDE with both dominant terms

−xz∂yψ2 + γ1∂
2
xψ2 = −κ2.

4.3. Gluing

In order to replace the indicator functions in (4.17) with smooth cutoff functions
we adopt the following definitions. Let χ and χ̃ be non-negative C∞(R) functions
such that

χ(x) =

{
1 if |x| ≤ 1,

0 if |x| ≥ 2,
and χ̃(x) =

{
1 if |x| ≥ 1,

0 if |x| ≤ 1/2.

We now definee

θ1(x, y, z) := χ

(
x2 + y2

R0

)
χ̃

(
|x||z|1/3

R1

)
χ̃

(
|z|
R3

)
:= θ01(x, y)θ̃11(x, z)θ̃3(z) (4.18)

eObserve that, for example, θ̃3
2(z) indicates that we are cutting off the region in z (argument of

the function) below the parameter value R3 (tilde and superscript).
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and put

θ2(x, y, z) := χ

(
x2 + y2

R2

)
χ

(
|x||z|1/3

R1

)
χ̃

(
|z|
R3

)
:= θ22(x, y)θ12(x, z)θ̃3(z). (4.19)

We now define

V := H̃ + θ1ψ1 + θ2ψ2

= x2 + y2 + z2 − 2σz + κ0 + κ1θ1(x, y, z)
y

xz

+ κ2θ2(x, y, z)
1

2γ1

(
R2

1

|z|2/3
− x2

)
. (4.20)

Of course this definition requires the specification of the parameters
R0, R1, R2, R3 ≥ 1 and κ0,κ1,κ2 > 0, which will be clarified as we proceed with
the argument.

4.4. Rigorous bounds on V

We are now ready to use V defined in (4.20) to prove the main result of this section.

Proof of Proposition 4.1. As we identified in the argumentation leading to (4.4)
above, it is sufficient to show that the V defined by (4.20) satisfies (4.3) and is
strictly positive for suitable values of R0, R1, R2, R3 and κ0,κ1,κ2. We emphasize
that for the remainder of the proof, any constant C > 0 is independent of the values
of the parameters R0, R1, R2, R3 and κ0,κ1,κ2 unless explicitly stated otherwise.

Regarding the condition (4.3), we begin by observing that

M(V ) = M(H̃) + θ1M(ψ1) + θ2M(ψ2)

+ψ1M(θ1) + 2∇γθ1 ·∇γψ1 + ψ2M(θ2) + 2∇γθ2 ·∇γψ2, (4.21)

where we adopt the shorthand notation ∇γ = (√γ1∂x,
√
γ2∂y,

√
γ3∂z). We proceed

to expand each of the terms in (4.21), where derivatives fall on the cutoff functions
θ1 and θ2. For later use we note the estimate

∣∣∂i
sθ

0
1

∣∣ ≤ C R0≤x2+y2≤2R0 ,

where s stands for x or y and i ∈ {1, 2}. Indeed, for example
∣∣∂2

yθ
0
1

∣∣ ≤ C

(
1

R0
+

|y|2

R2
0

)
R0≤x2+y2≤2R0 ≤ C R0≤x2+y2≤2R0 (4.22)

and other estimates follow analogously. In addition, we have
∣∣∂xθ̃

1
1

∣∣ ≤ C
|z|1/3

R1
,
∣∣∂2

xθ̃
1
1

∣∣ ≤ C
|z|2/3

R2
1

,
∣∣∂z θ̃

1
1

∣∣ ≤ C
|x|

|z|2/3R1
,

∣∣∂2
z θ̃

1
1

∣∣ ≤ C|x|
|z|5/3R1

+
C|x|2

|z|4/3R2
1

,
∣∣∂z θ̃

3
∣∣ ≤ C

R3
|z|≥R3/2,

∣∣∂2
z θ̃

3
∣∣ ≤ C

R2
3

|z|≥R3/2

(4.23)
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for a constant C depending only and on the specifics of the cutoffs χ and χ̃ inde-
pendent of R0, R1, and R3. Similarly

