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Abstract
We establish the geometric ergodicity of the preconditioned HamiltonianMonte Carlo
(HMC) algorithm defined on an infinite-dimensional Hilbert space, as developed in
Beskos et al. (Stoch Process Appl 121(10):2201–2230, 2011). This algorithm can be
used as a basis to sample from certain classes of target measures which are absolutely
continuous with respect to a Gaussian measure. Our work addresses an open question
posed in Beskos et al. (2011), and provides an alternative to a recent proof based
on exact coupling techniques given in Bou-Rabee and Eberle (Two-scale coupling for
preconditioned HamiltonianMonte Carlo in infinite dimensions , 2019). The approach
here establishes convergence in a suitable Wasserstein distance by using the weak
Harris theorem together with a generalized coupling argument. We also show that a
law of large numbers and central limit theorem can be derived as a consequence of
our main convergence result. Moreover, our approach yields a novel proof of mixing
rates for the classical finite-dimensional HMC algorithm. As such, the methodology
we develop provides a flexible framework to tackle the rigorous convergence of other
Markov Chain Monte Carlo algorithms. Additionally, we show that the scope of our
result includes certain measures that arise in the Bayesian approach to inverse PDE
problems, cf. Stuart (Acta Numer 19:451–559, 2010). Particularly, we verify all of the
required assumptions for a certain class of inverse problems involving the recovery
of a divergence free vector field from a passive scalar, Borggaard et al. (SIAM/ASA
J Uncertain Quant 8(3):1036–1060, 2020).

Keywords Hamiltonian Monte Carlo (HMC) · Infinite dimensional Hamiltonian
systems · Markov Chain Monte Carlo (MCMC) · Statistical sampling · Bayesian
inversion · Advection-diffusion equations · Passive scalar transport

Mathematics Subject Classification 62C10 · 11K45 · 37K99

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40072-021-00211-z&domain=pdf
http://orcid.org/0000-0002-6880-2814


Stoch PDE: Anal Comp

1 Introduction

It has long been appreciated that Markov chains can be employed as an effective com-
putational tool to sample from probability measures. Starting from a desired ‘target’
probability distribution µ on a space H one seeks a Markov transition kernel P for
which µ is an invariant and which moreover maintains desirable mixing properties
with respect to this µ. In particular in Bayesian statistics [12,28,51,63,64,78] and
in computational chemistry [21,24–26,39,40,54,59,69,70] such Markov chain Monte
Carlo methods (MCMC) play a critical role by efficiently resolving high-dimensional
distributions possessing complex multimodal and correlation structures which typi-
cally arise. However, notwithstanding their broad use in a variety of applications, the
theoretical and practical understanding of the mixing rates of these chains remains
poorly understood.

The initial mathematical foundation of MCMC methods was set in the late 40’s
by Metropolis and Ulam in [67], and later improved with the development of the
Metropolis-Hastings algorithm in [50,66]. Further notable developments in the late
80’s and 90’s derived MCMC algorithms based on suitable Hamiltonian [29,71] and
Langevin dynamical systems [2,38]. See e.g. [8,57,76] for a further general overview
of the field. In view of exciting applications for the Bayesian approach to PDE inverse
problems and in transition path sampling [12,17,18,28,45–48,63,74,75,78], an impor-
tant recent advance in the MCMC literature [6,7,23,81] concerns the development
of algorithms which are well defined on infinite-dimensional spaces. These methods
have the scope to partially beat the ‘curse of dimensionality’ since one expects that the
number of samples required to effectively resolve the target distribution to be inde-
pendent of the degree of numerical discretization. However validating such claims of
efficacy concerning this recently discovered class of infinite dimensional algorithms
both in theory and in practice is an exciting and rapidly developing direction in current
research.

This work provides an analysis of mixing rates for one particular class of methods
among the MCMC algorithms mentioned above, known as Hybrid or Hamiltonian
Monte Carlo (HMC) sampling; cf. [6,29,57,72]. For HMC sampling the general idea
consists in taking advantage of a Hamiltonian dynamic taylored to the structure of
the target µ, a distribution which functions as the marginal onto position space of
the Gibbs measure associated to the dynamics. As such this ‘Hamiltonian approach’
produces nonlocal and nonsymmetric moves on the state space, allowing for more
effective sampling from distributions with complex correlation structures in compari-
son to more traditional random walk based methods. Indeed the efficacy of the HMC
approach has led to its widespread adoption in the statistics community as exemplified
for example by the success of the STAN software package [36,79]. However, notwith-
standing notable recent work, the theoretical understanding of optimal mixing rates
for HMC based methods remains rather incomplete both in terms of optimal tuning of
algorithmic parameters and in terms of the allowable structure of the target measure
admitted by the theory [3–5,13–16,18,32,58,60–62].

We are particularly focused here on a version of HMC introduced in [6] where
the authors consider a preconditioned Hamiltonian dynamics in order to derive a
sampler which is well defined in the infinite-dimensional Hilbert space setting. While
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recent work [3,12,18] has shown that this ‘infinite-dimensional’ algorithm can be
quite effective in practice, the question of rigorous justification of mixing rates posed
in [6] as an open problem has only very recently been addressed in the work [13]
in the case of exact (i.e. non-temporally-discretized) and preconditioned HMC. In
[13], the authors follow an approach based on an exact coupling method recently
considered in [14,34]. Here we develop an alternative approach to establishing mixing
rates for preconditioned HMC based on the so called weak Harris theorem [20,41,43,
44] combinedwith suitable ‘nudging’ in the velocity variablewhich plays an analogous
role to that provided by the classical Foias-Prodi estimate in the ergodic theory of
certain classes of nonlinear SPDEs; cf. [37,55,65]. As such we believe the alternative
approach that we consider here to be more flexible in certain ways providing a basis
for further future analysis of MCMC algorithms. Furthermore, our approach for the
exact dynamics developed here can be modified to derive mixing rates in the more
interesting and practical case for discretized HMC. This later challenge will be taken
up in future work.

Our main results can be summarized as follows. We show exponential mixing rates
for the exact preconditioned HMCwith respect to an appropriateWasserstein distance
in the space of probability measures on H. For suitable observables, we show that
this mixing implies a strong law of large numbers and a central limit theorem. In
addition, we use very similar arguments to obtain a novel proof of mixing rates for the
finite-dimensional HMC. Finally, the second part of the paper is concerned with the
application of the theoretical mixing result to the PDE inverse problem of determining
a background flow from partial observations of a passive scalar that is advected by
the flow. A careful analysis of this inverse problem within a Bayesian framework is
carried out in [12], where the authors also provide numerical simulations showing the
effectiveness of the infinite-dimensional HMC algorithm from [6] in approximating
the target distribution in this case. Here our task is to show that this example, for
suitable observations of the passive scalar, satisfies all the conditions needed for our
theoretical mixing result to hold, thus complementing the numerical experiments in
[12] with rigorous mixing rates. In the sequel we provide a more detailed summary of
the results obtained in the bulk of this manuscript.

1.1 Overview of themain results

The preconditioned Hamiltonian Monte Carlo algorithm from [6] which we analyze
here can be described as follows. Fix a separable Hilbert space H with norm | · | and
inner product 〈·, ·〉. Let B(H) denote the associated Borel σ -algebra and let Pr(H)

denote the set of Borel probability measures on H. Suppose we wish to consider a
target measure µ ∈ Pr(H) which is given in the Gibbsian form

µ(dq) ∝ exp(−U (q))µ0(dq), (1.1)

where U : H → R is a potential function. Here µ0 is a probability measure on H
typically corresponding to the prior distribution when we consider a µ derived as
a Bayesian posterior. Following a standard formulation in the infinite dimensional
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setting, we assume in what follows that µ0 is a centered Gaussian distribution on H,
i.e. µ0 = N (0, C), with C being a symmetric, strictly positive-definite, trace-class
linear operator on H.

Consider the following preconditioned Hamiltonian dynamics

dqt
dt

= vt ,
dvt
dt

= −qt − CDU (qt ), with initial condition (q0, v0) ∈ H × H,

(1.2)

where v ∈ H denotes a ‘velocity’ variable, so that (1.2) describes the evolution of the
‘position-velocity’ pair (q, v) in the extended phase space H×H. Here we adopt the
notation qt and vt to denote the value at time t of the variables q and v, respectively.
The associated Hamiltonian function, a formal invariant of the flow in (1.2), is given
by

H(q, v) = 〈C−1q,q〉 +U (q)+ 〈C−1v, v〉 for suitable (q, v) ∈ H × H.

The exact preconditioned HMC algorithm works as follows. Starting from any
q0 ∈ H, draw v0 ∼ N (0, C) and run the Hamiltonian dynamics with initial condition
(q0, v0) for a chosen temporal duration T > 0. Thus a forward step is proposed as the
projection on the q-coordinate of the solution of (1.2) starting from (q0, v0) at time
T , i.e. qT (q0, v0). The associated Markov transition kernel P : H × B(H) → [0, 1]
is then given as

P(q0, A) = P(qT (q0, v0) ∈ A) with v0 ∼ N (0, C), (1.3)

for every A ∈ B(H). We adopt the notation Pn for n steps of the Markov kernel P
and recall that P acts as

νP(·) =
∫

P(q, ·)ν(dq), PΦ(·) =
∫

Φ(q)P(·, dq)

on measures ν ∈ Pr(H) and observables Φ : H → R, respectively. This kernel
P leaves invariant the desired target probability measure µ given in (1.1), namely
µP = µ, as was demonstrated in [6] and recalled in 13 below. Clearly, in practice,
one is not able to integrate (1.2) exactly so that one must instead resort to suitable
numerical discretizations. These numerical integration schemes are designed so as
to ensure that fundamental properties of Hamiltonian dynamics are preserved, such
as time reversibility and volume-preservation or ‘symplectiness’ –see e.g. [16] for
a survey. In this work we only analyze the exact dynamics, as the discretized case
requires additional techniques and will be the subject of future work.

Let us now sketch a simplified version of our main result, given in rigorous and
complete detail in Theorem 26 below. Our mixing result for the Markov kernel P
defined in (1.3) is given with respect to a suitably constructed Wasserstein distance on
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Pr(H). Namely, starting from ε > 0 and η > 0, consider ρ̃ : H×H → R+ defined as

ρ̃(q, q̃) :=
√( |q − q̃|

ε
∧ 1
) (

1+ exp(η|q|2)+ exp(η|q̃|2)
)
. (1.4)

Here ε corresponds to the small scales at whichwe canmatch small perturbations in the
initial position q0 with a corresponding perturbation in the initial velocity v0 in (1.2).
On the other hand, for sufficiently small η > 0, the function V (q) = exp(η|q|2) is a
Foster–Lyapunov (or, simply, Lyapunov) function for P in the sense of Definition 19
and Proposition 20 below.

The mapping ρ̃ is a distance-like function in H, i.e. it is a symmetric and lower-
semicontinuous non-negative function such that ρ̃(q, q̃) = 0 holds if and only if
q = q̃. We denote by Wρ̃ : Pr(H) × Pr(H) → R+ ∪ {∞} the following extension of
ρ̃ to Pr(H):

Wρ̃(ν1, ν2) = inf
Γ ∈C(ν1,ν2)

∫

V×V
ρ̃(q, q̃)Γ (dq, dq̃), (1.5)

where C(ν1, ν2) denotes the set of all couplings of ν1 and ν2, i.e. the set of all measures
Γ ∈ Pr(H × H) with marginals ν1 and ν2. We notice that, on the other hand, the
mapping ρ(q, q̃) = (|q − q̃|/ε) ∧ 1 defines a standard metric in H. As such, its
associated extension Wρ to Pr(H) coincides with the usual Wasserstein-1 distance,
[83].

With the above notation, we have the following convergence result. For the com-
plete, detailed and general formulation, see Theorem 26 below.

Theorem 1 Suppose that C is a symmetric strictly positive-definite trace class operator
and that U ∈ C2(H) satisfies the global bound

L1 := sup
q∈H

|D2U (q)| < ∞ (1.6)

and the following dissipativity condition

|q|2 + 〈q,CDU (q)〉 ≥ L2|q|2 − L3 for all q ∈ H, (1.7)

for some constants L2 > 0 and L3 ≥ 0. Let λ1 denote the largest eigenvalue of C.
Then, there exists an integration time T = T (λ1, L1, L2) for which the associated

Markov kernel P as defined in (1.3) satisfies, with respect to ρ̃ defined in (1.4),

Wρ̃(ν1P
n, ν2Pn) ≤ c1e−c2nWρ̃(ν1, ν2) for any ν1, ν2 ∈ Pr(H) and n ∈ N, (1.8)

for some ε > 0 as in (1.4) and some positive constants c1, c2 which depend only on
the integration time T > 0, the constants Li , i = 1, 2, 3, associated to the potential
function U, and the covariance operator C. In particular, (1.8) implies that µ defined
in (1.1) is the unique invariant measure for P. Moreover, taking ν1 = δq0 , the Dirac
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delta concentrated at some q0 ∈ H, and ν2 = µ, it follows from (1.8) that Pn(q0, ·)
converges exponentially to µ with respect to Wρ̃ as n → ∞. In addition, for any
suitably regular observable Φ : H → R,

∣∣∣∣P
nΦ(q0) −

∫
Φ(q′)µ(dq ′)

∣∣∣∣ ≤ LΦc1e
−nc2

∫ √
1+ exp(η|q0|2)+ exp(η|q′|2)µ(dq′),

for all n ∈ N, for some η > 0 and LΦ > 0.
Further, taking {Qn(q0)}n∈N to be the process associated to {Pn}n∈N starting from

q0 ∈ H, i.e. Qn(q0) ∼ P(Qn−1(q0), ·) we have, for any q0 ∈ H and any suitably
regular observable Φ : H → R, that

Xn := 1
n

n∑

k=1

Φ(Qk(q0)) −
∫

Φ(q)µ(dq) → 0 as n → ∞ almost surely

and that

P(a <
√
nXn ≤ b) → 1√

2πσ 2

∫ b

a
e− x2

2σ2 dx as n → ∞ for any a, b ∈ R with a < b,

where σ = σ (Φ). In other words, {Qn(q0)}n≥0 satisfies a strong law of large numbers
(SLLN) and a central limit theorem (CLT).

With similar arguments as used in the proof of Theorem 1 (cf. Theorem 26), we
can also provide a new proof of mixing rates for the classical finite-dimensional HMC
algorithm, as specified by the dynamics (7.2). This is carried out in Theorem 28 below,
and complemented by further comparisons with the assumptions in the main infinite-
dimensional result in Remark 30.

Having formulated our mixing result for the exact HMC algorithm associated with
(1.1) we would like to be able to demonstrate that the conditions (1.6)–(1.7) which we
impose on the potential U can be verified in concrete examples specifically as would
apply to the Bayesian approach to PDE inverse problems. Here, as an illustrative
example, we consider the problem of recovering a divergence free fluid flow q from
the sparse and noisy observation of a passive solute θ(q) as was recently studied in
[11,12].

To be specific let

∂tθ + q · ∇θ = κ∆θ, θ(0) = θ0 (1.9)

where the solution evolves on the periodic box T2, namely θ : [0,∞)×T2 → R and
κ > 0 is a fixed diffusion parameter. Given a sufficiently regular initial condition θ0 :
T2 → R, which we take to be known in advance, we specify the (linear) observation
procedure, i.e.

O(θ) :=
{∫ ∞

0

∫

T2
θ(t, x)K j (t, x)dxdt

}m

j=1
(1.10)

123



Stoch PDE: Anal Comp

where m ≥ 1 represents the number of separate observations of θ and K j are the
associated ‘observation kernels’.

Here we notice that the general formulation (1.10) allows for a broad class of
examples corresponding to specific functions K j , as long as the integrals in (1.10)
are well-defined, which of course depends on the regularity of the solution θ of (1.9),
see Proposition 31 below. In particular, we may consider the case of pointwise in
time observations by taking K j (t, x) = δt j (t) f j (x), for any finite collections of
times {t j }mj=1 ⊂ [0,∞) and functions { f j }mj=1 ⊂ L2(T2). Here the f j ’s can be
taken e.g. as basis functions of the Hilbert space L2(T2) to account for spectral in
space observations, or as f j (x) = |A j |−111A j (x) for some bounded set A j ⊂ T2

to represent spatial observations given as local averages. Further, we could also take
K j (t, x) = δt j (t)δx j (x) for any finite set of spatial locations {x j }mj=1 ⊂ T2, thus
representing the case of observations which are pointwise both in space and time.
Clearly, other examples could be given by combining these different types of spatial
observations with other kinds of temporal observations, such as local time averages,
spectral etc. It is also notable that our theory below treats various linear observations
of derivatives of θ and moreover is easily modifiable to include certain nonlinear
observations of θ i.e. L p norms of θ etc., see Sect. 8 below.

Positing an additive observation noise η, we have the following statistical model
linking any suitably regular, divergence free, q : T2 → R2 with a resulting data set Y
as

Y = O(θ(q))+ η,

where θ(q) represents the solution of (1.10) corresponding to q so that θ(q) sits in an
appropriate solution spacewhichwe specify in rigorous detail below in Proposition 31.

Following the Bayesian statistical inversion formalism [28,51], given a fixed obser-
vation Y ∈ Rm and a prior distribution µ0 on a suitable Hilbert space of divergence
free, periodic vector fields and a probability density function pη : Rm → R for the
observation noise η, we obtain a posterior distribution

µY (dq) ∝ exp(−U (q))µ0(dq) where U (q) = − log(pη(Y − O(θ(q))).
(1.11)

see e.g. [28], [12, Appendix C]. For simplicity of presentation, we focus here on the
typical situation where η ∼ N (0,Γ ), with Γ a symmetric, strictly positive definite
covariance operator on Rm . In this case U takes the form

U (q) = |Γ −1/2(Y − O(θ(q)))|2, (1.12)

where | · | represents the usual Euclidean norm on Rm .
Our main results here, Proposition 34 and Corollary 35, show that when the obser-

vations satisfy an inequality of the form

|O(θ)| ≤ c0 sup
t≤t∗

∫

T2
|θ(t, x)|2dx, (1.13)
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for some t∗ ≥ 0, which in particular includes the examples of observations which
are pointwise in time and spectral in space or local averages in space, then we can
verify the conditions imposed on the potential functionU (cf. (1.6) andmore generally
Assumption 8 below) and in particular establish suitable global bounds on D2U . On
the other hand, when the observations satisfy instead an inequality such as

|O(θ)| ≤ c0 sup
t≤t∗,x∈T2

|θ(t, x)| (1.14)

for some t∗ ≥ 0, which includes in particular the example of space-time pointwise
observations, or for observations involving gradients or other higher order derivatives
of θ , we can only show local bounds on D2U .

Overview of the proof

Our proof follows the approach of the weak Harris theorem developed in [43], which
is an elegant generalization of the classical Harris mixing results, [42,49,68]. It estab-
lishes necessary conditions for two point contraction at small, intermediate and large
scales in a fashion well adapted to theWasserstein metric, a notion of distance which is
crucially needed for many types of processes evolving on infinite dimensional spaces.
We should emphasize the authors in [43] provide clarity andflexibility in their approach
by developing a class of distance-like functions (cf. (1.4))which allows one to establish
global contractivity directly and thus avoiding the need for intricate pathwise coupling
constructions considered elsewhere in the literature.

As such, the main difficulties here lie in showing that the necessary assumptions
of the weak Harris theorem are valid in our context. These assumptions amount to
showing, with respect to ρ : H × H → [0, 1] defined as ρ(q, q̃) = 1 ∧ (|q − q̃|/ε),
with ε > 0 fixed, that the following is true: there exists m ∈ N sufficiently large such
that

(i) Pm is ρ-contracting, i.e. there exists 0 < δ1 < 1 such that

Wρ(Pm(q0, ·), Pm(q̃0, ·)) ≤ δ1ρ(q, q̃) for all q0, q̃0 ∈ H with ρ(q0, q̃0) < 1;
(1.15)

(ii) For level sets of the form AK := {q ∈ H : |q| ≤ K }, for K > 0, AK is ρ-small
for Pm , i.e. there exists 0 < δ2 < 1 and m ≥ 1 such that

Wρ(Pm(q0, ·), Pm(q̃0, ·)) ≤ 1 − δ2 for all q0, q̃0 ∈ AK . (1.16)

Finally we need a Lyapunov condition:

(iii) For a suitable V : H → R+ that

PnV (q) ≤ CκnV (q)+ K , (1.17)

for every q ∈ H and n ≥ 1, where κ ∈ (0, 1) and C, K > 0 are independent of q
and n.
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Roughly speaking the conditions (i)–(iii) correspond to establishing a two-point con-
traction at small, intermediate and large scales respectively.

Following an approach developed in the stochastic PDE literature [20,37,41,43,55,
65], the idea consists in establishing (i) and (ii) above without explicitly constructing
a coupling between Pm(q0, ·) and Pm(q̃0, ·). Instead, we construct an ‘approximate’
coupling by defining a modified process P̃(q0, q̃0, ·) in a control-like approach. We
define the process P̃ by imposing a suitable ‘shift’ in the initial velocity v0 in (1.3)
depending on the initial positions q0, q̃0. Namely, for a fixed integration time T > 0,
we take

P̃(q0, q̃0, A) := P(qT (q̃0, ṽ0) ∈ A) with ṽ0 = v0 + S(q0, q̃0), v0 ∼ N (0, C),
(1.18)

for every A ∈ B(H). Here we consider a shift S(q0, q̃0)which is inspired by estimates
developed in [14]; S is defined so as to ensure a suitable contraction between two
solutions of (1.2) starting from (q0, v0) and (q̃0, ṽ0) at the final time T > 0.

