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Abstract

We establish the geometric ergodicity of the preconditioned Hamiltonian Monte Carlo
(HMC) algorithm defined on an infinite-dimensional Hilbert space, as developed in
Beskos et al. (Stoch Process Appl 121(10):2201-2230, 2011). This algorithm can be
used as a basis to sample from certain classes of target measures which are absolutely
continuous with respect to a Gaussian measure. Our work addresses an open question
posed in Beskos et al. (2011), and provides an alternative to a recent proof based
on exact coupling techniques given in Bou-Rabee and Eberle (Two-scale coupling for
preconditioned Hamiltonian Monte Carlo in infinite dimensions , 2019). The approach
here establishes convergence in a suitable Wasserstein distance by using the weak
Harris theorem together with a generalized coupling argument. We also show that a
law of large numbers and central limit theorem can be derived as a consequence of
our main convergence result. Moreover, our approach yields a novel proof of mixing
rates for the classical finite-dimensional HMC algorithm. As such, the methodology
we develop provides a flexible framework to tackle the rigorous convergence of other
Markov Chain Monte Carlo algorithms. Additionally, we show that the scope of our
result includes certain measures that arise in the Bayesian approach to inverse PDE
problems, cf. Stuart (Acta Numer 19:451-559, 2010). Particularly, we verify all of the
required assumptions for a certain class of inverse problems involving the recovery
of a divergence free vector field from a passive scalar, Borggaard et al. (SIAM/ASA
J Uncertain Quant 8(3):1036-1060, 2020).
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1 Introduction

It has long been appreciated that Markov chains can be employed as an effective com-
putational tool to sample from probability measures. Starting from a desired ‘target’
probability distribution p on a space H one seeks a Markov transition kernel P for
which p is an invariant and which moreover maintains desirable mixing properties
with respect to this . In particular in Bayesian statistics [12,28,51,63,64,78] and
in computational chemistry [21,24-26,39,40,54,59,69,70] such Markov chain Monte
Carlo methods (MCMC) play a critical role by efficiently resolving high-dimensional
distributions possessing complex multimodal and correlation structures which typi-
cally arise. However, notwithstanding their broad use in a variety of applications, the
theoretical and practical understanding of the mixing rates of these chains remains
poorly understood.

The initial mathematical foundation of MCMC methods was set in the late 40’s
by Metropolis and Ulam in [67], and later improved with the development of the
Metropolis-Hastings algorithm in [50,66]. Further notable developments in the late
80’s and 90’s derived MCMC algorithms based on suitable Hamiltonian [29,71] and
Langevin dynamical systems [2,38]. See e.g. [8,57,76] for a further general overview
of the field. In view of exciting applications for the Bayesian approach to PDE inverse
problems and in transition path sampling [12,17,18,28,45-48,63,74,75,78], an impor-
tant recent advance in the MCMC literature [6,7,23,81] concerns the development
of algorithms which are well defined on infinite-dimensional spaces. These methods
have the scope to partially beat the ‘curse of dimensionality’ since one expects that the
number of samples required to effectively resolve the target distribution to be inde-
pendent of the degree of numerical discretization. However validating such claims of
efficacy concerning this recently discovered class of infinite dimensional algorithms
both in theory and in practice is an exciting and rapidly developing direction in current
research.

This work provides an analysis of mixing rates for one particular class of methods
among the MCMC algorithms mentioned above, known as Hybrid or Hamiltonian
Monte Carlo (HMC) sampling; cf. [6,29,57,72]. For HMC sampling the general idea
consists in taking advantage of a Hamiltonian dynamic taylored to the structure of
the target w, a distribution which functions as the marginal onto position space of
the Gibbs measure associated to the dynamics. As such this ‘Hamiltonian approach’
produces nonlocal and nonsymmetric moves on the state space, allowing for more
effective sampling from distributions with complex correlation structures in compari-
son to more traditional random walk based methods. Indeed the efficacy of the HMC
approach has led to its widespread adoption in the statistics community as exemplified
for example by the success of the STAN software package [36,79]. However, notwith-
standing notable recent work, the theoretical understanding of optimal mixing rates
for HMC based methods remains rather incomplete both in terms of optimal tuning of
algorithmic parameters and in terms of the allowable structure of the target measure
admitted by the theory [3-5,13-16,18,32,58,60-62].

We are particularly focused here on a version of HMC introduced in [6] where
the authors consider a preconditioned Hamiltonian dynamics in order to derive a
sampler which is well defined in the infinite-dimensional Hilbert space setting. While
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recent work [3,12,18] has shown that this ‘infinite-dimensional’ algorithm can be
quite effective in practice, the question of rigorous justification of mixing rates posed
in [6] as an open problem has only very recently been addressed in the work [13]
in the case of exact (i.e. non-temporally-discretized) and preconditioned HMC. In
[13], the authors follow an approach based on an exact coupling method recently
considered in [14,34]. Here we develop an alternative approach to establishing mixing
rates for preconditioned HMC based on the so called weak Harris theorem [20,41,43,
44] combined with suitable ‘nudging’ in the velocity variable which plays an analogous
role to that provided by the classical Foias-Prodi estimate in the ergodic theory of
certain classes of nonlinear SPDEs; cf. [37,55,65]. As such we believe the alternative
approach that we consider here to be more flexible in certain ways providing a basis
for further future analysis of MCMC algorithms. Furthermore, our approach for the
exact dynamics developed here can be modified to derive mixing rates in the more
interesting and practical case for discretized HMC. This later challenge will be taken
up in future work.

Our main results can be summarized as follows. We show exponential mixing rates
for the exact preconditioned HMC with respect to an appropriate Wasserstein distance
in the space of probability measures on H. For suitable observables, we show that
this mixing implies a strong law of large numbers and a central limit theorem. In
addition, we use very similar arguments to obtain a novel proof of mixing rates for the
finite-dimensional HMC. Finally, the second part of the paper is concerned with the
application of the theoretical mixing result to the PDE inverse problem of determining
a background flow from partial observations of a passive scalar that is advected by
the flow. A careful analysis of this inverse problem within a Bayesian framework is
carried out in [12], where the authors also provide numerical simulations showing the
effectiveness of the infinite-dimensional HMC algorithm from [6] in approximating
the target distribution in this case. Here our task is to show that this example, for
suitable observations of the passive scalar, satisfies all the conditions needed for our
theoretical mixing result to hold, thus complementing the numerical experiments in
[12] with rigorous mixing rates. In the sequel we provide a more detailed summary of
the results obtained in the bulk of this manuscript.

1.1 Overview of the main results

The preconditioned Hamiltonian Monte Carlo algorithm from [6] which we analyze
here can be described as follows. Fix a separable Hilbert space H with norm | - | and
inner product (-, -). Let B(H) denote the associated Borel o-algebra and let Pr(H)
denote the set of Borel probability measures on H. Suppose we wish to consider a
target measure u € Pr(HH) which is given in the Gibbsian form

u(dq) o exp(=U(q))no(dq), (1.1)

where U : H — R is a potential function. Here 1 is a probability measure on H
typically corresponding to the prior distribution when we consider a p derived as
a Bayesian posterior. Following a standard formulation in the infinite dimensional
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setting, we assume in what follows that 1¢ is a centered Gaussian distribution on H,
ie. wo = N(0,C), with C being a symmetric, strictly positive-definite, trace-class
linear operator on H.

Consider the following preconditioned Hamiltonian dynamics

d d
% —v, Y _q —CDU(q), withinitial condition (qo, vo) € H x H,

dt
(1.2)

where v € H denotes a ‘velocity’ variable, so that (1.2) describes the evolution of the
‘position-velocity’ pair (q, v) in the extended phase space H x H. Here we adopt the
notation q; and v; to denote the value at time ¢ of the variables q and v, respectively.
The associated Hamiltonian function, a formal invariant of the flow in (1.2), is given
by

H(q.v) = (C"'q,q)+ U(q) + (C"'v,v) for suitable (q,v) € H x H.

The exact preconditioned HMC algorithm works as follows. Starting from any
qo € H, draw vy ~ N (0, C) and run the Hamiltonian dynamics with initial condition
(qo, Vo) for a chosen temporal duration 7 > 0. Thus a forward step is proposed as the
projection on the q-coordinate of the solution of (1.2) starting from (qo, vo) at time
T,i.e. qr(qo, Vo). The associated Markov transition kernel P : H x B(H) — [0, 1]
is then given as

P(qo, A) = P(qr(qo, Vo) € A) with vo ~ N(0,C), (1.3)

for every A € B(H). We adopt the notation P" for n steps of the Markov kernel P
and recall that P acts as

vP(-)=/P(q, (de), PP =/a><q>P(-,dq)

on measures v € Pr(IH) and observables @ : H — R, respectively. This kernel
P leaves invariant the desired target probability measure p given in (1.1), namely
wP = pu, as was demonstrated in [6] and recalled in 13 below. Clearly, in practice,
one is not able to integrate (1.2) exactly so that one must instead resort to suitable
numerical discretizations. These numerical integration schemes are designed so as
to ensure that fundamental properties of Hamiltonian dynamics are preserved, such
as time reversibility and volume-preservation or ‘symplectiness’ —see e.g. [16] for
a survey. In this work we only analyze the exact dynamics, as the discretized case
requires additional techniques and will be the subject of future work.

Let us now sketch a simplified version of our main result, given in rigorous and
complete detail in Theorem 26 below. Our mixing result for the Markov kernel P
defined in (1.3) is given with respect to a suitably constructed Wasserstein distance on
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Pr(I). Namely, starting from & > 0 and > 0, consider p : H x H — R defined as

a, ) = \/ ( 9 - a 1) (1 +exprla® +exp@ld®). (1)

Here ¢ corresponds to the small scales at which we can match small perturbations in the
initial position g with a corresponding perturbation in the initial velocity vq in (1.2).
On the other hand, for sufficiently small 7 > 0, the function V (q) = exp(n|q|?) is a
Foster—-Lyapunov (or, simply, Lyapunov) function for P in the sense of Definition 19
and Proposition 20 below.

The mapping p is a distance-like function in H, i.e. it is a symmetric and lower-
semicontinuous non-negative function such that p(q, q) = 0 holds if and only if
q = . We denote by W; : Pr(H) x Pr(H) — R* U {oo} the following extension of
p to Pr(H):

Ws(vi, 1) =  inf / 5(q, I (dq, dq), 1.5
5(v1, 12) recnt va;O(q QI'(dq.dq) (1.5)

where €(v1, vp) denotes the set of all couplings of v and vy, i.e. the set of all measures
I' € Pr(H x H) with marginals v; and v;. We notice that, on the other hand, the
mapping p(q,q) = (lq — ql/e) A 1 defines a standard metric in H. As such, its
associated extension W, to Pr(IH) coincides with the usual Wasserstein-1 distance,
[83].

With the above notation, we have the following convergence result. For the com-
plete, detailed and general formulation, see Theorem 26 below.

Theorem 1 Suppose that C is a symmetric strictly positive-definite trace class operator
and that U € C?(H) satisfies the global bound

L := sup |[D*U(q)| < oo (1.6)
qeH

and the following dissipativity condition
9I° + (@, CDU(@) = Lolg* — L3 forallq € H, (1.7)
for some constants Ly > 0 and L3 > 0. Let L denote the largest eigenvalue of C.
Then, there exists an integration time T = T (A1, L1, Ly) for which the associated
Markov kernel P as defined in (1.3) satisfies, with respect to p defined in (1.4),
W51 P", v P") < cre” "W (v, v2)  forany vy, vy € Pr(H) andn € N, (1.8)
for some ¢ > 0 as in (1.4) and some positive constants c1, ¢ which depend only on
the integration time T > 0, the constants L;, i = 1, 2, 3, associated to the potential

Sfunction U, and the covariance operator C. In particular, (1.8) implies that ju defined
in (1.1) is the unique invariant measure for P. Moreover, taking vi = dq,, the Dirac
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delta concentrated at some qo € H, and vo = p, it follows from (1.8) that P"(qo, -)
converges exponentially to ju with respect to W; as n — oo. In addition, for any
suitably regular observable @ : H — R,

P (qo) - / o (q)udq)

< L<p€1e_"c2/\/l + exp(nlqo[?) + exp(nlq’ 121 (dq)).

foralln € N, for somen > 0and Ly > 0.

Further, taking { Q,,(qo) }neN o be the process associated to { P"*}, <N starting from
qo € H, i.e. Qn(qo) ~ P(Qn-1(qo), -) we have, for any qo € H and any suitably
regular observable ® : H — R, that

1 n
X, = - Zcb(Qk(qo)) - / D(qQu(dq) - 0 asn — oo almost surely
n
k=1

and that
f 1 b 2
Pla < /nX, <b) —> / e wXdx asn— ooforanya,b € Rwitha < b,
! V2o Ja

where o = o (®). In other words, {0, (qo) }n>0 satisfies a strong law of large numbers
(SLLN) and a central limit theorem (CLT).

With similar arguments as used in the proof of Theorem 1 (cf. Theorem 26), we
can also provide a new proof of mixing rates for the classical finite-dimensional HMC
algorithm, as specified by the dynamics (7.2). This is carried out in Theorem 28 below,
and complemented by further comparisons with the assumptions in the main infinite-
dimensional result in Remark 30.

Having formulated our mixing result for the exact HMC algorithm associated with
(1.1) we would like to be able to demonstrate that the conditions (1.6)—(1.7) which we
impose on the potential U can be verified in concrete examples specifically as would
apply to the Bayesian approach to PDE inverse problems. Here, as an illustrative
example, we consider the problem of recovering a divergence free fluid flow q from
the sparse and noisy observation of a passive solute 6(q) as was recently studied in
[11,12].

To be specific let

30 +q- VO =kA0, 6(0) =6 (1.9)

where the solution evolves on the periodic box T2, namely 6 : [0, c0) x T2 — R and
k > 01is a fixed diffusion parameter. Given a sufficiently regular initial condition 6 :
T2 — R, which we take to be known in advance, we specify the (linear) observation
procedure, i.e.

