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1. Introduction

In this paper, we study the existence of invariant measures of the stochastic Lorenz
system

dx = o(y — x)dt + /271 dBy,
dy = x(p — z)dt — ydt + /272 dBa, (1.1)
dz = zydt — Bz dt + /273 dBs3,

where the B;, i = 1,2, 3, are independent, standard Brownian motions and o, p, 3, v;
are constants. We assume that o > 0 and p > 0, while for the diffusion parameters
Y1, 72,73 => 0 we require ; > 0 for at least one index 7, which means that the system
is genuinely stochastic. If § > 0, it is known that (1)) possesses a normalizable
invariant measure (see, for example [25]) and the long-term dynamics has been
extensively studied. In this paper, we focus on a degenerate damping factor 3 <0,
and we investigate whether the presence of noise plays a nontrivial role in stabilizing
the dynamics.

Previous literature

The deterministic version of Eq. (ILLI)); that is, when ; = 0 for ¢ = 1,2, 3, has a long
history as a canonical example of a chaotic dynamical system. Originally (1)) was
derived from the Boussinesq approximation of Rayleigh-Bénard convection [23]. Tt
is understood as a projection of the Boussinesq equation onto one Fourier direction
with wavenumber k, in which case x represents the convection rate, and y and z
describe the horizontal and vertical temperature variations, respectively. In this
framing as a simple model for convection, o corresponds to the Prandtl number, p
is a rescaled Rayleigh number and [ is an aspect ratio depending on k.

While 3 is a strictly positive parameter in the original derivation of (1), if
the Rayleigh number is large, a typical assumptions for turbulent flows, and k is
large, then 8 ~ 0. Thus, it is natural to investigate the system with g = 0. On the
other hand, practical numerical considerations lead to the so-called Homogeneous
Raylegh-Bénard (HRB) system, where a linearly unstable term, an analogue of the
case when [ < 0, appears in the temperature equation. See, for example [4] and a
related two-dimensional ODE stochastic model in [3]. Furthermore, equations with
similar structure to HRB also appear in a certain zero Prandlt limit which models
mantle convection, see, for example [30] [34]. Thus, both HRB and the zero Prandlt
limit provide additional motivation for studying the parameter range 8 < 0 in (LIJ).

It is worth emphasizing that noise must be present in (L1 for there to be any
hope that this system would posses any (globally) stable statistics when 5 > 0.
Indeed, in the absence of noise when < 0, the system (IL1]) has initial conditions
(xo = yo = 0, 20 # 0) leading to infinite time blow-up. On the other hand, if
B = 0, then all points on z-axis are equilibria, and therefore there is no compact
global attractor. Nevertheless, in both cases, the set of initial conditions leading to
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blow-up (or equilibria) sit on a lower-dimensional subset of the phase space. One
may therefore inquire if there are suitable noise perturbations which kick trajec-
tories off of these meager subsets of the phase space stabilizing the dynamics and
leading formation of statistically steady states.

The topics studied in this paper for 4 < 0 fall into a larger class of “stabilization-
by-noise” problems. Such problems have been investigated in a variety of contexts.
Let us next briefly recall those works closely related to our setting. Motivated by
convection models in [16] [17], the effect of additive noise on unbounded solutions
was studied. From another perspective advocated recently in [9], the range 5 < 0
above provides a turbulence analogue of a class of core models in non-equilibrium
statistical mechanics describing coupled oscillators with heat baths at different tem-
peratures [7, 8, [29]. Similar to such works on heat baths, one associates a
natural energy functional with (L)) which is “approximately conserved” but which
is not globally dissipative. In particular, dissipation naturally acts on the x and y
directions, but not necessarily on the z-direction, unless of course 8 > 0. However,
when 8 < 0, either there is no explicit dissipation (§ = 0) or there is in fact a
source of linear instability (8 < 0), so it is unclear whether the dissipation in
and y, coupled with the noise, can propagate the dissipation to the z-direction.
Let us finally mention that it is known that an arbitrary small additive noise can
avert deterministic finite-time blow-up and lead to stable dynamics, see, for exam-
ple [1,12,15,[101[13,[22} [31]. The presence of noise can also induce stable oscillations [3]
among other behaviors [21].

Statement of the main results

In view of the above discussions, we aim to answer the following question in this

paper:

For what values of 8 <0 and ~v1,7v2,73 > 0 does (1)) possess an invariant
probability measure? Q)

Recall that in our context, there is at least one index 4 such that «; > 0. The answer
to this question is known to be affirmative for § > 0 and, in fact, in this case the
system is geometrically ergodic when ~; > 0 and either v > 0 or 3 > 0; see, for
example [25]. Thus, our focus in this paper is on the case when § < 0, where the
associated deterministic dynamics does not possess a compact global attractor.

Let us now present the main results in the paper concerning the stochastic
stability of (L1 which addresses most of (Q).

Theorem 1.1. Consider (1) and assume o >0, p > 0 and y1,72,72 > 0 with at
least one index i for which ~; > 0. For any value of 5 < 0, the stochastic dynamics
is globally defined (non-explosive in the sense of (2.4).

(i) If B =0, v1 > 0, then ([LI) has a unique invariant probability measure.
(ii) If B =0, v1 = 0, and one of y2,7s is positive, then (L1) does not possess an
invariant probability measure.
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(iii) Finally, if B < 0, then for any K C R3 compact, there exists (z,y,2) ¢ K such
that

E(m,y,z)gl(: = 00,

where
& =nf{t > 0: (ve,y1,2¢) € K} (1.2)

Consequently, if we furthermore assume that v1 > 0 and either v > 0 or
~v3 > 0, then (1) does not possess an invariant probability measure.

Remark 1.1. Depending on which noise parameters ; are positive, the issue of
uniqueness of invariant measures for the system (ILI) can also be subtle. In the
recent interesting paper [6], it is shown that when 8 > 0, v1 = 72 = 0 and ~3 > 0,
then invariant measures can either be unique or not, and the uniqueness depends
on the magnitude of the non-zero noise parameter vz > 0.

Overview of the analysis

Since the coefficients of Eq. (L)) are globally smooth (C°°) functions, the proof of
well-posedness of (L)) follows immediately once one establishes absence of finite-
time explosion. In our case, non-explosivity is then concluded by using the nat-
ural Lyapunov function associated to the dynamics. See Proposition B.1] for fur-
ther details. However, since 8 < 0, this natural function is not robust enough to
determine the existence/non-existence of an invariant probability measure precisely
because of the absence of explicit dissipation in the z-direction. Thus, we cannot
use this function directly to answer our main question.

To this end, the typical route used to conclude existence/non-existence of an
invariant probability measure is to estimate, for a big compact set K C R3, the
expectation of the random variable k¢ as in (L2]). Indeed, if one can show that
(7,9, 2) = E(gy,28c® is bounded on compact sets in R3, then an invariant proba-
bility measure can be constructed using a slight modification of the cycle argument
of Khasminskii [19]. See also |20, 2§]. On the other hand, if there is sufficient noise
in the system (LI]) by way of hypoellipticity and support properties of the solution,
then global finiteness of the function E(, ,, .){x for some K compact is equivalent to
the existence of an invariant probability measure [20]. Thus our arguments center
around determining whether or not this expectation can be shown to be globally
finite.

Our approach to estimating E(, , . ¢k relies on detailed Lyapunov constructions.
Specifically, to show the expectation is bounded on compact sets, we seek a C?
function V : R? — R with V(z,y,2) — 0o as |(z,y, 2)| — oo and such that

LV < —c+dlg (1.3)

*E(z,y,-) denotes the expectation with respect to the process (¢, yt, 2¢) started at (z,y, 2) at time
zero.
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for some ¢, d > 0 and some compact set JC C R3. In the above, £ is the infinitesimal
generator of (1) defined in (B.1). While the above Lyapunov criteria is quite
standard to show existence of an invariant probability measure (see, for example
[19] 26, 28]), we will see that Lyapunov constructions can also be employed to
establish non-existence. Following [35] and generalizations more recently appearing
in [19], Theorem [2.1]identifies a condition guaranteeing infinite expected return
times depending on the existence of two test functions, Vi, V5 : R? — R satisfying
Lyapunov-like conditions.