Since ρ is a metric in H, the corresponding extensionWρ is a metric in Pr(H) and
in fact coincides with the Wasserstein-1 distance. Thus, by the triangle inequality,

Wρ(Pm(q0, ·), Pm(q̃0, ·))
≤ Wρ(Pm(q0, ·), P̃m(q0, q̃0, ·))+Wρ(P̃m(q0, q̃0, ·), Pm(q̃0, ·)), (1.19)

where P̃m denotes the m-fold iteration of P̃ , corresponding to a sequence (v(1)0 , . . . ,

v(m)
0 ) of initial velocities drawn from N (0, C) and shifted as in (1.18) with q0, q̃0
replaced with the starting positions from each iteration. In view of establishing (1.15)
and (1.16), the first term on the right-hand side of (1.19) is estimated by first showing
a contraction result between two solutions of (1.2) starting from (q0, v0) and (q̃0, ṽ0)
with respect to ρ in H, which is then extended to Wρ in Pr(H). Such contraction
result follows solely from assumption (1.6) on the potential function U together with
a smallness assumption on the integration time T ; see Proposition 18 below.Moreover,
assumption (1.6) implies that the only possible source of nonlinearity in the dynamics
(1.2), i.e. DU , is Lipschitz, which in particular guarantees the well-posedness of (1.2)
as we detail in Proposition 12.

The second term on the right-hand side (1.19) represents a ‘cost of control’ term
and in fact the tuning parameter ε appearing in ρ specifies the scales at which this
cost does not ‘become too large’. We estimate this term with the help of Girsanov’s
theorem from which we obtain a bound in terms of the Radon-Nikodym deriva-
tive between the law σm of the velocity path (v(1)0 , . . . , v(m)

0 ) and the law σ̃m of
the associated shifted velocity path (ṽ(1)0 , . . . , ṽ(m)

0 ), i.e. Girsanov provides us with
dσm/dσ̃m . Here we notice that, in order to guarantee that dσm/dσ̃m is well-defined,
we define the shift S in (1.18) to be in a finite-dimensional subspace of H (cf. (5.7)).
Indeed, looking at the case m = 1 for simplicity, notice that if v0 ∼ N (0, C) then
ṽ0 ∼ N (S(q0, q̃0), C) and, by the Feldman-Hajek theorem (see, e.g., [27, Theorem
2.23]),N (0, C) andN (S(q0, q̃0), C) aremutually singular unlessS(q0, q̃0)belongs to
theCameron-Martin space ofN (0, C). Notably, theCameron-Martin space ofN (0, C)
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hasN (0, C)-measure zero whenH is infinite-dimensional. This illustrates the fact that
two measures in an infinite-dimensional space are frequently mutually singular. How-
ever, by considering a velocity shift S that belongs to an N-dimensional subspace
HN ⊂ H, for some N ∈ N, we can show that σm and σ̃m are mutually absolutely
continuous, with an estimate of dσm/dσ̃m , and thus of the second term in (1.19), that
depends on the dimension N . Here N is chosen so as to obtain a suitable contraction
between different trajectories of (1.2) and hence to provide a useful estimate of the
first term in (1.19) (see Propositions 18 and 22). For this purpose, N must be chosen
to be sufficiently large, but is nevertheless a fixed parameter depending only on the
potential function U through the constant L1 from (1.6) (see (3.20) below).

The third part of the proof consists in showing that such V is a Lyapunov function
for P as given in Proposition 20 below. Here, in addition to quadratic exponential
function V (q) = exp(η|q|2) as in (1.4) we in fact show that any function of the
form V (q) = |q|i , i ∈ N, is also a Lyapunov function. The result of Proposition 20
follows from both assumptions (1.6) and (1.7) on the potential U together with a
smallness assumption on the integration time T . Notably, assumption (1.7) on U
is only imposed in order to obtain this Lyapunov structure. Indeed, condition (1.7)
provides a coercivity-like property for DU in (1.2) which, when complemented with
the smallness assumption on T , allows us to show the required exponential decay of
such functions V modulo a constant, thus proving the Lyapunov property.

It remains to leverage the spectral gapnowestablished, (1.8), to prove aLawofLarge
numbers (LLN) and Central Limit Theorem (CLT) type result for the implied Markov
process. While this implication is extensively developed in the literature, and recently
generalized to the situation where the spectral gap appears in the Wasserstein sense
[53,56], it was not immediately clear that these results are easily applied as a black
box to our situation. Instead, for clarity of presentation, we provide an independent
proof of the LLN and CLT in an appendix which is carefully adapted to our situation
where the ρ̃ in (1.8) is only distance-like. While we are in particular following the
road map laid out in [53], we believe our proof may be of some independent interest.

Organization of themanuscript

The rest of the manuscript is organized as follows. In Sect. 2 we provide the complete
details of our mathematical setting including the assumptions on the covariance oper-
ator C and the potentialU in (1.2). Section 3 provides certain a priori bounds on (1.2)
and concludes with the low-mode nudging bound that we use to synchronize the posi-
tions of two processes by suitably coupling their momenta. Lyapunov estimates on the
exact Hamiltonian Monte Carlo dynamics are given in Sect. 4. In Sect. 5 we combine
the bounds in the previous two sections to establish the pointwise contractivity of the
Markovian dynamics, namely the so called ρ-small and ρ-contractivity conditions.
The main result on geometric ergodicity is stated rigorously in Sect. 6 followed by the
proof using the weak Harris theorem [43]. Section 7 details how our approach also
provides a novel proof for the finite dimensional setting. Finally in Sect. 8 we estab-
lish that the conditions of the main theorem apply to the Bayesian statistical inversion
problem of estimating a divergence free vector field q from the partial observation of
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a scalar quantity advected by the flow. Section 1 shows how the law of large numbers
and the central limit theorem follow in our setting from our main result on spectral
gaps.

2 Preliminaries

This section collects various mathematical preliminaries and sets down the precise
assumptions which we use below in the statements of the main results of the paper.

2.1 The Gaussian referencemeasure

LetH be a separable and real Hilbert space with inner product 〈·, ·〉 and norm | · |. We
takeN (0, C) to denote the centered normal distribution onHwith covariance operator
C. See e.g. [10,27] for generalities concerning Gaussian measures on Hilbert space.
In this paper we always assume that C satisfies the following conditions.

Assumption 2 C : H → H is a trace class, symmetric and strictly positive definite
linear operator. Thus, by the spectral theorem, we have a complete orthonormal basis
{ei }i∈N of H which are the eigenfunctions of C. We write corresponding eigenvalues
{λi }i∈N in non-increasing order and note that the trace class condition amounts to

Tr(C) :=
∑

i

λi < ∞. (2.1)

We will also make frequent use of fractional powers of C which we define as follows.

Definition 3 For any γ ∈ R, we define fractional power Cγ of C by

Cγ f =
∑

i

λ
γ
i 〈f, ei 〉ei ,

which makes sense for any f ∈ Hγ . Here Hγ is defined as

Hγ = {f ∈ H| | f |γ < ∞} where |f |2γ := |C−γ f |2 =
∑

i

λ
−2γ
i 〈f, ei 〉2 (2.2)

when γ ≥ 0. For γ < 0, Hγ is defined as the dual of H−γ relative to H. In addition,
for every γ ∈ R, we define the inner product 〈·, ·〉γ = 〈C−γ ·, C−γ ·〉.

According to Definition 3, it follows thatH−γ̃ ⊆ H−γ for every γ , γ̃ ∈ Rwith γ ≥ γ̃ .
Moreover, note that H1/2 is the Cameron-Martin space associated with N (0, C) with
inner product 〈·, ·〉1/2 = 〈C−1/2·, C−1/2·〉 and norm |·|1/2 = |C−1/2 ·|; see [27, Chapter
2].
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In terms of these fractional spaces Hγ we have the following ‘Poincaré’ and
‘reverse-Poincaré’ inequalities. For this purpose and for later usewe define, for N ≥ 1,

ΠN f =
∑

j≤N

〈f, e j 〉e j , ΠN f =
∑

j>N

〈f, e j 〉e j , (2.3)

namely the projection of f ∈ H onto ‘low’ and ‘high’ modes.

Lemma 4 Given any γ , γ̃ ∈ R with γ ≥ γ̃ , the following hold:

∣∣Cγ f
∣∣ ≤ λ

(γ−γ̃ )
1

∣∣∣C γ̃ f
∣∣∣ , (2.4)

when f ∈ H−γ̃ . Moreover, for any N ≥ 1,

∣∣∣Cγ ΠN f
∣∣∣ ≤ λ

(γ−γ̃ )
N+1

∣∣∣C γ̃ ΠN f
∣∣∣ , (2.5)

for any f ∈ H−γ̃ .

In certain applications, one may wish to define the Markovian dynamics associated
to (1.2) only onHγ for some γ ∈ (0, 1/2), which is a strict subset ofH. For this reason,
in what follows we consider our underlying phase space to be more generally given
by Hγ , for some γ ∈ [0, 1/2). This leads us to introduce the following additional
assumption which will sometimes be imposed:

Assumption 5 For some γ ∈ [0, 1/2), C1−2γ is trace class. Namely,

Tr(C1−2γ ) :=
∑

i

λ
1−2γ
i < ∞. (2.6)

Under Assumption 5 we have the following regularity property

Lemma 6 Suppose that µ0 is N (0, C) defined on H with C under Assumption 2,
Assumption 5. Then µ0 is also N (0, C1−2γ ) defined on Hγ .

Remark 7 We typically think of the covariance C as a ‘smoothing operator’. A simple
example of C satisfying the above assumptions is A−1 where A = −∂xx is the second
derivative on [0,π ] endowed with Dirichlet boundary conditions. Note that, with this
choice of C, the spacesHγ correspond to the usual L2-based Sobolev space Hγ /2 with
the Cameron-Martin space given by H1. A more involved variation on this theme will
be considered below in Sect. 8 when we consider an application to a PDE inverse
problem.

2.2 Conditions on the potential

In what follows we impose the following regularity conditions on the potential energy
function U from (1.1). Note that in particular assumption (B1) below is compatible
with the setting imposed in [6]; see Remark 11 below.
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Assumption 8 For a fixed value of γ ∈ [0, 1/2) the potential in (1.2) U : Hγ → R is
twice Fréchet differentiable and
(B1) There exists L1 > 0 such that

|D2U (f)|L2(Hγ ) = |Cγ D2U (f)Cγ |L2(H) ≤ L1 (2.7)

for any f ∈ Hγ , where |·|L2(Hγ ) and |·|L2(H) denote the usual operator norms for
real valued bilinear operators defined on Hγ ×Hγ and on H×H, respectively.

(B2) There exists L2 > 0 and L3 ≥ 0 such that, for this value of γ ∈ [0, 1/2)

|f |2γ + 〈f, CDU (f)〉γ ≥ L2 |f |2γ − L3 (2.8)

for every f ∈ Hγ .

A number of remarks are in order regarding Assumption 8:

Remark 9 (i) Assumption 8 (B1) and the mean value theorem imply that

|DU (f) − DU (g)|−γ ≤ L1 |f − g|γ (2.9)

for any f, g ∈ Hγ and, in particular,

|DU (f)|−γ ≤ L1 |f |γ + L0 (2.10)

for every f ∈ Hγ , where L0 = |DU (0)|−γ . Inequalities (2.9) and (2.10) will be
used extensively in the analysis below.

(ii) If U satisfies, in addition, the following property:

(B3) There exists L4 ∈ [0, λ−1+2γ
1 ) and L5 ≥ 0 such that

|DU (f)|−γ ≤ L4 |f |γ + L5, for any f ∈ Hγ , (2.11)

then (B2) is automatically satisfied. Indeed, we have

|f |2γ + 〈f, CDU (f)〉γ ≥ |f |2γ − |〈f, CDU (f)〉γ | ≥ |f |2γ − |f |γ |C1−γ DU (f)|
≥ |f |2γ − λ

1−2γ
1 |f |γ |DU (f)|−γ , (2.12)

where the last inequality follows from Lemma 4 and the fact that γ ∈ [0, 1/2).
Using (2.11) in (2.12) and Young’s inequality, we obtain

|f |2γ + 〈f, CDU (f)〉γ ≥ (1 − λ
1−2γ
1 L4) |f |2γ − λ

1−2γ
1 L5 |f |γ

≥ 1 − λ
1−2γ
1 L4

2
|f |2γ − C,

where C ∈ R+ is a constant depending on λ
1−2γ
1 , L4, L5. Notice that, in particu-

lar, ifU satisfies (B1) with L1 ∈ [0, λ−1+2γ
1 ), then (B3) is verified with L4 = L1

and L5 = L0 (cf. (2.10)).
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(iii) Assumptions (B1) and (B2) imply that the constants L1 and L2 satisfy the fol-
lowing relation:

L2 ≤ 1+ λ
1−2γ
1 L1. (2.13)

Indeed, from (B2), Lemma 4 and (2.10), we obtain that

(L2 − 1) |f |2γ − L3 ≤ 〈f, CDU (f)〉γ ≤ λ
1−2γ
1 |f |γ |DU (f)|−γ

≤ λ
1−2γ
1 L1 |f |2γ + L0λ

1−2γ
1 |f |γ

≤ (δ + λ
1−2γ
1 L1) |f |2γ + (L0λ

1−2γ
1 )2

4δ
,

for any δ > 0, so that

(L2 − 1 − λ
1−2γ
1 L1 − δ) |f |2γ ≤ L3 +

(L0λ
1−2γ
1 )2

4δ

holds for any f ∈ Hγ , and every δ > 0, which implies (2.13).

This paper is concerned with sampling from probability distributions on H that
have a density with respect to N (0, C) which are of the form (1.1). In order that this
is indeed the case and furthermore to ensure the invariance of µ with respect to the
Markovian dynamics definedwith respect to (1.2), we assume the following condition.

Assumption 10 Taking γ ∈ [0, 1/2) as in Assumption 8 we suppose that, for any
ε > 0 there exists an M = M(ε) ∈ R, such that

U (f) ≥ M − ε|f |2γ for any f ∈ Hγ .

Remark 11 We notice that Assumption 8 (B1) and 10 above are equivalent to condi-
tions 3.2 and 3.3 imposed in [6]. Indeed such assumptions are applied there in order to
show the well-posedness of the dynamics in (1.2) as well as to show that the measure
µ defined in (1.1) is an invariant measure associated to (1.2). Such results are recalled
in Propositions 12 and 13 below, respectively. However, as pointed out in the introduc-
tion, condition Assumption 8 (B2) is further imposed in our setting in order to obtain
the Lyapunov structure (1.17), which together with the contractivity and smallness
properties (1.15)–(1.16) allows us to obtain our main convergence result, Theorem 26
below.

2.3 Well-posedness of the Hamiltonian dynamics

In the following proposition, we recall a well-posedness result of the Hamiltonian
dynamics in (1.2), as shown in [6]. We consider the usual norm on the product space
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Hγ × Hγ with the slight abuse of notation:

|(q, v)|γ := |q|γ + |v|γ for all (q, v) ∈ Hγ × Hγ . (2.14)

Proposition 12 Suppose C satisfies Assumption 2 and that U maintains Assumption 8,
(B1). Let γ ∈ [0, 1/2) be as in Assumption 8.

(i) For any (q0, v0) ∈ Hγ ×Hγ , there exists a unique (q, v) = (q(q0, v0), v(q0, v0))
with

(q, v) ∈ C1(R;Hγ × Hγ ) (2.15)

and obeying (1.2). The resulting solution operators {Ξt }t∈R defined via

Ξt (q0, v0) = qt (q0, v0)

are all continuous maps from Hγ × Hγ to Hγ .
(ii) Under the additional restriction on C of Assumption 5 and fixing an integration

time T > 0 the random variable

Q1(q0) = qT (q0, v0), v0 ∼ N (0, C)

is well defined in Hγ for any q0 ∈ Hγ . Moreover

P(q0, A) := P(Q1(q0) ∈ A) (2.16)

defines a Feller Markov transition kernel on Hγ .

Proof The first item follows from a standard Banach fixed point argument, i.e. it
suffices to show that, given any (q0, v0) ∈ Hγ × Hγ and any t0 ∈ R, the mapping

G(p,u)(t) := (q0, v0)+
∫ t

t0
(u(s),−p(s) − CDU (p(s))ds,

is a contraction mapping on the space of continuous (Hγ × Hγ )-valued functions
defined on I := [t0 − δ, t0 + δ] ⊂ R, that is on C(I ;Hγ × Hγ ), for some δ > 0
sufficiently small independent of (q0, v0) and t0.

Observe that, with (2.9) and (2.4),

|C1−γ (DU (p) − DU (p̃))| ≤ λ
1−2γ
1 L1|C−γ (p − p̃)| for all p, p̃ ∈ Hγ . (2.17)

Thus, for any (p,u), (p̃, ũ) ∈ C(I ;Hγ × Hγ ), using (2.14) and (2.17),

sup
t∈I

|G(p,u)(t) − G(p̃, ũ)(t)|γ ≤ δ(1+ λ
1−2γ
1 L1) sup

t∈I
|(p,u) − (p̃, ũ)|γ .
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Therefore, G is a contraction mapping on C(I ;Hγ ×Hγ ) for δ < (1+ λ
1−2γ
1 L1)

−1.
Similar argumentation establishes the desired continuity of Ξt , thus completing the
proof. 45

2.4 Formulation of the preconditioned HamiltonianMonte Carlo chain

Having fixed an integration time T > 0, we denote by Qn(q0) as a random variable
arising as the n step dynamics of the exact Preconditioned Hamiltonian Monte Carlo
(PHMC) chain (2.16) starting from q0 ∈ H. Namely, we iteratively draw Qn(q0) ∼
P(Qn−1(q0), ·) for n ≥ 1 starting from Q0(q0) = q0. We can write Qn(q0) more
explicitly as a transformation of the sequence of Gaussian draws for the velocity as
follows: Let H⊗n denote the product of n copies of H. Given a sequence {v( j)0 } j∈N of
i.i.d. draws from N (0, C), we denote by V(n)

0 the noise path

V(n)
0 := (v(1)0 , . . . , v(n)0 ) ∼ N (0, C)⊗n, (2.18)

where N (0, C)⊗n denotes the measure on H⊗n given as the product of n copies of
N (0, C). Taking B(H) to be the Borel σ -algebra on H, we define Q1(q0) : H → H
to be the Borel random variable defined as

Q1(q0)(v
(1)
0 ) = qt (q0, v

(1)
0 ) where v(1)0 ∼ N (0, C).

Iteratively, we define for every n ≥ 2 the Borel random variable Qn(q0) : H⊗n → H
given by

Qn(q0)(V
(n)
0 ) = qt (Qn−1(q0)(V

(n−1)
0 ), v(n)0 ) where V(n)

0 ∼ N (0, C)⊗n . (2.19)

With these notations we can write the n-step iterated transition kernels as

Pn(q0, A) := P(Qn(q0) ∈ A) (2.20)

for any q0 ∈ Hγ and A ∈ B(Hγ ). Or, equivalently, Pn(q0, ·) is the push-forward of
N (0, C)⊗n by the mapping Qn(q0), i.e.

Pn(q0, A) = Qn(q0)∗N (0, C)⊗n(A) = N (0, C)⊗n(Qn(q0)−1(A)) (2.21)

for every q0 ∈ Hγ and A ∈ B(Hγ ).
We recall an invariance result for (1.1) from [6] in our setting.

Proposition 13 Under the conditions given in Proposition 12 and additionally impos-
ing Assumption 10 we have that

M(dq, dv) ∝ e−U (q)µ0(dq) × µ0(dv)
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defines a probability measure on Hγ × Hγ which is invariant under {Ξt }t≥0 namely

∫

Hγ ×Hγ

f (Ξt (q, v))M(dq, dv) =
∫

Hγ ×Hγ

f (q, v)M(dq, dv)

holds for every f ∈ Cb(Hγ × Hγ ) and every t ≥ 0. As a consequence, µ given in
(1.1) is a Borel probability measure onHγ which is invariant for P defined by (2.16).

3 A priori bounds for the deterministic dynamics

This section provides various a priori bounds on the dynamics specified by (1.2). The
proofs rely solely on the bound on D2U given in (2.7). In fact, they are obtained by
using inequalities (2.9) and (2.10), that follow as a consequence of (2.7).

Proposition 14 Impose Assumptions 2 and 8, (B1) and fix any T ∈ R+ satisfying

T ≤ (1+ λ
1−2γ
1 L1)

−1/2, (3.1)

where the constant L1 is given in (2.9) and λ1 is the top eigenvalue of C. Then the
dynamics defined by (1.2) maintains the bounds

sup
t∈[0,T ]

|qt (q0, v0) − (q0 + tv0)|γ

≤ (1+ λ
1−2γ
1 L1)T 2 max{|q0|γ , |q0 + T v0|γ } + λ

1−2γ
1 L0T 2 (3.2)

and

sup
t∈[0,T ]

|v(t)−v0|γ ≤ (1+λ
1−2γ
1 L1)T [1+ (1+ λ

1−2γ
1 L1)T

2]max
{
|q0|γ , |q0 + T v0|γ

}

+λ
1−2γ
1 L0T [1+ (1+ λ

1−2γ
1 L1)T

2], (3.3)

for any (q0, v0) ∈ Hγ × Hγ , with L0 as given in (2.10).

Proof Integrating the first equation in (1.2) twice and then applying the operator C−γ ,
we obtain

C−γ qt = C−γ (q0 + tv0) −
∫ t

0

∫ s

0

[
C−γ qτ + C1−γ DU (qτ )

]
dτds, (3.4)

for each t ∈ [0, T ]. From Lemma 4 and inequality (2.10), we obtain

|qt − (q0 + tv0)|γ ≤ (1+ λ
1−2γ
1 L1)

∫ t

0

∫ s

0
|qτ |γ dτds + λ

1−2γ
1 L0

T 2

2

≤ (1+ λ
1−2γ
1 L1)

∫ t

0

∫ s

0
|qτ − (q0 + τv0)|γ dτds
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+ (1+ λ
1−2γ
1 L1)

∫ t

0

∫ s

0
|q0 + τv0|γ dτds + λ

1−2γ
1 L0

T 2

2

≤ (1+ λ
1−2γ
1 L1)

T 2

2
sup

τ∈[0,T ]
|qτ − (q0 + τv0)|γ

+ (1+ λ
1−2γ
1 L1)

T 2

2
max{|q0|γ , |q0 + T v0|γ } + λ

1−2γ
1 L0

T 2

2
.