(’)(8)::{/ /G(I,x)Kj(t,x)dxdt} (1.10)
0 T2

J=1
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where m > 1 represents the number of separate observations of 6 and K are the
associated ‘observation kernels’.

Here we notice that the general formulation (1.10) allows for a broad class of
examples corresponding to specific functions K ;, as long as the integrals in (1.10)
are well-defined, which of course depends on the regularity of the solution 6 of (1.9),
see Proposition 31 below. In particular, we may consider the case of pointwise in
time observations by taking K;(t,x) = 811. (t) fj(x), for any finite collections of
times {tj}’}’=1 C [0, 0co0) and functions {f./}’;l=1 C L?(T?). Here the fj’s can be
taken e.g. as basis functions of the Hilbert space L>(T?) to account for spectral in
space observations, or as fj(x) = |A j|’1Il A;(x) for some bounded set Aj C T2
to represent spatial observations given as local averages. Further, we could also take
K, x) = S,j (t)SxJ. (x) for any finite set of spatial locations {x j};”:1 C T2, thus
representing the case of observations which are pointwise both in space and time.
Clearly, other examples could be given by combining these different types of spatial
observations with other kinds of temporal observations, such as local time averages,
spectral etc. It is also notable that our theory below treats various linear observations
of derivatives of & and moreover is easily modifiable to include certain nonlinear
observations of 9 i.e. L” norms of 0 etc., see Sect. 8 below.

Positing an additive observation noise 1, we have the following statistical model
linking any suitably regular, divergence free, q : T2 — R? with a resulting data set
as

Y=00@)+n,

where 6(q) represents the solution of (1.10) corresponding to ¢ so that 6(q) sits in an
appropriate solution space which we specify in rigorous detail below in Proposition 31.

Following the Bayesian statistical inversion formalism [28,51], given a fixed obser-
vation ) € R and a prior distribution 1o on a suitable Hilbert space of divergence
free, periodic vector fields and a probability density function p, : R” — R for the
observation noise 1, we obtain a posterior distribution

1Y (dq) o exp(—=U (@) peo(dq) where  U(q) = —log(p, (Y — OB(q))).
(1.11)

see e.g. [28], [12, Appendix C]. For simplicity of presentation, we focus here on the
typical situation where n ~ N (0, I"), with I" a symmetric, strictly positive definite
covariance operator on R In this case U takes the form

Ul =" - 06@)P, (1.12)
where | - | represents the usual Euclidean norm on R™.

Our main results here, Proposition 34 and Corollary 35, show that when the obser-
vations satisfy an inequality of the form

O®)] < co sup/ 0, x)| dx, (1.13)
T

t<t*
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for some t* > 0, which in particular includes the examples of observations which
are pointwise in time and spectral in space or local averages in space, then we can
verify the conditions imposed on the potential function U (cf. (1.6) and more generally
Assumption 8 below) and in particular establish suitable global bounds on D?U. On
the other hand, when the observations satisfy instead an inequality such as

1O@) <co sup [0z, x)] (1.14)

t<t* xeT?

for some #* > 0, which includes in particular the example of space-time pointwise
observations, or for observations involving gradients or other higher order derivatives
of 6, we can only show local bounds on D*U.

Overview of the proof

Our proof follows the approach of the weak Harris theorem developed in [43], which
is an elegant generalization of the classical Harris mixing results, [42,49,68]. It estab-
lishes necessary conditions for two point contraction at small, intermediate and large
scales in a fashion well adapted to the Wasserstein metric, a notion of distance which is
crucially needed for many types of processes evolving on infinite dimensional spaces.
We should emphasize the authors in [43] provide clarity and flexibility in their approach
by developing a class of distance-like functions (cf. (1.4)) which allows one to establish
global contractivity directly and thus avoiding the need for intricate pathwise coupling
constructions considered elsewhere in the literature.

As such, the main difficulties here lie in showing that the necessary assumptions
of the weak Harris theorem are valid in our context. These assumptions amount to
showing, with respect to p : H x H — [0, 1] defined as p(q, q) = 1 A (]q — ql/¢),
with ¢ > 0 fixed, that the following is true: there exists m € N sufficiently large such
that

(i) P™ is p-contracting, i.e. there exists 0 < §; < 1 such that

W, (P"(qo, ), P"(qo,-)) < 81p(q,q) forall qo, qo € H with p(qo, go) < 1
(1.15)

(i) For level sets of the form Ax :={q e H : |g| < K}, for K > 0, Ak is p-small
for P™, i.e. there exists 0 < 8, < 1 and m > 1 such that

W, (P™(qo, ), P"(qo,-)) <1—8, forallqp,qo € Ax. (1.16)

Finally we need a Lyapunov condition:
(iii) For a suitable V : H — R that

P"V(q) <Ck"V(q) + K, (1.17)

forevery q € Hand n > 1, where k € (0, 1) and C, K > 0 are independent of ¢
and n.
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Roughly speaking the conditions (i)—(iii) correspond to establishing a two-point con-
traction at small, intermediate and large scales respectively.

Following an approach developed in the stochastic PDE literature [20,37,41,43,55,
65], the idea consists in establishing (i) and (ii) above without explicitly constructing
a coupling between P (qo, -) and P™(qo, -). Instead, we construct an ‘approximate’
coupling by defining a modified process P(qo, §o, -) in a control-like approach. We
define the process P by imposing a suitable ‘shift’ in the initial velocity vg in (1.3)
depending on the initial positions qq, qo. Namely, for a fixed integration time 7" > 0,
we take

P(qo, Qo, A) := P(qr(qo, Vo) € A) with ¥9 = vo + S(qo, G0), Vo ~ N(0,C),
(1.18)

forevery A € B(H). Here we consider a shift S(qop, qo) which is inspired by estimates
developed in [14]; S is defined so as to ensure a suitable contraction between two
solutions of (1.2) starting from (qq, Vo) and (o, Vo) at the final time 7" > O.

Since p is a metric in H, the corresponding extension WV, is a metric in Pr(IH) and
in fact coincides with the Wasserstein-1 distance. Thus, by the triangle inequality,

W, (P™(qo, -), P"(qo. -))
=< Wp(Pm(qO, ')! Pm(qO’ (107 )) + Wp(Pm(qu (10, ')7 Pln(q()s ))’ (1'19)

where P™ denotes the m-fold iteration of P, corresponding to a sequence (V(()l), cees

V(()m)) of initial velocities drawn from N (0, C) and shifted as in (1.18) with qg, go
replaced with the starting positions from each iteration. In view of establishing (1.15)
and (1.16), the first term on the right-hand side of (1.19) is estimated by first showing
a contraction result between two solutions of (1.2) starting from (qo, Vo) and (qo, Vo)
with respect to p in H, which is then extended to W, in Pr(IH). Such contraction
result follows solely from assumption (1.6) on the potential function U together with
a smallness assumption on the integration time 7'; see Proposition 18 below. Moreover,
assumption (1.6) implies that the only possible source of nonlinearity in the dynamics
(1.2),1.e. DU, is Lipschitz, which in particular guarantees the well-posedness of (1.2)
as we detail in Proposition 12.

The second term on the right-hand side (1.19) represents a ‘cost of control’ term
and in fact the tuning parameter ¢ appearing in p specifies the scales at which this
cost does not ‘become too large’. We estimate this term with the help of Girsanov’s
theorem from which we obtain a bound in terms of the Radon-Nikodym deriva-

tive between the law o, of the velocity path (v(()l), e, v(()m)) and the law &, of
the associated shifted velocity path (\7(()1), el V(()m)), i.e. Girsanov provides us with

doy,, /do,,. Here we notice that, in order to guarantee that do,, /d6,, is well-defined,
we define the shift S in (1.18) to be in a finite-dimensional subspace of H (cf. (5.7)).
Indeed, looking at the case m = 1 for simplicity, notice that if vo ~ A(0, C) then
Vo ~ N(S(qo, Go), C) and, by the Feldman-Hajek theorem (see, e.g., [27, Theorem
2.23]), N (0, C) and N (S(qo, qo), C) are mutually singular unless S(qo, qo) belongs to
the Cameron-Martin space of (0, C). Notably, the Cameron-Martin space of N'(0, C)
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has A/ (0, C)-measure zero when H is infinite-dimensional. This illustrates the fact that
two measures in an infinite-dimensional space are frequently mutually singular. How-
ever, by considering a velocity shift S that belongs to an N-dimensional subspace
Hy C H, for some N € N, we can show that o, and &, are mutually absolutely
continuous, with an estimate of do,, /dd,,, and thus of the second term in (1.19), that
depends on the dimension N. Here N is chosen so as to obtain a suitable contraction
between different trajectories of (1.2) and hence to provide a useful estimate of the
first term in (1.19) (see Propositions 18 and 22). For this purpose, N must be chosen
to be sufficiently large, but is nevertheless a fixed parameter depending only on the
potential function U through the constant L from (1.6) (see (3.20) below).

The third part of the proof consists in showing that such V is a Lyapunov function
for P as given in Proposition 20 below. Here, in addition to quadratic exponential
function V(q) = exp(n|q|2) as in (1.4) we in fact show that any function of the
form V(q) = |q|’, i € N, is also a Lyapunov function. The result of Proposition 20
follows from both assumptions (1.6) and (1.7) on the potential U together with a
smallness assumption on the integration time 7. Notably, assumption (1.7) on U
is only imposed in order to obtain this Lyapunov structure. Indeed, condition (1.7)
provides a coercivity-like property for DU in (1.2) which, when complemented with
the smallness assumption on 7', allows us to show the required exponential decay of
such functions V modulo a constant, thus proving the Lyapunov property.

Itremains to leverage the spectral gap now established, (1.8), to prove a Law of Large
numbers (LLN) and Central Limit Theorem (CLT) type result for the implied Markov
process. While this implication is extensively developed in the literature, and recently
generalized to the situation where the spectral gap appears in the Wasserstein sense
[53,56], it was not immediately clear that these results are easily applied as a black
box to our situation. Instead, for clarity of presentation, we provide an independent
proof of the LLN and CLT in an appendix which is carefully adapted to our situation
where the p in (1.8) is only distance-like. While we are in particular following the
road map laid out in [53], we believe our proof may be of some independent interest.

Organization of the manuscript

The rest of the manuscript is organized as follows. In Sect. 2 we provide the complete
details of our mathematical setting including the assumptions on the covariance oper-
ator C and the potential U in (1.2). Section 3 provides certain a priori bounds on (1.2)
and concludes with the low-mode nudging bound that we use to synchronize the posi-
tions of two processes by suitably coupling their momenta. Lyapunov estimates on the
exact Hamiltonian Monte Carlo dynamics are given in Sect. 4. In Sect. 5 we combine
the bounds in the previous two sections to establish the pointwise contractivity of the
Markovian dynamics, namely the so called p-small and p-contractivity conditions.
The main result on geometric ergodicity is stated rigorously in Sect. 6 followed by the
proof using the weak Harris theorem [43]. Section 7 details how our approach also
provides a novel proof for the finite dimensional setting. Finally in Sect. 8 we estab-
lish that the conditions of the main theorem apply to the Bayesian statistical inversion
problem of estimating a divergence free vector field q from the partial observation of
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a scalar quantity advected by the flow. Section 1 shows how the law of large numbers
and the central limit theorem follow in our setting from our main result on spectral

gaps.

2 Preliminaries

This section collects various mathematical preliminaries and sets down the precise
assumptions which we use below in the statements of the main results of the paper.

2.1 The Gaussian reference measure

Let H be a separable and real Hilbert space with inner product (-, -) and norm | - |. We
take (0, C) to denote the centered normal distribution on H with covariance operator
C. See e.g. [10,27] for generalities concerning Gaussian measures on Hilbert space.
In this paper we always assume that C satisfies the following conditions.

Assumption2 C : H — H is a trace class, symmetric and strictly positive definite
linear operator. Thus, by the spectral theorem, we have a complete orthonormal basis
{e;}ieny of H which are the eigenfunctions of C. We write corresponding eigenvalues
{Ai}ien in non-increasing order and note that the trace class condition amounts to

Tr(C) := Z}\,- < 0. 2.1

We will also make frequent use of fractional powers of C which we define as follows.

Definition 3 For any y € R, we define fractional power C” of C by

CrE =) Wf eer
i

which makes sense for any f € H, . Here H,, is defined as

H, = {f € H| |fl, < o0} where [f[ :=|CT"f* = Zx;zy(f, e) (22
i

when y > 0. For y < 0, H, is defined as the dual of H_, relative to H. In addition,
for every y € R, we define the inner product (-, -),, = (C7V-,C77").

According to Definition 3, it follows that ]HI_,; C H_, foreveryy,y € Rwithy > y.
Moreover, note that Hj > is the Cameron-Martin space associated with A/ (0, C) with
inner product (-, -)12 = (-2 c-1/2, andnorm ||z = |C~1/2.]; see [27, Chapter
2].
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In terms of these fractional spaces I, we have the following ‘Poincaré’ and
‘reverse-Poincaré’ inequalities. For this purpose and for later use we define, for N > 1,

Iyt = Z(f, eje;, IMVf= Z(f, ejle;, (2.3)
J=<N j>N
namely the projection of f € H onto ‘low’ and ‘high’ modes.

Lemma4 Givenany y,y € Rwithy > y, the following hold:

lcre| <277 e 2.4)
when f € H,J;. Moreover, for any N > 1,
‘cyan( <27 e e (2.5)

foranyf e H_;.

In certain applications, one may wish to define the Markovian dynamics associated
to (1.2) only on I, for some y € (0, 1/2), whichis a strict subset of H. For this reason,
in what follows we consider our underlying phase space to be more generally given
by H,, for some y € [0, 1/2). This leads us to introduce the following additional
assumption which will sometimes be imposed:

Assumption 5 For some y € [0, 1/2), C'=27 is trace class. Namely,

Tr(C' ™) = Z)»l.l_zy < 0. (2.6)

Under Assumption 5 we have the following regularity property

Lemma 6 Suppose that o is N'(0,C) defined on H with C under Assumption 2,
Assumption 5. Then g is also N'(0, C'=27) defined on H, .