∣∣∂i
sθ

2
2

∣∣ ≤ C R2≤x2+y2≤2R2 ,

where s stands for x or y and i ∈ {1, 2} and

∣∣∂xθ
1
2

∣∣ ≤ C
|z|1/3

R1
,
∣∣∂2

xθ
1
2

∣∣ ≤ C
|z|2/3

R2
1

,
∣∣∂zθ

1
2

∣∣ ≤ C
|x|

|z|2/3R1
,

∣∣∂2
zθ

1
2

∣∣ ≤ C

(
|x|

|z|5/3R1
+

|x|2

|z|4/3R2
1

)
,

where again C > 0 is independent of R1, R2, and R3. Observe that θ̃3 is the same
in both θ1 and θ2. Denote KR3 a constant that might depend on R0, R1, and R2

such that

lim
R3→∞

KR3 = 0. (4.24)

We expand ψ1M(θ1) as

ψ1M(θ1) = σ(y − x)ψ1

(
∂xθ

0
1 θ̃

1
1 θ̃

3 + θ01∂xθ̃
1
1 θ̃

3
)
− (xz + y)ψ1∂yθ

0
1 θ̃

1
1 θ̃

3

+ xyψ1

(
θ01∂z θ̃

1
1 θ̃

3 + θ01 θ̃
1
1∂z θ̃

3
)

+ γ1ψ1

(
∂2

xθ
0
1 θ̃

1
1 θ̃

3 + θ01∂
2
xθ̃

1
1 θ̃

3 + 2∂xθ
0
1∂xθ̃

1
1 θ̃

3
)

+ γ2ψ1∂
2
yθ

0
1 θ̃

1
1 θ̃

3

+ γ3ψ1

(
θ01∂

2
z θ̃

1
1 θ̃

3 + θ01 θ̃
1
1∂

2
z θ̃

3 + 2θ01∂z θ̃
1
1∂z θ̃

3
)
. (4.25)

Since on the region
{
x2 + y2 ≤ 2R0, |x||z|1/3 ≥ R1/2, |z| ≥ R3/2

}
one has

|ψ1| = κ1

∣∣∣
y

xz

∣∣∣ ≤ 4κ1R
1
2
0 R1

1
|z| 23

(4.26)

and x, y are bounded, it is easy to check that all terms except xzψ1∂yθ01 θ̃
1
1 θ̃

3
1 and

γ1ψ1θ01∂
2
xθ̃

1
1 θ̃

3
1 can be bounded by κ1KR3 (some power of z is left in the denomina-

tor). Referring back to (4.22), (4.4), and (4.26), we have for R1 ≥ R0

∣∣xzψ1∂yθ
0
1 θ̃

1
1 θ̃

3
∣∣ = κ1

∣∣y∂yθ
0
1 θ̃

1
1 θ̃

3
∣∣

≤ Cκ1 R0≤x2+y2≤2R0 ≤ Cκ1 R0

∣∣γ1ψ1θ
0
1∂

2
xθ̃

1
1 θ̃

3
∣∣ ≤ C

κ1R
1
2
0

R1

1
|z| 23

|z| 23
R2

1

≤ Cκ1
1

R1
,

where the constant C is independent of R0, R1, R2, R3 and κ0,κ1,κ2. Overall, we
have

|ψ1M(θ1)| ≤ Cκ1

(
R0 +

1
R1

+ KR3

)
, (4.27)

where we recall that KR3 is as in (4.24).
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Next, we estimate

|∇γθ1 ·∇γψ1| ≤ Cκ1

(
|y|

|x|2|z|
∣∣∂xθ

0
1 θ̃

1
1 θ̃

3 + θ01∂xθ̃
1
1 θ̃

3
∣∣+ 1

|x||z|
∣∣∂yθ

0
1 θ̃

1
1 θ̃

3
∣∣

+
|y|

|x||z|2
∣∣θ01∂z θ̃

1
1 θ̃

3 + θ01 θ̃
1
1∂z θ̃

3
∣∣
)

≤ Cκ1

(
R

1
2
0

R2
1|z|

1
3

∣∣∂xθ
0
1 θ̃

1
1 θ̃

3 + θ01∂xθ̃
1
1 θ̃

3
∣∣+ 1

R1|z|
2
3

∣∣∂yθ
0
1 θ̃

1
1 θ̃

3
∣∣

+
R

1
2
0

R1|z|
5
3

∣∣θ01∂z θ̃
1
1 θ̃

3 + θ01 θ̃
1
1∂z θ̃

3
∣∣
)