(3.5)

Here note that, using the convexity of the function f (τ ) = |q0 + τv0|γ , we have

sup
τ∈[0,T ]

|q0 + τv0|γ ≤ max{|q0|γ , |q0 + T v0|γ } (3.6)

which we used in the final bound in (3.5). Thus, using assumption (3.1) and taking
the supremum with respect to t ∈ [0, T ] in (3.5), we conclude the first bound (3.2).

Turn next to second bound (3.3), integrating the second equation in (1.2) once and
using Lemma 4 and inequality (2.10) again, we have

|vt − v0|γ ≤ (1+ λ
1−2γ
1 L1)

∫ t

0
|qs |γ ds + λ

1−2γ
1 L0t (3.7)

≤ (1+ λ
1−2γ
1 L1)T sup

s∈[0,T ]
|qτ |γ + λ

1−2γ
1 L0T (3.8)

for every t ∈ [0, T ]. From (3.2), it follows that

sup
t∈[0,T ]

|qs |γ ≤ [1+ (1+ λ
1−2γ
1 L1)T 2]max{|q0|γ , |q0 + T v0|γ } + λ

1−2γ
1 L0T 2.

(3.9)

Hence, we conclude (3.3) from (3.7) and (3.9), completing the proof. 45

Proposition 15 Impose Assumptions 2, 8, (B1) and consider any T ∈ R+ satisfying

T ≤ (1+ λ
1−2γ
1 L1)

−1/2, (3.10)

where L1 is as in (2.7) and λ1 is the top eigenvalue of C. Then, for any (q0, v0), (q̃0, ṽ0)
∈ Hγ × Hγ ,

sup
t∈[0,T ]

|qt (q0, v0) − qt (q̃0, ṽ0) − (q0 − q̃0) − t(v0 − ṽ0)|γ

≤ (1+ λ
1−2γ
1 L1)T 2 max

{|q0 − q̃0|γ , |(q0 − q̃0)+ T (v0 − ṽ0)|γ
}
. (3.11)

Remark 16 Observe that, given any q0, q̃0, v0 ∈ Hγ , by choosing

ṽ0 := v0 +
1
T
(q0 − q̃0), (3.12)
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then under (3.11) we obtain

|C−γ
[
qT (q0, v0) − qT (q̃0, ṽ0)

]
| ≤ (1+ λ

1−2γ
1 L1)T 2|C−γ (q0 − q̃0)|, (3.13)

which thus yields a contraction when T < (1 + λ
1−2γ
1 L1)

−1/2. This observation for
the initial conditions in (3.12) has previously been employed in [14] and, in the finite
dimensional case where H = Rk for some k ∈ N, this bound can be used directly as
a crucial step towards establishing the ρ-smallness and ρ-contraction conditions for
the weak Harris theorem in [43], as we illustrate below in Sect. 7.

The idea behind definition (3.12) comes from the fact that for the simplified version
of the dynamics in (1.2) where dvt/dt = 0, the positions of two associated trajectories
starting from (q0, v0) and (q̃0, ṽ0), with ṽ0 as in (3.12), will coincide at time T . With
a similar line of reasoning, one could consider a slighly better approximation of the
dynamics in (1.2) by assuming insteadU = 0, in which case the associated dynamics
dqt/dt = vt , dvt/dt = qt describes the motion of a simple pendulum. Here by
defining ṽ0 = v0 + (q0 − q̃0)(cos T / sin T ) one again concludes that the positions
of two trajectories starting from (q0, v0) and (q̃0, ṽ0) coincide after time T . While
we could obtain similar results by using the latter approach, this would require the
same type of assumptions we already impose in the first case, thus not showing a
significant difference at least at the theoretical level. For simplicity, we then chose the
first approach for our presentation. We remark however that the second approach, as
being associated to a better approximation of (1.2), could lead to slightly less stringent
constants on the conditions for the integration time T in comparison to (3.10).

More generally, we may view (3.12) as addressing a control problem. In fact, the
methodology of the weak Harris theorem developed here could in principle allow
the use of a wide variety of controls. More specifically, we are interested in any
‘reasonable’ mapping Ψ : Hγ × Hγ × Hγ → Hγ such that, for any q0, q̃0, v0 ∈ Hγ

and any suitable value of T > 0, one would have

qT (q0, v0) ≈ qT (q̃0,Ψ (q0, q̃0, v0)).

In this connection one might hope to make a more delicate use of the Hamiltonian
dynamics, presumably tailored to the fine properties of a particular potential U of
interest, to obtain refined results on convergence to equilibrium. In particular, we
expect that the constraints imposed on T by Proposition 14 are overzealous, and could
potentially be improved by a different type of control.

On the other hand, in the infinite dimensional Hilbert space setting which we are
primarily focused on here, even (3.12) is insufficient for the aim of establishing con-
tractivity in the Markovian dynamics, as the law of this choice of ṽ0 is not generically
absolutely continuous with respect to the law of v0; cf. Propositions 22 and 24 below.
Weproceed instead byusing the refinement (3.19)which is shown to produce a contrac-
tion in Proposition 18. Here we are making use of some of the intuition and approach
to ergodicity in the stochastic fluids literature, cf. [37,55,65]. In these works one mod-
ifies the noise path on lowmodes with the expectation that if one induces a contraction
on the large scale dynamics for sufficiently many low frequency modes then the high
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frequencies (or small scales) will also contract, being enslaved to the behavior of the
system at large scales. This effect, sometimes referred as a Foias-Prodi bound [35], is
widely observed in the fluids and infinite dimensional dynamical systems literature.

Proof (Proof of Proposition 15) Let zt = qt (q0, v0) − qt (̃q0, ṽ0) and wt = dzt/dt .
Then, for any t > 0, zt satisfies

d2zt
dt2

= −zt − Cg(t) (3.14)

where

g(t) := DU (qt (q0, v0)) − DU (qt (̃q0, ṽ0)). (3.15)

Therefore, for every t ≥ 0,

C−γ zt = C−γ (z0 + tw0) −
∫ t

0

∫ s

0
[C−γ zτ + C1−γ g(τ )]dτds.

By using Lemma 4 and inequality (2.9), we obtain

|zt − (z0 + tw0)|γ ≤
∫ t

0

∫ s

0

[
|zτ |γ + λ

1−2γ
1 |g(τ )|−γ

]
dτds

≤ (1+ λ
1−2γ
1 L1)

∫ t

0

∫ s

0
|zτ |γ dτds.

The remaining portion of the proof follows analogously as in the proof of (3.2). 45

In view of Remark 16 the bounds in Proposition 15 are not sufficient for our appli-
cation to prove the ρ-contractivity and ρ-smallness conditions for the weak Harris
theorem below in Sect. 5. For this purpose we consider a modified version of (3.12)
where the shift only involves a low-modesfinite-dimensional approximation ofq0−q̃0.

Before proceeding let us introduce some notation. Split H into a space HN :=
span{e1, · · · , eN } and its orthogonal complement HN ; so that H = HN ⊕ HN where
N satisfies the second condition in (3.20), below. Recall, as in (2.3), that, given f ∈ H,
we denote byΠN f andΠN f the orthogonal projections ontoHN andHN , respectively.
This splitting is defined such that the Lipschitz constant of the projection of−CDU (f)
onto HN is at most 1/4.

For any γ ∈ [0, 1/2) and α ∈ R+, we consider the following auxiliary norm:

|f |γ ,α := |ΠN f |γ + α|ΠN f |γ , for any f ∈ Hγ . (3.16)

Remark 17 Notice that | · |γ ,α is equivalent to | · |γ and

min{1,α} |f |γ ≤ |f |γ ,α ≤
√
2max{1,α} |f |γ , for all f ∈ Hγ . (3.17)
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In particular, for α defined as in (3.21) below, we have

|f |γ ≤ |f |γ ,α ≤
√
2α |f |γ , for all f ∈ Hγ . (3.18)

Proposition 18 Impose Assumptions 2, 8, (B1). Let (q0, v0), (q̃0, ṽ0) ∈ Hγ ×Hγ such
that

ΠN ṽ0 = ΠNv0 and ΠN ṽ0 = ΠNv0 + T−1(ΠNq0 − ΠN q̃0). (3.19)

Assume that T ∈ R+ and N ∈ N satisfy

T ≤ 1

[2(1+ λ
1−2γ
1 L1)]1/2

and λ
1−2γ
N+1 ≤ 1

4L1
, (3.20)

and let

α = 4(1+ λ
1−2γ
1 L1). (3.21)

Here γ is specified in Assumption 8, L1 is as in (2.7) and λ j represent the eigenvalues
of C in descending order as in Assumption 2. Then,

|qT (q0, v0) − qT (q̃0, ṽ0)|γ ,α ≤ κ1 |q0 − q̃0|γ ,α , (3.22)

where | · |γ ,α is the norm defined in (3.16) and

κ1 = 1 − T 2

12
.

Proof As in the proof of Proposition 15, let us denote zt := qt (q0, v0) − qt (q̃0, ṽ0)
and wt = dzt/dt , for all t ≥ 0. Notice that

ΠN z0 + TΠNw0 = 0 and ΠNw0 = 0. (3.23)

Applying C−γ to (3.14), projecting onto HN and integrating, yields

C−γ ΠN zT = −
∫ T

0

∫ s

0

[
C−γ ΠN zτ + C1−γ ΠN g(τ )

]
dτds,

with g(·) defined as in (3.15). Thus, using (2.4) in Lemma 4 and (2.7) of Assumption 8,
we estimate

|ΠN zT |γ ≤
∫ T

0

∫ s

0

[
|zτ |γ + λ

1−2γ
1 |g(τ )|−γ

]
dτds ≤ (1+ λ

1−2γ
1 L1)

T 2

2
sup

s∈[0,T ]
|zs |γ

=αT 2

8
sup

s∈[0,T ]
|zs |γ . (3.24)
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On the other hand, by Duhamel’s formula, we have

zT = z0 cos(T )+ w0 sin(T ) −
∫ T

0
sin(T − s) Cg(s)ds,

and hence, with (3.23),

C−γ ΠN zT = C−γ ΠN z0 cos(T ) −
∫ T

0
sin(T − s) C1−γ ΠN g(s)ds

Now, using (i i) of Lemma 4 and (B1) of Assumption 8, we estimate

∣∣∣ΠN zT
∣∣∣
γ

≤
∣∣∣Π N z0

∣∣∣
γ
cos(T )+ λ

1−2γ
N+1 L1

∫ T

0
sin(T − s) |zs |γ ds

≤
∣∣∣ΠN z0

∣∣∣
γ
cos(T )+ 1 − cos(T )

4
sup

s∈[0,T ]
|zs |γ .

where for the final inequality we used the second condition in (3.20). Therefore, using
that cos(s) ≤ 1 − s2/2+ s4/24 and 1 − cos(s) ≤ s2/2 for every s ∈ R, yields

∣∣∣ΠN zT
∣∣∣
γ

≤
(
1 − T 2

2
+ T 4

24

) ∣∣∣Π N z0
∣∣∣
γ
+ T 2

8
sup

s∈[0,T ]
|zs |γ . (3.25)

From Proposition 15 and a bound as in (3.6) it follows that

sup
s∈[0,T ]

|zs |γ ≤ [1+ (1+ λ
1−2γ
1 L1)T 2]max

{|z0|γ , |z0 + Tw0|γ
}
.

However from (3.23) we have z0+Tw0 = ΠN z0, so that max{|z0|γ , |z0 + Tw0|γ } =
|z0|γ . With this and the first condition in (3.20), we therefore obtain

sup
s∈[0,T ]

|zs |γ ≤ [1+ (1+ λ
1−2γ
1 L1)T 2] |z0|γ ≤ 3

2
|z0|γ . (3.26)

Using (3.26) in (3.24) and in (3.25), we obtain

|ΠN zT |γ ≤ 3αT 2

16
|z0|γ

and

∣∣∣ΠN zT
∣∣∣
γ

≤
(
1 − T 2

2
+ T 4

24

) ∣∣∣Π N z0
∣∣∣
γ
+ 3T 2

16
|z0|γ ,
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so that finally

|zT |γ ,α = |ΠN zT |γ + α
∣∣∣ΠN zT

∣∣∣
γ

≤ 3αT 2

8
|z0|γ + α

(
1 − T 2

2
+ T 4

24

) ∣∣∣Π N z0
∣∣∣
γ

≤3αT 2

8
|ΠN z0|γ + α

(
1 − T 2

8
+ T 4

24

) ∣∣∣Π N z0
∣∣∣
γ
. (3.27)

From thefirst condition in (3.20) and the definition ofα in (3.21), it follows in particular
that αT 2 ≤ 2 and also T ≤ 1, so that T 4 ≤ T 2. Therefore, from (3.27), we have

|zT |γ ,α ≤ 3
4
|ΠN z0|γ + α

(
1 − T 2

12

) ∣∣∣Π N z0
∣∣∣
γ

≤ max
{
1 − T 2

12
,
3
4

}
|z0|γ ,α =

(
1 − T 2

12

)
|z0|γ ,α ,

where the equality above follows again from the fact that T ≤ 1, by the first condition
in (3.20). This completes the proof. 45

4 Foster–Lyapunov structure

This section provides the details of the Foster–Lyapunov structure for the Markov
kernel P defined by (2.16) under Assumption 5 and 8. First, we recall the underlying
definition:

Definition 19 We say that V : Hγ → R+ is a Foster–Lyapunov (or, simply, a Lya-
punov) function for the Markov kernel P if V is integrable with respect to Pn(q, ·)
for every q ∈ H and n ∈ N, and satisfies the following inequality

PnV (q) ≤ CκnV (q)+ K for all q ∈ H and n ∈ N, (4.1)

for some constants κ ∈ (0, 1) and C, K > 0.

With this definition in hand the main result of this section is as follows:

Proposition 20 Impose Assumption 2, 5 and 8 and suppose that T ∈ R+ satisfies

T ≤ min

{
1

[2(1+ λ
1−2γ
1 L1)]1/2

,
L1/2
2

2
√
6(1+ λ

1−2γ
1 L1)

}

, (4.2)

where L1 and L2 are defined as in (2.7), (2.8), respectively and λ1 is the largest
eigenvalue of C. Then, the functions

V1,i (q) = |q|iγ , i ∈ N, (4.3)
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and

V2,η(q) = exp(η |q|2γ ), (4.4)

with η ∈ R+ satisfying

η <
[
c Tr(C1−2γ )

(
L−1
2 + T 2

)]−1
, (4.5)

for a suitable absolute constant c ∈ R+, are Lyapunov functions for theMarkov kernel
P defined in (2.16).

Remark 21 Before delving into the proof, some heuristic remarks are in order here
concerning why we might expect a dissipative structure à la (4.1) for the HMC chain
(2.20) not withstanding non-dissipative nature of Hamiltonian systems in general.
Starting from a current position q0, we draw an initial velocity v0 ∼ µ0 = N (0, C). If
q0 is sufficiently far from the origin and the core of the distributionµ0 then, on average,
the Hamiltonian system (1.2) starts at (q0, v0) with a potential energy which is large
with respect to its kinetic energy. We may therefore expect that the dynamics (1.2)
converts some of this potential energy into kinetic energy. Thus, while total energy is
conserved along the Hamiltonian path, we may expect this energy to change its form
and to be converted from potential to kinetic energy. This transfer of energy is then
lost on average when we reset the velocity component as we start the next step of the
chain.

The forthcoming bounds reflect that such an energy conversion can bemade explicit
and quantitative at the level of the simple case of the pendulum dq̄t/dt = v̄t , dv̄/dt =
−q̄t . Our estimates then show that the presence of the ‘nonlinear term’ CDU (qt )
does not change this picture at least for a small time and so long as the tail condition
(2.8) holds. We may expect that other relevant mechanisms for energy transfer from
potential to kinetic energy may be exploited to a similar effect in future studies.

Proof We start by showing that V1,2(q) = |q|2γ is a Lyapunov function for P . First,
notice d

dt |qt |2γ = 2〈qt , vt 〉γ so that

|qT |2γ = |q0|2γ + 2
∫ T

0
〈qs, vs〉γ ds. (4.6)

Moreover, from (1.2)

d
ds

〈qs, vs〉γ = |vs |2γ − |qs |2γ − 〈qs, C∇U (qs)〉γ . (4.7)

Hence, using Assumption 8, (B2),
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〈qs, vs〉γ = 〈q0, v0〉γ +
∫ s

0

[
|vτ |2γ − |qτ |2γ − 〈qτ , C∇U (qτ )〉γ

]
dτ

≤ 〈q0, v0〉γ +
∫ s

0

[
|vτ |2γ − L2 |qτ |2γ + L3

]
dτ, (4.8)

for any s ≥ 0. Using (4.8) in (4.6), we obtain

|qT |2γ ≤ |q0|2γ + 2T 〈q0, v0〉γ + 2
∫ T

0

∫ s

0

[
|vτ |2γ − L2 |qτ |2γ + L3

]
dτds. (4.9)

From Proposition 14, (3.3) and hypothesis (4.2), it follows that

|vτ |γ ≤ 7
4
|v0|γ + 3

2
(1+ λ

1−2γ
1 L1)τ |q0|γ + 3

2
λ
1−2γ
1 L0τ,

so that

|vτ |2γ ≤ 49
8

|v0|2γ + 9(1+ λ
1−2γ
1 L1)

2τ 2 |q0|2γ + 9(λ1−2γ
1 L0)

2τ 2, (4.10)

which holds for any τ ≥ 0. Moreover, from (3.2) and using hypothesis (4.2) again,
we obtain that

|qτ − (q0 + τv0)|γ ≤
|q0|γ
2

+ τ

2
|v0|γ + λ

1−2γ
1 L0τ

2,

so that

|qτ |γ ≥
|q0|γ
2

− 3
2
τ |v0|γ − λ

1−2γ
1 L0τ

2

and, consequently,

2 |qτ |2γ ≥
|q0|2γ
4

− 9τ 2 |v0|2γ − 4(λ1−2γ
1 L0)

2τ 4.

Thus, from (2.13) and (4.2), it follows that

−2L2 |qτ |2γ ≤ − L2

4
|q0|2γ + 9L2τ

2 |v0|2γ + 4L2(λ
1−2γ
1 L0)

2τ 4

≤ − L2

4
|q0|2γ + 9(1+ λ

1−2γ
1 L1)τ

2 |v0|2γ + 4(1+ λ
1−2γ
1 L1)(λ

1−2γ
1 L0)

2τ 4

≤ − L2

4
|q0|2γ + 9

2
|v0|2γ + 2(λ1−2γ

1 L0)
2τ 2, (4.11)

for any τ ≥ 0. Using (4.10) and (4.11) in (4.9), yields
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|qT |2γ ≤
(
1+ 3

2
(1+ λ

1−2γ
1 L1)

2T 4 − L2

8
T 2
)
|q0|2γ

+ 2T 〈q0, v0〉γ + 67
8
T 2 |v0|2γ + 5

3
(λ

1−2γ
1 L0)

2T 4 + L3T 2. (4.12)

By hypothesis (4.2), we have that 3(1+ λ
1−2γ
1 L1)

2T 4/2 ≤ L2T 2/16. Thus,

1+ 3
2
(1+ λ

1−2γ
1 L1)

2T 4 − L2

8
T 2 ≤ 1 − L2

16
T 2 ≤ e− L2T

2

16 , (4.13)

where we used the fact that 1 − x ≤ e−x , for every x ≥ 0. Using (4.13) in (4.12) and
taking expected values on both sides of the resulting inequality, and noting that, by
symmetry E〈q0, v0〉γ = 0 we obtain

PV1,2(q0) = E |qT |2γ ≤ e− L2T
2

16 |q0|2γ +
(
67
8

Tr(C1−2γ )+ 5
3
(λ

1−2γ
1 L0)

2T 2 + L3

)
T 2.

(4.14)

Hence, after iterating on the result in (4.14) n times, we have

PnV1,2(q0) = E |Qn(q0)|2γ

≤ e− nL2T
2

16 |q0|2γ +
(
67
8

Tr(C1−2γ )+ 5
3
(λ

1−2γ
1 L0)

2T 2 + L3

)
T 2

n−1∑

j=0

e− j L2 t
2

16 .

(4.15)

Notice that

T 2
n−1∑

j=0

e− j L2T
2

16 ≤ T 2

1 − e− L2 t2
16

≤ 48
L2

,

where in the last inequality we used that x/(1 − e−x ) ≤ e ≤ 3, for every 0 ≤ x ≤ 1.
Thus,

PnV1,2(q0) ≤ e− nL2T
2

16 |q0|2γ +
(
67
8

Tr(C1−2γ )+ 5
3
(λ

1−2γ
1 L0)

2T 2 + L3

)
48
L2

,

which shows 19 for V1,2.
We turn now to establish 19 in the general case of V1,i , for any i ∈ N. Here, invoking

Young’s inequality to estimate the term 2T 〈q0, v0〉γ in (4.12) as

2T 〈q0, v0〉γ ≤ L2T 2

32
|q0|2γ + 32

L2
|v0|2γ ,
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and using again that 3(1+ λ
1−2γ
1 L1)

2T 4/2 ≤ L2T 2/16, it follows from (4.12) that

|qT |2γ ≤
(
1 − L2T 2

32

)
|q0|2γ +

(
67
8
T 2 + 32

L2

)
|v0|2γ + 5

3
(λ

1−2γ
1 L0)

2T 4 + L3T 2.