Remark 7 We typically think of the covariance C as a ‘smoothing operator’. A simple
example of C satisfying the above assumptions is A~! where A = —3,, is the second
derivative on [0, ] endowed with Dirichlet boundary conditions. Note that, with this
choice of C, the spaces H,, correspond to the usual L?-based Sobolev space H?/? with
the Cameron-Martin space given by H'. A more involved variation on this theme will
be considered below in Sect. 8 when we consider an application to a PDE inverse
problem.

2.2 Conditions on the potential
In what follows we impose the following regularity conditions on the potential energy

function U from (1.1). Note that in particular assumption (B1) below is compatible
with the setting imposed in [6]; see Remark 11 below.
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Assumption 8 For a fixed value of y € [0, 1/2) the potential in (1.2) U : H,, — Ris
twice Fréchet differentiable and

(B1) There exists L1 > 0 such that
ID*U ()| z,q,) = ICY D*UE)CY | £,y < L 2.7)
forany f € H,,, where |-|z, @1,) and || 2, @) denote the usual operator norms for
real valued bilinear operators defined on H,, x Hl, and on H x H, respectively.
(B2) There exists L, > 0 and L3 > 0 such that, for this value of y € [0, 1/2)
£l + (£,CDU D)), = Lo ]} — L3 (2.8)

for every f € H,,.
A number of remarks are in order regarding Assumption 8:

Remark 9 (i) Assumption 8 (B1) and the mean value theorem imply that
IDU(F) — DU(g)|_, < L1 If —gl, (2.9)
for any f, g € I, and, in particular,
IDU®)|_, < Ly If], + Lo (2.10)
for every f € H,,, where Lo = |DU(0)|_,, . Inequalities (2.9) and (2.10) will be

used extensively in the analysis below.
(ii) If U satisfies, in addition, the following property:

(B3) There exists L4 € [0, Af”zy) and Ls > 0 such that
IDU)|-, < L4|f], + L5, foranyf e H,, (2.11)
then (B2) is automatically satisfied. Indeed, we have

If> + (£.CDU®)), = [f]> — [(£.CDU®))y | = If[ — If], IC'™7 DU ()|
> [f12 — 27 If], 1DU®)]_, | (2.12)

where the last inequality follows from Lemma 4 and the fact that y € [0, 1/2).
Using (2.11) in (2.12) and Young’s inequality, we obtain

1-2 1-2
[t + (£.CDU®)), = (1 — A LI — 1, " Ls|fl,
1-2y
1—A Ly
>——If; - C,

where C € R™ is a constant depending on )L: 727’, La, Ls. Notice that, in particu-
lar, if U satisfies (B1) with L; € [0, ;' 27), then (B3) is verified with Ly = L
and Ls = Lo (cf. (2.10)).
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(iii) Assumptions (B1) and (B2) imply that the constants L and L, satisfy the fol-
lowing relation:

Ly<1+x 7L (2.13)
Indeed, from (B2), Lemma 4 and (2.10), we obtain that

(Ly— D If]2 — Ly < (£.CDU®)), <, 7 Ifl, IDU®)|_,
< Ly + Loay T IA,

1-2y\2
1-2y 2 (LO)\I )
< @A a L) +
for any § > 0, so that

1-2y.\2
_ (LoA )
(Ly—1—2,""Li =8 [ 5L3+i—5

holds for any f € H,,, and every § > 0, which implies (2.13).

This paper is concerned with sampling from probability distributions on H that
have a density with respect to A/ (0, C) which are of the form (1.1). In order that this
is indeed the case and furthermore to ensure the invariance of u with respect to the
Markovian dynamics defined with respect to (1.2), we assume the following condition.

Assumption 10 Taking y € [0, 1/2) as in Assumption 8 we suppose that, for any
& > 0 there exists an M = M (¢e) € R, such that

U(f) = M —e|f[5, foranyf e H,.

Remark 11 We notice that Assumption 8 (B1) and 10 above are equivalent to condi-
tions 3.2 and 3.3 imposed in [6]. Indeed such assumptions are applied there in order to
show the well-posedness of the dynamics in (1.2) as well as to show that the measure
1 defined in (1.1) is an invariant measure associated to (1.2). Such results are recalled
in Propositions 12 and 13 below, respectively. However, as pointed out in the introduc-
tion, condition Assumption 8 (B2) is further imposed in our setting in order to obtain
the Lyapunov structure (1.17), which together with the contractivity and smallness
properties (1.15)—(1.16) allows us to obtain our main convergence result, Theorem 26
below.

2.3 Well-posedness of the Hamiltonian dynamics

In the following proposition, we recall a well-posedness result of the Hamiltonian
dynamics in (1.2), as shown in [6]. We consider the usual norm on the product space
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I, x I, with the slight abuse of notation:

(. V), :==1ql, +|vl, forall(q,v) e H, x H,. (2.14)

Proposition 12 Suppose C satisfies Assumption 2 and that U maintains Assumption 8,
(Bl). Let y € [0, 1/2) be as in Assumption 8.

(i) Forany (qo, vo) € H, x H,, there exists a unique (q, v) = (q(qo, Vo), v(qo, Vo))
with

(q,v) € C'(R; H,, x H,) (2.15)
and obeying (1.2). The resulting solution operators {E;};cr defined via
Z1(q0, Vo) = 4:(qo, Vo)
are all continuous maps from H, x H, to H,,.

(i) Under the additional restriction on C of Assumption 5 and fixing an integration
time T > O the random variable

01(qo0) = qr(qo, Vo), Vo ~N(0,C)
is well defined in ., for any qo € H,. Moreover

P(qo. A) :=P(Q1(qo) € A) (2.16)

defines a Feller Markov transition kernel on H,,.

Proof The first item follows from a standard Banach fixed point argument, i.e. it
suffices to show that, given any (qo, vo) € H, x I, and any #, € R, the mapping

t
G(p,w@) = (qo,VO)+/ (u(s), —p(s) —CDU(p(s))ds,
0]

is a contraction mapping on the space of continuous (H, x H,, )-valued functions
defined on I := [tg — &, 70 + 8] C R, thatis on C(/; H, x H,), for some § > 0
sufficiently small independent of (qo, Vo) and fg.

Observe that, with (2.9) and (2.4),

C'=7(DU®@P) = DUG)| < A 7 LiICT (p—P)| forallp.peH,. (2.17)

Thus, for any (p, ), (p, ) € C(/; H,, x H,), using (2.14) and (2.17),

sup |G (p, w)(1) — G (B, ()], < 8(1+ 2, L) sup (p. w) = (B, W),
te

tel
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Therefore, G is a contraction mapping on C(I; H,, x H,) for § < (1 + Ai_ZVLl)_l.
Similar argumentation establishes the desired continuity of &, thus completing the
proof. O

2.4 Formulation of the preconditioned Hamiltonian Monte Carlo chain

Having fixed an integration time 7" > 0, we denote by Q,(qo) as a random variable
arising as the n step dynamics of the exact Preconditioned Hamiltonian Monte Carlo
(PHMC) chain (2.16) starting from qo € H. Namely, we iteratively draw Q,(qo) ~
P(Qn-1(qo), -) for n > 1 starting from Qop(qo) = qo. We can write Q,(qp) more

explicitly as a transformation of the sequence of Gaussian draws for the velocity as
follows: Let H®" denote the product of n copies of H. Given a sequence {V(()j )} jeN of

i.i.d. draws from N (0, C), we denote by V(()") the noise path
v =", v ~ N, 0%, (2.18)

where N (0, C)®" denotes the measure on H®" given as the product of n copies of
N (0, C). Taking B(H) to be the Borel o -algebra on H, we define Q;(qo) : H — H
to be the Borel random variable defined as

01@0)(v§") = q,(qo, v§")  where v ~ N (0, C).

Iteratively, we define for every n > 2 the Borel random variable Q, (qo) : H®" — H
given by

-1
(@) (V5" = 4i(Qu-1(g0) (V5" ™), v§™)  where Vg ~ N(0,0)®". (2.19)
With these notations we can write the n-step iterated transition kernels as

P"(qo, A) :=P(Q,(qo) € A) (2.20)

for any qo € H, and A € B(H, ). Or, equivalently, P"(qo, -) is the push-forward of
N (0, C)®" by the mapping Q,,(qo), i.e.

P"(qo, A) = Qu(q0)*N(0,C)®" (A) = N(0,0)®" (s (qo) ' (A)) (2.21)

for every qo € H, and A € B(H,).
We recall an invariance result for (1.1) from [6] in our setting.

Proposition 13 Under the conditions given in Proposition 12 and additionally impos-
ing Assumption 10 we have that

M(dq, dv) o< eV D pg(dq) x po(dv)

@ Springer



Stoch PDE: Anal Comp

defines a probability measure on H,, x H,, which is invariant under {E,};>0 namely

f F(Ei(q. v)M(dq, dv) = / (@, V)M(dg, dv)
IHIVX]HIV

H,, xH,
holds for every f € Cp(H, x H,) and every t > 0. As a consequence, |1 given in
(1.1) is a Borel probability measure on H, which is invariant for P defined by (2.16).
3 A priori bounds for the deterministic dynamics
This section provides various a priori bounds on the dynamics specified by (1.2). The

proofs rely solely on the bound on DU given in (2.7). In fact, they are obtained by
using inequalities (2.9) and (2.10), that follow as a consequence of (2.7).

Proposition 14 Impose Assumptions 2 and 8, (B1) and fix any T € R™ satisfying
T <+ 7Ly~ (3.1)

where the constant Ly is given in (2.9) and Ay is the top eigenvalue of C. Then the
dynamics defined by (1.2) maintains the bounds

sup |q(qo, vo) — (qo + 1vo)l,,
t€(0,T]

1-2 1-2
< (4 i "L)T*max{lqol, . lqo + Tvol,} + 4, " LoT>  (3.2)

and

12 1-2
sup [v()—voly, < (142, VLTI + (1+ 2, yLl)Tz]maX{|QO|y,|(I()+Tv0|y}
t€(0,T]
1-2y 1-2y 2
i VLT[l + (1+2, TL)T?, (3.3)

for any (qo, vo) € H, x H,,, with Lg as given in (2.10).

Proof Integrating the first equation in (1.2) twice and then applying the operator C™7,
we obtain

t s
C7Vq, =C77(qo + tvp) —/ f [C_Vqt +C1_VDU(qr)] dtds, (3.4)
0 JO
for each ¢ € [0, T']. From Lemma 4 and inequality (2.10), we obtain
1-2 e -2y T?
4 — @0+ Vo)l < (142! VL»/ f el deds + 21 Lo
0 JO

t s
2
<4 VL1>/0/O|qT—<qo+rvo>|ydrds
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_ t N _ T2
+ (42 ZVLl)/ / 4o + Tvol, dtds + A, 2VL07
0 JO

1-2y T2
<42 L) sup lgr — (o +Tvo)l,
1€[0,T]
1=2y T’ 1-2y T2
+ (1 + A Ll)? max{'QO|y . 1q0 + TVO|),} + 2 LOT.
3.5)

Here note that, using the convexity of the function f(7) = |qo + TVol,,, we have

sup |qo + tvol,, < max{|qol, ,|go + T'vol,,} (3.6)
t€l0,T]

which we used in the final bound in (3.5). Thus, using assumption (3.1) and taking
the supremum with respect to ¢t € [0, T'] in (3.5), we conclude the first bound (3.2).

Turn next to second bound (3.3), integrating the second equation in (1.2) once and
using Lemma 4 and inequality (2.10) again, we have

t
1-2 -2
Vi —vol, < (142, VLpf ], ds + 37 Lot (3.7)
0
<+ 7LOT sup lqel, + 24 7 LoT (3.8)
s€(0,T]

for every ¢ € [0, T']. From (3.2), it follows that

1-2 1-2
sup lqsl, < [1+ (1 +x VLT max{|qol, . lqo + Tvol,} + A, " LoT™.
t€l0,T]

(3.9)

Hence, we conclude (3.3) from (3.7) and (3.9), completing the proof. |

Proposition 15 Impose Assumptions 2, 8, (B1) and consider any T € R satisfying
T<(+r 7Ly (3.10)

where L1 is as in (2.7) and A1 is the top eigenvalue of C. Then, for any (qo, Vo), (qo, Vo)
e H, x H,,

sup |q;(qo. Vo) — g (o, Vo) — (do — Qo) — 1 (Vo — Vo)l,
t€l0,T]

< (L+ 4,7 L)T? max {Iqo — Gol, . 1(@o — o) + T(vo — ¥o)I,,} . (3.11)

Remark 16 Observe that, given any qo, o, Vo € H,,, by choosing

. 1 .
Vo :=Vvo+ 7((10 —qo), (3.12)
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then under (3.11) we obtain
IC7 [qr (a0, Vo) — ar @0, ¥0)] | < (1 + 4,V LNT?C 7 (qo — Go)l,  (3.13)

which thus yields a contraction when 7' < (1 + )\1_2VL1)_1/ 2. This observation for
the initial conditions in (3.12) has previously been employed in [14] and, in the finite
dimensional case where H = R¥ for some k € N, this bound can be used directly as
a crucial step towards establishing the p-smallness and p-contraction conditions for
the weak Harris theorem in [43], as we illustrate below in Sect. 7.