≤ Cκ1

(
R

1
2
0

R4
1

+ KR3

)
. (4.28)

We next estimate the cutoff terms corresponding to ψ2. Similar to (4.25), we
can write ψ2M(θ2) as

ψ2M(θ2) = σ(y − x)ψ2

(
∂xθ

2
2θ

1
2 θ̃

3 + θ22∂xθ
1
2 θ̃

3
)
− (xz + y)ψ2∂yθ

2
2θ

1
2 θ̃

3

+ xyψ1

(
θ22∂zθ

1
2 θ̃

3 + θ22θ
1
2∂z θ̃

3
)

+ γ2ψ2∂
2
yθ

2
2θ

1
2 θ̃

3

+ γ1ψ2

(
∂2

xθ
2
2θ

1
2 θ̃

3 + θ22∂
2
xθ

1
2 θ̃

3 + 2∂xθ
2
2∂xθ

1
2 θ̃

3
)

+ γ3ψ2

(
θ22∂

2
zθ

1
2 θ̃

3 + θ22θ
1
2∂

2
z θ̃

3 + 2θ2∂zθ
1
2∂z θ̃

3
)
. (4.29)

Due to the presence of θ12 and/or its derivatives, each term in (4.29) is supported
on the set

{
|x||z| 13 ≤ 2R1

}
, and therefore the estimate (4.14) applies. Similar to

the above, the only terms that cannot be estimated by KR3 are xzψ2∂yθ22θ
1
2 θ̃

3 and
γ1ψ2θ22∂

2
xθ

1
2 θ̃

3, and for those we have

∣∣xzψ2∂yθ
2
2θ

1
2 θ̃

3
∣∣ ≤ Cκ2

|x||z|R2
1|y|

|z|2/3R2
≤ Cκ2

R3
1

R1/2
2

and, by definition of θ1,
∣∣γ1ψ2θ

2
2∂

2
xθ

1
2 θ̃

3
∣∣ ≤ Cκ2θ̃

3
x2+y2≤2R2,R1≤|x||z|1/3≤2R1

≤ Cκ2θ̃
3

x2+y2≤R0,R1≤|x||z|1/3≤2R1
+ Cκ2 R0

≤ Cκ2θ1 + Cκ2 R0 .

Hence, we have

|ψ2M(θ2)| ≤ Cκ2

(
R3

1

R1/2
2

+ θ1 + R0 + KR3

)
, (4.30)

where KR3 is as in (4.24).
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J. Földes, N. E. Glatt-Holtz & D. P. Herzog

After expanding ∇γθ2 ·∇γψ2, the only terms that cannot be bounded by KR3

are γ1∂xψ2∂xθ22θ
1
2 θ̃

3
2 and γ1∂xψ2θ22∂xθ12 θ̃

3
2 . However, if R2 ≥ R0

∣∣γ1∂xψ2∂xθ
2
2θ

1
2 θ̃

3
∣∣ ≤ Cκ2

x2

R2
R2≤x2+y2≤2R2 ≤ Cκ2 R2≤x2+y2≤2R2 ≤ Cκ2 R0

and on R2

∣∣γ1∂xψ2θ
2
2∂xθ

1
2 θ̃

3
∣∣ ≤ Cκ2

|x||z|
1
3

R1
θ22χ̃

′(|x||z|1/3R−1
1

)
θ̃3 ≤ Cκ2 R0 + Cκ2θ1.