(4.16)

Invoking the basic inequalities 1 − x ≤ e−x and (x + y)1/2 ≤ x1/2 + y1/2, valid
for every x, y ≥ 0, we obtain, for any i ≥ 1,

|qT |iγ ≤ e− L2T
2i

64 |q0|iγ + C
i∑

j=1

(
e− L2T

2

64 |q0|γ
) j (

|v0|i− j
γ + 1

)

≤ e− L2T
2i

65 |q0|iγ + C̃
(
|v0|iγ + 1

)
, (4.17)

where in the second inequality we invoked Young’s inequality to estimate each
term inside the sum, and with C and C̃ being positive constants depending on
i, λ1, γ , T , L0, L2 and L3. Since v0 ∼ N (0, C), by Fernique’s theorem (see, e.g.,
[27, Theorem 2.7]) we have that E |v0|iγ < ∞ for every i ∈ N. Therefore, we con-
clude the result for V1,i after taking expected values in (4.17) and iterating n times on
the resulting inequality.

Finally, let us show 19 for V2,η as in (4.4). Multiplying by η, taking the exponential
and expected value on both sides of (4.16), it follows that

PV2(q0) = E exp
(
η |qT |2γ

)

≤ exp
(

η

(
1 − L2T 2

32

)
|q0|2γ

)
exp
(
5
3
η(λ

1−2γ
1 L0)

2T 4 + ηL3T 2
)

·E exp
[
η

(
32
L2

+ 67
8
T 2
)
|v0|2γ

]
. (4.18)

Recalling v0 ∼ N (0, C) and the assumption η <
[
2 Tr(C1−2γ )

(
32
L2

+ 67
8 T

2
)]−1

, we
have, again by Fernique’s theorem [27, Proposition 2.17], and Lemma 4 that

E exp
[
η

(
32
L2

+ 67
8
T 2
)
|v0|2γ

]
≤
[
1 − 2η

(
32
L2

+ 67
8
T 2
)
Tr(C1−2γ )

]−1/2

.

(4.19)

Thus, denoting κ̃2 = 1 − L2T 2/32 and

R = exp
(
5
3
η(λ

1−2γ
1 L0)

2T 4 + ηL3T 2
)[

1 − 2η
(
32
L2

+ 67
8
T 2
)
Tr(C1−2γ )

]−1/2

,

we obtain from (4.18) and (4.19) that

PV2,η(q0) ≤ R exp
(
ηκ̃2 |q0|2γ

)
= R exp

(
η |q0|2γ

)κ̃2
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≤ κ̃2V2(q0)+ R
1

1−κ̃2 (1 − κ̃2) = κ̃2V2(q0)+ R
32

L2T 2
L2T 2

32

≤ e− L2T
2

32 V2(q0)+ R
32

L2T 2
L2T 2

32
(4.20)

where the second estimate follows by Young’s inequality. We conclude 19 for V2,η
after using (4.20) n times iteratively. The proof is now complete. 45

5 Pointwise contractivity bounds for theMarkovian dynamics

This section details two pointwise contractivity bounds for the Markovian dynamics
of the PHMC chain (2.16) in a suitably tuned Wasserstein-Kantorovich metric. These
bounds provide crucial ingredients needed for the weak Harris theorem, namely the so
called ‘ρ-contractivity’ and ‘ρ-smallness’ conditions, which, together with the Lya-
punov structure identified in Proposition 20, form the core of the proof of Theorem 26.

Our contraction results are given with respect to an underlying metric ρ : Hγ ×
Hγ → [0, 1] defined as

ρ(q, q̃) :=
|q − q̃|γ

ε
∧ 1, (5.1)

where γ is given in Assumption 8. On the other hand, ε > 0 is a tuning parameter
which specifies the small scales in our problem and is determined by (5.3) in such a
fashion as to produce a contraction in (5.2). Recall that theWasserstein distance on the
space of probability measures onHγ induced by ρ is given as in (1.5) with ρ̃ replaced
by ρ, and denoted by Wρ .

The first result yielding ‘ρ-contractivity’ (cf. [43, Definition 4.6]) is given as fol-
lows:

Proposition 22 SupposeAssumptions 2,5and8are satisfied and choose an integration
time T > 0 and N ∈ N maintaining the condition (3.20). Fix any ε > 0 defining the
associated metric ρ as in (5.1). Then, for every n ∈ N and for every q0, q̃0 ∈ Hγ such
that ρ(q0, q̃0) < 1, we have

Wρ(Pn(q0, ·), Pn(q̃0, ·)) ≤ κ3ρ(q0, q̃0) (5.2)

where recall that Pn is n steps of the PHMC kernel (2.20) andWρ is the Wasserstein
distance, as in (1.8), associated with ρ. Here

κ3 = κ3(n) := κ2(n)+
2
√
2λ

− 1
2+γ

N (1+ λ
1−2γ
1 L1)ε

T (1 − κ2
1 )

1/2
= κ2(n)+

√
2λ

− 1
2+γ

N αε

2T (1 − κ2
1 )

1/2
,

(5.3)
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where

κ2(n) := 4
√
2(1+ λ

1−2γ
1 L1)κ

n
1 =

√
2ακn

1 , κ1 := 1 − T 2

12
, (5.4)

T > 0 is the integration time in (2.16), L1 is the Lipschitz constant of DU as in (2.7)
and λ1 is the largest eigenvalue of C and, in regards to α, recall (3.21).

Remark 23 If N ∈ N is the smallest natural number for which the corresponding
condition in (3.20) holds, i.e.

N = min
{
n ∈ N : λ

1−2γ
n+1 ≤ 1

4L1

}
,

then κ3 from (5.3) above can be given in the more explicit form

κ3 = κ3(n) := κ2(n)+
4
√
2L1/2

1 (1+ λ
1−2γ
1 L1)ε

T (1 − κ2
1 )

1/2
= κ2(n)+

√
2L1/2

1 αε

T (1 − κ2
1 )

1/2
,

with κ2 defined exactly as in (5.4) above.

Our second main result corresponding to ‘ρ-smallness’ (cf. [43, Definition 4.4]) is
given as:

Proposition 24 Assume the same hypotheses from Proposition 22. Let M ≥ 0 and
take

A =
{
q ∈ Hγ : |q|γ ≤ M

}
.

Then, for every n ∈ N and every ε > 0 we have for the corresponding ρ defined by
(5.1) that

Wρ(Pn(q0, ·), Pn(q̃0, ·)) ≤ 1 − κ4 (5.5)

for every q0, q̃0 ∈ A, where

κ4 = κ4(n) :=
1
2
exp

(

−256L1(1+ λ
1−2γ
1 L1)

2M2

T 2(1 − κ2
1 )

)

− 2Mκ2(n)
ε

= 1
2
exp

(

−16L1α
2M2

T 2(1 − κ2
1 )

)

− 2Mκ2(n)
ε

,

with κ1 and κ2 as defined in (5.4), and α as defined in (3.21).

Before proceeding with the proofs of Propositions 22 and 24, we introduce some
further preliminary terminology and general background. Set an integration time T >

0 in the definition of the transition kernel P of the PHMCchain, (2.16). For each n ∈ N,
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let H⊗n denote the space given as the product of n copies of H. Moreover, given a
sequence {v( j)0 } j∈N of i.i.d. draws fromN (0, C), we denote byV(n)

0 = (v(1)0 , . . . , v(n)0 )

the noise path for the first n ≥ 1 steps, as in (2.18). We then have V(n)
0 ∼ N (0, C)⊗n ,

with N (0, C)⊗n denoting the product of n independent copies of N (0, C).
For simplicity of notation, we set from now on

σ := N (0, C), σn := N (0, C)⊗n .

For every q0, q̃0 ∈ Hγ , with γ as in (2.6), (2.7), and N ∈ N as in Proposition 18, we
consider Q̃1(q̃0,q0) : H → H to be the random variable defined as

Q̃1(q0, q̃0)(v
(1)
0 ) = qT (q̃0, v

(1)
0 + T−1ΠN (q0 − q̃0))

where v(1)0 ∼ σ . Iteratively we define, for n ≥ 2, the random variables Q̃n(q0, q̃0) :
H⊗n → H as

Q̃n(q0, q̃0)(V
(n)
0 ) := qT (Q̃n−1(q0, q̃0)(V

(n−1)
0 ), v(n)0 + Sn(V

(n−1)
0 )), (5.6)

where V(n)
0 ∼ σn , and

Sn(V
(n−1)
0 ) := T−1ΠN [Qn−1(q0)(V

(n−1)
0 ) − Q̃n−1(q0, q̃0)(V

(n−1)
0 )]. (5.7)

We therefore obtain the shifted noise path

Ṽ(n)
0 = (v10 + S1, v

(2)
0 + S2(V

(1)
0 ), . . . , v(n)0 + Sn(V

(n−1)
0 )), (5.8)

where S1 = T−1ΠN (q0 − q̃0).
Let σ̃n := Law(Ṽ(n)

0 ). In order to simplify notation, let us denote

Sn(V
(n)
0 ) = (S1,S2(V

(1)
0 ), . . . ,Sn(V

(n−1)
0 )) (5.9)

and

Rn(V
(n)
0 ) = V(n)

0 + Sn(V
(n)
0 ), (5.10)

so that Ṽ(n)
0 = Rn(V

(n)
0 ). Thus, σ̃n is the push-forward of σn by the mapping Rn :

H⊗n → H⊗n , i.e. σ̃n = R∗
nσn . Now put, for every n ∈ N and A ∈ B(H),

P̃n(q0, q̃0, A) = Q̃n(q0, q̃0)∗σn(A) = σn(Q̃n(q0, q̃0)−1(A)). (5.11)

Notice that P̃n(q0, q̃0, ·) can be equivalently written as

P̃n(q0, q̃0, A) = Qn(q̃0)∗(R∗
nσn)(A) = Qn(q̃0)∗σ̃n(A). (5.12)
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With these notations in place we have the following estimate which we will use
several times below in establishing Propositions 22 and 24. The proof follows imme-
diately from Proposition 18 and Remark 17.

Lemma 25 We are maintaining the same hypotheses as in Proposition 22. Then, start-
ing from any q0, q̃0 ∈ Hγ we have that for all n ≥ 1,

∣∣∣Qn(q0)(V
(n)
0 ) − Q̃n(q0, q̃0)(V

(n)
0 )
∣∣∣
γ

≤ κ2 |q0 − q̃0|γ for every V(n)
0 ∈ H⊗n,

where Qn and Q̃n are defined as in (2.19) and (5.6), respectively, and κ2 is as in (5.4).
Therefore,

E
∣∣∣Qn(q0) − Q̃n(q0, q̃0)

∣∣∣
γ

≤ κ2 |q0 − q̃0|γ . (5.13)

We also recall additional notions of distances in the space of Borel probability
measures on a given complete metric space (X , d), denoted Pr(X), with the associated
Borel σ -algebra denoted as B(X). Namely, the total variation distance is defined as

‖ν − ν̃‖TV := sup
A∈B(X)

|ν(A) − ν̃(A)| (5.14)

for any ν, ν̃ ∈ Pr(X). On the other hand when ν̃ : ν, i.e. when ν̃ is absolutely
continuous with respect to ν, the Kullback-Leibler Divergence is defined as

DKL(ν̃|ν) :=
∫

X
log
(
d ν̃

dν
(V)
)
d ν̃(dV). (5.15)

Recall that for the trivial metric

ρ0(q, q̃) :=
{
1 if q ;= q̃
0 if q = q̃,

the associated Wasserstein distance Wρ0 coincides with the total variation distance.
On the other hand, Pinsker’s inequality (see e.g. [82]) states that

‖ν − ν̃‖TV ≤
√
1
2
DKL(ν̃|ν), (5.16)

for any ν, ν̃ ∈ Pr(X), ν̃ : ν. Moreover, as showed e.g. in [20, Appendix],

‖ν − ν̃‖TV ≤ 1 − 1
2
exp (−DKL(ν̃|ν)) (5.17)

for all ν, ν̃ ∈ Pr(X), ν̃ : ν.

123



Stoch PDE: Anal Comp

Proof (Proof of Proposition 22) Fix any q0, q̃0 ∈ Hγ such that ρ(q0, q̃0) < 1. Then,
recalling the notation (5.11) and using that ρ is a metric on H we have

Wρ(Pn(q0, ·), Pn(q̃0, ·)) ≤ Wρ(Pn(q0, ·), P̃n(q0, q̃0, ·))
+Wρ(P̃n(q0, q̃0, ·), Pn(q̃0, ·)). (5.18)

Notice that

Wρ(Pn(q0, ·), P̃n(q0, q̃0, ·)) ≤Eρ(Qn(q0), Q̃n(q0, q̃0)) ≤ 1
ε
E
∣∣Qn(q0) − Q̃n(q0, q̃0)

∣∣
γ

≤κ2
ε

|q0 − q̃0|γ = κ2ρ(q0, q̃0), (5.19)

where the last inequality follows from Lemma 25.
For the second term in (5.18), it follows from the coupling lemma (see e.g. [55,

Lemma 1.2.24]) and the fact that ρ ≤ 1 that

Wρ(P̃n(q0, q̃0, ·), Pn(q̃0, ·)) ≤
∥∥P̃n(q0, q̃0, ·) − Pn(q̃0, ·)

∥∥
TV . (5.20)

From (2.21) and (5.12), we have

∥∥P̃n(q0, q̃0, ·) − Pn(q̃0, ·)
∥∥
TV =

∥∥Qn(q̃0)∗σ̃n − Qn(q̃0)∗σn
∥∥
TV .

Moreover, from the definition of the total variation distance in (5.14) and inequality
(5.16), we infer

∥∥Qn(q̃0)∗σ̃n − Qn(q̃0)∗σn
∥∥
TV ≤ ‖σ̃n − σn‖TV ≤

√
1
2
DKL(σ̃n|σn). (5.21)

As a consequence of Girsanov’s Theorem, we obtain

dσn

dσ̃n
(Rn(V)) = exp

(
1
2
|C−1/2V|2 − 1

2
|C−1/2Rn(V)|2

)
for any V ∈ H⊗n

1/2,

(5.22)

withRn as defined in (5.10). Thus,

DKL(σ̃n |σn) =
∫

log
(
dσ̃n

dσn
(V)
)

σ̃n(dV) = −
∫

log
(
dσn

dσ̃n
(V)
)

σ̃n(dV)

= −
∫

log
(
dσn

dσ̃n
(Rn(V))

)
σn(dV) =

∫ (
−1
2
|V|21/2 +

1
2
|Rn(V)|21/2

)
σn(dV)

=
∫ (

〈Sn(V),V〉1/2 +
1
2
|Sn(V)|21/2

)
σn(dV) =

1
2

∫
|Sn(V)|21/2σn(dV)

= 1
2

n∑

j=1

E|S j (·)|21/2. (5.23)
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Here note that, taking V = (v1, . . . , vn) and V j = (v1, . . . , v j ) for j ≤ n we have

∫
〈Sn(V),V〉1/2σn(dV) =

n∑

j=1

∫
〈S j (V j−1), v j 〉1/2σn(dV)

=
n∑

j=1

∫ ∫
〈S j (V j−1), v j 〉1/2σ (dv j )σ j−1(dV j−1) = 0,

which justifies dropping this term in (5.23). Now, from the definition of S j in (5.7),
(2.5) in Lemma 4 and (3.18) it follows that

|S j (V
j−1
0 )|21/2 ≤ λ

−1+2γ
N

∣∣∣S j (V
j−1
0 )

∣∣∣
2

γ
≤ λ

−1+2γ
N

∣∣∣S j (V
j−1
0 )

∣∣∣
2

γ ,α

≤ T−2λ
−1+2γ
N κ

2( j−1)
1 |q0 − q̃0|2γ ,α

≤ T−2λ
−1+2γ
N κ

2( j−1)
1 2α2 |q0 − q̃0|2γ ,

for each j ≥ 1, with α as defined in (3.21). Therefore,

DKL(σ̃n|σn) ≤ λ
−1+2γ
N α2

T 2 |q0 − q̃0|2γ
n∑

j=1

κ
2( j−1)
1 ≤ λ

−1+2γ
N α2

T 2(1 − κ2
1 )

|q0 − q̃0|2γ ,

(5.24)

so that, combining this observation with (5.20)–(5.21), and our standing assumption
that ρ(q0, q̃0) < 1,

Wρ(P̃n(q0, q̃0, ·), Pn(q̃0, ·)) ≤
λ
− 1

2+γ

N α
√
2T (1 − κ21 )

1/2
|q0 − q̃0|γ =

λ
− 1

2+γ

N αε
√
2T (1 − κ21 )

1/2
ρ(q0, q̃0).

(5.25)

We therefore conclude (5.2) from (5.18), (5.19) and (5.25), completing the proof of
Proposition 22. 45

Proof (Proof of Proposition 24)We proceed similarly as in the proof of Proposition 22
starting with the splitting (5.18). Fix any q0, q̃0 ∈ A. The first term after inequality
(5.18) is estimated exactly as in (5.19), so that

Wρ(Pn(q0, ·), P̃n(q0, q̃0, ·)) ≤ κ2

ε
|q0 − q̃0|γ ≤ 2Mκ2

ε
.

The second term in (5.18) is estimated by using (5.17) and (5.24) as

Wρ(P̃n(q0, q̃0, ·), Pn(q̃0, ·)) ≤‖σ̃n − σn‖TV ≤ 1 − 1
2
exp (−DKL(σ̃n|σn))
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≤1 − 1
2
exp

(

− λ
−1+2γ
N α2

T 2(1 − κ2
1 )

|q0 − q̃0|2γ
)

,

with α as defined in (3.21). Hence, together with (5.18) and using that q0, q̃0 ∈ A, we
conclude (5.5). 45

6 Main result

Having obtained in the previous sections a Foster–Lyapunov structure (4.1) together
with the smallness and contractivity properties (5.2)–(5.5) for the Markov kernel P in
(1.3), we are now ready to proceed with the proof of our main result. As pointed out
in the introduction, the spectral gap (6.2) below follows as a consequence of the weak
Harris theorem given the aforementioned properties.

We provide a self-contained presentation of theweakHarris approach in this section
both for completeness and in order to make some of the constants in the proof more
explicit. We start by noticing that it is enough to show (6.2) for ν1, ν2 being Dirac
measures, say concentrated at points q0, q̃0 ∈ Hγ . The proof is then split into three
possible cases for such points: ρ(q0, q̃0) < 1 (‘close to each other’); ρ(q0, q̃0) = 1
with V (q0)+ V (q̃0) > 4KV (‘far from the origin’); and ρ(q0, q̃0) = 1 with V (q0)+
V (q̃0) ≤ 4KV (‘close to the origin’). The first case follows from the contraction
result in Proposition 22 together with the Lyapunov structure from Proposition 20.
The second case follows entirely from the Lyapunov property. Lastly, the third case
follows by invoking the smallness result in Proposition 24 as well as the Lyapunov
structure. Finally, the second part of our main result, namely (6.4)–(6.6), follows
essentially from the spectral gap (6.2) by invoking Propositions 40, 43 and 46, which
are all proved in detail in Appendix 1.

Theorem 26 Fix γ ∈ [0, 1/2). Suppose Assumptions 2, 5, 8 and 10 are satisfied and
choose an integration time T > 0 such that

T ≤ min

{
1

[2(1+ λ
1−2γ
1 L1)]1/2

,
L1/2
2

2
√
6(1+ λ

1−2γ
1 L1)

}

. (6.1)

Here the constants L1, L2 are as in (2.7) and (2.8) and λ1 is the largest eigenvalue
of the covariance operator C defined as in Assumption 2. Let V : Hγ → R+ be a
Lyapunov function for the Markov kernel P defined in (2.16) of the form (4.3) or (4.4).
Then, there exists ε > 0, C1 > 0 and C2 > 0 such that, for every ν1, ν2 ∈ Pr(H) with
support included in Hγ ,

Wρ̃(ν1P
n, ν2Pn) ≤ C1e−C2nWρ̃(ν1, ν2) for all n ∈ N, (6.2)

where ρ̃ : Hγ × Hγ → R+ is the distance-like function given by

ρ̃(q, q̃) =
√

ρ(q, q̃)(1+ V (q)+ V (q̃)) for all q, q̃ ∈ Hγ ,
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with ρ as defined in (5.1).
Moreover, with respect to µ defined in (1.1), i.e. the invariant measure for P (cf.

Proposition 13), the following results hold: for any observable Φ : Hγ → R such
that

LΦ := sup
q∈Hγ

max{2|Φ(q)|,√ε|DΦ(q)|L(Hγ )}√
1+ V (q)

< ∞, (6.3)

with | · |L(Hγ ) denoting the standard operator norm of a linear functional on Hγ , we
have

∣∣∣∣P
nΦ(q) −

∫
Φ(q′)µ(dq ′)

∣∣∣∣ ≤ LΦC1e−nC2

∫ √
1+ V (q)+ V (q′)µ(dq′), (6.4)

for every n ∈ N and q ∈ Hγ . On the other hand, taking {Qk(q0)}k≥0 to be any process
associated to {Pk(q0, ·)}k≥0 as in (2.21), we have, for any measurable observable
maintaining (6.3), that

lim
n→∞

1
n

n∑

k=1

Φ(Qk(q)) =
∫

Φ(q′)µ(dq′), almost surely, (6.5)

for all q ∈ Hγ . Furthermore,

√
n

[
1
n

n∑

k=1

Φ(Qk(q)) −
∫

Φ(q′)µ(dq′))

]

⇒ N (0, σ 2(Φ)) as n → ∞, (6.6)

for all q ∈ Hγ , i.e. the expression in the left-hand side of (6.6) converges weakly to a
real-valued gaussian random variable with mean zero and covariance σ 2(Φ), where
σ 2(Φ) is specified explicitly as (A.36) below, with µ∗ replaced by µ.