The idea behind definition (3.12) comes from the fact that for the simplified version
of the dynamics in (1.2) where dv, /dt = 0, the positions of two associated trajectories
starting from (qqo, Vo) and (qo, Vo), with V¢ as in (3.12), will coincide at time 7. With
a similar line of reasoning, one could consider a slighly better approximation of the
dynamics in (1.2) by assuming instead U = 0, in which case the associated dynamics
dq;/dt = v;, dv,/dt = q, describes the motion of a simple pendulum. Here by
defining Vo = vo 4 (qo — qo)(cos 7'/ sin T') one again concludes that the positions
of two trajectories starting from (qq, vp) and (qo, Vo) coincide after time 7. While
we could obtain similar results by using the latter approach, this would require the
same type of assumptions we already impose in the first case, thus not showing a
significant difference at least at the theoretical level. For simplicity, we then chose the
first approach for our presentation. We remark however that the second approach, as
being associated to a better approximation of (1.2), could lead to slightly less stringent
constants on the conditions for the integration time 7" in comparison to (3.10).

More generally, we may view (3.12) as addressing a control problem. In fact, the
methodology of the weak Harris theorem developed here could in principle allow
the use of a wide variety of controls. More specifically, we are interested in any
‘reasonable’ mapping ¥ : H, x H, x H, — H,, such that, for any qo, qo, vo € I,
and any suitable value of 7 > 0, one would have

q7 (9o, Vo) ~ q7(qo, ¥ (qo, qo, ¥0)).

In this connection one might hope to make a more delicate use of the Hamiltonian
dynamics, presumably tailored to the fine properties of a particular potential U of
interest, to obtain refined results on convergence to equilibrium. In particular, we
expect that the constraints imposed on 7' by Proposition 14 are overzealous, and could
potentially be improved by a different type of control.

On the other hand, in the infinite dimensional Hilbert space setting which we are
primarily focused on here, even (3.12) is insufficient for the aim of establishing con-
tractivity in the Markovian dynamics, as the law of this choice of Vg is not generically
absolutely continuous with respect to the law of vg; cf. Propositions 22 and 24 below.
We proceed instead by using the refinement (3.19) which is shown to produce a contrac-
tion in Proposition 18. Here we are making use of some of the intuition and approach
to ergodicity in the stochastic fluids literature, cf. [37,55,65]. In these works one mod-
ifies the noise path on low modes with the expectation that if one induces a contraction
on the large scale dynamics for sufficiently many low frequency modes then the high
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frequencies (or small scales) will also contract, being enslaved to the behavior of the
system at large scales. This effect, sometimes referred as a Foias-Prodi bound [35], is
widely observed in the fluids and infinite dimensional dynamical systems literature.

Proof (Proof of Proposition 15) Let z; = q;(qo, Vo) — q:(qo, Vo) and w; = dz,/dt.
Then, for any ¢ > 0, z, satisfies

d’z
dﬂt =—z,—Cg() (3.14)
where
g(t) := DU(q,(qo, v0)) — DU (q;(qo. V0))- (3.15)

Therefore, for every t > 0,

t s
C V2, =C7V(zg +twg) — / / [C 72 +C' 7V g(v)ld1ds.
0o Jo

By using Lemma 4 and inequality (2.9), we obtain
t s -2
|z — (2o + tWo)l,, < / / [Izrly +a, Ig(r)l,y] dtds
0 JO

t N
< (1+A}*2VL1)/ / 2|, dtds.
0 JO

The remaining portion of the proof follows analogously as in the proof of (3.2). O

In view of Remark 16 the bounds in Proposition 15 are not sufficient for our appli-
cation to prove the p-contractivity and p-smallness conditions for the weak Harris
theorem below in Sect. 5. For this purpose we consider a modified version of (3.12)
where the shift only involves a low-modes finite-dimensional approximation of qo —qpo.

Before proceeding let us introduce some notation. Split H into a space Hy :=
span{ep, - - - , ex} and its orthogonal complement HY: so that H = Hy & H" where
N satisfies the second condition in (3.20), below. Recall, as in (2.3), that, given f € H,
we denote by ITyf and ITVf the orthogonal projections onto Hy and HY, respectively.
This splitting is defined such that the Lipschitz constant of the projection of —CDU (f)
onto HV is at most 1/4.

For any y € [0, 1/2) and @ € R, we consider the following auxiliary norm:

Ifly.0 = [[Infl, + a|[TVE],, forany f € H,. (3.16)

Remark 17 Notice that | - IV,O, is equivalent to | - Iy and
min{l, o} [f], < |f], , < \/Emax{l,a} If], , forallf e H,. (3.17)
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In particular, for o defined as in (3.21) below, we have
I, < Ifl,q < V2alf],, forallfeH,. (3.18)

Proposition 18 Impose Assumptions 2, 8, (B1). Let (qo, Vo), (qo, Vo) € H,, xH, such
that

INvo=MVvo and Myvo = yvo+ T~ (Tngo — Mxdo). (3.19)
Assume that T € R and N € N satisfy

1 _ 1
T < and A\ < —

TR0+ AL YAy

(3.20)

and let
1-2y
a=4(+2x Ly). (3.21)

Here y is specified in Assumption 8, L is as in (2.7) and A j represent the eigenvalues
of C in descending order as in Assumption 2. Then,

lq7(qo, v0) — 47 (Go, Vo)l,, o < k1190 — Qol, ¢ » (3.22)

where | - |,  is the norm defined in (3.16) and

K[II—E.

Proof As in the proof of Proposition 15, let us denote z; := q,(qo, Vo) — q:(qo, Vo)
and w; = dz,/dt, for all t > 0. Notice that

IMnzo+ TIHywo =0 and TVwy = 0. (3.23)

Applying C7 to (3.14), projecting onto Hy and integrating, yields

T K
CV Myzr = —/ / [C—VHNZt +cl—VnNg(r)] dvds,
0 0

with g(-) defined as in (3.15). Thus, using (2.4) in Lemma 4 and (2.7) of Assumption 8,
we estimate

Tors 1-2 1-2 T2
|nNzT|y5/ f [|zt|y+x1 y|g(t)|_y]dtds§(1+kl YL)=— sup Iz,

o Jo 2 sel0.7]
aT?

=—— sup |z (3.24)

ly -
8 se[0,7]
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On the other hand, by Duhamel’s formula, we have
T
zr = zgcos(T) + wo sin(T') — / sin(T — ) Cg(s)ds,
0
and hence, with (3.23),
T
C'INzr =C7V TN zg cos(T) — / sin(T — ) C'= TV g(s)ds
0

Now, using (i7) of Lemma 4 and (B1) of Assumption 8, we estimate

T
‘HNZT) < ’HNZ()’ cos(T) + Ay 2V L f sin(T — s) |z, ds
¥ ¥ 0
1 —cos(T
< ‘HNZ()‘ cos(T) + A sup |z, .
y 4 5€[0,7]

where for the final inequality we used the second condition in (3.20). Therefore, using
that cos(s) < 1 —s2/2 4+ s*/24 and 1 — cos(s) < s2/2 for every s € R, yields

T2 T4 T2
HNZT’ < (1 -+ —) )nNzO) +— sup |z, . (3.25)
‘ Y 2 24 Y SE[O,pT] $ 14

From Proposition 15 and a bound as in (3.6) it follows that

1-2
sup |zgl, < [1+(1+A, " L)T* max {|zol, . |zo + Twol,} .
s€[0,7T]

However from (3.23) we have zg+ Twy = TV zg, so that max{|zo|y , |zo + Tw0|y} =
|zo, . With this and the first condition in (3.20), we therefore obtain

3

-2
sup [z, < [14+ (1 + 25 LT 2ol < laol, - (3.26)
5€[0,T]
Using (3.26) in (3.24) and in (3.25), we obtain
oT?
[IInzrl|, < T |zol,
and
T2 T 372
mal, < (-5 5 0], + 2w
‘ ZTV_( 2+24> Zoy+ T |zol,
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so that finally

2

8

N T2 T4 N
|zT|y‘a:|17NzT|y+a‘17 zT‘y < Izol,,—i-a(l—?—i-ﬁ) ’1‘[ zo’y
T2 T*\ | _»
n - ‘17 ‘ : 3.27
| NZO|y+a< 3 +24> 20, (3.27)

3aT?
8

=<

From the first condition in (3.20) and the definition of & in (3.21), it follows in particular
that T2 < 2 and also T < 1, so that T* < T2. Therefore, from (3.27), we have

3 T
lz7|) 0 < 7 [IINzol, +« (l - —) ’HNZO’V

- | TZ 3 | | . T2 | |
max _—, — Z = —_ - Z s
= 12° 4 O0ly,a 12 0ly,a

where the equality above follows again from the fact that T < 1, by the first condition
in (3.20). This completes the proof. O

4 Foster-Lyapunov structure

This section provides the details of the Foster—Lyapunov structure for the Markov
kernel P defined by (2.16) under Assumption 5 and 8. First, we recall the underlying
definition:

Definition 19 We say that V : H, — R™ is a Foster-Lyapunov (or, simply, a Lya-

punov) function for the Markov kernel P if V is integrable with respect to P"(q, -)
for every q € H and n € N, and satisfies the following inequality

P'V(q) < Ck"V(q)+ K forallqe Handn € N, 4.1)

for some constants ¥ € (0, 1) and C, K > 0.

With this definition in hand the main result of this section is as follows:

Proposition 20 Impose Assumption 2, 5 and 8 and suppose that T € Rt satisfies

12
1 L,
201+ A L)12 23/6(1 + 47 Ly)

T < min 4.2)

where L1 and L, are defined as in (2.7), (2.8), respectively and )1 is the largest
eigenvalue of C. Then, the functions

Vi@ =lql,, ieN, (4.3)
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and

Van(q) = exp(n Iql3). (4.4)

with n € RT satisfying
-1
n<leme ™) (170 +12)] (4.5)

for a suitable absolute constant ¢ € R™, are Lyapunov functions for the Markov kernel
P defined in (2.16).

Remark 21 Before delving into the proof, some heuristic remarks are in order here
concerning why we might expect a dissipative structure a la (4.1) for the HMC chain
(2.20) not withstanding non-dissipative nature of Hamiltonian systems in general.
Starting from a current position qg, we draw an initial velocity vo ~ o = N(0, C). If
qo is sufficiently far from the origin and the core of the distribution 1( then, on average,
the Hamiltonian system (1.2) starts at (qg, vp) with a potential energy which is large
with respect to its kinetic energy. We may therefore expect that the dynamics (1.2)
converts some of this potential energy into kinetic energy. Thus, while total energy is
conserved along the Hamiltonian path, we may expect this energy to change its form
and to be converted from potential to kinetic energy. This transfer of energy is then
lost on average when we reset the velocity component as we start the next step of the
chain.

The forthcoming bounds reflect that such an energy conversion can be made explicit
and quantitative at the level of the simple case of the pendulum dq, /dt = v;,dv/dt =
—q. Our estimates then show that the presence of the ‘nonlinear term’ CDU (q;)
does not change this picture at least for a small time and so long as the tail condition
(2.8) holds. We may expect that other relevant mechanisms for energy transfer from
potential to kinetic energy may be exploited to a similar effect in future studies.

Proof We start by showing that Vi 2(q) = |q|)2, is a Lyapunov function for P. First,
notice % |q,|)2, = 2(q,, v;)y so that

T
jarl? = laol? + 2/0 (45, Vs)yds. 4.6)

Moreover, from (1.2)

d
—-{as, oy = vsl5 — I, = (@, CVU @)y 4.7)

Hence, using Assumption 8, (B2),
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N
(@5, Vs)y = (g0, Vo)y +/0 [Vel2 = lael? = (@, CVU @), | d=

s
< (go. Vo)y + /0 [ve2 = L lac [} + La ] . (4.8)

for any s > 0. Using (4.8) in (4.6), we obtain

T ps
lar |} < Iqol3 + 27T (qo. o)y + 2f0 fo [|vt|§ —Lylgc | + L3] drds. (4.9)
From Proposition 14, (3.3) and hypothesis (4.2), it follows that

7 3 1-2 312
IVely = 7 voly + 50+ 2" LT ol + 53 Lo,

so that

2 4

1-2 1-2
y <3 Vol2 +9(1 + A, L)% qol2 + 9(h, 7 Lo)*t?, (4.10)

[vel

which holds for any T > 0. Moreover, from (3.2) and using hypothesis (4.2) again,
we obtain that

lqol, =

a: — (@0 +7v0)l, < =7+ 2 vol, + 3 Lot?,
so that
el > 'qgly - gr Vol — 41727 L7
and, consequently,
2 |q0|)2/ 210 12 1-2y, \2_4
20qel} = =7 =97 voly — 4k~ Loy,

Thus, from (2.13) and (4.2), it follows that

<L

~2Lalqc [} < =7 laol} +9Lat Vol + 4Lk~ Loyt

2 <
Ly _ _ _
< = 0f} 9407 LT Volf 4401+ 4 LGy Loy et

L 9 _
< =7 laol}, + 3 Ivol} 204 Loy’ e, (4.11)
for any T > 0. Using (4.10) and (4.11) in (4.9), yields
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3 _ L»
larl? < (1 + ST L) T §T2> lq0l2
67 5 1
+2T(qo, Vo), + §T2 Ivol3, + g(xi WLOAT* + LsT?.  (4.12)

By hypothesis (4.2), we have that 3(1 + A, >Y L1)2T*#/2 < L,T?/16. Thus,

L L L,T2
e R e (4.13)
8 16

3 _
T+ S0+ ML) T -

where we used the fact that 1 —x < e™*, for every x > 0. Using (4.13) in (4.12) and
taking expected values on both sides of the resulting inequality, and noting that, by
symmetry E(qo, vo),, = 0 we obtain

2

LT 67 _ 5 -
PVia(qo) =Elqrl} <e” o |qol} + (; Tr(C'™) + g(x} ZVL0)2T2+L3> T

(4.14)
Hence, after iterating on the result in (4.14) n times, we have
P"V12(q0) = E|Qn(qo)l}
nto1? 67 5 - e
<e T lqol2 + (= TrC ) 4 200 T L) T+ Ly ) T2 Y e
8 3 =
(4.15)

Notice that

n-l 2 2
JLoT T 48
72 E et <——F =
Jj=0

where in the last inequality we used that x /(1 —e™) < e < 3,forevery 0 < x < 1.
Thus,

nLyT?2 67 5 — 48
P"Via(qo) < e 1o |qof2 + (; Tr(C'™) + g(xi 7 Lo)*T? + Lg) o

which shows 19 for Vi 7.
We turn now to establish 19 in the general case of V; ;, forany i € N. Here, invoking
Young’s inequality to estimate the term 27 (qq, vo), in (4.12) as

LT 5, 32,
2T i = = o )
(90. Vo)y = —=—lqol;, + L Ivoly,
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and using again that 3(1 + x}‘ZVLI)ZT“ /2 < L,T?/16, it follows from (4.12) that

L2T2 67 32 5 122
lqrl} < (1 - )IQOI,Z, + (§T2+ L—2> Vol + 50~ Loy T + LaT?.
(4.16)

Invoking the basic inequalities 1 — x < e and (x 4 y)'/? < x!/2 4 y1/2, valid
for every x, y > 0, we obtain, for any i > 1,

. LpT?i . i _Lp7? J o
larl, < e o |qo|;+cz(e b |qo|y) (voli7 +1)
j=1

Ly12i . - .
<e 7 lgoll, + € (voll, +1). “.17)

where in the second inequality we invoked Young’s inequality to estimate each
term inside the sum, and with C and C being positive constants depending on
i, ,y,T, Ly, Ly and Lj. Since vo ~ N(0, C), by Fernique’s theorem (see, e.g.,
[27, Theorem 2.7]) we have that [E |V()|§/ < oo for every i € N. Therefore, we con-
clude the result for V; ; after taking expected values in (4.17) and iterating n times on
the resulting inequality.