Overall,

|∇γθ2 ·∇γψ2| ≤ Cκ2

(
R0 + θ1 + KR3

)
. (4.31)

Let us now gather the estimates (4.5), (4.11), (4.15), (4.27), (4.28), (4.30), and
(4.31) to obtain for R2 ≥ R0

M(V ) ≤ −2σx2 − 2y2 + γ̄ − κ1θ1

(
1 − CR3

0

R1

)
− κ2θ2

(
1 − CR2

1R2

R1/3
3

)

+ C(κ1 + κ2) R0 + Cκ1

(
1

R1
+

R
1
2
0

R4
1

)
+ Cκ2

R3
1

R1/2
2

+ Cκ2θ1 + KR3(κ1 + κ2),

where γ̄ := 2(γ1 + γ2 + γ3). Let us fix κ2 = 16γ̄, κ1 such that κ1
4 ≥ max{4γ̄, Cκ2}

and R0 ≥ 1 such that

(2σx2 + 2y2) ≥ 4γ̄ + C(κ1 + κ2) in R0.

Then, choose R1 such that

Cκ1

(
1

R1
+

R
1
2
0

R4
1

)
≤ γ̄

3
and

CR3
0

R1
≤ 1

2

and R2 ≥ R0 such that

Cκ2
R3

1

R1/2
2

≤ γ̄

3
.

Finally, choose R3 such that

KR3(κ1 + κ2) ≤
γ̄

3
and

CR2
1R2

R1/3
3

≤ 1
4
.

With these parameter selections and referring back to (4.18) and (4.19), we
therefore have

M(V ) ≤ −4γ̄ R0 + 2γ̄ − κ1
4 R1 − κ2

4 R2 ≤ −2γ̄ + 4γ̄(1 − R0∪R1∪R2).

Since R1 ≤ R2, one has
{
x2 + y2 ≤ R0, |z| ≥ R3

}
⊂ R1 ∪R2, and therefore (1 −

R0∪R1∪R2) = K, where K ⊂
{
x2 + y2 ≤ R0, |z| ≤ R3

}
is bounded. Consequently,

(4.3) follows with c = 2γ̄ and d = 4γ̄.
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Finally, let us address the non-negativity of V . Notice that our selection of the
parameters R0, R1, R2, R3 and of κ1,κ2 was made independent of the value κ0 (see
(4.20)). Notice however that, by (4.26) we have

|θ1ψ1| ≤ Cκ1
R1/2

1

R1R
2/3
3

.

Similar to (4.14) we observe that

|θ2ψ2| ≤ Cκ2
R2

1

R2/3
3

.

Thus having fixed R0, R1, R2, R3,κ1,κ2 and referring back to (4.20) we have

V ≥ x2 + y2 + z2 − σ2 − Cκ1
R1/2

1

R1R
2/3
3

Cκ2
R2

1

R2/3
3

+ κ0

making clear that κ0 can be selected so that V is positive for every (x, y, z) ∈ R3.
The proof is now complete.

5. Sensitivity with Respect to Convective Forcing

This section addresses some special cases of degenerate stochastic forcing when
β = 0 in (1.1). First, we establish Theorem 1.1(ii) by using the test function M
given in (1.6).

5.1. Non-existence under highly degenerate noise

Before proceeding to the rigorous proof of Theorem 1.1(ii), we present a formal
argument. Suppose that there exists an invariant probability measure µ for (1.1)
with β = γ1 = 0. Let us proceed with the unjustified assumption that

∫

R3
|X |2µ(dX) < ∞. (5.1)

Applying Itô’s formula to the function M(x, y, z) := 2σz − x2, with the process
(xt, yt, zt) initially distributed according to such an invariant measure µ, we obtain

Eµ[2σzt − x2
t ] = Eµ[2σz0 − x2

0] + Eµ

∫ t

0
[2σxy − 2xσ(y − x)]ds.

Thus, stationarity and simple algebraic manipulations, cf. (1.7), imply that

Eµ

∫ t

0
x2 ds = 0,

so that xt ≡ 0 for every t ≥ 0.
Now, we address two cases. First, we suppose that that γ3 > 0. In this situation

we apply Itô’s lemma to z2 and use that xt ≡ 0 to find dz2 = 2γ3dt + 2
√

2γ3zdB2.
Integrating and taking expectations we obtain

Eµz2
t = Eµz2

0 + 2γ3,

which contradicts stationarity if γ3 > 0.
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Now, let us consider the second case when γ3 = 0 but γ2 > 0. In this situa-
tion, the stationary process X̃ := (xt, yt) started with initial conditions distributed
according to the first two components of the invariant probability measure µ which
satisfies the first two components of (1.1) maintains

dx = σydt, x0 = 0, dy = −ydt +
√

2γ2dB2.