Proof We claim it suffices to show that there exists ε > 0, C1 > 0 and C2 > 0 such
that

Wρ̃(P
n(q0, ·), Pn(q̃0, ·)) ≤ C1e−C2n ρ̃(q0, q̃0) for all q0, q̃0 ∈ Hγ and n ∈ N.

(6.7)

Indeed, since ρ̃ is lower-semicontinuous and non-negative, it follows from [83, The-
orem 4.8] that

Wρ̃(ν1P
n, ν2Pn) ≤

∫
Wρ̃(P

n(q0, ·), Pn(q̃0, ·))Γ (dq0, dq̃0)

for all Γ ∈ C(ν1, ν2) and n ∈ N.
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Clearly, if ν1 and ν2 have supports included inHγ , then Γ ∈ C(ν1, ν2) has support
included in Hγ × Hγ . Hence, if (6.7) holds then

Wρ̃(ν1P
n, ν2Pn) ≤ C1e−C2n

∫
ρ̃(q0, q̃0)Γ (dq0, dq̃0) (6.8)

for all Γ ∈ C(ν1, ν2) and n ∈ N, which implies (6.2).
In order to show (6.7), we consider an auxiliary metric defined as

ρ̃β(q, q̃) =
√

ρ(q, q̃)(1+ βV (q)+ βV (q̃)), for all q, q̃ ∈ Hγ ,

with the additional parameter β > 0 to be appropriately chosen below; cf. (6.18).
Notice that ρ̃ and ρ̃β are equivalent. Indeed,

(min{1,β})1/2 ρ̃(q, q̃) ≤ ρ̃β(q, q̃) ≤ (max{1,β})1/2 ρ̃(q, q̃), for all q, q̃ ∈ Hγ .

(6.9)

We now show that

Wρ̃β
(Pn(q0, ·), Pn(q̃0, ·)) ≤ κ5(n)ρ̃β(q0, q̃0) for all n ≥ 1 and q0, q̃0 ∈ Hγ ,

(6.10)

such that, for suitably chosen ε > 0, β > 0, and for n0 ∈ N sufficiently large we have
κ5(n) < 1 for every n ≥ n0. We then subsequently use this bound to establish (6.7)
as in (6.27) below.

The analysis leading to (6.10) is split into three cases:
Case1 : Suppose that ρ(q0, q̃0) < 1, so that ρ(q0, q̃0) = |q0 − q̃0|γ ε−1.

By Hölder’s inequality, we obtain

Wρ̃β
(Pn(q0, ·), Pn(q̃0, ·))2

≤ inf
Γ ∈C(δq0 Pn ,δq̃0 P

n)

{(∫
ρ(q, q̃)Γ (dq, dq̃)

)(∫
(1+ βV (q)+ βV (q̃))Γ (dq, dq̃)

)}

=
(
1+ βPnV (q0)+ βPnV (q̃0)

)
Wρ(Pn(q0, ·), Pn(q̃0, ·)).

(6.11)

From Propositions 20 and 22, it follows that

Wρ̃β
(Pn(q0, ·), Pn(q̃0, ·))2 ≤

(
1+ βκn

V V (q0)+ βκn
V V (q̃0)+ 2βKV

)
κ3ρ(q0, q̃0)

≤ (1+ βV (q0)+ βV (q̃0)+ 2βKV ) κ3ρ(q0, q̃0)
≤ κ3(1+ 2βKV ) (1+ βV (q0)+ βV (q̃0)) ρ(q0, q̃0)

= κ3(1+ 2βKV )
(
ρ̃β(q0, q̃0)

)2
. (6.12)

Case2 : Suppose that ρ(q0, q̃0) = 1 and V (q0)+ V (q̃0) > 4KV .
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Since ρ(·, ·) ≤ 1 and again invoking Proposition 20 we obtain

Wρ̃β
(Pn(q0, ·), Pn(q̃0, ·))2 (6.13)

≤ 1+ βPnV (q0)+ βPnV (q̃0)
≤ 1+ βκn

V V (q0)+ βκn
V V (q̃0)+ 2βKV

= 1+ 2βKV

1+ 3βKV
(1+ 3βKV )+ κn

Vβ(V (q0)+ V (q̃0))

≤ max
{
1+ 2βKV

1+ 3βKV
, 4κn

V

}(
1+ 3βKV + β

4
(V (q0)+ V (q̃0))

)

< max
{
1+ 2βKV

1+ 3βKV
, 4κn

V

}
(1+ βV (q0)+ βV (q̃0))

= max
{
1+ 2βKV

1+ 3βKV
, 4κn

V

} (
ρ̃β(q0, q̃0)

)2
. (6.14)

Case3 : Suppose that ρ(q0, q̃0) = 1 and V (q0)+ V (q̃0) ≤ 4KV .
We proceed as in (6.11), but now use Proposition 24 to estimate the term

Wρ(Pn(q0, ·), Pn(q̃0, ·)). First, let MV > 0 be such that

{
q ∈ Hγ : V (q) ≤ 4KV

}
=
{
q ∈ Hγ : |q|γ ≤ MV

}
.

Notice that the specific definition of MV depends on the choice of Lyapunov func-
tion V (which defines the constant KV , cf. (4.3)–(4.4)). Thus, for any q0, q̃0 ∈{
q ∈ Hγ : V (q) ≤ 4KV

}
from Proposition 24, it follows that

Wρ(Pn(q0, ·), Pn(q̃0, ·)) ≤ 1 − κ4,

where

κ4 = κ4(n) :=
1
2
exp

(

−16L1α
2M2

V

T 2(1 − κ2
1 )

)

− 2MV κ2(n)
ε

, (6.15)

with κ1 and κ2 as defined in (5.4) and α = 4(1+ λ
1−2γ
1 L1) (cf. (3.21)). Hence,

Wρ̃β
(Pn(q0, ·), Pn(q̃0, ·))2 ≤ (1 − κ4)

(
1+ βκn

V (V (q0)+ V (q̃0))+ 2βKV
)

≤ (1 − κ4)(1+ 2(1+ 2κn
V )βKV )

≤ (1 − κ4)(1+ 2(1+ 2κn
V )βKV )

(
ρ̃β(q0, q̃0)

)2
.

(6.16)

From (6.12), (6.13) and (6.16), we now obtain the bound (6.10) with κ5 = κ5(n)
defined as
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κ5(n) =
(
max

{
(1+ 2βKV )κ3(n),max

{
1+ 2βKV

1+ 3βKV
, 4κn

V

}
,

(1 − κ4(n))(1+ 2(1+ 2κn
V )βKV )

})1/2
. (6.17)

We claim that if we now choose ε > 0, β > 0 satisfying

ε ≤ T (1 − κ2
1 )

1/2

8
√
2αL1/2

1

and β ≤ 1
12KV

exp

(

−16L1α
2M2

V

T 2(1 − κ2
1 )

)

, (6.18)

and n0 ∈ N satisfying

κ
n0
1 ≤ min

{
1

4
√
2α

,
ε

8
√
2αMV

exp

(

−16L1α
2M2

V

T 2(1 − κ2
1 )

)}

and κ
n0
V ≤ 1

8
, (6.19)

then indeed we have

κ5(n) ≤ κ5(n0) ≤
(

max

{
1+ 2βKV

1+ 3βKV
, 1 − 1

16
exp

(

−32L1α
2M2

V

T 2(1 − κ2
1 )

)})1/2

< 1

(6.20)

for all n ≥ n0, as we desired in the estimate (6.10).
To see this bound in (6.20) observe that since κ

n0
1 ≤ (4

√
2α)−1 and ε satisfies the

first inequality in (6.18), then it follows from the definitions of κ2 and κ3 in (5.4) and
(5.3), respectively, that

κ2(n) ≤ 1
4

and κ3(n) ≤ 3
8

for all n ≥ n0. (6.21)

From (6.18), we have in particular that β ≤ (12KV )
−1. Together with (6.21), this

yields

(1+ 2βKV )κ3(n) ≤ 1
2

for all n ≥ n0. (6.22)

Moreover, since κ
n0
V ≤ 1/8, then

max
{
1+ 2βKV

1+ 3βKV
, 4κn

V

}
≤ max

{
1+ 2βKV

1+ 3βKV
,
1
2

}
= 1+ 2βKV

1+ 3βKV
. (6.23)

Also, from the definition of κ2 in (5.4) and the first condition in (6.19), it follows that
κ4, defined in (6.15), satisfies

κ4(n) ≥ 1
4
exp

(

−16L1α
2M2

V

T 2(1 − κ2
1 )

)

for all n ≥ n0. (6.24)
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Thus, with condition (6.18) on β, we obtain

(1 − κ4(n))(1+ 3βKV ) ≤ 1 − 1
16

exp

(

−32L1α
2M2

V

T 2(1 − κ2
1 )

)

for all n ≥ n0. (6.25)

Combining now (6.17), (6.22), (6.23) and (6.25) we now conclude (6.20).
We turn now to show that (6.10) implies (6.7) and, consequently, (6.2). First

note that, by the same arguments as in (6.7)–(6.8) we have that (6.10) implies
Wρ̃β

(ν1Pn, ν2Pn) ≤ κ5Wρ̃β
(ν1, ν2) for all n ≥ n0 and ν1, ν2 ∈ Pr(Hγ ) with support

included in Hγ . Now, for any n ∈ N, we can write n = mn0 + k, for some m, k ∈ N
with k ≤ n0 − 1. Thus,

Wρ̃β
(Pn(q0, ·), Pn(q̃0, ·)) = Wρ̃β

(Pmn0+k(q0, ·), Pmn0+k(q̃0, ·))
≤ κ5(n0)mWρ̃β

(Pk(q0, ·), Pk(q̃0, ·))
≤ κ5(n0)mκ5(k)ρ̃β(q0, q̃0)

≤ κ5(n0)
n
n0

−1
κ5(n0 − 1)ρ̃β(q0, q̃0),

where in the last inequalitywe used that κ5 is a non-increasing function of n.Moreover,
from the equivalence between ρ̃ and ρ̃β in (6.9), we obtain

Wρ̃(P
n(q0, ·), Pn(q̃0, ·)) ≤

(
max{1,β}
min{1,β}

)1/2
κ5(n0)

n
n0

−1
κ5(n0 − 1)ρ̃(q0, q̃0)

≤
(
max{1,β}
min{1,β}

)1/2 κ5(n0 − 1)
κ5(n0)

exp
(
n log

(
κ5(n0)

1
n0

))
ρ̃(q0, q̃0) for all n ∈ N.

(6.26)

Therefore, with the constants

C1 :=
(
max{1,β}
min{1,β}

)1/2 κ5(n0 − 1)
κ5(n0)

and C2 := − log
(

κ5(n0)
1
n0

)
, (6.27)

(6.7) and consequently (6.2) are now established.
Finally, the second part of the proof, namely (6.4)–(6.6) under assumption (6.3),

follow as a direct consequence of Proposition 40 and 43 combinedwith Proposition 46.
45

7 Implications for the finite dimensional setting

The approach given above can be modified in a straightforward fashion to provide
a novel proof of the ergodicity of the exact HMC algorithm in finite dimensions.
We detail this connection in this section. We abuse notation and use the same termi-
nology for the analogous constants and operators from the infinite-dimensional case
introduced in the previous sections.
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We take our phase space to be H = Rk , k ∈ N, endowed with the Euclidean inner
product and norm, which are denoted by 〈·, ·〉 and | · |, respectively. Similarly to (1.1)
above we fix a target probability measure of the form

µ(dq) ∝ exp(−U (q))µ0(dq) with µ0 = N (0, C), (7.1)

where C is a symmetric strictly positive-definite covariance matrix. Here we aim to
sample from µ using the dynamics

dq
dt

= M−1p
dp
dt

= −C−1q − DU (q) (7.2)

corresponding to the Hamiltonian

H(q,p) = 1
2
〈C−1q,q〉 +U (q)+ 1

2
〈M−1p,p〉, (7.3)

where M is a user-specified ‘mass matrix’ which we suppose to be symmetric and
strictly positive definite; and U : Rk → R is a C2 potential function. Let us denote
by λM and ΛM the smallest and largest eigenvalues of M. Analogously, let λC and
ΛC be the smallest and largest eigenvalues of C.

We impose the following conditions on the potential function U (cf. Assumption 8
above):

Assumption 27

(F1) There exists a constant L1 ≥ 0 such that

|D2U (f)| ≤ L1 for any f ∈ Rk . (7.4)

(F2) There exist constants L2 > 0 and L3 ≥ 0 such that

|M−1/2C−1/2f|2 + 〈f,M−1DU (f)〉 ≥ L2|M−1/2C−1/2f|2 − L3 for any f ∈ Rk .

(7.5)

Note that under (7.4), U is globally Lipschitz so that (7.2) yields a well defined
dynamical system on C1(R,Rk) as above in Proposition 12. Furthermore, similarly
as in Remark 9, we have:

(i) From (7.4), it follows that

|DU (f)| ≤ L1|f | + L0 for every f ∈ Rk . (7.6)

where L0 = |DU (0)|.
(ii) If |DU (f)| ≤ L4|f | + L5 for some L4 ∈ [0, λM(ΛMΛC)−1) and L5 ≥ 0, then

(7.5) follows.
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(iii) Assumptions (F1) and (F2) imply that

L2 ≤ 1+ ΛMΛCλ−1
ML1. (7.7)

Fixing an integration time T > 0, and under the given conditions on C,M and U
in (7.2) we have a well-defined Feller Markov transition kernel defined as

P(q0, A) = P(qT (q0,p0) ∈ A) (7.8)

for any q0 ∈ Rk and any Borel set A ⊂ Rk , where

p0 ∼ N (0,M). (7.9)

Here, following previous notation, qT (q0,p0) is the solution of (7.2) at time T starting
from the initial position q0 ∈ Rk and momentum p0 ∈ Rk . The n-fold iteration of the
kernel P is denoted as Pn .

As in Theorem 26, we measure the convergence of Pn using a suitable Wasserstein
distance. In this case, we take

ρ̃(q, q̃) =
√

ρ(q, q̃)(1+ V (q)+ V (q̃)) where ρ(q, q̃) = |q − q̃|
ε

∧ 1 (7.10)

and V is a Foster–Lyapunov function defined as either V (q) = V1,i (q) = |q|i , i ∈ N,
or as V (q) = V2,η(q) = exp(η|q|2), with η > 0 satisfying

η <

[
2 Tr(M)

(
67
8
T 2 + 32

L2(ΛMΛC)−1

)
λ−2
M

]−1

. (7.11)

We then consider the correspondingWasserstein distanceWρ̃ and prove the theorem
below concerning the exact HMC kernel P .

Theorem 28 Consider the Markov kernel P defined as (7.8), (7.9) from the dynamics
(7.2).We suppose thatMandC in (7.2)are both symmetric and strictly positive definite
and we assume that the potential function U satisfies Assumption 27. In addition, we
impose the following condition on the integration time T > 0:

T ≤ min





1

[
2λ−1

M(λ−1
C + L1)

]1/2 ,
L1/2
2 (ΛMΛC)−1/2

2
√
6λ−1

M(λ−1
C + L1)





, (7.12)

where λM and ΛM denote the smallest and largest eigenvalues ofM, while λC and
ΛC denote the smallest and largest eigenvalues of C, respectively.

Then P has a unique ergodic invariant measure given by µ in (7.1). Moreover, P
satisfies the following spectral gap condition with respect to the Wasserstein distance
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Wρ̃ associated to ρ̃ defined in (7.10): For all ν1, ν2 Borel probability measures onRk ,

Wρ̃(ν1P
n, ν2Pm) ≤ C1e−C2nWρ̃(ν1, ν2) for all n ∈ N, (7.13)

where the constants C1,C2, ε > 0 are independent of ν1, ν2 and k, and can be given
explicitly as depending exclusively on L1, L2, L3, T , M and C.

Remark 29 Similarly as in Theorem 26, we can also show that (7.13) implies a con-
vergence result with respect to suitable observables as in (6.4), as well as a strong law
of large numbers and a central limit theorem analogous to (6.5)–(6.6).

Proof The proof follows very similar steps to the results from Sects. 3, 4, 5 and 6, so
we only point out the main differences.

From (7.2), it follows that

d2q
dt2

= −M−1C−1q − M−1DU (q),

so that, after integrating with respect to t ∈ [0, T ] twice, we have

qt − (q0 + tM−1p0) = −
∫ t

0

∫ s

0

(
M−1C−1qτ +M−1DU (qτ )

)
dτds (7.14)

Using that

|M−1f | ≤ λ−1
M|f | and |C−1f | ≤ λ−1

C |f | for every f ∈ Rk,

together with (7.6) and the condition T ≤ [λ−1
M(λ−1

C + L1)]−1/2, one obtains, analo-
gously to (3.2) and (3.3),

sup
t∈[0,T ]

|qt − (q0 + tM−1p0)| ≤ λ−1
M(λ−1

C + L1)T 2 max
{
|q0|, |q0 + TM−1p0|

}

+λ−1
ML0T 2 (7.15)

and

sup
t∈[0,T ]

|pt − p0| ≤(λ−1
C + L1)t

[
1+ λ−1

M(λ−1
C + L1)t2

]
max

{
|q0|, |q0 + TM−1p0|

}

+ L0t
[
1+ λ−1

M(λ−1
C + L1)t2

]
. (7.16)

Moreover, analogously to (3.11),weobtain that for every (q0,p0), (q̃0, p̃0) ∈ Rk×Rk ,

sup
t∈[0,T ]

|qt (q0,p0) − qt (q̃0, p̃0) − [(q0 − q̃0)+ tM−1(p0 − p̃0)]|

≤ λ−1
M(λ−1

C + L1)T 2 max
{
|q0 − q̃0|, |q0 − q̃0 + tM−1(p0 − p̃0)|

}
.
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In particular, if p̃0 = p0 +M(q0 − q̃0)T−1 then

sup
t∈[0,T ]

|qt (q0,p0) − qt (q̃0, p̃0)| ≤ λ−1
M(λ−1

C + L1)T 2|q0 − q̃0| ≤ 1
2
|q0 − q̃0|.

(7.17)

We also show that V (q) = |q|i with i ≥ 1 or V (q) = exp(η|q|2), with η > 0
satisfying (7.11), all verify a Foster–Lyapunov structure as in Definition 19. The proof
follows as in Proposition 20, with the difference starting from (4.7), which is now
written as

d
ds

〈qs,M−1ps〉 = |M−1ps |2 − |M−1/2C−1/2qs |2 − 〈qs,M−1DU (qs)〉. (7.18)

Using now (F2) from Assumption 27 and the inequalities

|M−1/2f | ≥ Λ
−1/2
M |f | and |C−1/2f | ≥ Λ

−1/2
C |f | for all f ∈ Rk,

we obtain from (7.18) that

|qT |2 ≤ |q0|2 + 2T 〈q0,M−1p0〉 + 2
∫ T

0

∫ s

0

[
λ−2
M|pτ |2 − L2(ΛMΛC)

−1|qτ |2 + L3

]
dτds.

(7.19)

Then, with (7.7), the a priori bounds (7.15)–(7.16) and the fact that 2λ−1
M(λ−1

C +
L1)T 2 ≤ 1 from hypothesis (7.12), we arrive at

|qT |2 ≤
(
1+ 3

2
λ−2
M(λ−1

C + L1)
2T 4 − L2

8
(ΛMΛC)

−1T 2
)
|q0|2 + 2T 〈q0,M−1p0〉

+ 67
8

λ−2
MT 2|p0|2 +

3
2
L2
0λ

−2
MT 4 + L2

0

6
λ−2
MT 4 + L3T 2. (7.20)

From the second condition in hypothesis (7.12) it follows that (3/2)λ−2
M(λ−1

C +
L1)

2T 4 ≤ (L2/16)(ΛMΛC)−1T 2, so that after taking expected values in (7.20)
we obtain

E|qT |2 ≤ exp
(

− L2

16
(ΛMΛC)

−1T 2
)
|q0|2 +

(
67
8

λ−2
M Tr(M)+ 5

3
λ−2
ML2

0T
2 + L3

)
T 2.

Now proceeding analogously as in (4.15)–(4.20), we obtain that for V : Rk → R
given either as V (q) = |q|i , i ∈ N, or V (q) = exp(η|q|2), with η > 0 satisfying
(7.11), there exist constants κV ∈ [0, 1) and KV > 0 such that

PnV (q0) ≤ κn
V V (q0)+ KV for all q0 ∈ Rk, for all n ∈ N, (7.21)

i.e. these are Lyapunov functions for P .
Let (Rk)n denote the product of n copies of Rk and let N (0,M)⊗n denote the

product of n copies of N (0,M). Analogously to Sect. 5, given q0 ∈ Rk and a
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sequence {p( j)0 } j∈N of i.i.d. draws fromN (0,M), we denote P(n)
0 = (p(1)0 , . . . ,p(n)0 ),

for all n ∈ N, and take Qn(q0, ·) : (Rk)n → Rk , according to

Q1(q0,p
(1)
0 ) = qT (q0,p

(1)
0 ), Qn(q0,P

(n)
0 ) = qT (Qn−1(q0,P

(n−1)
0 ),p(n)0 ).

for all n ≥ 2.
Similarly, given any q0, q̃0 ∈ Rk we take Q̃n(q0, q̃0, ·) : (Rk)n → Rk to be the

random variables starting from

Q̃1(q0, q̃0,p
(1)
0 ) = qT (q̃0,p

(1)
0 + T−1M(q0 − q̃0)),

then defined for each integer n ≥ 2 as

Q̃n(q0, q̃0,P
(n)
0 ) = qT (Q̃n−1(q0, q̃0,P

(n−1)
0 ),p(n)0 + Sn(P

(n−1)
0 ))

with

Sn(P
(n−1)
0 ) = T−1M

[
Qn−1(q0,P

(n−1)
0 ) − Q̃n−1(q0, q̃0,P

(n−1)
0 )

]
for all n ≥ 2.