Regarding the existence of an invariant probability measure when § = 0, we
construct a suitable Lyapunov function V' satisfying (L3]) by pivoting off of the
natural Lyapunov function one uses to show well-posedness, namely

H(X)=H(z,y,2):=2>+y* +2° = 2(c +p)z. (1.4)
Here, a direct computation, see (8.1)), leads to
LH = —2(cx?+ %) — 262% +28(c + p)z + 2(y1 + 72 + 73), (1.5)

which reveals the necessity of adding supplemental terms to H, seeking a Lyapunov
function of the form H + 4, in order to achieve (3] for the region where z,y are
bounded but where |z| is large; that is, (L3]) requires L(H + v) to be uniformly
negative off of a compact set. The definition of the supplemental perturbation
makes use of certain rescalings of the dynamics at large values, allowing one to
better parse relevant terms in a neighborhood of the point at infinity. Note that
these asymptotics initially yield a piecewise definition of the perturbation 1 which
must be smoothly interpolated so that it is globally C2. The detailed derivation of
1 and the motivation behind the scalings we choose are carried out in Sec. [4

To extract Theorem [L.I{iii), we again employ Lyapunov methods in order to
estimate the expected return time to a given compact set K. The principal obser-
vation leading to the proof is that the function M given by

M(X) = M(x,y,2) =20z — x° (1.6)
satisfies
LM =20(|p]z + 2%) — 1. (1.7)

Now, if it were the case (although it is far from true) that the set {(z,y,2) : 02 > x}
is invariant for the dynamics, then (LG) and (L.7) would together imply that the
solution is growing exponentially in this region, provided z > 0 is large enough
initially. The proof then nontrivially modifies this initial observation to conclude
the result, even in the presence of noise or dynamics effects that can steer the
process in and out of this region. See Sec. [6 for further details.

Finally, to treat the borderline case # = 0 when 7; = 0, we proceed with a
direct approach. For example, when v; = [ = 0 but either v or 3 are strictly
positive we again use of the test function M defined in (L6). At least formally,
(L17) and Dynkin’s formula immediately implies that Exz = 0 if the initial condition
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is distributed as an invariant state. However, this produces a contradiction to the
structure of (1)), since if 75 > 0, then y is nontrivial, leading to non-zero derivative
of z. On the other hand, if v3 > 0 and y = 0, then z evolves as a Brownian motion,
which is not a normalizable invariant. Similar direct argumentation can be employed
to show that when v = v3 = 3 = 0 and ~; > 0, then the only stationary solution
is an Ornstein—Uhlenbeck process concentrated on the x component.

Organization

The rest of the paper is organized as follows. Section [2 provides a self-contained
summary of some general results on Lyapunov methods for It6 diffusions. Section 3
contains the details for non-explosivity and conditions for the uniqueness of invari-
ant measures for (L1]). The results of this section also imply the uniqueness part of
Theorem [L.1{i) when 77 > 0 and either 5 > 0 or v3 > 0. In Sec. 4l we carry out the
construction and rigorous analysis of a Lyapunov function leading to the existence
of an invariant probability for (L)) in the case when 5 = 0 and v, > 0. The main
result in this section, Proposition[4.1] in particular establishes the existence part of
Theorem [LI[i). In Sec. [H, we prove Theorem [LI[ii) and establish uniqueness of the
invariant measure when 3 =0, y3 > 0 and 2 = 3 = 0, thus finalizing the proof of
Theorem [L1]i). Finally, in Sec. 6, we prove Theorem [[.1[iii). This proof also relies
on Lyapunov constructions.

2. Methodological Foundations: Lyapunov Techniques

This section presents some general results on Lyapunov methods for It6 diffusions,
providing the foundation for our analysis in later sections. To keep the paper self-
contained, we present detailed proofs for some results familiar to specialists, but
which are dispersed in literature under varied sets of assumptions.

Let M, denote the set of n X k matrices with entries in R. Given any F €
C?*(R™;R") and G = (Gy,...,Gy) € C*(R™; M), let X; be the process on R"
satisfying the Ito stochastic differential equation

k
dX; = F(X;)dt + G(X)dB, = F(X,)dt + > Gi(X;)dBj. (2.1)
I=1
Here, B; = (B}, ..., BF)T is a standard k-dimensional Brownian motion defined on

a filtered probability space (2, F,{F;}i>0,P), where E denotes the corresponding
expected value. We denote by £ the infinitesimal generator of the process X; acting
on functions V € C?(R"; R), namely,

LV(X):=F(X) -VV(X) + %(GGT)(X)VQV(X)

i aX V Z ZGzlG]l X i XJ (X) (22)

i,7=11=1
Let B be the Borel o-ﬁeld of subsets of R".
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Although globally defined solutions of (2.1]) in time are not guaranteed for gen-
eral C? drifts F and diffusions G, there are unique pathwise solutions defined until
the first time 7 in which the process leaves every bounded domain in space. Specif-
ically, given a fixed initial condition X, if we define stopping times

Tpi=1nf{t >0: |X¢| > n}, and 7:= lim 7,, (2.3)

n—oo
then solutions exist and are unique for all times ¢t < 7, P-almost surely. We call 7
the explosion time of the process X; and say that X; is non-explosive if

Px{r < oo} =0 for all initial conditions X € R™. (2.4)

In the above (2.4]), the notation Px means the process X; has Xy = X € R".

If X is non-explosive, solutions of (2.1]) exist and are unique for all times ¢ > 0
almost surely. Moreover, X; generates a Markov process and we define the transition
probability measure P; as P:(X,-) = Px{X; € -}. The Markov semigroup P; acts
on bounded, B-measurable functions V' : R™ — R via

PV (X)=ExV(Xy) :/ V(Y)P(X,dY), X eR", (2.5)

and on borel measures 7 according to
TPU(A) = / T(dX)Py(X, A), AcB. (2.6)

We say that a positive measure 7 is an invariant measure for P, if 7P, = 7w for
all ¢ > 0. An invariant measure 7 for P, with 7(R™) = 1 is called an invariant
probability measure for Py.

The next result outlines the criteria for a process defined by (2.1 to be both
non-explosive and have finite expected returns to a compact set.

Proposition 2.1. Given F,G € C?, the following statements hold for solutions X;
of 1) and the corresponding infinitesimal generator L defied in (2.2)):

(a) Suppose that there exist a function V € C?*(R"™;R) such that V(X) — oo as
| X | — oo and constants ¢,d > 0 with the global bound
LV(X)<cV(X)+d forall X € R". (2.7)
Then X; is non-explosive, namely 2.4) holds.

(b) Suppose that X; is non-explosive and that there exist a function V €
C?(R™;[0,00)), a compact set I C R™ and constants c,d > 0 such that

LV(X) < —c+d1l(X) foral X € R™ (2.8)
If
& =inf{t >0: X, € K} (2.9)
denotes the first hitting time of IC by X4, then
X
Exék < V(C )7 (2.10)

for all X € R™.
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The proof of the proposition above is a straightforward application of It6’s
formula and can be found in a number of references, see, for example [19, 26 [28].
To illustrate the basic idea, we provide details for part (b).