Here, once again, using that xt ≡ 0, we obtain

σy =
dx

dt
= 0,

and therefore y = 0, a contradiction to γ2 %= 0.
To make the above arguments rigorous and avoid the assumption (5.1), we use

cutoff functions and carefully pass to a limit. We now provide the details.

Proof of Theorem 1.1(ii). Let h : [0, 2] → R be a non-decreasing C2 function
such that

h(0) = h′′(0) = h′(2) = h′′(2) = 0, h′(0) = 1, h(2) = 1

and max[0,2] |h′| ≤ 1. Denote c∗ = max[0,2] |h′′|. It is easy to see that such a function
indeed exists. For each N ≥ 1, define a C2 function FN : R → R as an odd function
with

FN (x) =






x x ∈ [0, N ],

h(x − N) + N x ∈ [N, N + 2],

N + 1 x ≥ N + 2.

(5.2)

Note that F ′
N ≥ 0, max[0,2] |F ′

N | ≤ 1, and max[0,2] |F ′′
N | = c∗.

To obtain a contradiction, assume that there is an invariant probability measure
µ of (1.1) and let (x, y, z) have law µ. Since µ is a probability measure, there exists
an increasing sequence of integers (Nj)∞j=1 with Nj+1 − Nj ≥ 2 such that

lim
j→∞

P
(
|2σz − x2| ∈ [Nj , Nj + 2]

)
= 0. (5.3)

If we apply Itô’s formula to FN (2σz − x2), we obtain

EµFN

(
2σzt − x2

t

)
= EµFN

(
2σz0 − x2

0

)

+ Eµ

∫ t

0

(
F ′

N (2σz − x2)(2σxy − 2xσ(y − x))

+ F ′′
N (2σz − x2)4σ2γ3

)
ds.

Simple algebraic manipulations and stationarity yield

Eµx2F ′
N

(
2σzt − x2

t

)
= −2σγ3EµF ′′

N

(
2σzt − x2

t

)
. (5.4)

Next, we verify that F ′
Nj+1

≥ F ′
Nj

for any j. Indeed, for |ξ| ≤ Nj one has 1 =
F ′

Nj
(ξ) = F ′

Nj+1
(ξ) and for |ξ| ≥ Nj + 2 one has F ′

Nj
(ξ) = 0 ≤ F ′

Nj+1
(ξ). Finally,
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since Nj+1 ≥ Nj + 2, for any |ξ| ∈ [Nj , Nj + 2], we have F ′
Nj

(ξ) ≤ 1 = F ′
Nj+1

(ξ).
Thus, (F ′

Nj
) is an non-decreasing sequence of non-negative functions that converge

pointwise to 1 on R. Therefore, by the monotone convergence theorem and (5.4),
we have

Ex2 = lim
j→∞

Ex2F ′
Nj

(2σz − x2) = −2σγ3 lim
j→∞

EF ′′
Nj

(2σz − x2). (5.5)

Finally, from |F ′′
N | ≤ c∗, F ′′

N = 0 on the complement of [N, N +2], and (5.3) follows

lim
j→∞

EF ′′
Nj

(2σz − x2) ≤ c∗ lim
j→∞

P
(
2σz − x2 ∈ [Nj , Nj + 2]

)
= 0. (5.6)

Combining (5.5) and (5.6) yields Ex2 = 0. However, if Ex2 = 0, then, x = 0 almost
surely.

Now by the third equation of the Lorenz system, we have z(t) = z(0) +√
2γ3B3(t). This relation contradicts invariance in the case when γ3 > 0. On the

other hand, if γ1 = γ3 = 0 and γ2 > 0, then
∫ t
0 y(s)ds = 0 almost surely for all

t ≥ 0 since x = 0 almost surely and dx = σy dt. However, it then follows that
y(t) = y(0) +

√
2γ2B2(t), a contradiction since γ2 > 0.

5.2. Uniqueness when the noise component acts only on the
convection component of the system

We next turn to the case when γ1 > 0 but β = γ2 = γ3 = 0. In this special case of
Theorem 1.1(i), we can moreover give an explicit form for the invariant probability
measure.