(7.22)

We also denote

Sn(P
(n)
0 ) = (S1,S2(P

(1)
0 ), . . . ,Sn(P

(n−1)
0 )), with S1 = T−1(q0 − q̃0),

and Ψ n(P
(n)
0 ) = P(n)

0 +Sn(P
(n)
0 ). Thus, by using inequality (7.17) n times iteratively,

we obtain that

|Qn(q0,P
(n)
0 ) − Q̃n(q0, q̃0,P

(n)
0 )| ≤ 1

2n
|q0 − q̃0|, (7.23)

for all P(n)
0 ∈ (Rk)n .

Let σn = Law(P(n)
0 ) = N (0,M)⊗n and σ̃n = Law(Ψ n(P

(n)
0 )) = Ψ ∗

nνn . Anal-
ogously as in Propositions 22 and 24, we obtain that the distance-like function ρ

defined in (7.10) satisfies contractivity and smallness properties with respect to the
Markov operator Pn for n sufficiently large. Here, the main difference lies in the esti-
mate of Kullback-Leibler Divergence DKL(σ̃n|σn), (5.15). Proceeding similarly as in
(5.22)–(5.23), we arrive at

DKL(σ̃n|σn) ≤ 1
2

n∑

j=1

E|M−1/2S j (·)|2.

Using (7.23), it follows that for every j ∈ {1, . . . , n} and P( j−1)
0 ∈ (Rk)( j−1)

|M−1/2S j (P
( j−1)
0 )|2 ≤ λ−1

M|S j (P
( j−1)
0 )|2
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≤ λ−1
MΛ2

MT−2|Q j−1(q0)(P
( j−1)
0 ) − Q̃ j−1(q0, q̃0)(P

( j−1)
0 )|2

≤ λ−1
MΛ2

MT−2

2( j−1)2 |q0 − q̃0|2,

where in the second inequality we used that |M · |2 ≤ Λ2
M| · |2. Hence,

DKL(σ̃n|σn) ≤ λ−1
MΛ2

MT−2

2
|q0 − q̃0|2

n∑

j=1

1
2( j−1)2 ≤ 4Λ2

M
λMT 2 |q0 − q̃0|2. (7.24)

By using (7.24), one obtains analogously as in Proposition 22 that for every n ∈ N
and for every q0, q̃0 ∈ Rk such that ρ(q0, q̃0) < 1, we have

Wρ(Pn(q0, ·), Pn(q̃0, ·)) ≤
(

1
2n

+
√
2ΛMε

λ
1/2
M T

)

ρ(q0, q̃0). (7.25)

Moreover, analogously as in Proposition 24, we obtain that, given M ≥ 0, for every
q0, q̃0 ∈ A := {q ∈ Rk : |q| ≤ M}, it holds:

Wρ(Pn(q0, ·), Pn(q̃0, ·)) ≤ 1 − 1
2
exp

(

−16Λ2
MM2

λMT 2

)

+ M
2n−1ε

. (7.26)

The remaining portion of the proof now follows as for Theorem 26, by combining
(7.21), (7.25) and (7.26). 45

Remark 30 From condition (7.12) on the integration time T , we see how the upper
bound could potentially degenerate to zero in case the eigenvalues of C and/or the
eigenvalues of M decay to zero as the dimension of Rk increases. Moreover, if the
eigenvalues ofM decrease to zero (i.e. λM → 0) or increase to infinity (i.e. ΛM →
∞) with respect to k, then, for fixed n, ε and T , the upper bound in (7.25) increases to
infinity, and the first two terms in the upper bound in (7.26) increase to 1. This would
imply that the convergence rate in (7.13), which is directly proportional to the upper
bounds in (7.25)–(7.26) and inversely proportional to T , would become ‘slower’ as k
increases. In otherwords, the number n of iterations necessary for the distance between
ν1Pn and ν2Pn to decay within a given δ > 0 would increase with the dimension k.
This type of behavior is commonly known as the ‘curse of dimensionality’.

A natural choice for the mass matrixM to avoid such unwanted behavior is given
byM = C−1 – this is the idea behind preconditioning in [6] which leads us to consider
(1.2) in the infinite dimensional formulation. In this preconditioned case, one could
use that λM = Λ−1

C and ΛM = λ−1
C directly in (7.12) to obtain

T ≤ min

{
1

[2ΛC(λ
−1
C + L1)]1/2

,
L1/2
2 (λ−1

C ΛC)−1/2

2
√
6ΛC(λ

−1
C + L1)

}

, (7.27)
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where the upper bound actually still degenerates to zero in case λC → 0 as k → ∞
(corresponding to the trace-class assumption on C in the infinite-dimensional case).
However, the inequalities that lead to the condition on T as in (7.27) would in fact be a
rough overestimate in this case. Indeed, forM = C−1, the termM−1C−1qτ in (7.14)
is simply equal to qτ and thus we no longer estimate from above by λ−1

Mλ−1
C |qτ | as

in (7.15). Similarly, the term |M−1/2C−1/2qs |2 in (7.18) is simply |qs |2 and thus no
longer estimated from below by (ΛMΛC)−1|qτ |2 as in (7.19). With these changes, T
is required to satisfy instead

T ≤ min

{
1

[2(1+ ΛCL1)]1/2
,

L1/2
2

2
√
6(1+ ΛCL1)

}

,

which is consistent with condition (6.1) for ΛC = λ1 (when γ = 0), and thus inde-
pendent of k when ΛC is uniformly bounded with respect to k.

On the other hand, replacing ΛM with λ−1
C in (7.25) and (7.26), we see that the

same unwanted behavior is not removed here when λC → 0 as k → ∞; i.e. the
convergence rate would still degenerate with the dimension k. This emphasizes the
need for considering ‘shifts’ in the momentum (or velocity) paths for the modified
process Q̃n(q0, q̃0, ·), q0, q̃0 ∈ Rk , that are restricted to a fixed number of directions
in Rk , for every k, as done in (5.7) through the projection operator ΠN , with N
sufficiently large but fixed (cf. (7.22)).

8 Application for the Bayesian estimation of divergence free flows
from a passive scalar

In this section we establish some results concerning the degree of applicability of
Theorem 26 to the PDE inverse problem of estimating a divergence free flow from a
passive scalar as we described above in the introduction, cf. (1.9), (1.10), (1.11).

For this purpose, according to the conditions required in Assumption 8, we wish to
establish suitable bounds on U , DU and D2U . Of course such bounds are expected
to depend crucially on the form of the observation operator O. Here, adopting the
notationsU ξ = 〈DU , ξ 〉 andU ξ,ξ̃ = 〈D2Uξ, ξ̃〉 for directional derivatives ofU with
respect to vectors ξ, ξ̃ in the phase space, we have that

U ξ (q) = −2〈Γ −1/2(Y − O(θ(q))),Γ −1/2O(ψξ (q))〉 (8.1)

and

U ξ,ξ̃ (q)

= 2〈Γ −1/2O(ψξ̃ (q)),Γ −1/2O(ψξ (q))〉 − 2〈Γ −1/2(Y − O(θ(q))),Γ −1/2O(ψξ,ξ̃ (q))〉
(8.2)

where ψξ (q) = ψξ (t;q) obeys

∂tψ
ξ + q · ∇ψξ = κ∆ψξ − ξ · ∇θ(q), ψξ (0;q) = 0 (8.3)
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and ψξ,ξ̃ (q) = ψξ,ξ̃ (t;q) satisfies

∂tψ
ξ,ξ̃ + q · ∇ψξ,ξ̃ = κ∆ψξ,ξ̃ − ξ̃ · ∇ψξ − ξ · ∇ψξ̃ , ψξ,ξ̃ (0;q) = 0, (8.4)

for any suitable ξ, ξ̃ .

8.1 Mathematical setting of the advection diffusion equation, associated bounds

In order to place (1.11) in a rigorous functional setting we adapt some results from
[11,12]. In view of (8.3), (8.4) we consider a slightly more general version of (1.9)
where we include an external forcing term f : [0, T ] × T2 → R, namely,

∂tφ + q · ∇φ = κ∆φ + f , φ(0) = φ0. (8.5)

Specially, we need to estimate terms appearing in the gradient and Hessian of U
involving solutions of (8.5) with certain forcing terms; cf. (8.3), (8.4) below.

We adopt the notation Hs(T2) for the Sobolev space of periodic functions with
s ≥ 0 derivatives in L2. Here we denote Λs = (−∆)s/2. Thus, the associated Hs(T2)

norms are given by ‖ · ‖s = ‖Λs · ‖0 where ‖ · ‖0 is the usual L2(T2) norm. We
also make use of the negative Sobolev spaces H−s(T2) for s ≥ 0 defined via duality
relative to L2(T2) with the norms reading as

‖ f ‖−s = sup
‖ξ‖s=1

〈 f , ξ 〉 (8.6)

where 〈·, ·〉 is the usual duality pairing so that 〈 f , ξ 〉 =
∫
T2 f ξdx when f ∈ L2(T2).

All other norms are denoted as ‖ · ‖X where X is the associated space i.e. L∞. We
abuse notation and use the same naming convention Hs(T2) and associated norm ‖ ·‖s
for periodic, divergence free vector fields with s derivatives in L2(T2).

We have the following proposition adapted from [11]:

Proposition 31 (Well-Posedness and Continuity of the solution map for (8.5))

(i) Fix any s ≥ 0 and suppose that q ∈ Hs(T2), φ0 ∈ Hs(T2) ∩ L∞(T2) and
f ∈ L2

loc([0,∞); Hs−1(T2)). Then there exists a unique φ = φ(q,φ0, f ) such
that

φ ∈ L2
loc([0,∞); Hs+1(T2)) ∩ L∞([0,∞); Hs(T2)),

∂φ

∂t
∈ L2

loc([0,∞); Hs−1(T2)) (8.7)

so that in particular1

φ ∈ C([0,∞); Hs(T2))

1 See e.g. [80, Lemma 3.1.2].
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and where φ solves (8.5) at least weakly. Additionally φ maintains the bounds

d
dt

‖φ‖20 + 2κ‖φ‖21 = 2
∫

f φdx, (8.8)

sup
t∈[0,t∗]

‖φ(t)‖L∞ ≤ ‖φ0‖L∞ +
∫ t∗

0
‖ f ‖L∞dt, for any t∗ > 0. (8.9)

When s > 0 we have

d
dt

‖φ‖2s + κ‖φ‖2s+1 ≤ c‖φ‖2s‖q‖as + 2
∫

Λs f Λsφ dx (8.10)

where the constant c = c(κ, s), a = a(κ, s) are independent of q.
(ii) Let φ( j) = φ(q j ,φ0, j , f j ) for j = 1, 2 be two solutions of (8.5) corresponding to

data q j ,φ0, j , f j satisfying the conditions in part (i). Then, takingψ = φ(1)−φ(2),
p = q1 − q2, we have

d
dt

‖ψ‖20 + κ‖ψ‖21 ≤ c‖p‖20‖φ(1)‖2L∞ + c‖ f1 − f2‖2−1 (8.11)

with c = c(κ) independent of q1,q2. Furthermore, in the case when s > 0 we
have

d
dt

‖ψ‖2s + κ‖ψ‖2s+1 ≤ c‖ψ‖2s‖q1‖as + c‖p‖2s‖φ(2)‖2s+1 + c‖ f1 − f2‖2s−1,

(8.12)

where the constants c = c(κ, s), a = a(κ, s) are again independent of q1,q2.

Proposition 31 immediately yields quantitate bounds on derivatives of θ(q) in its
advecting flow q which solve (8.3), (8.4). In turn these bounds provide the quanti-
tative foundation for the estimates on DU and D2U below in Proposition 34 and
Corollary 35.

Proposition 32 Fix any s > 0 and θ0 ∈ L∞(T2) ∩ Hs(T2). Then the map from
Hs(T2) to C([0,∞); Hs(T2)) that associates to each q ∈ Hs(T2) the corresponding
solution θ(q) := θ(·;q, θ0) of (1.9) is aC2 function. Denoteψξ (q) andψξ,ξ̃ (q) as the
directional derivatives of θ in the directions ξ, ξ̃ ∈ Hs(T2). Then ψξ (q) and ψξ,ξ̃ (q)
obey (8.3) and (8.4), respectively, with regularity (8.7) in the sense of Proposition 31.
Furthermore,

(i) For any q, ξ ∈ Hs(T2), t∗ > 0 we have

sup
t≤t∗

‖ψξ (t;q)‖20 +
∫ t∗

0
‖ψξ (t;q)‖21dt ≤ ct∗‖ξ‖20 (8.13)
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and

sup
t≤t∗

‖ψξ (t;q)‖20 +
∫ t∗

0
‖ψξ (t;q)‖21dt ≤ c‖ξ‖2s (8.14)

where c = c(‖θ0‖L∞ , κ) is independent of q, ξ and t∗. Furthermore,

sup
t≤t∗

‖ψξ (t;q)‖2s +
∫ t∗

0
‖ψξ (t;q)‖2s+1dt ≤ c‖ξ‖2s exp(ct∗‖q‖as ) (8.15)

where the constant c = c(s, ‖θ0‖s, κ) is independent of q, ξ and t∗ > 0; and a is
precisely the constant from (8.10).

(ii) On the other hand, given any q, ξ, ξ̃ ∈ Hs(T2), t∗ > 0

sup
t≤t∗

‖ψξ,ξ̃ (t;q)‖20 +
∫ t∗

0
‖ψξ,ξ̃ (t;q)‖21dt ≤ c(‖ξ‖4s + ‖ξ̃‖4s ) (8.16)

where c = c(s, ‖θ0‖L∞ , ‖θ0‖s, κ) is independent of q, ξ, ξ̃ and t∗. Moreover,

sup
t≤t∗

‖ψξ,ξ̃ (t;q)‖2s ≤ c(‖ξ‖4s + ‖ξ̃‖4s ) exp(t∗c‖q‖as ) (8.17)

for a constant c = c(s, ‖θ0‖L∞ , ‖θ0‖s, κ) independent of q, ξ, ξ̃ and t∗ > 0.

Remark 33 With suitable technical adjustments, Proposition 32 can be extended to the
case of Dirichlet boundary condition following the main steps in the proof presented
below.

Before turning to the details of the proof let us recall some useful inequalities.
Firstly the Sobolev embedding theorem in dimension d = 2 is given as

‖g‖L p ≤ c‖g‖Hr for any r ≥ 1 − 2
p
, with 2 ≤ p < ∞, (8.18)

for any g : T2 → R in Hr (T2), where the universal constant c depends only on p and
r . We also make use of the Leibniz-Kato-Ponce inequality which takes the general
form

‖Λr ( f g)‖Lm ≤ C(‖Λr f ‖L p1 ‖g‖Lq1 + ‖ f ‖L p2 ‖Λr g‖Lq2 ) (8.19)

valid for any r ≥ 0, 1 < m < ∞ and 1 < pi , qi ≤ ∞ with m−1 = p−1
j + q−1

j for
j = 1, 2 and where C is a positive constant depending only on r ,m, p1, q1, p2, q2.

Proof The claimed regularity for ψξ , ψξ,ξ̃ follows from Proposition 31 and the forth-
coming formal estimates leading to (8.13)–(8.17) which can be justified in the context
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of an appropriate regularization scheme. We begin by showing (8.13). From (8.8),
namely multiplying (8.3) by ψξ and integrating we have

1
2
d
dt

‖ψξ‖20 + κ‖∇ψξ‖20 = −
∫

T2
ξ · ∇θ(q)ψξdx . (8.20)

Integrating by parts and using that ξ is divergence free
∣∣∣∣

∫

T2
ξ · ∇θ(q)ψξdx

∣∣∣∣ =
∣∣∣∣

∫

T2
ξ · ∇ψξθ(q)dx

∣∣∣∣ ≤ ‖θ(q)‖L∞‖∇ψξ‖0‖ξ‖0 (8.21)

Invoking the Maximum principle as in (8.9) we obtain that

‖θ(t;q)‖L∞ ≤ ‖θ0‖L∞ for any t ≥ 0, (8.22)

and hence

d
dt

‖ψξ‖20 + κ‖∇ψξ‖20 ≤ c‖ξ‖20.

This immediately implies the first estimate (8.13). For showing (8.14), we estimate
(8.21) differently, namely

∣∣∣∣

∫

T2
ξ · ∇θ(q)ψξdx

∣∣∣∣ ≤ ‖ξ‖p‖∇θ(q)‖0‖ψξ‖q

with 1 < p, q < ∞ such that 1
p + 1

q = 1
2 . With the Sobolev inequality (8.18) and

noting that q → 2 when p → ∞ we can find p and q in this range such that
∣∣∣∣

∫

T2
ξ · ∇θ(q)ψξdx

∣∣∣∣ ≤ ‖ξ‖s‖∇θ(q)‖0‖∇ψξ‖0

≤ κ

2
‖∇ψξ‖20 + c‖ξ‖2s‖∇θ(q)‖20,

which in combination with (8.20) yields

d
dt

‖ψξ‖20 + κ‖∇ψξ‖20 ≤ c‖ξ‖2s‖∇θ(q)‖20. (8.23)

Integrating (8.8) for f = 0 with respect to time, we have

sup
s≤t∗

‖θ(q)‖20 + κ

∫ t∗

0
‖∇θ(q)‖20dt ≤ ‖θ0‖20 (8.24)

Hence from (8.23) and (8.24), it follows that

sup
t≤t∗

‖ψξ‖20 + κ

∫ t∗

0
‖∇ψξ‖20dt ≤ c‖ξ‖2s

∫ t∗

0
‖∇θ(q)‖20dt ≤ c‖θ0‖20‖ξ‖2s ,
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finishing the proof of (8.14).
Turning to Hs(T2) estimates we refer to (8.10) which translates to

d
dt

‖ψξ‖2s + κ‖∇ψξ‖2s ≤ c‖ψξ‖2s‖q‖as − 2
∫

Λs(ξ · ∇θ(q))Λsψξ dx . (8.25)

Invoking Hölder’s inequality and the Leibniz bound (8.19) we estimate

∣∣∣∣

∫
Λs(ξ · ∇θ(q))Λsψξ dx

∣∣∣∣ ≤ c‖Λsψξ‖L p (‖Λsξ‖0‖Λ1θ(q)‖Lq + ‖ξ‖Lq ‖Λs+1θ(q)‖0)
(8.26)

valid whenever 1 < p, q < ∞ and maintains 1 − 1
p = 1

2 + 1
q i.e. q = 2p/(p − 2).

Again with the Sobolev inequality (8.18) and noting that q → 2 when p → ∞ we
can find p and q in this range such that

∣∣∣∣

∫
Λs(ξ · ∇θ(q))Λsψξ dx

∣∣∣∣ ≤ c‖Λs+1ψξ‖0‖Λsξ‖0‖Λs+1θ(q)‖0

≤ κ

4
‖Λs+1ψξ‖20 + c‖Λsξ‖20‖Λs+1θ(q)‖20. (8.27)

Combining this bound with (8.25) yields the inequality

d
dt

‖ψξ‖2s +
κ

2
‖∇ψξ‖2s ≤ c‖ψξ‖2s‖q‖as + c‖ξ‖2s‖θ(q)‖2s+1 (8.28)

so that with the Gronwall inequality we obtain

sup
r≤t∗

‖ψξ‖2s ≤ ‖ξ‖2s exp(ct∗‖q‖as )
∫ t∗

0
‖θ(q)‖2s+1dt

A second application of (8.10), this time with f = 0, yields

κ

∫ t∗

0
‖θ(q)‖2s+1dt ≤ ct∗‖q‖as sup

t≤t∗
‖θ(q)‖2s ≤ ct∗‖q‖as exp(ct∗‖q‖as )‖θ0‖2s

≤ c exp(ct∗‖q‖as )‖θ0‖2s . (8.29)

Combining the previous two bounds we find, for any t∗ ≥ 0,

sup
t≤t∗

‖ψξ‖2s ≤ c exp(ct∗‖q‖as )‖ξ‖2s‖θ0‖2s . (8.30)

Integrating (8.28) in time and invoking (8.29), (8.30)
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κ

∫ t∗

0
‖∇ψξ‖2s dt

≤ ct∗ sup
t≤t∗

‖ψξ‖2s‖q‖as + c‖ξ‖2s
∫ t∗

0
‖θ(q)‖2s+1dt ≤ c‖θ0‖2s‖ξ‖2s exp(ct∗‖q‖as )

and hence we now obtain (8.15).
We next provide estimates for ψξ,ξ̃ . As before we begin by addressing the L2 case,

namely (8.16). We take the inner product in L2 of (8.4) with ψξ,ξ̃ and integrate to
obtain, as in (8.8),

1
2
d
dt

‖ψξ,ξ̃‖20 + κ‖∇ψξ,ξ̃‖20 = −
∫

ξ̃ · ∇ψξψξ,ξ̃ −
∫

ξ · ∇ψξ̃ψξ,ξ̃ := I . (8.31)

Integrating by parts and using Hölder’s inequality the right hand side is estimated as

|I | ≤ (‖ξ‖L p + ‖ξ̃‖L p )(‖ψξ‖Lq + ‖ψξ̃‖Lq )‖∇ψξ,ξ̃‖0

for p−1 + q−1 = 2−1. Choosing p, q appropriately and then applying the Sobolev
embedding, (8.18), we find

|I | ≤ (‖ξ‖s + ‖ξ̃‖s)(‖ψξ‖1 + ‖ψξ̃‖1)‖∇ψξ,ξ̃‖0
≤ c(‖ξ‖2s + ‖ξ̃‖2s )(‖ψξ‖21 + ‖ψξ̃‖21)+

κ

2
‖∇ψξ,ξ̃‖20.