Finally, let us show 19 for V; , as in (4.4). Multiplying by 7, taking the exponential
and expected value on both sides of (4.16), it follows that

PVa(qo) = Eexp (n Iqui)

LoT? 5 -
< exp (17 (1 -3 ) |qo|)2/) exp <§’7()‘i ZVL())ZT“ + nL3T2>

32 67
Eexp [n <— + —T2> |v0|§} ) (4.18)
2

-1
Recalling vy ~ N(0, C) and the assumption n < [2 Tr(C!=27) (i—i + %Tz)] , we
have, again by Fernique’s theorem [27, Proposition 2.17], and Lemma 4 that

32 67 32 67 —1/2
E =472 2l<|1=2n( =+ =72 )Trc"?% )
exp["(Lﬁ 8 )'VO'V} —[ ”<L2+ 8 ) e
(4.19)

Thus, denoting ko = 1 — L2T2/32 and

51— 32 67 ~1/2

we obtain from (4.18) and (4.19) that

~ 1?2
PVay(@o) < Rexp (nzlaol} ) = Rexp (n1aol? )
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1 2 1 T2
K T=%y e -~ > L2
< RaVa(qo) + RT2 (1 = &) = RaVa(qo) + RE27 =2
_LpT* 2 L2T2
=e ¥ V2(‘l0) +R LzT 32 (4.20)

where the second estimate follows by Young’s inequality. We conclude 19 for V;
after using (4.20) n times iteratively. The proof is now complete. O

5 Pointwise contractivity bounds for the Markovian dynamics

This section details two pointwise contractivity bounds for the Markovian dynamics
of the PHMC chain (2.16) in a suitably tuned Wasserstein-Kantorovich metric. These
bounds provide crucial ingredients needed for the weak Harris theorem, namely the so
called ‘p-contractivity’ and ‘p-smallness’ conditions, which, together with the Lya-
punov structure identified in Proposition 20, form the core of the proof of Theorem 26.

Our contraction results are given with respect to an underlying metric p : H, x
H, — [0, 1] defined as

. lq —q|
0(q,q) = ——L A1, (5.1

where y is given in Assumption 8. On the other hand, ¢ > 0 is a tuning parameter
which specifies the small scales in our problem and is determined by (5.3) in such a
fashion as to produce a contraction in (5.2). Recall that the Wasserstein distance on the
space of probability measures on H, induced by p is given as in (1.5) with p replaced
by p, and denoted by W,,.

The first result yielding ‘p-contractivity’ (cf. [43, Definition 4.6]) is given as fol-
lows:

Proposition 22 Suppose Assumptions 2, 5 and 8 are satisfied and choose an integration
time T > 0 and N € N maintaining the condition (3.20). Fix any ¢ > 0 defining the
associated metric p as in (5.1). Then, for every n € N and for every qo, qo € H, such
that p(qo, qo) < 1, we have

W,(P"(qo, ), P"(qo, -)) < k30(qo, Go) (5.2)

where recall that P" is n steps of the PHMC kernel (2.20) and W, is the Wasserstein
distance, as in (1.8), associated with p. Here

220 2+V(lﬂl ¥ Ie . V2, e
=Kxr(n —,
T(1— )12 T ara e

(5.3)

k3 = k3(n) == k(n) +
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where
1-2 T2
Ka(n) = 4V2(1 + 4, Lkt = V2akf, k) i=1— o (5.4)

T > 0 is the integration time in (2.16), Ly is the Lipschitz constant of DU as in (2.7)
and )1 is the largest eigenvalue of C and, in regards to «, recall (3.21).

Remark23 If N € N is the smallest natural number for which the corresponding
condition in (3.20) holds, i.e.

_ 1
N:min{neN:Aijyfﬁ},
1

then «3 from (5.3) above can be given in the more explicit form

ﬁL}/zas
T(1 —«k)l/2’

4V2LP (1427 Ly)e
T(1— k2

k3 = Kk3(n) == Kk2(n) + =K2(n) +

with k, defined exactly as in (5.4) above.

Our second main result corresponding to ‘p-smallness’ (cf. [43, Definition 4.4]) is
given as:

Proposition 24 Assume the same hypotheses from Proposition 22. Let M > 0 and
take

A={qeH, :|ql, <M}.

Then, for every n € N and every ¢ > 0 we have for the corresponding p defined by
(5.1) that

Wo(P"(qo, ), P* (0, )) <1 — k4 (5.5)

for every qo, Qo € A, where

1 (256L1(1+/\}‘2VL1)2M2) 2Micr(n)
&

K4 = Kq4(N) := —€X

)

1 16L a2 M? 2Mk>(n)
P T2(1 —k}) €
with k1 and k7 as defined in (5.4), and a as defined in (3.21).

Before proceeding with the proofs of Propositions 22 and 24, we introduce some
further preliminary terminology and general background. Set an integration time 7 >
0in the definition of the transition kernel P of the PHMC chain, (2.16). Foreachn € N,
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let H®" denote the space given as the product of n copies of H. Moreover, given a

sequence {V(()j)}jeN of i.i.d. draws from A/ (0, C), we denote by V(()") = (V(()l), e v(()"))

the noise path for the first n > 1 steps, as in (2.18). We then have V(()") ~ N(0,C)®",
with A/(0, C)®" denoting the product of n independent copies of N(0, C).
For simplicity of notation, we set from now on

o :=N(0,C), o,:=N(O,C)%".

For every qo, qo € H,, with y as in (2.6), (2.7), and N € N as in Proposition 18, we
consider Q1(qo, qo) : H — H to be the random variable defined as

01(q0, @) (v\") = qr@o, v’ + T~ My (a0 — o))

where V(()l) ~ o. Iteratively we define, for n > 2, the random variables én (90, qo) :

H®" — H as
0n(q0. 40)(V§") = q7(On-1(q0. G (VS ). v + SV ™). (5.6)
where V(()") ~ oy, and
S (Ve ) i= T N[00 1 (@) (V™) = Ouci(qo. @) (VG ™)1 (5.1
We therefore obtain the shifted noise path
VO = v+ 81, v + S VD), v .8,V D), (5.8)

where S; = T~ Ty (qo — §o).
Let 6, := Law(V(()”)). In order to simplify notation, let us denote

S, (Vi) = (81, 8(VE), .., S (V™)) (5.9)
and
Ra(V§") = Vi + 8u(Vg"), (5.10)

so that \7(()") =R, (V(()")). Thus, 6, is the push-forward of o, by the mapping R, :
H®" — H®", i.e. 5, = R}0,. Now put, for every n € Nand A € B(H),

P"(qo, d0, A) = 0 (q0, §0)* 0 (A) = 0,(0u(qo. o)~ (A)). (5.11)
Notice that P" (qo, qo, -) can be equivalently written as

P"(qo. do. A) = 0 (@0)* (R}0u)(A) = 0u(@0)*u(A). (5.12)
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With these notations in place we have the following estimate which we will use
several times below in establishing Propositions 22 and 24. The proof follows imme-
diately from Proposition 18 and Remark 17.

Lemma 25 We are maintaining the same hypotheses as in Proposition 22. Then, start-
ing from any qo, Qo € H, we have that for alln > 1,

0u(@)(V§") = 0u(@0. G (V™| < k2 lao — o, for every V" < HE",

where Q,, and én are defined as in (2.19) and (5.6), respectively, and k3 is as in (5.4).
Therefore,

E| Qs (a0) ~ On@0.@0)| | < #2100 — o, - (5.13)

We also recall additional notions of distances in the space of Borel probability
measures on a given complete metric space (X, d), denoted Pr(X), with the associated
Borel o-algebra denoted as 5(X). Namely, the total variation distance is defined as

[v—="liry := sup [v(A) —V(A)] (5.14)
AeB(X)

for any v, v € Pr(X). On the other hand when vV < v, i.e. when v is absolutely
continuous with respect to v, the Kullback-Leibler Divergence is defined as

45
D (b|v) = / log (-”(V)) di(dV). (5.15)
X dv
Recall that for the trivial metric

1 ifq#§

po(q, q) := {0 ifq =,

the associated Wasserstein distance W, coincides with the total variation distance.
On the other hand, Pinsker’s inequality (see e.g. [82]) states that

- /1 -
[v—"vlry = EDKL(VW), (5.16)

for any v, v € Pr(X), v < v. Moreover, as showed e.g. in [20, Appendix],
- 1 -
lv—="vlpy =1— 3 exp (—DxL(v|v)) (5.17)

forall v, v € Pr(X), v < v.
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Proof (Proof of Proposition 22) Fix any qo, o € H,, such that p(qo, o) < 1. Then,
recalling the notation (5.11) and using that p is a metric on H we have

W,(P"(qo, -), P" (@0, -)) < W,(P"(qo, ), P"(q0, §o; -))
+ W, (P"(qo, §0. ), P"(qo, -))- (5.18)

Notice that

~ . ~ . 1 ~ .
Wy (P"(q0, ), P"(qo. 4o, -)) <Ep(Qu(q0), On(qo, dop)) < EE |Qn(a0) — On(qo, qo)|y
K ~ ~
§?2|(IO_(10|)/ = k20(q0, o), (5.19)
where the last inequality follows from Lemma 25.

For the second term in (5.18), it follows from the coupling lemma (see e.g. [55,
Lemma 1.2.24]) and the fact that p < 1 that

W, (P"(qo. §o. -). P"(Go. ) < | P"(qo. Go. ) — P"(@0. )| v - (5.20)
From (2.21) and (5.12), we have
” ﬁn(q(% (10, ) - P" (q()a .)”TV = H Qn (flo)*5n - Qn(flo)*an “TV .

Moreover, from the definition of the total variation distance in (5.14) and inequality
(5.16), we infer

/1
|| 01(40)*6n — Qun(G0)*on “TV < |llow —oullTv < EDKL(&n|Un) (5.21)

As a consequence of Girsanov’s Theorem, we obtain

doy,

doy

| | B
(Rn(V)) = exp <§|c v -cie l/an(V)|2> for any V € HP)5,
(5.22)

with R, as defined in (5.10). Thus,

4on <V)> Ga(dV) = / log (d‘f” (V)) Ga(dV)

doy doy,

Dk1.(onlon) = /10g<

d 1 1
- f log ( d;;’ (Ry (V))) on(dV) = / (—Ewﬁ/z + §|Rn<v>|%/2> on(dV)

1 1
/ <<sn V), V)12 + 5|sn<V)|%/2) on(dV) = 3 / 180 (V)} 200 (@V)

1 n
5 ZE|S,-(.)|%/2. (5.23)
j=1
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Here note that, taking V = (vy, ..., v,) and Vi = (V1,...,vj) for j <n we have
n .
/(sn(V),V)l/zdn(dV) =Z/(3j(V]71),Vj)l/zﬁn(dV)
Jj=1

= Z/ f<$,(vf—1), Vi)120(dvj)oj1(dViTh) =0,
=1

which justifies dropping this term in (5.23). Now, from the definition of S; in (5.7),
(2.5) in Lemma 4 and (3.18) it follows that

i—1 —142 i—1.]% _ ,—142 i—1,]?
8;0V) Dl <0y [S;00h] < s

2, —142y 2(j—1 .
< T2 TV )IQO—QOIW

_ 142y 2(j—1 ~
<T Q)LNJFV'Q(] )2a2|q0_q0|)2”
for each j > 1, with « as defined in (3.21). Therefore,

)\71+2y 2 2 1) 71+2ya2 )
DKL (G low) < ——1q0 — ol Zx a m 190 — Goly, »
Ky

(5.24)

so that, combining this observation with (5.20)—(5.21), and our standing assumption
that p(qo, qo) < 1,

A—%+y LTty

~ oe
W, (P™(qo, G0 ), P (@0, ) < ———N—F——Iq0 — G0l = —= Vs . qo).
p(P7(q0. 4o (do, ) AT D)1 lgo — ol AT —K12)1/2p(q0 Qo

(5.25)

We therefore conclude (5.2) from (5.18), (5.19) and (5.25), completing the proof of
Proposition 22. O

Proof (Proof of Proposition 24) We proceed similarly as in the proof of Proposition 22
starting with the splitting (5.18). Fix any qo, qo € A. The first term after inequality
(5.18) is estimated exactly as in (5.19), so that

2Mip

n pn =~ k2 ~
The second term in (5.18) is estimated by using (5.17) and (5.24) as
50 ~ no~ ~ 1 ~
Wp(P (qu qo, ')7 P (q()v )) =< ”Un - Gn”TV = 1 - E exXp (_DKL(Gnlan))
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—142y o
1 Ay o U
<l——exp|————|qo — ,
=1-3 p( 20—« lq0 qoly>

with « as defined in (3.21). Hence, together with (5.18) and using that qg, qo € A, we
conclude (5.5). O

6 Main result

Having obtained in the previous sections a Foster—Lyapunov structure (4.1) together
with the smallness and contractivity properties (5.2)—(5.5) for the Markov kernel P in
(1.3), we are now ready to proceed with the proof of our main result. As pointed out
in the introduction, the spectral gap (6.2) below follows as a consequence of the weak
Harris theorem given the aforementioned properties.