Proposition 5.1. Consider (1.1) with σ > 0 and ρ ∈ R. If γ1 > 0, γ2 = γ3 = 0,
and β = 0, then (4.2) has precisely one statistically invariant state given by the
product measure

µ = ν0,γ1/σ × δ0 × δρ, (5.7)

where δa is the Dirac measure concentrated at a and νm,s is the 1-d Gaussian
measure with mean m and variance s.

Once again, before proceeding to a rigorous proof, we present a formal argument.
Suppose that in this parameter range there exists an invariant probability measure
µ of (1.1) and impose the a priori unjustified condition (5.1). Let (x, y, z) be the
solution starting with initial condition distributed as µ. Observe that

1
2

d

dt
(y2 + (z − ρ)2) = x(ρ− z)y − y2 + xy(z − ρ) = −y2.

Integrating this expression in time, taking expected values and using stationarity
one finds that Eµ

∫ t
0 y2ds = 0 so that yt ≡ 0 for every t ≥ 0 by path continuity.

Then, as a consequence of this calculation, we infer that d
dtz = 0 so that zt ≡ z0

for every t ≥ 0. Thus, with stationarity, the equation for X̃t = (xt, yt) reduces to

dx = −σxdt +
√

2γ1dB1, dy = (z0 − ρ)xdt, y0 = 0.
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Stationarity implies that for every t, T

(z0 − ρ)E
∫ T

t
xds = Ey(T ) − Ey(t) = 0.

Since x is almost surely continuous, either z0 = ρ or x = 0. The latter case leads
to a immediate contradiction, whereas the former one implies that (5.7) is the only
invariant state of (1.1).

Proof of Proposition 5.1. By Theorem 1.1(i), there exists an invariant probabil-
ity measure µ, and let (x, y, z) be a random initial condition distributed according
to µ. For each N ≥ 1, let FN be as in (5.2). Similar to the above, fix an increasing
sequence (Nj)∞j=0 such that Nj+1 ≥ Nj . Then, applying Itô’s formula to FN (y2+z2)
and taking expected values gives

EFN

(
y2

t + z2
t

)
= EFN

(
y2
0 + z2

0

)
+ E

∫ t

0
F ′

N (y2 + z2)(−2y(xz + y) + 2zxy)ds.

Since the process is stationary, we have

EF ′
N (y2 + z2)y2 = 0.

As in the proof of Theorem 1.1(ii), by using that (F ′
Nj

) is an increasing sequence
converging pointwise to 1, the monotone convergence theorem implies

Ey2 = 0.

However, if y = 0 almost surely, then z′ = 0, and therefore zt = z0, and x is an
invariant state of

dx = −σxdt +
√

2γ1dB1,

as desired.

6. Non-Existence of Stationary States in the Presence
of a Linear Instability

In this section, we prove Theorem 1.1(iii) by constructing functions Vi satisfying
the hypotheses of Theorem 2.1. In the expressions that follow, we assume that all
constants depend implicitly on σ,β, γ1, γ2, and γ3. Any other dependence will be
indicated explicitly.

6.1. Construction overview

Before proceeding to the proof, let us overview the construction of V1 and V2 needed
to apply Theorem 2.1. We remark that the function V1 identifies bad initial con-
ditions from which the dynamics takes too long to return near the origin. Because
β < 0, we note that the z process in Eq. (1.1) grows exponentially fast when it is
initially large and when the product xy is not too large. In fact, if one considers
the test function

M(x, y, z) = 2σz − x2,
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then we note that

LM(x, y, z) = 2σ(|β|z + x2) − 2γ1.

Hence, if x2 is dominated by z, then the system (1.1) grows exponentially fast on
average. However, we have to be careful because the noise can drive the dynamics
out of the region {x2 < |β|z}. To see that such scenario does not occur with high
enough probability, we have to modify M and choose appropriate V2.