Hence, using this bound with (8.31) and then applying (8.13) we infer (8.16).
We turn finally to the Hs(T2) estimates for ψξ,ξ̃ . Here (8.10) becomes

d
dt

‖ψξ,ξ̃‖2s + κ‖∇ψξ,ξ̃‖2s ≤ c‖ψξ,ξ̃‖2s ‖q‖as − 2
∫

Λs(ξ̃ · ∇ψξ + ξ · ∇ψξ̃ )Λsψξ,ξ̃ dx .

(8.32)

Estimating the last term above in a similar fashion in (8.27) above leads to

∣∣∣∣

∫
Λs(ξ̃ · ∇ψξ + ξ · ∇ψξ̃ )Λsψξ,ξ̃ dx

∣∣∣∣

≤ κ

2
‖ψξ,ξ̃‖2s+1 + c(‖ξ‖2s + ‖ξ̃‖2s )(‖ψξ‖2s+1 + ‖ψξ̃‖2s+1). (8.33)

Combining the previous two bounds (8.32), (8.33) and then making use of Gronwall
inequality and (8.15) we obtain

sup
r≤t∗

‖ψξ,ξ̃‖2 ≤ c(‖ξ‖2s + ‖ξ̃‖2s ) exp(ct∗‖q‖as )
∫ t∗

0
(‖ψξ‖2s+1 + ‖ψξ̃‖2s+1)dt

≤ c(‖ξ‖4s + ‖ξ̃‖4s ) exp(ct∗‖q‖as ),
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which establishes the final bound, (8.17), completing the proof. 45

8.2 Bounds on the potential U and its derivatives

With these preliminary bounds on (8.5) and hence Proposition 32 in hand we turn
to provide estimates for U defined as in (1.11). Recall that we seek to determine the
extent to which Assumptions 8 and 10 applies for the certain classes of potential U
which arise in this example, namely (1.12) subject to conditions on the observation
operator (1.10). Of course, sinceU is positive, Assumption 10 holds regardless of our
assumptions on O.

Regarding the assumptions onO we consider the following three situations. Fix an
observation time window t∗ > 0. Firstly, we suppose that O satisfies an inequality of
the form

|O(φ)| ≤ c0 sup
t≤t∗

‖φ(t)‖0 (8.34)

for φ ∈ C([0, t∗]; L2(T2)), which is verified in particular for the examples with
pointwise in time and spectral in space observations or that of spatial (volumetric)
averages. On the other hand, addressing in particular the example of pointwise in both
space and time observations, we consider the case when O satisfies an inequality of
the form

|O(φ)| ≤ c0 sup
t≤t∗

‖φ(t)‖L∞ (8.35)

for φ ∈ C([0, t∗]×T2). Finally, for estimates involving gradients or other derivatives
of φ we assume that, for some s > 0,

|O(φ)| ≤ c0 sup
t≤t∗

‖φ(t)‖Hs (8.36)

valid for φ ∈ C([0, t∗]; Hs(T2)).
Let us begin with estimates on DU and D2U in negative Sobolev space which in

turn yield the conditions in Assumption 8 on the Hγ spaces, (2.2), defined relative to
a covariance operator C of the Gaussian prior µ0 in (1.11).

Proposition 34 Let U be defined as in (1.12) for a fixed Y ∈ Rm and Γ a symmetric
strictly positive definite matrix.

(i) When O satisfies (8.34), U is twice Fréchet differentiable in Hs′(T2) for any
s′ > 0. In this case for any s ′ ≥ 0

‖DU (q)‖−s′ ≤ M1 < ∞ (8.37)
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for a constant M1 = M1(s′, κ, t∗, θ0, c0,Y,Γ ) which is independent of q.2 Fur-
thermore, assuming now that s′ > 0 we have

‖D2U (q)‖L2(Hs′ (T2)) ≤ M2 < ∞, (8.38)

where ‖ ·‖L2(Hs′ (T2)) denotes the standard operator norm of a real-valued bilinear

operator on Hs′(T2)× Hs′(T2) (see (8.42)), and M2 = M2(s′, κ, θ0, c0,Y,Γ ) is
a constant independent of q.

(ii) In the case (8.36) forO we have once again that U is twice Fréchet differentiable
in Hs(T2) for the given value of s > 0 in (8.36). Here, for any s′ ≥ s,

‖DU (q)‖−s′ ≤ M exp(c‖q‖as′) (8.39)

and

‖D2U (q)‖L2(Hs′ (T2)) ≤ M exp(c‖q‖as′) (8.40)

where c = c(s′, κ, t∗, θ0, c0,Y,Γ ), M = M(s′, κ, t∗, θ0, c0,Y,Γ ) are indepen-
dent of q and a > 0 is precisely the constant appearing in (8.10).

(iii) Finally under the assumption thatO obeys (8.35), U is twice Fréchet differentiable
in Hs′(T2)) for any s′ > 1. In this case, when s ′ > 1, we again have the bounds
(8.39), (8.40).

Proof We start with the proof of (8.37). Notice that, referring back to (8.1) and using
the condition (8.34), we have

|U ξ (q)| ≤ c(1+ sup
t≤t∗

‖θ(q)‖0) · sup
t≤t∗

‖ψξ (q)‖0,

for any q ∈ L2(T2), ξ ∈ Hs′(T2) and c = c(Γ −1/2,Y, c0). Observe that for any
s′ ≥ 0 we have

‖DU (q)‖−s′ = sup
‖ξ‖s′=1

|U ξ (q)|. (8.41)

Thus, invoking the bounds (8.24), (8.13) when s′ = 0 or (8.14) for the case s′ > 0,
we obtain (8.37).

We turn next to the proof of (8.38). In this case, working from (8.2) and again
making use of the condition (8.34),

|U ξ,ξ̃ (q)| ≤ c sup
t≤t∗

‖ψξ̃ (q)‖0 · sup
t≤t∗

‖ψξ (q)‖0 + c(1+ sup
t≤t∗

‖θ(q)‖0) · sup
t≤t∗

‖ψξ,ξ̃ (q)‖0

2 Note furthermore that M1 is independent of t∗ in the case when s′ > 0, cf. (8.13), (8.14).
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for any ξ, ξ̃ ∈ Hs′(T2), where c = c(Γ −1/2,Y, c0). Here using

‖D2U (q)‖L2(Hs′ (T2)) = sup
‖ξ‖s′=‖ξ̃‖s′=1

|U ξ,ξ̃ (q)| (8.42)

and the bounds (8.24), (8.14), (8.16), the desired estimate (8.38) now follows.
We next address (8.39), (8.40). Here (8.1) and (8.36) result in

|U ξ (q)| ≤ c(1+ sup
t≤t∗

‖θ(q)‖s) · sup
t≤t∗

‖ψξ (q)‖s (8.43)

and similarly, with (8.2),

|U ξ,ξ̃ (q)| ≤ c sup
t≤t∗

‖ψξ̃ (q)‖s · sup
t≤t∗

‖ψξ (q)‖s + c(1+ sup
t≤t∗

‖θ(q)‖s) · sup
t≤t∗

‖ψξ,ξ̃ (q)‖s
(8.44)

for any ξ, ξ̃ ∈ Hs′(T2), s′ ≥ s. Thus, invoking (8.10) (with f ≡ 0), (8.15), (8.17)
with (8.41)–(8.44), we obtain (8.39), (8.40) establishing the second item.

Regarding the final item (iii) observe that (8.1), (8.2) and the Sobolev embedding
of Hs(T2) ⊂ L∞(T2) when s > 1 we obtain bounds as in (8.43), (8.44) under (8.35)
for any s > 1. We therefore conclude this final item arguing as in the previous case.
The proof is now complete. 45

Drawing upon Proposition 34 we now draw certain conclusions on the scope of
applicability of Assumption 8 to (1.11). For this purpose suppose C is a symmetric,
positive, trace class operator on L2(T2). Following the notations introduced above
in (2.2) we consider the fractional powers of C and associated spaces Hγ with norm
|q|γ = ‖C−γ q‖0 for γ ≥ 0, so that in particular we have the notation |q| = ‖q‖0. We
have the following corollary:

Corollary 35 Let C be a symmetric, positive, trace class operator on L2(T2). Assume
that for some s > 0, and some γ ∈ (0, 1/2) there is a constant c1 such that

‖q‖s ≤ c1|q|γ = c1‖C−γ q‖0 for all q ∈ Hγ , (8.45)

so that Hγ ⊂ Hs(T2).

(i) Under the spectral observation assumption, (8.34), Assumption 8 and 10 hold for
U and the given C. Additionally, if for this value of γ , C1−2γ is trace class in the
sense of (2.6), so that Assumption 5 holds, then Theorem 26 applies to (1.11).

(ii) Under (8.36), assuming that (8.45) holds for the value of s > 0 in (8.36) we have
that

|DU (q)|−γ ≤ M exp(c|q|aγ ) (8.46)
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and that

‖Cγ D2U (q)Cγ ‖L2(H0) ≤ M exp(c|q|aγ ) (8.47)

where ‖ ·‖L(H0) here denotes the standard operator norm of a real-valued bilinear
operator on H0 × H0, and again the constants c = c(s′, κ, t∗, θ0, c0, c1Y,Γ ),
M = M(s′, κ, t∗, θ0, c0, c1,Y,Γ ) are independent of q and a > 0 is as in (8.10).

(iii) In the case (8.35), if (8.45) holds for some s > 1 then we again have the bounds
(8.46), (8.47) for the corresponding values of γ .

Proof Regarding the first item we proceed to establish the conditions (2.7) and (2.8).
Observe that under (8.45)

c21‖D2U (q)‖L2(Hs (T2)) ≥ ‖Cγ D2U (q)Cγ ‖L2(H0) (8.48)

so that with (8.38) we infer (2.7). For (2.8) we demonstrate the stronger condition
(2.11). Again, due to (8.45) we have

c1‖DU (q)‖−s ≥ |DU (q)|−γ (8.49)

so that (2.11) follows from (8.37).
Regarding the second and third items we simply apply (8.48), (8.49) now in com-

bination with (8.39) and (8.40). The proof is complete. 45

Remark 36 Let A be the Stokes operator in dimension 2 with periodic boundary
conditions. Of course for any given s > 0 the condition (8.45) is fulfilled when
C = (A)−κ/2 for any κ such that κ ≥ s/γ . Here note, in regards to Assumption 5,
C = (A)−κ/2 has the eigenvaluesλ j ≈ | j |κ/2. Thus (2.6) entails the additional require-
ment κ > 2/(1 − 2γ ).

Note however that the examples considered in [12] involved a covariance C with
exponentially decaying spectrum so that (8.45) applies for any s ≥ 0 and (2.6) for any
0 ≤ γ < 1/2.

Remark 37 [Improved bounds in the time independent case]
We expect that improved, q-independent bounds on (8.3) and (8.4) can be achieved

through more sophisticated parabolic regularity techniques. In turn this could improve
bounds obtainable for DU and D2U in the case of point observations (8.35). What-
ever the mechanism, we note that the numerical results in [12] suggest good mixing
occurs for the Hamiltonian Monte Carlo algorithm in this case of point observations
notwithstanding the fact that our current results do not cover this situation.

In this connection it is notable that a global bound on DU and D2U and hence
the conditions for 26 can be achieved for point observations in the time-stationary
analogue of (8.5) thanks to [1]. Let

q · ∇θ = κ∆θ + f (8.50)
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on T2 for a given fixed f : T2 → R, κ > 0. We can consider, similarly to above,
the statistical inversion problem of recovering a divergence free q from the sparse
observation of the resulting solution θ : T2 → R. In this case, following the Bayesian
approach we again obtain a posterior measure of the form (1.11) with U given analo-
gously to (1.12) in the case of Gaussian observation noise.

As previously the task of estimating DU and D2U entails suitable estimates for

q · ∇ψξ = κ∆ψξ − ξ · ∇θ(q),

and

q · ∇ψξ,ξ̃ = κ∆ψξ,ξ̃ − ξ̃ · ∇ψξ − ξ · ∇ψξ̃ .

over suitable directions ξ, ξ̃ .
Suppose that φ obeys

q · ∇φ = κ∆φ + g (8.51)

for some q : T2 → R2, divergence free and g : T2 → R. According to [1, Lemma
1.3] we have that3

‖φ‖L∞ ≤ c‖g‖L p (8.52)

for any p > 1 where crucially the constant c = c(p, κ) is independent of q. Applying
(8.52) and carrying out other standard manipulations we have that

‖θ(q)‖2L∞ + ‖∇θ(q)‖20 ≤ c‖ f ‖20 (8.53)

for c = c(κ) independent of q. As such a second application of (8.52), Sobolev
embedding, (8.18), and (8.53) yields

‖ψξ‖L∞ ≤ c‖ξ‖s‖ f ‖0 (8.54)

for any s > 0 where the constant c = c(s, κ) is again independent of q. Moreover,
using that q is divergence free and (8.53)

‖∇ψξ‖0 ≤ c‖ξ‖0‖ f ‖0 (8.55)

with c = c(s, κ) independent of q. Finally (8.52) followed by

‖ψξ,ξ̃‖L∞ ≤ c(‖ξ‖2s + ‖ξ̃‖2s ). (8.56)

3 The result [1] is stated for (8.50) supplemented with Dirichlet boundary conditions but pursuing the proof
it is clear that this bound also applies in the spatially periodic case.
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for any s > 0 where c = c(s, κ) does not depend on q. Thus, arguing as in Proposi-
tion 32 but making use of (8.54), (8.56) we can therefore conclude that whenever

|O(φ)| ≤ c0‖φ‖L∞ ,

bounds as in (8.37), (8.38) must hold.

9 Outlook

Thiswork provides an illustration of the power and efficacy of theweakHarris theorem
as a tool for the analysis of mixing in infinite-dimensional MCMC methods. Specifi-
cally our work addresses a Hilbert space version from [6] of the Hamiltonian Monte
Carlo method. Notwithstanding recent progress in this setting of infinite dimensional
MCMC algorithms, the understanding ofmixing rates and the relatedly optimal choice
of algorithmic parameters remains in its infancy. Let us therefore point out a number
of interesting questions remaining to be studied which we plan to address in future
work.

One immediate avenue concerns the analysis of numerically discretized versions of
the HMC algorithm (2.16) which must be used in practice. Here the Metropolization
step, which is used to correct for the bias introduced by the discretization of (1.2), must
be accounted for. In a similar vein it would be useful to have error bounds between
the adjusted and unadjusted versions of the algorithm.

It is also worth noting that there are a number of variations on the infinite dimen-
sionalHMCalgorithm from [6] now available in the literaturewhosemixing properties
are poorly understood, particularly as we regard these different algorithms in com-
parative perspective. For example we note the Second-Order Langevin Hamiltonian
(SOLHMC) methods in [73] and the Riemannian (geometric) HMC approach devel-
oped in [3,9].

Although the above analysis is a nontrivial first step towards a better understanding
of (1.3) one may nevertheless view the time step condition (6.1) as restricting the
scope of our analysis to a perturbation of the linear Gaussian case; cf. Remark 16. It is
notable that similar small time step condition also appears in all the other recent studies
of the HMC algorithm that we are aware of [13,14,32,58].We conjecture that for many
problems of interest this restriction on T maybe far fromoptimal from the point of view
of mixing rates. Indeed this bound on T (6.1) turns on our treatment of the Lyapunov
structure in Proposition 20 and on the nudging scheme in Proposition 18 which could
presumably be improved with a more delicate treatment of the Hamiltonian dynamics
(1.2). As a starting point it would be of great interest to find some simple settings in
finite dimensions where this could be carried out.

As already noted above in the introduction, a primary motivation for considering
infinite dimensional MCMCmethods concerns the Bayesian approach to PDE inverse
problems. While several large scale numerical studies have been carried out for some
specific problems a more systematic gallery of examples on which the performance
of algorithms have been experimentally tested would be desirable. Here our results
presented in Sect. 8 show that analysis of conditions on the potential U in (1.2) as
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arising from the Bayesian approach to PDE inverse problems can be quite involved.
Indeed, in the case of the advection-diffusion problem we consider here, it is not clear
that we can obtain a global Hessian bound onU for interesting classes of observations,
such as space-time point observations. Thus it would be useful to develop an analysis
that only requires that U is locally Lipschitz. More broadly, further examples of PDE
inverse problems as found in e.g. [78] should be analytically studied in this context to
obtain a broader sense of the variety of relevant conditions on U .
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Appendix: Consequences for convergence of observables

Let P be a Markov kernel on a Polish space V and take {Qn(q0)}n≥1,q0∈V to be the
Markovprocess associatedwith P starting fromq0 ∈ V. Suppose thatµ∗ is an invariant
measure for P . In addition to quantifying various abstract notions of distance, i.e. the
Wasserstein metric, between the measures µPn and µ∗, we are typically interested in
estimating

∣∣∣∣P
nΦ(q0) −

∫
Φ(q′)µ∗(dq′)

∣∣∣∣ (A.1)

and also
∣∣∣∣∣
1
n

n∑

k=1

Φ(Qk(q0)) −
∫

Φ(q′)µ∗(dq′)

∣∣∣∣∣ (A.2)

for concrete observables Φ : V → R and starting from any initial q0 ∈ V.
Typically, contraction bounds as in (6.2) and (7.13) which we demonstrated above

can be used to establish estimates for quantities like (A.1), (A.2). Indeed, if the ρ̃

appearing in the bounds (6.2) and (7.13) was actually a metric then the Kantorovich-
Wasserstein duality would immediately imply bounds for (A.1). Moreover, a number
of results in the literature, e.g. [41,52,53,55,56,77], yield a law of large numbers,
central limit theorems type convergence results from Wasserstein contraction bounds
as desired in (A.2). This appendix proceeds to show that useful bounds for (A.1), (A.2)
can still be achieved in our setting without presuming that the underlying distance ρ̃

is a metric. Notwithstanding the significant literature on such convergence results we
expect our approach here to be of novel interest even when the underlying distance is
a metric.
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In order to proceed, let us recall a few basic definitions:

Definition 38 Wesay that : : V×V → R+ is a distance-like function if : is symmetric,
lower-semicontinuous and it holds that :(q, q̃) = 0 if and only if q = q̃. We define
W: : Pr(V) × Pr(V) → R+ ∪ {+∞} to be the following Wasserstein-like extension
of : to Pr(V) × Pr(V):

W:(ν1, ν2) = inf
Γ ∈C(ν1,ν2)

∫

V×V
:(q, q̃)Γ (dq, dq̃),

where C(ν1, ν2) is the set of all couplings of ν1, ν2 ∈ Pr(V).4

Relative to a given distance-like function : we define :-Lipschitz in the obvious way
as:

Definition 39 Given a distance-like function : : V×V → R+, we say thatΦ : V → R
is :-Lipschitz with Lipschitz constant LΦ > 0 if

|Φ(q) − Φ(q′)| ≤ LΦ:(q,q′)

for any q,q′ ∈ V. We denote the set of :-Lipschitz functions as Lip:.

In order to verify that an observable Φ is :-Lipschitz for the class of distance like
functions employed above, see Proposition 46 below.

Results for (A.1) can be drawn by using the following proposition.

Proposition 40 Let : : V × V → R+ be a distance-like function as in Definition 38.
Then, for every ν1, ν2 ∈ Pr(V) and every :-Lipschitz function Φ : V → R,

W:(ν1, ν2) ≥ 1
LΦ

∣∣∣∣

∫
Φ(q)ν1(dq) −

∫
Φ(q′)ν2(dq′)

∣∣∣∣ , (A.3)

where LΦ is the Lipschitz constant associated with Φ. In particular, for any Markov
kernel P,

∣∣∣∣P
nΦ(q0) −

∫
Φ(q)ν(dq)

∣∣∣∣ ≤ LΦW:(Pn(q0, ·), ν), (A.4)

valid for any measure ν ∈ Pr(V), q0 ∈ V and :-Lipschitz function Φ.

Proof Fix ν1, ν2 ∈ Pr(V) and let Γ ∈ C(ν1, ν2). Note that
∣∣∣∣

∫
Φ(q)ν1(dq) −

∫
Φ(q′)ν2(dq′)

∣∣∣∣ ≤
∫ ∣∣Φ(q) − Φ(q′)

∣∣Γ (dq, dq′)

≤ LΦ

∫
l(q,q′)Γ (dq, dq′). (A.5)

4 The mappingW: is also called the ‘optimal transport cost functional’ in the optimal transport literature;
see, e.g., [83].

123



Stoch PDE: Anal Comp

Inequality (A.3) then follows by taking the infimum in (A.5) over all Γ ∈ C(ν1, ν2).
45

We next present a first version of the strong law of large numbers (SLLN) relevant
for certain classes of mixing Markov processes. Note that this first result does not
require a spectral gap condition but see Proposition 43 below where we additionally
establish criteria for a central limit theorem under the stronger assumption of a spectral
gap.

Proposition 41 Suppose that P is aMarkov kernelwith a unique invariantmeasureµ∗.
We denote the associatedMarkov process as {Qk(q0)}k≥0,q0∈V. Let : be a distance-like
function and introduce the notation

G(q0) :=
∞∑

k=0

W:(Pk(q0, ·), µ∗). (A.6)

Then, for any q0 ∈ V such that

G(q0)+ sup
n≥1

E[G(Qn(q0))2] < ∞ (A.7)

and such that, for some q̄ ∈ V,

sup
n≥1

E[:(Qn(q0), q̄)2] < ∞, (A.8)

we have that, for each Φ ∈ Lip:,

lim
n→∞

∣∣∣∣∣
1
n

n∑

k=1

Φ(Qk(q0)) −
∫

Φ(q′)µ∗(dq′)

∣∣∣∣∣ = 0, (A.9)

almost surely.5

Remark 42 The scope of applicability of Propositions 40 and 41 reaches beyond
Proposition 43 below which is more specialized to our setting. See, for example, the
sub-geometric rates of convergence in the Wasserstein distance given in [19,30,31].