Proof of Proposition 2.1(b). Take { := &, x 1=t ATy, A&k with 7, defined as
in @3). If X € K, then Ex{c = 0 and (2.10)) follows. Otherwise, 1x(X) = 0 and
by Dynkin’s formula and (2.8]), we have

3
0<ExV(Xe) =V(X)+ ]EX/ LV(Xs)ds <V (X) — cEx&, (2.11)
0
for any t > 0 and n > 1. Rearranging and using V' > 0 produces the estimate
V(X
Ex&tnix < (c ) (2.12)

Passing n — oo and then ¢t — oo using both monotone convergence and non-
explosivity, that is, 7, — 0o a.s., gives the desired bound (2.10). |

The next result provides the criteria we use in Sec.[6 to show that the expected
return time to compact sets is infinite for some initial data in the case when the
parameter § < 0 in Eq. (L.I). While the result presented here can be traced back
to at least [35] we believe it deserves further attention as a powerful tool for the
study of stochastic (in)stability. Note that the original formulation in [35] imposes
more hypotheses on the process X; than needed; for example a uniform elliptic-
ity assumption for the generator £ was imposed in [35]. This was noticed in the
paper [11], where a generalization of the results from [35] is stated. Here, we pro-
vide the details for this generalization and also phrase the conclusions in a slightly
different way. See also [19, Lemma 3.11].

To formulate the result, for R > 0 we let

€r =inf{t > 0: | X, < R}, (2.13)

that is, £r is the first hitting time of the closed ball of radius R > 0 centered at
the origin in R™. This is a small abuse of notation, see i in ([2.9) above, but there
should not be any confusion given the context.

Theorem 2.1. Suppose that there exist Vi, Vo € C2(R™;R) satisfying the following
properties:

(p1) limsup V1(X) = occ.

(p2) ‘l/)j;jtmctly positive outside of a compact set.
(p3) limsup M =0.
(p4)

P min| x| —g V2 (X)
There exists R > 0 such that
LVI(X)>0 and LVA(X)<1 (2.14)

for every | X| > R, where L is the generator for 2.1) given in [2.2)).

p4
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Then, there exists M > 0 such that

Ex,¢r =00, whenever |X.| > R and V1(X.) > M. (2.15)

Proof. First notice that, given Vi, V5 € C?(R™;R) and R satisfying (pl)-(p4), one
can add a negative constant to V7 to obtain

Vi(X) <0, forevery | X|<R (2.16)
and a positive constant to V5 so that
V2(X) >0 for every X € R". (2.17)

Since an addition of constants does not affect (p1)—(p4) we proceed assuming (2.16])

and (2.17).

Let us fix an arbitrary | X.| > R such that V4 (X,) > 0. Invoking (pl) we can
choose a sequence of points z; € R", k =1,2,..., such that z; = X,, R < |xg| <
|xk41] for all k and such that 0 < Vi(xy) T oo as k — oo. Let 7, = inf{t > 0:]X;| >
|xx|} and recalling (2.13]) define functions uy(X,t) by

uk(X,t):Ex(T;C/\fR/\t). (2.18)
Note that, in particular, since zj, is an increasing sequence, we have the relationship
0 <up(X,t) <ups1(X,t) (2.19)

for all X and all k € N, ¢t > 0.
Define My = max)y|—|s,| Vi(Y). Note that M; > 0 and by passing to the
relevant subsequence of x,,’s via (pl) we can assume that My > M, for all k. Let
minjy |z, V2(Y)

Ao = M7t min V(YY) = 2.20
' < i, ) maxy |=|z,| V1 (Y) (2.20)

and consider the functions
miny |-, Va(Y)
max|y|=z,| V1(Y)

V(k, X) = Vi (X) = Va(X) = Vi(X) = Va(X), (2.21)

for each k € N. In view of assumption (p3), after passing to a subsequence, and
recalling our choice of X* such that V;(X*) > 0 we have that
klim A =00 and klim V(k,X") = o0. (2.22)

Furthermore, with (216) and (2.17), we see that V(k, X) is non-positive on the
boundary of the annulus Ay, := {X : R < | X| < |x|}, namely

V(k,X) <0 forevery X e {Y €eR":|Y|=Ror|Y|=|zg|}, (2.23)
for every n.
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Next, by Dynkin’s formula and then invoking (p4) produces

T,;/\ER/\t
7EX*V(kaX'r{C/\ER/\t) = 7V(k,X*) — EX* / EV(k,XS)dS
0

= up(Xo, t) — V(k, X..)

TRNERNL
vEx [ (E0h - )X - s
0
S Uk(X*,t) - V(k,X*)

for any k£ € N, ¢ > 0. Note that if Ex, (53 A T,Q) = oo for some k € N, the desired
result follows from the monotone convergence theorem after passing & — oo. Thus,
we are left with the case Ex, ({r A 7/,) < 00, and in particular P({p A 7], < 00) =1
for all k. For fixed k, V(k,-) is bounded and continuous on A, and therefore by
the monotone and dominated convergence theorem after passing ¢ — oo we obtain

—IEX*V(k,XT;CAER) <Ex. (¢ A1) — V(K X.). (2.24)

Since {g A 77, < oo is almost surely bounded, (2.23) produces the inequality
V(k,X.) <Ex, (ér A7) <Ex.&r (2.25)
valid for all k€ N. Thus, using ([2.22) we conclude (2.15)), completing the proof. O

In summary, Proposition 2.I] and Theorem [2.1] provide a basis for analyzing
the expected return time to compact sets for general diffusions of the form (2.1J).
For our purposes here we can then appeal to general results found in e.g. [20] 27]
to conclude either the existence or the non-existence of an invariant probability
measure for P;. Note however that, at this step in the analysis, we further require
that P; maintain certain support and regularity properties.

In order to restate the results from [20] 27], we need the following definitions.

Definition 2.1. Suppose that A is a differential operator defined on an open subset
U C R™. We say that A is hypoelliptic on U if for any distribution u defined on an
open subset V' C U such that Au € C°(V), we have u € C (V).

Definition 2.2. We say that X, satisfying (2.1) is nice diffusion if it is non-
explosive as in ([2.4) and the following conditions are met:

(i) F e C®R™R") and G € C®(R"™; My1);

(ii) The operators L, L*, L+ 0y, L* & 0; are hypoelliptic on the respective domains
R™ R™ R™ x (0, 00),R™ x (0, 00) where L* denotes the formal adjoint of £ with
respect to the L?(R"; dx) inner product.

(iii) supp(P¢(X,-)) =R" for all t > 0, X € R™.P

bRecall that, given a probability measure p on R™,
supp(p) :={z € R" : p({y : |y — z| < €}) > 0, for every € > 0}. (2.26)

In particular, supp(u) = R™ if p is continuously distributed and its density is almost surely positive.
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Note that hypoellipticity of A on U intuitively means that 4 has a local smooth-
ing effect on U reminiscent of elliptic operators. Hypoellipticity of £, £L*, L+ 0, L*+
0y implies their smoothing properties and, in addition, the probability density func-
tions of the associated stochastic differential equations exist and are smooth in all
variables (forward, backward and time). Furthermore, if an invariant probability
measure exists, hypoellipticity guarantees the existence and smoothness of an invari-
ant probability density. This is the reason we assume condition (ii) in Definition 2.2

Proposition 2.2. Suppose that X; is a nice diffusion according to Definition 2.2l
Then we have the following:

(a) There is at most one invariant probability measure for Py.

(b) P: has an invariant probability measure if and only if there exists R > 0 such
that Ex&r < oo for all X € R™ and the mapping X — Ex&gr is bounded on
compact subsets of R™. In the above, we recall that i is the return time defined

The proof of Proposition [2.2] combines results scattered in the literature;
cf. [18H20, [27, 28]. Part (a) of the result is a standard consequence of ergodic
decomposition, see, for example |28 Proposition 8.1]. For part (b), if there exists
R > 0 such that Exfr < oo for all X € R™ and the mapping X — Ex&gr is
bounded on compact subsets of R™, the unique invariant probability measure can
be constructed using Khasminskii’s cycle argument as in [19, 28]. The remaining
implication in part (b) is more subtle, as it relies on the dichotomy between transient
points and recurrent points for degenerate diffusions. This was established in [20].

We next recall a set of criteria which can be used to establish the smoothness
and positivity hypothesis of Definition 2.2] required for Proposition 2.21 First, we
formulate in our setting |14, Theorem 2.9] which is a combination of Hormander’s
hypoellipticity theorem [15], ensuring the existence and smoothness of a density
(with respect to Lebesgue measure on R™), with the support theorems of Stroock
and Varadhan [32] 133], relating positivity of the density to controllability. By [14],
for ([L.I), one can use certain Lie brackets as in [15] to obtain both the regularity
of the density and support of the transition measure.