Let us first discuss possible candidates for V2. It is easy to check that LH is
neither bounded from above nor from below, and therefore it is not a suitable choice
for V2. However, we will see that L(ln H) is bounded outside of a compact set, and
as such we use an appropriate multiple of ln H for the function V2. To satisfy the
assumption (p3) in Theorem 2.1, it is necessary that V1 has smaller than logarithmic
increase at infinity. Given the analysis above, a natural choice would be F ◦M , with
slowly growing F . However, unlike H , M does not have a definite sign, and therefore
to define V1 = F ◦M one has to define F on the whole real line. We will verify below
that F (ζ) = ln ln ζ indeed produces L(F ◦ M(x, y, z)) ≥ 0 for large M(x, y, z), but
F is not even defined for M(x, y, z) ≤ 0. In addition, the function ζ )→ F (|ζ + C|)
still does not satisfy the desired inequality. Therefore, we define F to be the double
logarithm for large positive values of ζ and F ≡ 0 on (−∞, 0). The final challenge
is to connect these two regions as a smooth function that satisfies L(F ◦ M) ≥ 0.

6.2. The construction

Based on the heuristics for the construction of V1 and V2, we now provide a rigorous
proof.

Proof of Theorem 1.1(iii). We define V1, V2 : R3 → R satisfying the hypotheses
of Theorem 2.1.

Step 1. Fix R > 1 such that H(x, y, z) > 1 for any |(x, y, z)| > R. Let W2 ∈ C2(R3)
satisfy

W2(x, y, z) = lnH(x, y, z) for |(x, y, z)| > R.

Then, W2 > 0 outside of a compact set. Moreover, standard calculations yield

LW2(x, y, z) =
2|β|z2 − 2y2 − 2σx2 − 2|β|(σ + ρ)z + 2(γ1 + γ2 + γ3)

H(x, y, z)

− 4(x2γ1 + y2γ2 + (z − (ρ+ σ))2γ3)
H2(x, y, z)

.

Consequently, there exists a constant K > 0 such that

LW2(x, y, z) ≤ K for all (x, y, z) ∈ R3.

We thus define V2 = W2/K.
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Step 2. Define constants

A =
2γ1 + 2
|β| , m = max

{
2γ1, 2σ2γ3

}
,

and let

f(ζ) := (1 − cos ζ)2.

One can check that f(0) = f ′(0) = f ′′(0) = 0 and f is (strictly) increasing on (0,π),
convex on (0, 2

3π) and concave on (2
3π,π). In particular, f ′(2

3π) > 0 = f ′′(2
3π). By

continuity, fix B > 2
3π close to 2

3π such that f ′ ≥ −mf ′′ on (2
3π, B).

Next, for constants c0, c1, c2 to be determined in a moment, define

Ψ(ζ) =






0 ζ < 0,

(1 − cos ζ)2 = f(ζ) ζ ∈ [0, B],

c0 ln ln(ζ + c1) + c2 ζ > B.

We now claim that c0, c1, c2 can be chosen such that Ψ is C2 function. Because Ψ
is C2 function at 0, we have left to show that we can find c0, c1, c2 such that

c0 ln ln(B + c1) + c2 = f(B) > 0,

c0

(B + c1) ln(B + c1)
= f ′(B) > 0,

− c0(1 + ln(B + c1))
[(B + c1) ln(B + c1)]2

= f ′′(B) < 0.

Substituting the second equation into the third one, we obtain

1 + ln(B + c1)
(B + c1) ln(B + c1)

= −f ′′(B)
f ′(B)

> 0. (6.1)

However, the function

z )→ 1 + ln z

z ln z

is positive and decreasing on (1,∞) with a vertical asymptote at z = 1 and decaying
at infinity. Thus, there exists (unique) c1 such that B + c1 > 1 and (6.1) holds true.
Then, for already fixed c1 we set

c0 = f ′(B)(B + c1) ln(B + c1) > 0

and

c2 = f(B) − c0 ln ln(B + c1).

It now follows that Ψ is C2 with this choice of constants c0, c1, c2.
Finally, fix λ ∈ (0, 1) such that

1 ≥ λm
(1 + ln(B + c1))

(B + c1) ln(B + c1)
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and define V1 by

V1(x, y, z) = Ψ(λ(2σz − x2 − A))

and note that V1 is C2 function and

LV1 = (2σ|β|z + 2x2 − 2γ1)λΨ′ + (4x2γ1 + 4σ2γ3)λ2Ψ′′, (6.2)

where, for clarity of presentation, we omitted the argument (x, y, z) of V1, and
ζ := λ(2σz − x2 − A) of Ψ.