Proof Take {Fn}n≥1 to be the filtration associated with the Markov process
{Qk(q0)}k≥0,q0∈V. Given any Φ ∈ Lip:, we define

MΦ
n :=

∞∑

k=0

(
E(Φ̄(Qk(q0)|Fn) − E(Φ̄(Qk(q0))

)
(A.10)

5 Note that under (A.7) every Lip: ⊂ L1(µ∗) so that
∫

Φ(q′)µ∗(dq′) is a well defined, finite quantity.
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where

Φ̄(q0) := Φ(q0) −
∫

Φ(q̃)µ∗(dq̃) (A.11)

Invoking the Markov property,

MΦ
n =

n∑

k=0

Φ̄(Qk(q0))+
∞∑

k=0

(
Pk+1Φ̄(Qn(q0)) − PkΦ̄(q0)

)
, (A.12)

so that, rearranging, we have

1
n

n∑

k=0

Φ(Qk(q0)) −
∫

Φ(q̃)µ∗(dq̃) =
1
n

∞∑

k=0

(
PkΦ̄(q0) − Pk+1Φ̄(Qn(q0))

)
+ MΦ

n

n

:= T (n)
1 + T (n)

2 . (A.13)

Let us show that, for each of the terms T (n)
j , limn→∞ T (n)

j = 0 a.s. in order to infer
the desired conclusion.

Start with T (n)
1 . Here note that, with (A.4),

|T (n)
1 | ≤ LΦ

G(q0)+ G(Qn(q0))
n

, (A.14)

where LΦ is the Lipschitz constant associated with Φ. Form the sets An := {|T (n)
1 | ≥

n−1/4}. With (A.14) and the Markov inequality we find

∞∑

n=1

P(An) ≤ LΦ

∞∑

n=1

E (G(q0)+ G(Qn(q0))2

n3/2
≤ 2LΦ(G(q0)2

+ sup
n≥1

EG(Qn(q0))2)
∞∑

n=1

1
n3/2

.

Hence, invoking the Borel-Cantelli lemma and the condition (A.7), we infer that
P(An infinitely often) = 0 which amounts to the desired convergence for T (n)

1 .
Regarding the second term T (n)

2 , we claim that {MΦ
n }n≥0 is a mean zero, square

integrable martingale. From the definition of {MΦ
n }n∈N in (A.13) it follows immedi-

ately that M0 = 0. Now in view of (A.12), notice that for any n ≥ 1 the increments
MΦ

n − MΦ
n−1 have the form

MΦ
n − MΦ

n−1 = Φ̄(Qn(q0))+
∞∑

k=0

(
Pk+1Φ̄(Qn(q0)) − Pk+1Φ̄(Qn−1(q0))

)
.

(A.15)

123



Stoch PDE: Anal Comp

Thus, for any n ≥ 1, using that Φ̄ ∈ Lip: and recalling the definition of G we have

E(MΦ
n − MΦ

n−1)
2 ≤ 4Φ̄(q̄)2 + 4L2Φ

[
E:(q̄, Qn(q0))2 + EG(Qn−1(q0))2 + EG(Qn(q0))2

]

(A.16)

where q̄ ∈ V is selected as in (A.8). With (A.7), (A.8) and noticing that

EM2
n = E

(
n∑

k=1

(Mk − Mk−1)

)2

≤ c(n)
n∑

k=1

E (Mk − Mk−1)
2 ,

we conclude that {MΦ
n }n∈N is square integrable. To show that {MΦ

n }n∈N is a martingale
observe that for any n ≥ 0, using standard properties of conditional expectations,

E(MΦ
n+1|Fn) =

∞∑

k=0

(
E(E(Φ̄(Qk(q0)|Fn+1)|Fn) − E(Φ̄(Qk(q0))

)
= MΦ

n . (A.17)

With this in hand we recall a martingale convergence theorem from [22] (see also
[55, Appendix A.12]) which can be stated as follows: Let {Mn}n∈N be a square inte-
grable, mean zero martingale. If

∞∑

k=1

E(Mk − Mk−1)
2

k2
< ∞ (A.18)

then

lim
n→∞

Mn

n
= 0 almost surely.

In view of the bound (A.16) and again invoking the standing conditions (A.7), (A.8)
we find that the condition (A.18) is satisfied for {MΦ

n }n∈N and hence we infer that
limn→∞ T (n)

2 = 0 almost surely. The proof is now complete. 45

In order to obtain rates of convergence for (A.2) we can furthermore establish a
central limit theorem (CLT) result by now directly imposing a ‘spectral gap’ condition.
For this stronger convergence result we again rely on the decomposition (A.10), (A.13)
now in conjunction with a Martingale central limit result from [53] which we recall
as Theorem 45 below.

Proposition 43 Let P be a Markov kernel on a complete metric space (V, ρ). Take
{Qn(q0)}n≥0,q0∈V to be the associatedMarkov process. Let V : V → R+ be a function
satisfying the following Lyapunov type assumption:

E[V (Qn(q0))2] ≤ κnV (q0)2 + K (A.19)
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for some constants κ ∈ (0, 1), K > 0 independent of n ≥ 0. Consider the distance-like
functions

:p(q, q̃) =
√
[1 ∧ ρ(q, q̃)](1+ V (q)p + V (q̃)p) (A.20)

for p ≥ 1. We assume that for p = 1, 2 the contraction condition

W:p (ν1P
n, ν2Pn) ≤ c1e−c2nW:p (ν1, ν2) for any ν1, ν2 ∈ Pr(V), (A.21)

is maintained, where c1, c2 are constants independent of n but which may depend on
p.

For Φ ∈ Lip:1 , let

Xn(Φ) := 1
n

n∑

k=1

Φ(Qk(q0)) −
∫

Φ(q′)µ∗(dq′),

where µ∗ is the unique invariant measure for P; cf. Remark 44. Then, under these
circumstances, for any Φ ∈ Lip:1 ,

Xn(Φ) → 0 as n → ∞ (A.22)

almost surely and moreover

√
nXn(Φ) ⇒ N (0, σ 2(Φ)) as n → ∞, (A.23)

i.e.
√
nXn(Φ) converges weakly to a real-valued gaussian random variable with mean

zero and covariance σ 2(Φ), where σ 2(Φ) is specified explicitly as (A.36) below.

Remark 44 The condition (A.21) ensures the existence and uniqueness of the invariant
measureµ∗ as observed in [43].Moreover, (A.19) implies the followingmoment bound
for µ∗

∫
V (q′)2µ∗(dq′) ≤ K < ∞. (A.24)

As such, using that Φ ∈ Lip:1
and (A.20), we have

∫
|Φ(q′)|µ∗(dq′) ≤ |Φ(q̄)| + LΦ

(
1+

√
V (q̄)+

∫ √
V (q′)µ∗(dq′)

)

for any q̄ ∈ V so that with (A.24) we are guaranteed that
∫
|Φ(q′)|µ∗(dq′) < ∞.

Our proof relies on the following abstract result from [53, Theorem 5.1] which we
reformulate here for clarity and the convenience of the reader.

Theorem 45 Let {Mn}n≥0 be a square integrable, mean zero martingale, relative to a
filtration {Fn}n≥0. Assume that:
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(i) we have the uniform bound

sup
n≥0

E(Mn+1 − Mn)
2 < ∞. (A.25)

(ii) For every ε > 0

lim
n→∞

1
n

n−1∑

m=0

E[(Mm+1 − Mm)
211|Mm+1−Mm |≥ε

√
n] = 0. (A.26)

(iii) For every ε > 0,

lim
k→∞

lim sup
n→∞

1
nk

n∑

m=1

mk−1∑

j=(m−1)k

E
[
(1+ (Mj+1 − Mj )

2)11|Mj−M(m−1)k |≥ε
√
nk

]
= 0.

(A.27)

(iv) There exists a constant σ 2 ≥ 0 such that

lim
k→∞

lim sup
n→∞

1
n

n∑

m=1

E

∣∣∣∣∣∣
1
k

mk−1∑

j=(m−1)k

E((Mj+1 − Mj )
2|F(m−1)k) − σ 2

∣∣∣∣∣∣
= 0.

(A.28)

Then, under these four conditions,

Mn√
n

⇒ N (0, σ 2) as n → ∞,

(that is in distribution) where σ 2 is the constant appearing in (A.28).

With this result in hand we turn to the proof of Proposition 43.

Proof (Proof of Proposition 43) To prove (A.22) we simply show that (A.21), (A.19)
imply (A.7), (A.8), with : = :1, so that we can directly apply Proposition 41. Observe
that, for any q̄ ∈ V we have

∞∑

k=0

W:1(P
k(q̄, ·), µ∗) ≤ W:1(δq̄, µ∗)

∞∑

k=0

c1e
−c2k ≤ c

(
1+

√
V (q̄)+

∫ √
V (q′)µ∗(dq′)

)
.

Noting that, with (A.24), we have
∫ √

V (q′)µ∗(dq′) < ∞ and with (A.19) we infer
supk≥0 EV (Qk(q0)) < ∞ so that (A.7) holds. Regarding (A.8) we have, for any
q0, q̄ ∈ V
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sup
n≥1

E:1(Qn(q0), q̄) ≤ c

(

1+ sup
n≥1

E
√
V (Qn(q0))+

√
V (q̄)

)

≤ c
(
1+

√
V (q0)+

√
V (q̄)

)
,

where the last inequality again follows from (A.19).
Let us next turn to establish the convergence to normality, (A.23). Fix Φ ∈ Lip:1

.
Here, working from the identity (A.13), we have

√
nXn(Φ) = 1√

n

∞∑

k=0

(
PkΦ̄(q0) − Pk+1Φ̄(Qn(q0))

)
+ MΦ

n√
n

:= T̄ (n)
1 + T̄ (n)

2 ,

(A.29)

where MΦ
n is the martingale defined as in (A.12). We would like to show that

limn→∞ T̄ (n)
1 = 0 in probability and that T̄ (n)

2 converges in distribution to a normal
random variable in order to conclude (A.23) from the ‘converging together lemma’;
cf. [33].

Regarding the first term T̄ (n)
1 , with (A.4) and (A.21), it follows

|T̄ (n)
1 | ≤ LΦ√

n

∞∑

k=0

(W:1(P
k(q0, ·), µ∗)+W:1(P

k+1(Qn(q0), ·), µ∗))

≤ c√
n
(W:1(δq0 , µ

∗)+W:1(δQn(q0), µ
∗)) ≤ c

(
1+ √

V (q0)+
√
V (Qn(q0))

)
√
n

where we used that :1 has the form (A.20) for the final bound. With this estimate and
our assumption (A.19) we find that limn→∞ E|T (n)

1 | = 0 so that T (n)
1 decays to zero

in probability as desired.
We address the second term T̄ (2)

n by verifying the conditions of Theorem 45. As in
(A.16), (A.17), it is clear that {MΦ

n }n≥0 is a mean zero square integrable martingale.
We therefore proceed to establish each of the bounds (A.25)–(A.28) for {MΦ

n }n≥0 in
turn.

Start with (A.25).Working from the identity (A.15), we observe that, for anym ≥ 0,

(MΦ
m+1 − MΦ

m )4 ≤ cΦ̄(Qm+1(q0))4 + c




∞∑

k=0

Pk+1Φ̄(Qm+1(q0)) − Pk+1Φ̄(Qm(q0))




4

≤ c(:1(Qm+1(q0), 0)4 + V (Qm+1(q0))2 + V (Qm(q0))2 + 1)

≤ c(V (Qm+1(q0))2 + V (Qm(q0))2 + 1)

wherewe have used (A.4) and (A.21). Therefore, invoking (A.19), we have now shown

sup
m≥0

E(MΦ
m+1 − MΦ

m )4 < ∞ (A.30)
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so that, in particular, (A.25) holds. Furthermore since, for any ε > 0 and any 0 ≤ m ≤
n

E[(MΦ
m+1 − MΦ

m )211|MΦ
m+1−MΦ

m |≥ε
√
n] ≤

(
E(MΦ

m+1 − MΦ
m )4
)1/2 P(|MΦ

m+1 − MΦ
m | ≥ ε

√
n)1/2

≤ 1
ε2n

E(MΦ
m+1 − MΦ

m )4

we infer (A.26).
Regarding (A.27) we proceed in a similar fashion. For (m − 1)k ≤ j ≤ mk − 1

and any m, n, k ≥ 1 we have

E[(1+(MΦ
j+1 − MΦ

j )
2)11|MΦ

j −MΦ
(m−1)k |≥ε

√
nk]

≤ c
ε1/2(nk)1/4

(
E(1+ (MΦ

j+1 − MΦ
j )

4)
)1/2 (

E|MΦ
j − MΦ

(m−1)k |
)1/2

(A.31)

We estimate the last term between parentheses in (A.31) as

E|MΦ
j − MΦ

(m−1)k | ≤
j−1∑

l=(m−1)k

E|MΦ
l+1 − MΦ

l | ≤ c( j − (m − 1)k) ≤ ck, (A.32)

where in the second inequality we used (A.25). Combining (A.31) and (A.32) now
yields (A.27), where we notice carefully that having the lim sup as n → ∞ applied
first is crucial.

Let us turn to the final bound (A.28). Take

Ψ (q, q̃) :=
[

Φ̄(q)+
∞∑

k=0

(Pk+1Φ̄(q) − Pk+1Φ̄(q̃))

]2
(A.33)

Now for any j ≥ (m − 1)k and with m, k ≥ 1 we have

E((MΦ
j+1 − MΦ

j )
2|F(m−1)k)

= EΨ (Q( j+1−(m−1)k)+(m−1)k(q0), Q( j−(m−1)k)+(m−1)k(q0))|F(m−1)k)

= Hj−(m−1)k(Q(m−1)k(q0))

where we have used the Markov property at the last step. Here for any l ≥ 0

Hl(q0) := EΨ (Ql+1(q0), Ql(q0)) = PlΓ (q0)

with

Γ (q0) = EΨ (Q1(q0),q0). (A.34)

123



Stoch PDE: Anal Comp

Working from these identities we find, again for any j ≥ (m−1)k and withm, k ≥ 1

1
k

mk−1∑

j=(m−1)k

E((MΦ
j+1 − MΦ

j )
2|F(m−1)k) =

1
k

mk−1∑

j=(m−1)k

Hj−(m−1)k(Q(m−1)k(q0))

= 1
k

k−1∑

j=0

Hj (Q(m−1)k(q0)) =
1
k

k−1∑

j=0

P jΓ (Q(m−1)k(q0)).

As such,

1
n

n∑

m=1

E

∣∣∣∣∣∣
1
k

mk−1∑

j=(m−1)k

E((MΦ
j+1 − MΦ

j )
2|F(m−1)k) − σ 2

∣∣∣∣∣∣

≤ 1
n

n∑

m=1

P(m−1)k



1
k

k−1∑

j=0

|PlΓ (q0) − σ 2|



 , (A.35)

which is valid for any 0 ≤ σ 2 < ∞.
With the aim of once again combining (A.4) with (A.21) we now take

σ 2 = σ 2(Φ) :=
∫

Γ (q)µ∗(dq). (A.36)

with Γ as in (A.34). We will show presently that whenever Φ is :1-Lipshitz then
Γ is :2-Lipshitz, namely (A.45) below. This being so, as in (A.24), it is clear that
σ 2(Φ) < ∞ for any :1-Lipshitz Φ. Moreover, invoking once again (A.4) and (A.21)
we obtain that

1
k

k−1∑

j=0

|P jΓ (q0) − σ 2(Φ)| ≤ LΓ

k

k−1∑

j=0

W:2(P
j (q0, ·), µ∗) ≤ c(1+ √

V (q0))
k

.

(A.37)

Combining (A.35), (A.37) with (A.19) we find

1
n

n∑

m=1

E

∣∣∣∣∣∣
1
k

mk−1∑

j=(m−1)k

E((MΦ
j+1 − MΦ

j )
2|F(m−1)k) − σ 2(Φ)

∣∣∣∣∣∣

≤ c
nk

n∑

m=1

P(m−1)k(1+
√
V (q0)) ≤ c

nk

n∑

m=1

(1+ α(m−1)k√V (q0)) ≤ c(1+ √
V (q0))

k

which yields the final item (A.28).
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We therefore conclude the proof by showing that Γ ∈ Lip:2
whenever Φ ∈ Lip:1

.
Observe that from (A.34) we have

Γ (q) − Γ (q̃) = E
[
(
√

Ψ (Q1(q),q) −
√

Ψ (Q1(q̃), q̃))(
√

Ψ (Q1(q),q)+
√

Ψ (Q1(q̃), q̃))
]

(A.38)

From (A.33) and invoking (A.4), (A.21) we have that

|
√

Ψ (Q1(q), q) −
√

Ψ (Q1(q̃), q̃))|

≤ |Φ̄(Q1(q)) − Φ̄(Q1(q̃))| + |
∞∑

k=0

(Pk+1Φ̄(Q1(q)) − Pk+1Φ̄(Q1(q̃)))|

+ |
∞∑

k=0

(Pk+1Φ̄(q) − Pk+1Φ̄(q̃))| (A.39)

≤ c(:1(Q1(q), Q1(q̃))+ :1(q, q̃)). (A.40)

On the other hand, again with (A.4), (A.11) and (A.21) we also obtain the bound

|
√

Ψ (Q1(q),q)+
√

Ψ (Q1(q̃), q̃))|
≤ c

(
|Φ̄(Q1(q))| + |Φ̄(Q1(q̃))| +W:1(δQ1(q), µ∗)+W:1(δQ1(q̃), µ∗)

+Wass:1(δq, µ∗)+W:1(δq̃, µ∗)
)

≤ c
(
1+

√
V (Q1(q))+

√
V (Q1(q̃))+

√
V (q)+

√
V (q̃)

)

≤ c
(√

1+ V (Q1(q))+ V (Q1(q̃))+
√
1+ V (q)+ V (q̃)

)
(A.41)

Now observe that, for any q, q̃ ∈ V

:1(q, q̃)
√
1+ V (q)+ V (q̃) ≤ 2:2(q, q̃), (A.42)

so that combining this simple observation with (A.38)–(A.41) we find

|Γ (q) − Γ (q̃)| (A.43)

≤ cE[(:1(Q1(q), Q1(q̃))+ :1(q, q̃))(
√
1+ V (Q1(q))+ V (Q1(q̃))

+
√
1+ V (q)+ V (q̃))]

≤ cE:2(Q1(q), Q1(q̃))+ c:1(q, q̃)E
(√

1+ V (Q1(q))+ V (Q1(q̃))
)

+ c
√
1+ V (q)+ V (q̃)E:1(Q1(q), Q1(q̃))+ c:2(q, q̃). (A.44)

Now notice that, under (A.19) we have

E
(√

1+ V (Q1(q))+ V (Q1(q̃))
)

≤ c
√
1+ V (q)+ V (q̃).
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On the other hand, notice that we may take Q1(q) and Q1(q̃) to be any coupling of
P(q, ·) and P(q̃, ·) in (A.44). As such, with (A.44) and these two observations

|Γ (q) − Γ (q̃)| ≤ W:2(P(q, ·), P(q̃, ·))+ c:1(q, q̃)
√
1+ V (q)+ V (q̃)

+cW:1(P(q, ·), P(q̃, ·))
√
1+ V (q)+ V (q̃)+ c:2(q, q̃),

so that with (A.42) and a final invocation of (A.21), we have

|Γ (q) − Γ (q̃)| ≤ c:2(q, q̃). (A.45)

The proof is now complete. 45
We conclude this section with the following proposition which gives a sufficient

condition for a function to be :-Lipschitz for a class of distance-like functions including
those appearing in the main results of this work.

Proposition 46 Let (V, ‖ · ‖) be a Banach space and consider distance-like functions
of the form

:(q, q̃) =
√(‖q − q̃‖

ε
∧ 1
)
(1+ V (q)+ V (q̃)) (A.46)

where we suppose that ε > 0 and V : V → [0,∞) is convex. Given any continuously
differentiable function Φ : V → R, define

LΦ := sup
q∈V

max{2|Φ(q)|,√ε‖DΦ(q)‖}√
1+ V (q)

. (A.47)

If LΦ < ∞ then Φ is :-Lipschitz, with LΦ providing a suitable Lipschitz constant.

Proof Fix any q, q̃ ∈ V. We consider separately the cases when ‖q − q̃‖ > ε and
when ‖q − q̃‖ ≤ ε. In the first situation when ‖q − q̃‖ > ε we estimate

|Φ(q) − Φ(q̃)| ≤
√
1+ V (q)+ V (q̃)

(
|Φ(q)|√
1+ V (q)

+ |Φ(q̃)|
√
1+ V (q̃)

)

≤ LΦ:(q, q̃).

Now consider the case when ‖q − q̃‖ ≤ ε. Let qs = q+ s(q̃ − q), for s ∈ [0, 1] and
observe that

|Φ(q) − Φ(q̃)| ≤ ‖q − q̃‖
∫ 1

0
‖DΦ(qs)‖ds

≤
∫ 1

0

√(‖q − q̃‖
ε

)
(1+ V (qs)) ·

√
ε‖DΦ(qs)‖√
1+ V (qs)

ds

≤ LΦ

∫ 1

0

√(‖q − q̃‖
ε

)
(1+ sV (q)+ (1 − s)V (q̃))ds ≤ LΦ:(q, q̃)
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where we have used the convexity of V for the penultimate bound. The proof is
complete. 45
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