We provide a self-contained presentation of the weak Harris approach in this section
both for completeness and in order to make some of the constants in the proof more
explicit. We start by noticing that it is enough to show (6.2) for vy, v, being Dirac
measures, say concentrated at points qo, o € Hl, . The proof is then split into three
possible cases for such points: p(qo, o) < 1 (‘close to each other’); p(qp, qo) = 1
with V(qo) + V(qo) > 4Ky (‘far from the origin’); and p(qp, qo) = 1 with V(qo) +
V(qo) < 4Ky (‘close to the origin’). The first case follows from the contraction
result in Proposition 22 together with the Lyapunov structure from Proposition 20.
The second case follows entirely from the Lyapunov property. Lastly, the third case
follows by invoking the smallness result in Proposition 24 as well as the Lyapunov
structure. Finally, the second part of our main result, namely (6.4)—(6.6), follows
essentially from the spectral gap (6.2) by invoking Propositions 40, 43 and 46, which
are all proved in detail in Appendix 1.

Theorem 26 Fix y € [0, 1/2). Suppose Assumptions 2, 5, 8 and 10 are satisfied and
choose an integration time T > 0 such that

1 Ly?

201+ 2, 7 L)IV2 2d6(1+ 2 7Ly |

T < min { (6.1)

Here the constants L1, L are as in (2.7) and (2.8) and A is the largest eigenvalue
of the covariance operator C defined as in Assumption 2. Let V : H,, — RT be a
Lyapunov function for the Markov kernel P defined in (2.16) of the form (4.3) or (4.4).
Then, there exists ¢ > 0, C1 > 0 and C, > 0 such that, for every v, vy € Pr(H) with
support included in T,

Wi P, v, P") < Clefcz’lW,;(vl, V) foralln € N, (6.2)

where p : H,, x H,, — R is the distance-like function given by

A, =@ 1+ V(Q+V@) forallq,qeH,,
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with p as defined in (5.1).

Moreover, with respect to wu defined in (1.1), i.e. the invariant measure for P (cf.
Proposition 13), the following results hold: for any observable @ : H, — R such
that

L MRIP@LVEDE@lea,) 6.3)
@ qeﬂ_i JT+V(Q ’ .

with | - |z, denoting the standard operator norm of a linear functional on H,,, we
have

‘P"QD((}) —/d’(q/)u(dq/) =< L¢C167"CZ/\/1+V(Q)+V(q/)l«t(d(I’), (6.4)

foreveryn € Nand q € H,,. On the other hand, taking { Q1 (qo) }k>0 to be any process
associated to {Pk (9o, )}k=0 as in (2.21), we have, for any measurable observable
maintaining (6.3), that

lim lX:cD(Qk(q)) :/@(q’),u(dq’), almost surely, (6.5)
n—-oon =1

forall q € H,,. Furthermore,

1 n
Jn [; Yo (0@) - f qﬁ(q/)u(dq’))} = N(0,0%(®)) asn— oo, (6.6)
k=1

forallq € H,, i.e. the expression in the left-hand side of (6.6) converges weakly to a
real-valued gaussian random variable with mean zero and covariance 02(¢), where
o 2(®d) is specified explicitly as (A.36) below, with u* replaced by .

Proof We claim it suffices to show that there exists ¢ > 0, C; > 0 and C, > 0 such
that

W;(P"(qo, -), P" (@0, ) < Cre""5(qo, o) for all qo, §o € H,, and n € N.
(6.7)

Indeed, since p is lower-semicontinuous and non-negative, it follows from [83, The-
orem 4.8] that

Wi P, 1 P") < /Wﬁ(Pn(QO, ), P"(Qo, ) I"(dqo, dqo)

forall I" € €(vy, vp) andn € N.
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Clearly, if vi and v, have supports included in I, , then I" € €(vy, v) has support
included in H,, x I, . Hence, if (6.7) holds then

W0 P", 13 P") < Cre~C" / 5(q0, o) " (do, dijo) 6.8)

forall I € €(v1, v2) and n € N, which implies (6.2).
In order to show (6.7), we consider an auxiliary metric defined as

pp(q.4) =vp@ D1+ BV(@ + BV (@), forallq,qeH,,

with the additional parameter 8 > 0 to be appropriately chosen below; cf. (6.18).
Notice that p and pg are equivalent. Indeed,

1/2

(min{1, B)'? 5(q, @ < pp(q, @) < (max{l, B)'/*5(q, @), forallq,q e H,.

(6.9)

‘We now show that

Wi, (P"(qo, ), P"(Qo, -)) < ks5(n)pp(qo, o) foralln > 1 and qo, Go € H,,
(6.10)

such that, for suitably chosen ¢ > 0, 8 > 0, and for ng € N sufficiently large we have
ks(n) < 1 for every n > np. We then subsequently use this bound to establish (6.7)
as in (6.27) below.

The analysis leading to (6.10) is split into three cases:
Casel : Suppose that p(qo, qo) < 1, so that p(qo, qo) = |qo — (~10|,, P

By Holder’s inequality, we obtain
Wi, (P"(qo. ), P"(§0, )
inf q) " (dq, dq 1 \%4 V(qQ) I (dq,dq
Srewqggn,s%m {(fp(q,q) (dq, q))(/( +BV(q) + pV(Q)I'(dq, q))}

= (1+BP"V(qo) + BP"V(@0)) Wy (P"(qo. ), P" (G0, -))-
(6.11)

From Propositions 20 and 22, it follows that

W, (P"(qo, ), P"(qo, N* < (14 Br}V(qo) + Brt V(o) + 28K v) k30(qo, o)
<A+ BV(qo) + BV (qo) +2BKv) k30(qo, Go)
<k3(1+2BKy) (1 + BV(qo) + BV (qo)) r(qo, qo)

= ki3(1 +28Kv) (55(q0, @) - (6.12)

Case2 : Suppose that p(qo, qo) = 1 and V(qp) + V(qo) > 4Ky.
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Since p(-, ) < 1 and again invoking Proposition 20 we obtain

Wi, (P"(qo. ). P"(@0. ) (6.13)
< 1+ BP"V(qo) + BP"V (o)
< 1+ By V(qo) + BV (@o) + 28Ky

_1+2,3KV1 38K " gy -
—m( +3BKv) + «ky B(V(qo) + V(qo))

1+28Ky B -
T4 38Ky dicy (1 +3B8Kv + Z(V(qO) + V(‘lo)))

1 +26Ky _
< max m,mcv (1+8V(qo) + BV (Qo))

< max

14+ 28Ky n

=max { ————, 4k}, t (Pp(qo. Go))

2
1+ 38Ky’ '

(6.14)

Case3 : Suppose that p(qo, qo) = 1 and V(qo) + V(qo) < 4Ky.
We proceed as in (6.11), but now use Proposition 24 to estimate the term
Wo(P"(qo, ), P"(qo, -)). First, let My > 0 be such that

{aeH, : V(g) <4Ky}={qeH, : |q, < My}.

Notice that the specific definition of My depends on the choice of Lyapunov func-
tion V (which defines the constant Ky, cf. (4.3)—-(4.4)). Thus, for any qo,qo €
{q € H, : V(q) < 4Ky} from Proposition 24, it follows that

W,O(Pn(q()7 ')» Pn((IO» )) =< 1 — K4,

where

= == 6.15
k4 = Kk4(n) exp 20— - (6.15)

1 <16L1a2M‘2,) 2Myia(n)
2 9

with k1 and k3 as defined in (5.4) and @ = 4(1 + A} >" L) (cf. (3.21)). Hence,

W (P (G0, ). P" (o, )* < (1 — ) (14 Bichy (V(qo) + V (@0)) + 2BKv)
< (1 —kg)(1+2(1 + 2%1)BKy)
< (1 — k) +2(1 + 2 BK V) (5 (a0, §0))° -
(6.16)

From (6.12), (6.13) and (6.16), we now obtain the bound (6.10) with k5 = «5(n)
defined as
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ks(n) = <max{(1 +2BKy)k3(n), max { 2P %y 4 (l/} )

SEEPRY 4
1+ 38Ky

1/2
(I —ka(n))(1 +2(1 + ZKG)/?KV)D . (6.17)

We claim that if we now choose ¢ > 0, B > 0 satisfying

T(1— k)2 16L 0> M3
crd =) e (6.18)

1
<—— and B < exp| —
8/ 2oL} 12Ky ( T2(1 —k})
and ng € N satisfying

1 16L 10> M3 1
" < min m—exp (s L | and kP < o (619)
420" 8/ 2aMy T2(1 —«?) 8

then indeed we have

1/2
1+ 28K 1 32L1a’M?
ks5(n) < ks(ng) < | max ﬁ 1 — —exp —LZV <1
1+ 38Ky 16 T2(1—/<])

(6.20)

for all n > ng, as we desired in the estimate (6.10).

To see this bound in (6.20) observe that since Kfo < (4«/505)_1 and ¢ satisfies the
first inequality in (6.18), then it follows from the definitions of x, and «3 in (5.4) and
(5.3), respectively, that

for all n > ny. (6.21)

00| W

1
k2 (n) < 1 and «k3(n) <

From (6.18), we have in particular that 8 < (12Ky)~ L. Together with (6.21), this
yields

1
(1 +28Ky)k3(n) < 3 for all n > ny. (6.22)

Moreover, since K@O < 1/8, then

1+ 28K 14+28Ky 1] 1+28K
mx{ +’3V43}5max{ 2Ky }— 2Ky (6.23)

136Ky " 138Ky 2| ~ 1+3BKy

Also, from the definition of 7 in (5.4) and the first condition in (6.19), it follows that
k4, defined in (6.15), satisfies

16L > M3,

1
k4(n) > —exp| — for all n > ny. 6.24
s = p( TZ(I_K%)) > n (624)

@ Springer



Stoch PDE: Anal Comp

Thus, with condition (6.18) on S, we obtain

32L o’ M3,

T2 —«P)

1
(I —k4(m))(1 +3B8Ky) <1 — ECXP<

) foralln > ng. (6.25)

Combining now (6.17), (6.22), (6.23) and (6.25) we now conclude (6.20).

We turn now to show that (6.10) implies (6.7) and, consequently, (6.2). First
note that, by the same arguments as in (6.7)-(6.8) we have that (6.10) implies
Wﬁﬁ(vl P", v, P") < K5VV/5‘3 (v1, v2) forall m > ng and vy, v2 € Pr(HH, ) with support
included in H, . Now, for any n € N, we can write n = mng + k, for some m, k € N
with k < ng — 1. Thus,

Wi, (P™(qo. ). P"(@o. ) = W, (P (qo. ), P" (@0, )
< 15(10)" W, (P*(qo, ), P* (@0, )
< k5(n0)"«k5(k)pp(qo, o)
] ~ -
< «ks(no)" “ks(no — 1)pp(qo, qo),
where in the last inequality we used that k5 is a non-increasing function of n. Moreover,

from the equivalence between p and pg in (6.9), we obtain

~ n n/ & M
W;s(P™(qo. ), P*(Qo. ) = (min{l’ﬂ}

- (max{l, ﬂ})”z s (ng — 1)
min{1, B} ks5(no)

12
7y -
) ks(ng)" ks(np — 1)p(qo, qo)

1
exp (n log (KS(no)"O>) p(qo, Go) foralln € N,
(6.26)

Therefore, with the constants

)= (max{l, ,8})1/2 ks5(ng — 1)

min{1, B} sy And Coi=—log (Ks(no)"0>, (6.27)

(6.7) and consequently (6.2) are now established.
Finally, the second part of the proof, namely (6.4)—(6.6) under assumption (6.3),
follow as a direct consequence of Proposition 40 and 43 combined with Proposition 46.
|

7 Implications for the finite dimensional setting

The approach given above can be modified in a straightforward fashion to provide
a novel proof of the ergodicity of the exact HMC algorithm in finite dimensions.
We detail this connection in this section. We abuse notation and use the same termi-
nology for the analogous constants and operators from the infinite-dimensional case
introduced in the previous sections.
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We take our phase space to be H = R*, k € N, endowed with the Euclidean inner
product and norm, which are denoted by (-, -) and | - |, respectively. Similarly to (1.1)
above we fix a target probability measure of the form

p(dq) < exp(=U(@)po(dq)  with 1o = N(0, ), (7.1)

where C is a symmetric strictly positive-definite covariance matrix. Here we aim to
sample from p using the dynamics

dq ~1.. dp -1
— =M —=—C - DU 7.2
7 P q (@ (7.2)
corresponding to the Hamiltonian
| B |
H(q,p) = E(C q.9) +U(Q + E(M p.p). (7.3)

where M is a user-specified ‘mass matrix’ which we suppose to be symmetric and
strictly positive definite; and U : R¥ — R is a C? potential function. Let us denote
by A and A pq the smallest and largest eigenvalues of M. Analogously, let Ac and
Ac be the smallest and largest eigenvalues of C.

We impose the following conditions on the potential function U (cf. Assumption 8§
above):
Assumption 27

(F1) There exists a constant L1 > 0 such that
|D>U(f)| < L; forany f € RF. (7.4)

(F2) There exist constants L, > 0 and L3 > 0 such that

IMTPCTVPRP 4 (£, MU DU D) = LolM™2C7 V2R — Ly forany £ € R,
(7.5)

Note that under (7.4), U is globally Lipschitz so that (7.2) yields a well defined
dynamical system on Cl(R, R¥) as above in Proposition 12. Furthermore, similarly
as in Remark 9, we have:

(i) From (7.4), it follows that
|IDU(f)| < L1|f| + Lo forevery f € R¥. (7.6)
where Lo = |DU(0)].