Step 3. We claim that

LV1 ≥ 0. (6.3)

First, if ζ ≤ 0, then Ψ′ = Ψ′′ = 0 and (6.3) follows. For the case when ζ ≥ 0, note
that since A = 2γ1+2

|β| , ζ = λ(2σz − x2 − A) ≥ 0 implies

2σz ≥ 2σz − x2 ≥ A =
2γ1 + 2

|β| ,

and consequently 2σ|β|z − 2γ1 ≥ 2. Hence,

2σ|β|z + 2x2 − 2γ1 ≥ 2(x2 + 1), 0 ≤
(
4x2γ1 + 4σ2γ3

)
≤ 2m(x2 + 1). (6.4)

Hence, if ζ ≥ 0, the coefficients of Ψ′, Ψ′′ in (6.2) are non-negative. We split the
domain ζ ≥ 0 into three pieces and then finally conclude (6.3).

If ζ ∈ [0, 2
3π], then Ψ′(ζ), Ψ′′(ζ) ≥ 0, and the non-negativity of coefficients of

Ψ′, Ψ′′ in (6.2) implies (6.3).
If ζ ∈ (2

3π, B), then Ψ′(ζ) > 0 and Ψ′′(ζ) < 0. Thus, from (6.3) and (6.4) follows

1
λ
LV1 ≥

(
2σ|β|z + 2x2 − 2γ1

)
Ψ′ + λ

(
4x2γ1 + 4σ2γ3

)
Ψ′′

≥ 2(x2 + 1)Ψ′ + 2λm(x2 + 1)Ψ′′ ≥ 0, (6.5)

where in the last inequality we used the definition of B and λ ∈ (0, 1].
Finally, if ζ ∈ [B,∞), then Ψ(ζ) = c0 ln ln(ζ + c1) + c2. Since c0 > 0, one

has Ψ′(ζ) > 0, Ψ′′(ζ) < 0. Using (6.5) and the fact that the function z )→ 1+ln z
z ln z

decreases, we obtain for any ζ > B

1
λ
LV1 ≥ 2(x2 + 1)Ψ′ + 2λm(x2 + 1)Ψ′′

≥ 2c0(x2 + 1)
(ζ + c1) ln(ζ + c1)

(
1 − λm

(1 + ln(ζ + c1))
(ζ + c1) ln(ζ + c1)

)

≥ 2c0(x2 + 1)
(ζ + c1) ln(ζ + c1)

(
1 − λm

(1 + ln(B + c1))
(B + c1) ln(B + c1)

)
≥ 0,

where in the last estimate we used the definition of λ. Thus, LW1 ≥ 0 as desired.

2150055-29



October 31, 2021 17:11 WSPC/S0219-4937 168-SD 2150055
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Step 4. Let us verify that the assumptions of Theorem 2.1 are satisfied with V1

and V2. First (p4) follows from the construction. To verify (p1), observe that

lim sup
|(x,y,z)|→∞

V1(x, y, z) ≥ lim
z→∞

V1(0, 0, z) = lim
z→∞

Ψ(λ(2σz − A))

= lim
z→∞

c0 ln ln(λ(2σz − A) + c1) + c2 = ∞.

Also, lim|(x,y,z)|→∞ H(x, y, z) = ∞ and (p2) is satisfied. Finally, (p3) follows from

lim sup
R→∞

sup|x,y,z|=R V1(x, y, z)
inf |x,y,z|=R V2(x, y, z)

≤ lim sup
R→∞

V1(0, 0, R)
ln(R2 − 2(σ + ρ)R)

≤ lim
R→∞

c0 ln ln(λ(2σR − A) + c1) + c2

ln(R2 − 2(σ + ρ)R)
= 0,

where we used that z )→ V1(x, y, z) is increasing for large z and (x, y) )→ V1(x, y, z)
is non-increasing. This finishes the proof.
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