To formulate the result, let us introduce preliminary definitions and notations
following as closely as possible the formulations in [14]. Recall that the Lie bracket
of (smooth) vector fields

UX)=>Y Uﬂ'(X)i W(X)=>" Wj(X)i (2.27)

is given by

n

U =33 (U’“(X)agjiX(kX) - Wk(X)ag]i)g)) 6‘;. (2.28)
j=1k=1 J
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We then introduce, for any vector fields U and W and any m > 2
ad’UW) =W, ad'UW)=[U,W], ad™UW):=ad'U(ad™ 'UW)).
(2.29)

When W is a polynomial vector field (that is, W depends polynomially on the
components of X), for any X € R"™ we denote

n(X,W):= j:nllz.x.).(ndeg(pj) where p;(\) := W7 (\X). (2.30)

For any collection of vector fields G on R™ we define
N
conezo(g): Z/\jUj :{/\1,...,)\N}C [0,00),{Ul,...,UN}Cg . (231)
j=1

For simplicity and in the view of (2.I]), we restrict to the case when the diffusion
coefficients G are independent of X and the drift F' is a polynomial. Let

Go :=span{Gy,...,G} (2.32)
and starting at 7 = 1 we define®
G = Gy U {ad@IG(F) : G € Go,n(G, F) is odd},

Qlo = {G c g? : (G is a constant vector ﬁeld},

GY = {ad“(G’F)G(F) : G € Go,n(G, F) is even}, (2:35)
G = span(glo) + conezo(gf).
We then proceed iteratively to define, for j > 1
QJ-OH = gjo U {ad“(G’F)G(H) G e QJ-O,H € G;,n(G, H) is odd},
Q?H ={G e gjOH : G is a constant vector field}, (2,34

Ghy =G U {ad“(G’F)G(H) :G e Q_JO,H € G;,n(G, H) is even},
Gjy1:= span(gjoﬂ) + conexg (Qj}il).
The following summarizes results in [14]; cf. 28] 321 [33].

Theorem 2.2. Consider {X;};>0 solving (2.1)) under the assumption that F is a
polynomial, that Gy, is constant, i.e. X -independent, and suppose furthermore that
the resulting dynamics is non-explosive as in (2.4). Assume that

span{ H € U gjo : H is a constant vector field p = R", (2.35)
j=1

then {X;} is a nice diffusion in the sense of Definition [2.2]

“Note that in (2.33) and (2.34), we treat constant vector fields G as a vector in R when computing
n(G, F).
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Remark 2.1. The condition (2.35]) is special case of the Hormander (parabolic)
sum-of-squares condition, which asserts that if vector fields produced by the iterated
Lie brackets

Giy...,Gi[G1, Fl, ..., |Gy, F\,[[G1, F), F], [[G1, F],G1] ... (2.36)

span all of R™ then the generator £ given by (2.2) along with £*, £ + 0, L* £ 0
are all hypoelliptic as in (2.1I). See [15] and more recently the treatment in [28§].

3. Non-Explosivity and Uniqueness Results

In this section, we now return to the specific setting (1)) and establish, subject to
a non-degeneracy condition on the noise, the hypoellipticity and irreducibility of
(L1). Specifically, we establish that (1) satisfies Definition [2.2] via Theorem [2.2]
when 1 > 0 and at least one of s, 73 is strictly positive.

Let {X:}:i>0 denote the process (4, yt, z¢) solving (L)), and we will reuse the
notations 7,7, L, Py, etc. from Sec. 2 for {X;};>0. In particular, note that (L.I])
has infinitesimal generator

L=o(y—x)ds+[x(p — 2) — Y0y + [xy — B2]0. + 1107 + 120, + 7302, (3.1)
We now formulate the first result of this section.

Proposition 3.1. For any values o,p,3 € R and any v1,7v2,72 > 0 the process
{X1}i>0 defined by (L) is non-explosive in the sense of [2.4). Moreover, if o > 0
and either v1,v2 > 0 or 1,73 > 0, then (1) 4s a nice diffusion in the sense of
Definition 2.2l Hence, in particular, the hypotheses of Proposition[2.2] are satisfied

for (LI)) if v1,7v2 > 0 or 1,73 > 0.

Proof. We first prove that {X;};>¢ is non-explosive with the aid of Proposition 2.1l
Defining H as in ([L.4]) we find that (L.5) holds. Thus, taking V' = H we obtain (2.1
from (LE) with Young’s inequality, and the first assertion follows.

To prove that {X;};>0 is a nice diffusion we proceed via Theorem[2.2] Adopting
the geometric notations as in (2.27), we have

F=o0(y—2)0; + [x(p—2) —ylOy + [xy — BZz]0s,

G1=/2710:, G2 =+/2720,, G3=1/2v30,.

Our task is now to exhibit a sequence of allowable Lie brackets between these fields
to obtain the spanning condition (2.35).

Start with the case v1,72 > 0 and by viewing G as the vector (v/271,0,0)7,
we have F(AG) = (—\ov/271, A\pv/271,0)7, and therefore, cf. (2.30), n(G1, F) = 1.
Hence, by (2.33)), we find that

G = ad'G,(F)
= [G1,F| = —\/27100; + /27 (p — 2)0y + /27190, € Q?. (3.2)
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Next, from n(Gz2,G}) =1 and ([2.34)) it follows
G = ad'G2(G}) = [G2,G!] = /271720. € G2. (3.3)

Thus, we have found Gy,Gs,G3 € Uj21 QJO which together span R?® and hence
satisfy (2.38), completing the proof in the first case.

Next, assume 1,3 > 0. As above again n(Gy, F) = 1 and (3.2)) holds true. On
the other hand, n(Gs, G}) = 1 and we compute

G == ad'G5(G) = [G3,G!] = —/2m130, € G5 (3.4)
Here, we found the spanning set G, G2, Gs € Uj21 QJO satisfying (2.35) as required
by Theorem 2.2l The proof is now complete. |

4. Positive Recurrence in the Absence of Damping

In this section, we study the dynamics (LI]) in the case when § = 0 and v; > 0.
Our goal is to show that (LL1)) has globally finite expected returns to some compact
set by constructing a Lyapunov function V satisfying the condition (2.8)) in Propo-
sition 2.I[(b). In turn, this result immediately implies the existence part of Theorem
[L.Iii) as well as the uniqueness in the case when either v1,v2 > 0 or 41,3 > 0 by
way of Proposition 3.1

We state the main result of this section precisely as follows:

Proposition 4.1. Consider (1) in the case when o >0, 3 =0, p € R, 1 >0
and 72,73 > 0. Then, there exists an R > 0 such that for any S >0

sup Exér < oo, (4.1)
|x|<s

where g is return time to the ball of radius R as defined in (2.13). Furthermore,
when we make the additional assumption that either v2 > 0 or v3 > 0 then (LI
has a unique invariant probability measure.

Regarding the organization of the section, Secs. [L.IHA.3| contain the derivation
of a Lyapunov function V : R? — R leading to (4.I) and the quantitative estimates
implying (2.8)). The rigorous proof of Proposition [4.1]is given in Sec. [4.4]

4.1. Derivation of the Lyapunov function

In order to simplify our analysis slightly, we begin with the preliminary observation
that it is sufficient to address special case when p = 0 in (L1]); namely,

dx = o(y — x)dt + \/271d B,
dy = —xzdt —ydt + /272 dBs, (4.2)
dz = xy dt + /273 dBs3.