(ii) If DU (f)| < Ly4|f| + Ls for some L4 € [0, Apq(ApgAc)™Y) and Ls > 0, then
(7.5) follows.
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(iii) Assumptions (F'1) and (F2) imply that
Ly <1+ ApqAch L. (7.7)

Fixing an integration time 7" > 0, and under the given conditions on C, M and U
in (7.2) we have a well-defined Feller Markov transition kernel defined as

P(qo, A) = P(g7(qo, po) € A) (7.8)
for any qo € R¥ and any Borel set A C R, where
po ~ N(0, M). (7.9)
Here, following previous notation, g7 (qo, Po) is the solution of (7.2) at time 7 starting
from the initial position qg € R¥ and momentum py € R¥. The n-fold iteration of the
kernel P is denoted as P".

As in Theorem 26, we measure the convergence of P” using a suitable Wasserstein
distance. In this case, we take

lq —ql

A @ =Vp@, D1 +V(@+V@) where p(q,§ = A1 (7.10)

and V is a Foster—Lyapunov function defined as either V(q) = V1 ;(q) = lql’,i € N,
oras V(q) = V2 ,(q) = exp(n|q|2), with n > 0 satisfying

67 2 32 S
n < |:2Tr(./\/l) ( A T + Lz(AMAC)_1>)\Mi| . (7.11)

We then consider the corresponding Wasserstein distance VW5 and prove the theorem
below concerning the exact HMC kernel P.

Theorem 28 Consider the Markov kernel P defined as (7.8), (7.9) from the dynamics
(7.2). We suppose that M and C in (7.2) are both symmetric and strictly positive definite
and we assume that the potential function U satisfies Assumption 27. In addition, we
impose the following condition on the integration time T > 0:

1/2 _
1 LY (Apae) 2
72’ S
[2x341(,\51+L1)] 2V6h (g + L)

T < min , (7.12)

where A pq and A zq denote the smallest and largest eigenvalues of M, while L¢ and
Ac denote the smallest and largest eigenvalues of C, respectively.

Then P has a unique ergodic invariant measure given by u in (7.1). Moreover, P
satisfies the following spectral gap condition with respect to the Wasserstein distance
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W; associated to p defined in (7.10): For all vy, vy Borel probability measures on R,
W5 P", 1, P™) < Cle_CZ”W/;(vl, ) foralln € N, (7.13)

where the constants C1, Ca, € > 0 are independent of vi, v2 and k, and can be given
explicitly as depending exclusively on Ly, Ly, L3, T, M and C.

Remark 29 Similarly as in Theorem 26, we can also show that (7.13) implies a con-
vergence result with respect to suitable observables as in (6.4), as well as a strong law
of large numbers and a central limit theorem analogous to (6.5)—(6.6).

Proof The proof follows very similar steps to the results from Sects. 3, 4, 5 and 6, so
we only point out the main differences.
From (7.2), it follows that

d2q

3= ~M~'¢7lq - M~ DU(g),

so that, after integrating with respect to t € [0, T] twice, we have

t s
q — (qo +tM ™ 'pg) = —/ / (M*‘c*‘qurM*‘DU(qf)) drds (7.14)
0 JO

Using that
M| <A yIfl and [CT'F| < ;' |f| forevery f € RE,

together with (7.6) and the condition 7' < [)‘;vlt (AE L4 L)Y 2 one obtains, analo-
gously to (3.2) and (3.3),

sup 1q; — (g0 + 1M 'po)| = 335G + LT max {laol. lao + TM ol
tel0,T]

+Aj_\/llL0T2 (7.15)

and

sup by — pol <Gz + Lt [14+ 316" + L) | max {lqol, lao + TM ' pol
te[0,T]

T Lot [1 +a0g! +L1)t2]. (7.16)
Moreover, analogously to (3.11), we obtain that for every (qo, po), (Qo. Po) € RF xR¥,
sup_q(qo, Po) — g: (o Po) — [(@o — do) + 1M~ (po — o)1l
1€[0,T]

< Ay Gz + L)T? max {IQO — o, 190 — Go + 1M~ (po — f’o)l} -
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In particular, if po = po + M(qo — Go)7T ' then

o L _ 1 i
sup 14:(qo, Po) — G (G0, Bo)| = Ay Gre' + LDT?Igo — ol = 7190 — Gol.
tel0,T]

(7.17)

We also show that V(q) = |q|' withi > 1 or V(q) = exp(n|q|?), with n > 0
satisfying (7.11), all verify a Foster—Lyapunov structure as in Definition 19. The proof
follows as in Proposition 20, with the difference starting from (4.7), which is now
written as

d
(@, M pg) = M7 pg? — IMT2C g, — (g, MT'DU(qy)). (7.18)

Using now (F2) from Assumption 27 and the inequalities
M7V = A 21 and (CTV2) = AZE] forallf e RE,

we obtain from (7.18) that

T ps
|qT|2s|qo|2+2T<qo,M*‘po>+2f0 /0 [%iIpe? = La(AngAc) " lac? + La] dds.
(7.19)

Then, with (7.7), the a priori bounds (7.15)~(7.16) and the fact that 24y (A" +
L1)T? < 1 from hypothesis (7.12), we arrive at

3 _ Lo _ _
lqr|* < (1 + wﬁ(xcl + LT = = (ApmAc) 172) |q0l* + 27 (go. M~ "po)
67 3 L2
+ g)»ﬁTzlpolz + ELE)A/—\}[T“ + FO’\/_& T* 4+ L;T2. (7.20)

From the second condition in hypothesis (7.12) it follows that (3/2)A,j(Az' +
L1)>T* < (Ly/16)(ApAc)~'T?, so that after taking expected values in (7.20)
we obtain

L 67 5
Elqr|> < exp (—T;(AMAC)_' T2> lqol* + <§A;ﬁ Tr(M) + ng\ngTz + L3> T2.

Now proceeding analogously as in (4.15)—(4.20), we obtain that for V' : Rf - R
given either as V(q) = |q|’, i € N, or V(q) = exp(n|q|?), with n > 0 satisfying
(7.11), there exist constants ky € [0, 1) and Ky > 0 such that

P"V(qo) <kyV(qo) + Ky forallqp € R¥, foralln € N, (7.21)

i.e. these are Lyapunov functions for P.
Let (R¥)" denote the product of n copies of R¥ and let A/(0, M)®" denote the
product of n copies of N'(0, M). Analogously to Sect. 5, given qo € R¥ and a
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sequence {p(()j)}jeN of i.i.d. draws from N (0, M), we denote P(()") = (p(()l), e p(()")),
for all n € N, and take Q,,(qo, -) : (R¥)" — R*, according to

01(a0, ") = ar (o, "), Qn(@o, PY”) = qr(Qn_1(qo, PV, p{).

forall n > 2. _
Similarly, given any qo, qo € R¥ we take Q,(qo, o, -) : (R¥)" — R¥ to be the
random variables starting from

010, Go- py) = ar (Go, p” + T~ M(qo — qo)),

then defined for each integer n > 2 as

0, (q0, G0, PI") = ar(0n—1(q0, G0, P ), pi” + S, @Y~ 1))
with

S, @) = 17 M| Qumr(@o. PY ) = Oui(ao, G0, PG| foralln = 2.
(7.22)

We also denote

S, = (S1, S @M, ..., S, @YY, with S = T~ (qo — o),

and ¥, (Pf)”)) = P(()n) +8, (Pf)”)). Thus, by using inequality (7.17) n times iteratively,
we obtain that

O\ _ 5 (a an pm ! <
[On(q0. Py ) — On(qo, qo. Py )l =< 5 190 — ol (7.23)
for all PJ" € (Rk)".

Let o, = Law(P{") = N'(0, M)®" and G, = Law(¥,(P{")) = W*v,. Anal-
ogously as in Propositions 22 and 24, we obtain that the distance-like function p
defined in (7.10) satisfies contractivity and smallness properties with respect to the
Markov operator P" for n sufficiently large. Here, the main difference lies in the esti-

mate of Kullback-Leibler Divergence Dk (6,]0,,), (5.15). Proceeding similarly as in
(5.22)—(5.23), we arrive at

N 1 _
Dk1(Gulon) < 5 .X;E'M V28
]:

Using (7.23), it follows that for every j € {1, ..., n} and PY ™" e (RK)U~—D
_ i—1 — j—1
VA A TREP VI T
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. ) o ~__1
< AMT 125190 @) — 01 (a0 @) (PGP

)\l—lAz T—2 ~
< %I% — Qo

where in the second inequality we used that M - |2 < A.2M| . |2. Hence,

—1 42 -2 2
AT 1 4A
2

n
90 — Gol” ) T AM/}/E lqo — Gol*. (7.24)
j=1

Dxy.(64l0,) <

By using (7.24), one obtains analogously as in Proposition 22 that for every n € N
and for every qo, qo € R¥ such that p(qo, go) < 1, we have

1 2A
W, (P" (@0, ), P" (@0, ) < (2— + %) p@.d0). (729
AT

Moreover, analogously as in Proposition 24, we obtain that, given M > 0, for every
qo. Go € A == {q € R¥ : |q| < M}, it holds:

2 2
W,(P"(qo, -), P" (G0, ) < 1 — I ex _loauM + M (7.26)
P qO, k] qu — 2 p )\MTz 2”7]8. *

The remaining portion of the proof now follows as for Theorem 26, by combining
(7.21), (7.25) and (7.26). O

Remark 30 From condition (7.12) on the integration time 7', we see how the upper
bound could potentially degenerate to zero in case the eigenvalues of C and/or the
eigenvalues of M decay to zero as the dimension of R¥ increases. Moreover, if the
eigenvalues of M decrease to zero (i.e. A oy — 0) or increase to infinity (i.e. Ay —
oo) with respect to k, then, for fixed n, ¢ and T, the upper bound in (7.25) increases to
infinity, and the first two terms in the upper bound in (7.26) increase to 1. This would
imply that the convergence rate in (7.13), which is directly proportional to the upper
bounds in (7.25)—(7.26) and inversely proportional to 7', would become ‘slower’ as k
increases. In other words, the number n of iterations necessary for the distance between
v P and v, P" to decay within a given § > 0 would increase with the dimension k.
This type of behavior is commonly known as the ‘curse of dimensionality’.

A natural choice for the mass matrix M to avoid such unwanted behavior is given
by M = C~! —this is the idea behind preconditioning in [6] which leads us to consider
(1.2) in the infinite dimensional formulation. In this preconditioned case, one could
use that A pq = AEI and Ay = AEI directly in (7.12) to obtain

(7.27)

1/2 4 —1 —-1/2
1 Ly (A, A
T < min { 2 ( ¢ c) } ,

[2AcGG + L1V 2d/6Ac( ;! + L)
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where the upper bound actually still degenerates to zero in case Ac — 0 as k — oo
(corresponding to the trace-class assumption on C in the infinite-dimensional case).
However, the inequalities that lead to the condition on 7 as in (7.27) would in fact be a
rough overestimate in this case. Indeed, for M = C~ 1, the term M_IC_lqt in (7.14)
is simply equal to q, and thus we no longer estimate from above by )‘X/ll AEI |q-| as
in (7.15). Similarly, the term |[M~1/2C~1/2q,|? in (7.18) is simply |q,|* and thus no
longer estimated from below by (A Ac) g, |2 as in (7.19). With these changes, T
is required to satisfy instead

1 Ly

T < min , ,
- 2014+ AcLD1V?" 2/6(1 + AcLy)

which is consistent with condition (6.1) for A¢c = A1 (when y = 0), and thus inde-
pendent of k when A¢ is uniformly bounded with respect to k.

On the other hand, replacing A xq with AEI in (7.25) and (7.26), we see that the
same unwanted behavior is not removed here when A — 0 as k — o00; i.e. the
convergence rate would still degenerate with the dimension k. This emphasizes the
need for considering ‘shifts’ in the momentum (or velocity) paths for the modified
process Q,, (90, 90, ) 90, qo € R, that are restricted to a fixed number of directions
in R¥, for every k, as done in (5.7) through the projection operator ITy, with N
sufficiently large but fixed (cf. (7.22)).

8 Application for the Bayesian estimation of divergence free flows
from a passive scalar

In this section we establish some results concerning the degree of applicability of
Theorem 26 to the PDE inverse problem of estimating a divergence free flow from a
passive scalar as we described above in the introduction, cf. (1.9), (1.10), (1.11).

For this purpose, according to the conditions required in Assumption 8, we wish to
establish suitable bounds on U, DU and D?U. Of course such bounds are expected
to depend crucially on the form of the observation operator O. Here, adopting the
notations U = (DU, &) and U%¢ = (D?UE, §) for directional derivatives of U with
respect to vectors £, £ in the phase space, we have that

Us(q) = —2(I' "2y — 06@)), I "*0w* (@) (8.1)
and
Ut (@
= 2r 120w (). I~ 120w (@) - 2512 - 06@). I 2owE ()
(8.2)

where ¥/¥(q) = ¥* (1; q) obeys

WY +q-Vys =AYt —£-VO(Q), ¥50;q9) =0 (8.3)
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and Iﬁs’g(q) =y (r; q) satisfies
oyt g VYt = Ayt Byt —e vyt vt =0, 84)
for any suitable &, E.

8.1 Mathematical setting of the advection diffusion equation, associated bounds

In order to place (1.11) in a rigorous functional setting we adapt some results from
[11,12]. In view of (8.3), (8.4) we consider a slightly more general version of (1.9)
where we include an external forcing term f : [0, T'] x T2 - R, namely,

Wp+q-Vo=xAp+f, ¢0)=go. (8.5)

Specially, we need to estimate terms appearing in the gradient and Hessian of U
involving solutions of (8.5) with certain forcing terms; cf. (8.3), (8.4) below.