Indeed, in the rest of this section, we proceed to construct a function V €
C?(R3; [0, 00)) such that for some constants ¢, d > 0 and some compact set K C R3
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we have
MV < —c+dly, (4.3)
where M is the infinitesimal generator of (4.2)) given by
M=oy — )0, — (22 +y)dy + 2y, + 1102 + 7233 + 302
Having found such a V', we obtain by way of Proposition 2.Ib) that

Exéx < w, where & = inf{t > 0: X, € K}
c

and X; = (%, 1, %) obeys [@2). Clearly X; = (Z,7:, % + p) satisfies (LI) in the
general case for any p € R. Thus, if for any R > p we denote

Ep:=inf{t>0:|X;| <R}, E&r:=inf{t>0:|X,]<R-p},
then we have £p < éR. Thus, by choosing R > 0 sufficiently large so that  C Br—,
we obtain that (g < &g < &k, so that

Extr <Exg < @ (4.4)

allowing us to conclude (4.1) as desired in Proposition [4.1]
In order to find V satisfying ({.3)), we first use the natural Lyapunov function
for (4.2)) when 3 > 0. Indeed, defining
ﬁ(w,y,z) =22+ 9% + 2% — 202 + Ko,
where kg > 0 is large enough so that H > 0. Observe that H provides a good initial
guess for V since

M(ﬁ) = —202% — 2y% + 2(71 + Y2 + 73), (4.5)

and therefore we have the desired inequality (43]) on the set where |(x,y)| =
v/ 2?2 + y? is large. More specifically, for the region

Ro = {2° +y* > Ro}
with a sufficiently large Ry > 1 depending only on 71 + 2 + 3 > 0, we have
M(H) < =(y1+72+73) inRo. (4.6)

However, ([4.6) does not imply the bound (43)) if |(x,y)| is small (and |z| is large).
To fix this issue, we seek for a lower-order perturbation ¢ of H encapsulating
averaging effects of the dynamics. More specifically, we start with H and find a
function 1 € C?(R3;R) satisfying
P(X)

lim sup —= =0, (4.7)

so that V := H + 1 satisfies V > 0 and (@.3)) for some ¢,d > 0 and the compact set
K :={2"+y* < Ro, |z| < Rs} (4.8)

for suitable choices of Ry, R3 > 1.
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Note that, with this strategy, because H satisfies (@5) on Ry, we should nat-
urally set ¢ = 0 on Rg. On the other hand, when 22 + y? < Ry and |2] is large,
we should seek a nontrivial perturbation ¥ through a scaling analysis to identify
dominant terms in M.

4.2. Scaling arguments and definition of ¥

To see how to define ¥ on the complement of Ry, it is helpful to first heuristically
analyze the dynamics when |z| is large and = and y are bounded. To this end,
consider the scaling transformation

TA<$7ya Z) = (A_axvya )‘Z)a

where A > 1 is large and « € [0, 1]. We apply T to the generator M to formally
see how the dynamics behaves as z gets large. Observe that

TyoM = a(y\* — )0, — (AN 2z +9)d, + A1 %2y, + 11 A\**0?
+ 720, + A ?307
~ Al_“xzay + 'yl/\zaag, (4.9)

whenever A > 1 and a > 0.

Observe that there are two regimes depending on «. If @ € [0,1/3), the most
significant term in (49) is A'~“z20,. Hence, the dominant dynamics of (£2) is
given by

X=0, Y=-XZ, Z=0
and we expect such an approximation to be valid in the region
R1 = {2® + y* < Ro, |z2|"/® > Ry, |2| > Rs}, (4.10)

where Ry, R1, R3 > 1 are large constants to be determined below. This suggests
that we search for a function ¢ = 1; such that the infinitesimal generator of (4.10)
applied to 11 is negative

*xzagﬂﬁl = —ki,
where k1 > 2(y1 +72+3) is a constant. Note that this equation gives the following

particular solution:

Y1 = “li-
xz
In addition, on the set Ry and positivity condition (A7) holds and (M is the

generator of (4.2))

M oly—=x 2
(%L}(%)y4fg7%+%24”%%
K1 xrez zZr z Xz xrz
RS
< -14+0=2, (4.11)
Ry
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where we used that on R one has |z|% > g—; and R; > 1 for each ¢ = 0,1, 3. Note
that the constant C' = C(o,v1,73) > 0 is independent of Ry, Ry, R3, and ;. Thus,
for sufficiently large R; depending on Rj, we obtain

1
M(wl) S *5111 iIl Rl.

Consequently, for any fixed Ry > 1, we can choose a suitably large k1 > 1V (4(y1 +
Y2 4+ 7v3)) and Ry > 1 so that

M(H + ) < 7% on the region R;. (4.12)

Next, assume o € (1/3,00) and observe that the dominant term in (49)) is
1122292, See Remark [L.1] which discusses the boundary case o = 1/3, where the
two terms in (4.9) balance. Therefore, the main contribution of the dynamics of

(LI) in the region
Ry = {2° +y* < Ry, |z[|2|"/® < Ry, |2| > Rs},
is given by the SDE
dX = \/211dB;, Y =0, Z=0. (4.13)

In the definition of R, the constants Re and R3 are considered sufficiently large,
possibly depending on Ry.4 Thus, as above, in R, we should look for 1) = 15 such
that

11029 = —ka,

where again ko > 1V (4(71 + 72 + 73) is a large free parameter we can adjust as
needed later. Note that a particular solution of this partial differential equation is

- ) 4R% 2
o = s <|z|2/3 22 ).

The solution is chosen such that it satisfies

2
[1ha] < C’ﬁ—zR/; whenever |z]|z]'/? < 2R;. (4.14)
z

As in the previous case, one can easily check (L.7)); that is, ¥ is dominated by
H for large values of (z,y, z) € Ro. Moreover, ¢ satisfies, for z # 0

B Koo 4R3ko wysgn(z)  10koR2 73 1
M(1p2) = —ko - z(y — ) ER e 9 o AP

Also, in Rq, using that |z| < Ry/|z|'/? and R; > 1 for i = 1,2, 3, we have

1/2
I<62_U x(y _ {B)l S 2:%20 R1R2/ < 2:%20 R%RQ

" w RS T R

dNote that the additional parameter Ro can be simply taken as Rg in our preliminary analysis.
However, it will play an important role later when we need to glue our Lypunov function V'
together to obtain a C2 function.
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Since the other terms (except —kg) have |z] to some power in the denominator,
they are straightforward to estimate. Overall, it follows

M(th2) < —2 (1 - CR?Rz), (4.15)

R
where the constant C = C(o,7v1,73) is independent of Ry, Rs, R3, and k2. Hence,
given Ry, Ry > 1, we choose large Rg > 1 and ko > 1V (4(71 + 72 +73)) so that
M(H + 1) < —% in Rs. (4.16)
Let us now make the preliminary definition
V= H+ 1z, + 1z, (4.17)

and notice that the complement of compact region K = {x2 +9y2 < Rp,z < Rg},
as in (48] satisfies

K:C CRoURI URs

provided Ry > Ry. Thus, setting aside the issue of differentiability of V', we can
choose values for Ry, R1, Ra, Rs > 1 with Ry > R; and values for k1, ko > 4(11 +
~v2 + ¥3) such that a combination of (4.6), (£12) and (£.16]) leads to (4.3).

The following section addresses the smoothness issue for V' defined as (4.17)
by replacing indicator functions with smooth cutoff functions. We also provide the
estimates for the additional terms produced when the operator M acts on these
smooth cutoffs.

Remark 4.1. One may be concerned that, when defining 1; and ¥s we neglected
the effective dynamics of (1)) in the critical region v = 1/3. This is not a problem
because the function 1, is independent of y, and therefore it solves the associated
PDE with both dominant terms

—120yY2 + ’7135102 = —HKa.

4.3. Gluing

In order to replace the indicator functions in (AI7) with smooth cutoff functions
we adopt the following definitions. Let x and x be non-negative C°°(R) functions

such that
1 if|z] <1, 1 if |z > 1,
= and x(z) =
0 if |z| > 2, 0 if |z] <1/2.

We now define®

o) = (T ) ¢ (BE) ¢ () = it ) g

¢Observe that, for example, ég(z) indicates that we are cutting off the region in z (argument of
the function) below the parameter value R3 (tilde and superscript).
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and put

onton2) = x (T ) (HE ) ¢ () = et o). a9

We now define
V= H + 0191 + 0215
=224 y2 + 22 920+ Ko + Klel(mvyaz)xy_z

+ koba(x,y z)L <R—% — :B2) (4.20)

2o \ s . )
Of course this definition requires the specification of the parameters
Ry, R1,Ra, R3 > 1 and ko, k1, k2 > 0, which will be clarified as we proceed with

the argument.

4.4. Rigorous bounds on V

We are now ready to use V defined in ([€.20)) to prove the main result of this section.

Proof of Proposition 4.1l As we identified in the argumentation leading to (4.4))

above, it is sufficient to show that the V defined by (4.20) satisfies (43]) and is

strictly positive for suitable values of Ry, R1, R2, R3 and kg, K1, k2. We emphasize

that for the remainder of the proof, any constant C' > 0 is independent of the values

of the parameters Ry, Ry, R, R3 and kg, k1, k2 unless explicitly stated otherwise.
Regarding the condition (4.3)), we begin by observing that

M(V) = M(H) + 0 M(¥1) + 02 M (12)
+PIM(01) + 2V, 01 - Vbt + 0o M(02) + 2V 05 - Vaha,  (4.21)

where we adopt the shorthand notation V., = (\/710%, /720y, /730-). We proceed
to expand each of the terms in (4.21]), where derivatives fall on the cutoff functions
01 and 6. For later use we note the estimate

2 00
|0:07| < Clpry<ary2<2ry

where s stands for z or y and i € {1,2}. Indeed, for example

1 2
|3§9?| S C (R— + %) ]]'R0S$2+y2§2R0 S C]]'ROSI2+ZJ2S2RO (422)
0 0
and other estimates follow analogously. In addition, we have
. 1/3 ~ |z|2/3 - ||
0,01 < C’ﬁ %0l < C .01 < O —Fi—
! 1|_ Ry ) | 11|— R% ) | 1|— |z|2/3R17
Cla| Cla|?

~ ~ C ~ C
251 3 273
|6201| < |2[5/3Ry ' |z|*/3R2’ |8Z9 |§ RBH\Z\ZRB./% |629 |§ R§]1|2|2R3/2

(4.23)
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for a constant C' depending only and on the specifics of the cutoffs x and y inde-
pendent of Ry, Ry, and R3. Similarly

|0365| < Clpy<ariy2<om,,
where s stands for z or y and ¢ € {1,2} and

|Z|2/3

2
Rl

||
|z|2/3Ry’

1/3
|00 < 0%, 0263 < ©
1
2p1 || ||
220 < (g * onrs )

where again C' > 0 is independent of R;, Re, and Rs. Observe that 63 is the same
in both #; and 3. Denote Kp, a constant that might depend on Ry, Ri, and Rs
such that

|0.63] < C

lim Kg, =0. (4.24)

R3—o00
We expand 11 M(61) as
DLM(01) = oy — x)n (9:00010° + 070,016%) — (w2 + y)110,67016°
+ zyy (090.016° + 07010.6°)
+ 191 (0269010° + 0992010 + 20,6000,010%) + 72010267016
+ 311 (09026016° + 6901926° + 2600.010.6°). (4.25)
Since on the region {z? + y* < 2Ry, |z||2|'/® > R1/2,|z| > Rs/2} one has

1 1
r] = 1 |L| < 4ka R Ri— (4.26)
Tz |z| 3
and x,y are bounded, it is easy to check that all terms except le/)lay@?é}é:f and
Y111090201603 can be bounded by k1 Kg, (some power of z is left in the denomina-
tor). Referring back to (4.22)), (4.4), and (4.26), we have for Ry > Ry

|$z1/)18y9(1)5%6~?3| = m1|y8y9(1)§%6~?3|
< CK11R0§x2+y2§2R0 < Clil]lRO

1 2
IilRO 1 |Z|3 <Cl’€1i

0°02010°| < C
hll/’l 1921 |— R, |Z|% R% > R,

where the constant C' is independent of Ry, Ry, Ra, R3 and kg, k1, ke. Overall, we
have

1
|1/)1M(91)| S Cﬂl <]].R0 + R_ + KR3>, (427)
1

where we recall that Kp, is as in (4.24]).
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Next, we estimate

V.01 - Vo | < Criy ( ] FEELEL ,09010° + 600,016°| +

7] |{a 60610° |

o |||y||2 1090.010° + 09610 93|)

< Cry (RB; +|0.09010° + 090,016°| + —— |a 09616°|
1 1

+ R —[090.616° + 69010.6° |
Ry|2|3
1
Rg
< Cky Y + KR3 . (428)
Rl

We next estimate the cutoff terms corresponding to 1. Similar to (4.23]), we
can write ¥ M(62) as

Y2 M(02) = oy — 2)42 (0:63650° + 030,6,6°) — (w2 +y)120,636,6°
+ zyy1 (030.030° + 03050.0%) + 7210202630367
+ 7102 (0203030° + 0302030° + 20,630,036°)
+ 7312 (03020,0° + 630,026° + 26,0.6,0.6°). (4.29)

Due to the presence of 3 and/or its derivatives, each term in (£29) is supported
on the set {|I||Z|% < 2Ry}, and therefore the estimate ([14) applies. Similar to
the above, the only terms that cannot be estimated by Kp, are 22120,05030° and
111203020363, and for those we have

|z]|2| RE]y| R}

————— < Ckso
2/3 - 1/2
2|23 Ry Ry

|221020,03036° | < Ciis

and, by definition of 61,
71920307050°| < Cra0 1242 copy iy <jalj=1/3<2R,
S CK203]112+y2§R0,R1S‘1"2‘1/3§2R1 + CK/Q]].RO
< Croby + CKJQ]IRO.

Hence, we have

RS
|’L/)2M(02)| < Cko <R1/2 + 601 + ]]-Ro + KR3> (430)
2

where Kp, is as in (4.24]).
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After expanding V.60, - V12, the only terms that cannot be bounded by Kpg,
are v10;120,030305 and ~10,12030,0505. However, if Ry > Ry
22
|71021020,03030°| < 052 11122<x2+y2<2R2 < Ckalpg,<q21y2<2r, < Chalg,

and on Rs
|710:12030,036%| < CripEL 025/ (|o]|2]V/3 Ry )63 < Crallg, + Chinfy.
Overall,
|VV02 . VV’L/J2| < Cliz(]lno + 601 + KR;:,)- (431)

Let us now gather the estimates (4.5, (411)), (4.15), (4.217), (4.28), (4.30), and
(4.31) to obtain for Ry > Ry

3 2
M(V) S —20’.%'2 - 2y2 +’7 - :‘<6101 (1 — CRRO) — :‘<6202 (1 — %>

1 R;/g

1 R R}
+C(KJ1 +I€2)]].R0 +CI’€1 (R_l R4> +Cl€2Ré/2

+ C/@&l + KRg(K/l + Iig),

where 7 := 2(y1 + 72 +73). Let us fix ko = 167, £1 such that %t > max{47, Cra}
and Ry > 1 such that

(2027 +2y?) > 45 + C(k1 + k2) in Ry.
Then, choose Ry such that

1

1 R?
C 0| <
K1 <R1+R‘f)_

and Ry > Ry such that

C R3
Ry

w2
N | —

and <

R}
Cra iz <
2

w2l

Finally, choose R3 such that

Kp, (k1 + K2) <

w2l

With these parameter selections and referring back to (A18) and (AI19), we
therefore have

M(V) < —4ylg, + 27— Flr, — Zlr, < =257 +45(1 — 1r,UR,UR,)-

Since Ry < Rs, one has {CE +9y? < Ro, |2 > R3} C R1 URg, and therefore (1 —
1r,uR,UR,) = Lic, where K C {:102 +132 < Ry, |2| < R3} is bounded. Consequently,
(4.3) follows with ¢ = 2% and d = 47.
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Finally, let us address the non-negativity of V. Notice that our selection of the
parameters Ry, R1, Ro, Rs and of k1, ko was made independent of the value k¢ (see
(4.20))). Notice however that, by (£.26]) we have

1/2
R
|91¢1| < 051;2/3-
R\ R;

Similar to (4.14) we observe that
R2
0212 < Cra—;

RY*
Thus having fixed Ro, R1, Ra, Rs, k1, k2 and referring back to (4.20) we have
R}/ R2
V2x2+y2+z270270m 12/36'/12 2}3+110
RiR; R;
making clear that xo can be selected so that V is positive for every (z,y, z) € R®.
The proof is now complete. O

5. Sensitivity with Respect to Convective Forcing

This section addresses some special cases of degenerate stochastic forcing when
B = 0 in (L1). First, we establish Theorem [L.I[ii) by using the test function M

given in ([L.6).
5.1. Non-existence under highly degenerate noise

Before proceeding to the rigorous proof of Theorem [L[ii), we present a formal
argument. Suppose that there exists an invariant probability measure p for (L))
with 0 =~ = 0. Let us proceed with the unjustified assumption that

/RB |X|?u(dX) < oo. (5.1)

Applying Ito’s formula to the function M(x,y,z) := 20z — 22, with the process
(24, Yt, z¢) initially distributed according to such an invariant measure u, we obtain

t
E,[202 — 27] = E,[2020 — 23] + Eu/ 202y — 2x0(y — x)]ds.
0

Thus, stationarity and simple algebraic manipulations, cf. (LL7)), imply that

t
E. / 22ds =0,
0
so that x; = 0 for every t > 0.
Now, we address two cases. First, we suppose that that 3 > 0. In this situation
we apply Itd’s lemma to 22 and use that z; = 0 to find dz? = 2ysdt + 2v/2732dBs.
Integrating and taking expectations we obtain

Euzf = Euzg + 273,

which contradicts stationarity if v3 > 0.
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Now, let us consider the second case when 3 = 0 but 2 > 0. In this situa-
tion, the stationary process X := (xy,y;) started with initial conditions distributed
according to the first two components of the invariant probability measure p which
satisfies the first two components of (LI maintains

dr =oydt, x9=0, dy= —ydt+ \/272dBs.
Here, once again, using that x; = 0, we obtain
dx
= — = 07
dt
and therefore y = 0, a contradiction to - # 0.

To make the above arguments rigorous and avoid the assumption (5.1), we use
cutoff functions and carefully pass to a limit. We now provide the details.

oy

Proof of Theorem [L.I|(ii). Let % : [0,2] — R be a non-decreasing C? function
such that

h(0) = R"(0) = K(2) = h"(2) =0, h'(0)=1, h(2)=1

and maxpg o) |h'| < 1. Denote ¢* = max| ) |”|. It is easy to see that such a function
indeed exists. For each N > 1, define a C? function Fy : R — R as an odd function
with

x x € [0, N],
Fn(z)={ h(z—N)+N =z €[N,N+2], (5.2)
N+1 x> N+ 2.

Note that Fy > 0, maxjg o) [F| < 1, and max g |[Fy| = ¢*.

To obtain a contradiction, assume that there is an invariant probability measure
wof (L) and let (z,y, z) have law p. Since pu is a probability measure, there exists
an increasing sequence of integers (N;)52; with N;j 11 — N; > 2 such that

lim P(|20z — 2®| € [N;, N; +2]) = 0. (5.3)
j—o0
If we apply It6’s formula to Fy (202 — 22), we obtain
E.Fn (202,5 — xf) =E,Fn (2020 — :Cg)
t
+E, / (Fy (202 — 2°)(202y — 220(y — )
0

+ F (202 — 2°)40%v3)ds.
Simple algebraic manipulations and stationarity yield
E.2’Fy (202 — 7) = —2073E, Fi (202 — 7). (5.4)

Next, we verify that FJ'VJ_+1 > FJ'VJ_ for any j. Indeed, for |{| < N; one has 1 =
F},(§) = Ff,,, (&) and for [¢] > Nj + 2 one has Fi (£) = 0 < Fi. (€). Finally,
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since Nji1 > Nj + 2, for any [¢] € [N;, N; 4 2], we have F}y () < 1= Fy (£
Thus, (F J'VJ) is an non-decreasing sequence of non-negative functions that converge
pointwise to 1 on R. Therefore, by the monotone convergence theorem and (5.4)),
we have

Ez? = lim Ex2Fj’vj(2crz —2%) = —2073 ]li)nolo IEFJ’\’,J (202 — 2?). (5.5)

j—o00
Finally, from |F};| < ¢*, F}; = 0 on the complement of [N, N + 2], and (5.3) follows
lim EFy (202 — 2?) < ¢* lim P(20z — 2° € [N;, N; +2]) = 0. (5.6)

j—oo j—oo
Combining (5.5) and (5.6) yields Exz? = 0. However, if Ez? = 0, then, x = 0 almost
surely.

Now by the third equation of the Lorenz system, we have z(t) = z(0) +
V273 Bs(t). This relation contradicts invariance in the case when 3 > 0. On the
other hand, if v = v3 = 0 and 2 > 0, then fot y(s)ds = 0 almost surely for all
t > 0 since x = 0 almost surely and dr = oydt. However, it then follows that
y(t) = y(0) + /272 B2(t), a contradiction since v2 > 0. |

5.2. Uniqueness when the noise component acts only on the
convection component of the system

We next turn to the case when 77 > 0 but 8 = v5 = 3 = 0. In this special case of
Theorem [L.1[i), we can moreover give an explicit form for the invariant probability
measure.

Proposition 5.1. Consider (1) with o >0 and p € R. If 1 > 0, 72 = 3 = 0,
and B = 0, then (A2) has precisely one statistically invariant state given by the
product measure

W=V Jo X 00 X 0p, (5.7)

where d, is the Dirac measure concentrated at a and vy, s is the 1-d Gaussian
measure with mean m and variance s.

Once again, before proceeding to a rigorous proof, we present a formal argument.
Suppose that in this parameter range there exists an invariant probability measure
w of (L1) and impose the a priori unjustified condition (5.1)). Let (z,y, z) be the
solution starting with initial condition distributed as u. Observe that

1d

s+ =) =alp— 2y -y’ +ay(z - p) = —y*.
Integrating this expression in time, taking expected values and using stationarity
one finds that E,, fot y?ds = 0 so that y; = 0 for every ¢t > 0 by path continuity.
Then, as a consequence of this calculation, we infer that %z = 0 so that z; = 29

for every ¢ > 0. Thus, with stationarity, the equation for X; = (,y;) reduces to

dx = —oxdt + \/2v1dB1, dy = (20 — p)zdt, yo=0.
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Stationarity implies that for every ¢, T

T
(20 — p)E/t xds = Ey(T) — Ey(t) = 0.

Since z is almost surely continuous, either zg = p or x = 0. The latter case leads
to a immediate contradiction, whereas the former one implies that (5.1) is the only
invariant state of (L.IJ).

Proof of Proposition 5.1l By Theorem [.1]i), there exists an invariant probabil-
ity measure p, and let (z,y, z) be a random initial condition distributed according
to . For each N > 1, let Fy be as in (5.2). Similar to the above, fix an increasing
sequence (N;)22, such that Nj 1 > Nj. Then, applying 1t6’s formula to Fiy (y*+2?)
and taking expected values gives

t
EFN (y; + 27) = EFn (yg + 25) + E/ Fl(y? + 22)(=2y(xz + y) + 2zay)ds.
0

Since the process is stationary, we have
EFy (y* + 2%)y? = 0.

As in the proof of Theorem [Lii), by using that (Fjy ) is an increasing sequence
converging pointwise to 1, the monotone convergence theorem implies

Ey? = 0.

However, if y = 0 almost surely, then 2z’ = 0, and therefore z; = 2, and x is an
invariant state of

dx = —oxdt + \/2v1dB1,

as desired. O

6. Non-Existence of Stationary States in the Presence
of a Linear Instability

In this section, we prove Theorem [[.I[iii) by constructing functions V; satisfying
the hypotheses of Theorem [2.1] In the expressions that follow, we assume that all
constants depend implicitly on o, 3,71, 72, and 73. Any other dependence will be
indicated explicitly.

6.1. Construction overview

Before proceeding to the proof, let us overview the construction of V; and V5 needed
to apply Theorem 2.1} We remark that the function V; identifies bad initial con-
ditions from which the dynamics takes too long to return near the origin. Because
8 < 0, we note that the z process in Eq. (1)) grows exponentially fast when it is
initially large and when the product zy is not too large. In fact, if one considers
the test function

M(z,y,2) = 20z — 22,
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then we note that
LM (z,y,2) = 20(|8|z + %) — 27.

Hence, if 2% is dominated by z, then the system (LI} grows exponentially fast on
average. However, we have to be careful because the noise can drive the dynamics
out of the region {z? < |3|z}. To see that such scenario does not occur with high
enough probability, we have to modify M and choose appropriate V5.

Let us first discuss possible candidates for V5. It is easy to check that LH is
neither bounded from above nor from below, and therefore it is not a suitable choice
for V2. However, we will see that £(In H) is bounded outside of a compact set, and
as such we use an appropriate multiple of In H for the function V5. To satisfy the
assumption (p3) in Theorem [2.1] it is necessary that V4 has smaller than logarithmic
increase at infinity. Given the analysis above, a natural choice would be F o M, with
slowly growing F'. However, unlike H, M does not have a definite sign, and therefore
to define V3 = F o M one has to define F' on the whole real line. We will verify below
that F(¢) = Inln ¢ indeed produces L(F o M (z,y,z)) > 0 for large M (z,y, z), but
F is not even defined for M (z,y, z) < 0. In addition, the function ¢ — F(|¢ + C|)
still does not satisfy the desired inequality. Therefore, we define F' to be the double
logarithm for large positive values of ¢ and F = 0 on (—o00,0). The final challenge
is to connect these two regions as a smooth function that satisfies L(F o M) > 0.

6.2. The construction

Based on the heuristics for the construction of V4 and V5, we now provide a rigorous
proof.

Proof of Theorem [L.1{(iii). We define Vi, V5 : R?* — R satisfying the hypotheses
of Theorem [2.1]

Step 1. Fix R > 1 such that H(z,y, z) > 1for any |(z,y, 2)| > R. Let Wa € C%(R?)
satisfy

Wa(z,y,2) =InH(x,y,z) for|(z,y,2)] > R.
Then, W5 > 0 outside of a compact set. Moreover, standard calculations yield

_ 21|z — 2y? — 202” — 2|B|(0 + p)z + 2(71 + 72 +73)
H(z,y,z2)

£W2($7y» Z)

A + Y2y + (2 — (p+0))%73)
H2(2,y, 2)

Consequently, there exists a constant K > 0 such that
LWy (x,y,2) < K for all (z,y,2) € R®.
We thus define V5 = W, /K.
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Step 2. Define constants
271 + 2
18l

A= m:max{271,202'yg},

and let

J(Q) == (1~ cos ()2,
One can check that f(0) = f/(0) = f”(0) = 0 and f is (strictly) increasing on (0, 7),
convex on (0, 2) and concave on (27, 7). In particular, f'(37) > 0 = f"(27). By
continuity, fix B > %ﬂ' close to %w such that [/ > —mf” on (%ﬂ', B).
Next, for constants cg, c1, co to be determined in a moment, define

0 ¢<0,
U(()=q (- COSC)2 =f(() <¢€l0,B],
colnln(C+c¢1)+c2 (> B.

We now claim that cg, c1, ¢z can be chosen such that ¥ is C? function. Because ¥
is C? function at 0, we have left to show that we can find cg, ¢, ¢ such that

colnln(B +¢1) +c2 = f(B) > 0,
Co

(B+c1)In(B+¢1)

B col+Wm(B+ec))  ,,
[(B+c1)ln(B+c¢)]2 f"(B) <0.

Substituting the second equation into the third one, we obtain

l+In(B+ec) _ f'(B)
(B+c)In(B+4¢1)  f'(B)

= f'(B) >0,

> 0. (6.1)

However, the function

1+Inz
s

z
zlnz

is positive and decreasing on (1, 00) with a vertical asymptote at z = 1 and decaying
at infinity. Thus, there exists (unique) ¢; such that B+¢; > 1 and (6.1)) holds true.
Then, for already fixed ¢; we set

co=f'(B)(B+c1)In(B+¢1) >0
and
ca = f(B) —colnln(B + ¢1).

It now follows that ¥ is C2 with this choice of constants cg, c1, .
Finally, fix A € (0,1) such that

(1+1In(B+c1))
L A e (B + 1)
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and define V; by
Vi(z,y,2) = Y (\ (202 — 2% — A))
and note that V; is C? function and
LV) = (20]|8|z + 22 — 271) AV + (4a?y; + 4o2vy3) A2 0", (6.2)

where, for clarity of presentation, we omitted the argument (z,y,z) of V3, and
C:=A20z — 22 — A) of 0.

Step 3. We claim that
LV, > 0. (6.3)

First, if ¢ <0, then ¥/ = ¥” = 0 and (6.3]) follows. For the case when ¢ > 0, note

that since A = 2"‘};'%, ¢ = \20z — 2% — A) > 0 implies

271 +2
[C/

202> 202 —x° > A=

and consequently 20|8|z — 21 > 2. Hence,
2008]z +22° — 271 > 2(z® + 1), 0< (42%y +40°y3) <2m(2z® +1). (6.4)

Hence, if ¢ > 0, the coefficients of ¥/, ¥ in (6.2) are non-negative. We split the
domain ¢ > 0 into three pieces and then finally conclude (6.3]).

If ¢ € [0, 27], then ¥'(¢), ¥”(¢) > 0, and the non-negativity of coefficients of
U 0" in (6.2) implies (6.3)).

If ¢ € (37, B), then ¥'(¢) > 0 and ¥”(¢) < 0. Thus, from (6.3) and (6.4) follows

1
Xcvl > (2U|ﬁ|z + 222 — 271)\11' + )\(4x2'yl + 40273)\11”
> 2(x? + )T + 2 m(2* + 1)T” > 0, (6.5)

where in the last inequality we used the definition of B and X € (0, 1].
Finally, if ¢ € [B,o0), then ¥(¢) = ¢oInln(¢ + ¢1) + c2. Since ¢ > 0, one
has W/(¢) > 0, ¥”(¢) < 0. Using (6.5) and the fact that the function z - 1z

zlnz

decreases, we obtain for any ( > B

1
X,CV1 > 2(2? + 1) + 2 m(z? + 1)v”

2co(z° + 1) IO (S2Y))

Z Cre)lniC +ar) (1 A (<+c1>1n<<+c1>)
2co(z? + 1) ~am (1+In(B+c1))

Z Cre)mC e (1 A <B+c1>ln<B+c1>) =0

where in the last estimate we used the definition of A\. Thus, LW; > 0 as desired.
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Step 4. Let us verify that the assumptions of Theorem 2.1] are satisfied with V3
and Va. First (p4) follows from the construction. To verify (pl), observe that
limsup Vi(z,y,2) > lim V1(0,0,2) = lim U (A (20z — A))

|(@,y,2)| =00 e

= lim ¢oInln(A(20z — A) + ¢1) + ¢3 = o0.

zZ—00

Also, lim(z.y,2)| o0 H (2, Y, 2) = 00 and (p2) is satisfied. Finally, (p3) follows from

lim sup SUWDpr.y.z|=r V1 (@y,2) < lim sup V1(0.0, R)
R—oo inf|m,y,z|:R ‘/2(177 Y, Z) " R—oo 1H(R2 - 2(0 + p)R)
< lim colnln(A20R — A) +¢1) + 2
R—o0 In(R? —2(c + p)R)

=0,

where we used that z — Vi (z,y, 2) is increasing for large z and (x,y) — Vi(x,y, 2)
is non-increasing. This finishes the proof. |
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