We adopt the notation H*(T?) for the Sobolev space of periodic functions with
s > 0 derivatives in L2. Here we denote A* = (—A)%/2. Thus, the associated H* (T?)
norms are given by | - |y = ||A® - |lo where || - ||o is the usual L?(T?) norm. We
also make use of the negative Sobolev spaces H ~*(T?) for s > 0 defined via duality
relative to L2(T?2) with the norms reading as

[fll-s = sup (f.&) (8.6)

l§ls=1

where (-, -) is the usual duality pairing so that (f, &) = [ f&dx when f € L*(T?).
All other norms are denoted as || - ||x where X is the associated space i.e. L°°. We
abuse notation and use the same naming convention H* (T?) and associated norm || - |
for periodic, divergence free vector fields with s derivatives in LZ(TZ).

We have the following proposition adapted from [11]:

Proposition 31 (Well-Posedness and Continuity of the solution map for (8.5))

(i) Fix any s > 0 and suppose that q € H*(T?), ¢o € H*(T?) N L>®(T?) and
f e leoc([O, 00); H*~1(T?)). Then there exists a unique ¢ = ¢(q, ¢o, f) such
that

¢ € L},.([0, 00); HTH(T?)) N L™([0, 00); H* (T?)),

‘z—f € L},.([0, 00); H*~1(T?)) (8.7)

so that in particular'

¢ € C([0, 00); H*(T?))

I See e.g. [80, Lemma 3.1.2].
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and where ¢ solves (8.5) at least weakly. Additionally ¢ maintains the bounds

d

115+ 21017 =2 [ fodn, 5)
t*

sup 160~ = ol + [ I flumdr, foranyt* 0. (89)

te[0,1*] 0

When s > 0 we have
d 2 2 2 a K K
Ellfﬁlls +rlldlly <clolslally +2 | A fA pdx (8.10)

where _the constant ¢ = c(k, s), a = a(k, s) are independent of q.

(ii) Let ¢\ = o(q;, o,j, fj)for j = 1,2 betwo solutions of (8.5) corresponding to
dataq;, ¢o,;j, f; satisfying the conditions in part (i). Then, taking ¥ = D —p®@,
P = q1 — q2, we have

d
VG + vt < clplgle VT +ell fi— £IZ, G1D

with ¢ = c(«) independent of qi, qa. Furthermore, in the case when s > 0 we
have

d
Euwn% + ol < el lal® +clpl2le® N2, +cllfi — 12,
(8.12)

where the constants ¢ = c(k, s), a = a(k, s) are again independent of q1, qa.

Proposition 31 immediately yields quantitate bounds on derivatives of 6(q) in its
advecting flow q which solve (8.3), (8.4). In turn these bounds provide the quanti-
tative foundation for the estimates on DU and D?>U below in Proposition 34 and
Corollary 35.

Proposition 32 Fix any s > 0 and 0y € L®(T?) N H*(T?). Then the map from
H*(T?) to C([0, 00); H* (T?)) that associates to each q € H*(T?) the corresponding
solution 6(q) = 0(-; q, 60) of (1.9) is a C? function. Denote y¢ (q) and % (q) as the
directional derivatives of 0 in the directions &, é € H5(T?). Then 1//s (q) and 1//s £ (q)
obey (8.3) and (8.4), respectively, with regularity (8.7) in the sense of Proposition 31.
Furthermore,

(i) Forany q, & € H*(T?), t* > 0 we have

t*
sup |5 (15 QI3 + /0 I8 (13 @ ll7dr < ct* |11 (8.13)

t<tr*
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and

*

t
sup 15 (13 @113 + /0 I8 (15 l|3dt < c|&||? (8.14)

t<t*

where ¢ = c(||0oll L=, k) is independent of q, & and t*. Furthermore,

t*
sup v (t; @ II? + /0 I8 (5 @12, dt < cllEZexp(ct*[lgllY)  (8.15)

t<t*

where the constant ¢ = c(s, ||0p||s, k) is independent of q, & and t* > 0; and a is
precisely the constant from (8.10).
(ii) On the other hand, given any q, £, & € H*(T?), t* > 0

- r* - B
sup |55 (15 @) 12 + /0 1SS (s @l3dr < el + 1E1H (8.16)

r<t*
where ¢ = c(s, |00l L, [|60lls, k) is independent of q, &, € and t*. Moreover,

sup W55 (1 @12 < c(IEN* + IE1Y) exp(t*ellql|) (8.17)

t<t*

for a constant ¢ = c(s, ||6pll L, |6olls, k) independent of q, &, £ and t* > 0.

Remark 33 With suitable technical adjustments, Proposition 32 can be extended to the
case of Dirichlet boundary condition following the main steps in the proof presented
below.

Before turning to the details of the proof let us recall some useful inequalities.
Firstly the Sobolev embedding theorem in dimension d = 2 is given as

2
llgller <cllgllgr foranyr >1— —, with2 < p < o0, (8.18)
p

forany g : T> — R in H" (T?), where the universal constant ¢ depends only on p and
r. We also make use of the Leibniz-Kato-Ponce inequality which takes the general
form

1A (f)llLm < CUAA" flleeliglza + I fllee 1A gllLe) (8.19)

valid forany r > 0,1 <m < oo and | < p;,g; < oo with m! = pj_1 +q(j_1 for
j = 1,2 and where C is a positive constant depending only on r, m, p1, q1, P2, q2.

Proof The claimed regularity for y/¢, 4 follows from Proposition 31 and the forth-
coming formal estimates leading to (8.13)—(8.17) which can be justified in the context
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of an appropriate regularization scheme. We begin by showing (8.13). From (8.8),
namely multiplying (8.3) by ¢ and integrating we have

1d
Ed—nwf I3+ K IVYE 5 = — / £-VO(Qyidx. (8.20)
t T2

Integrating by parts and using that £ is divergence free

< 10@]le<lIV¥EloliEllo  (8:21)

V £-VO(Qydx ='/ £-Vyto(q)dx
T2 T2

Invoking the Maximum principle as in (8.9) we obtain that
16(t; @)L < 160l foranyt > 0, (8.22)
and hence
d. e g2 2
Elllﬂ o +«lIVE= il < clillp-

This immediately implies the first estimate (8.13). For showing (8.14), we estimate
(8.21) differently, namely

< IENLIVO@Ilol¥ Il

'/ £ VO(Qyidx
TZ

with 1 < p,q < oo such that % + é = % With the Sobolev inequality (8.18) and
noting that ¢ — 2 when p — oo we can find p and ¢ in this range such that

A

< €IS IVO@lloll VY= llo

‘f £-VO(Qydx
T2

IA

K
Enwfu% + eIV I3,
which in combination with (8.20) yields
d
EW 13+ ke IVYEIZ < clEN?Ive(Q) 3. (8.23)

Integrating (8.8) for f = 0 with respect to time, we have

[*
sup 10(@) I} + « /0 IVO(@i§dr < l16ollg (8.24)

s<t*

Hence from (8.23) and (8.24), it follows that

t* t*
SHPIIWSII%+K/ ||vwf||3dr5c||sn§/ IVO(@)13dr < cll6ollZlIE N,
0 0

t<t*
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finishing the proof of (8.14).
Turning to H*(T?) estimates we refer to (8.10) which translates to

d
Euxﬁn? + 1 IVYE N2 < clvd 12 lqlle — 2/ AS(E-VO(Q)A YS dx.  (8.25)

Invoking Holder’s inequality and the Leibniz bound (8.19) we estimate

‘/ AS(E - VO@) A Y dx| < c| AP L (1ASE oI A 0@l La + I1EN Lo 1 AT 0@ o)
(8.26)

valid whenever 1 < p, g < oo and maintains 1 — 1_ % + % ie.q =2p/(p —2).

Again with the Sobolev inequality (8.18) and noting that ¢ — 2 when p — oo we
can find p and ¢ in this range such that

’ / AS(E - VO@) A Y dx| < c| ATy E (ol ASE ol AT O (@) o

K
< ZnAmwfn% + el AERIA T 0@l (8:27)

Combining this bound with (8.25) yields the inequality

d K
Enwénﬁ + Euwén? <l I Iale + cliElZIo @iz, (8.28)

so that with the Gronwall inequality we obtain

t*
sup Y5112 < & 112 exp(er*llqll9) /0 16(q) 12, dt

r<t*

A second application of (8.10), this time with f = 0, yields

*

p

K / 0@ 12, dr < ct*llql? sup 10(@I? < ct*[lqll exp(ct*[lql|®) 16011
0 t<t*

< cexp(ct*|lqll)ll6ol12. (8.29)

Combining the previous two bounds we find, for any t* > 0,

sup [l 112 < cexpler*lqIIE N2 1160112 (8.30)

t<t*
Integrating (8.28) in time and invoking (8.29), (8.30)
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t*
« fo IVt 2di

t*
< ct* sup [[Y5 1 211qll? + cll€ )12 / 0@, 1dt < cllfolI?1E]1% exp(ct*[Iqll?)
0

t<t*

and hence we now obtain (8.15). )
We next provide estimates for €. As before we begin by addressing the L? case,

namely (8.16). We take the inner product in L? of (8.4) with ¥ and integrate to
obtain, as in (8.8),

1d

S R vyt Eg == [E vyttt o [ vufyedior qan

Integrating by parts and using Holder’s inequality the right hand side is estimated as

1< gl + 1E 1) AW llze + 1w 1) IV YEE

for p~! 4+ ¢~! = 27!, Choosing p, ¢ appropriately and then applying the Sobolev
embedding, (8.18), we find

111 < (16 s + TEND UWE T + T E D IVYEE o
< c(IEIZ+NEIDAWEN +1vE 1D + guwffn%.

Hence, using this bound with (8.31) and then applying (8.13) we infer (8.16).
We turn finally to the H* (T?) estimates for xp‘f € Here (8.10) becomes

d ¢ ; ; e E s £
Enwffn% + i VYEE )2 < eyt E ) 2lq)¢ —ZfAb(s VY £ VY AT dx.
(8.32)

Estimating the last term above in a similar fashion in (8.27) above leads to

‘/ AE VY g vy Ayt ax

< SIEER FcAEIZ + IED A I, + IvE 2. 833)
2

Combining the previous two bounds (8.32), (8.33) and then making use of Gronwall
inequality and (8.15) we obtain

- B r* -
sup lY55112 < c(lIEN2 + IE11%) explet*llqll) /0 U1 + IS 112 dt

r<t*

< c(I&IIF + IENF) explet*llql$).
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which establishes the final bound, (8.17), completing the proof. O

8.2 Bounds on the potential U and its derivatives

With these preliminary bounds on (8.5) and hence Proposition 32 in hand we turn
to provide estimates for U defined as in (1.11). Recall that we seek to determine the
extent to which Assumptions 8 and 10 applies for the certain classes of potential U
which arise in this example, namely (1.12) subject to conditions on the observation
operator (1.10). Of course, since U is positive, Assumption 10 holds regardless of our
assumptions on O.

Regarding the assumptions on O we consider the following three situations. Fix an
observation time window ¢* > 0. Firstly, we suppose that O satisfies an inequality of
the form

1O@) = co sup [l )]l (8.34)

t<t*

for ¢ € C([0,t*]; L2(T?)), which is verified in particular for the examples with
pointwise in time and spectral in space observations or that of spatial (volumetric)
averages. On the other hand, addressing in particular the example of pointwise in both
space and time observations, we consider the case when O satisfies an inequality of
the form

1O@)| = cosup [|¢(@)] L (8.35)

r<t*

for ¢ € C([0, r*] x T?). Finally, for estimates involving gradients or other derivatives
of ¢ we assume that, for some s > 0,

1O@)| = cosup l|¢ @)l 1 (8.36)

r<t*

valid for ¢ € C([0, t*]; H*(T?)).

Let us begin with estimates on DU and D?U in negative Sobolev space which in
turn yield the conditions in Assumption 8 on the I, spaces, (2.2), defined relative to
a covariance operator C of the Gaussian prior g in (1.11).

Proposition 34 Let U be defined as in (1.12) for a fixed Y € R™ and I" a symmetric
strictly positive definite matrix.

(i) When O satisfies (8.34), U is twice Fréchet differentiable in HY (T?) for any
s’ > 0. In this case for any s’ > 0

IDU(@l-y = M1 < 00 (8.37)
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for a constant M| = M\ (s', k, t*, 0y, co, YV, I') which is independent ofq.2 Fur-
thermore, assuming now that s’ > 0 we have

ID*U @l £,y 12y < M2 < 00, (8.38)

where || - ||£2(Hx/ (T2)) denotes the standard operator norm of a real-valued bilinear

operator on Hs/(’]l‘z) X HS/(']IQ) (see (8.42)), and M> = M»(s', k, 6y, co, YV, I') is
a constant independent of q.

(ii) In the case (8.36) for O we have once again that U is twice Fréchet differentiable
in H(T?) for the given value of s > 0 in (8.36). Here, for any s’ > s,

IDU(@)l-y = M exp(clqll) (8.39)

and
I DU @ 2y g 2y < M explellale) (8.40)

where ¢ = c(s', K, t*,00,c0, Y, '), M = M(s', k,t*, 09, co, Y, I') are indepen-
dent of q and a > 0 is precisely the constant appearing in (8.10).

(iii) Finally under the assumption that O obeys (8.35), U is twice Fréchet differentiable
in H" (’]I‘Z))for any s’ > 1. In this case, when s’ > 1, we again have the bounds
(8.39), (8.40).

Proof We start with the proof of (8.37). Notice that, referring back to (8.1) and using
the condition (8.34), we have

US (@] < (1 + sup 6(@)]lo) - sup [¥* (@ llo,

t<t* t<t*

for any q € L*(T?), & € HS/(TZ) and ¢ = c¢(I""1/2, Y, ¢p). Observe that for any
s’ > 0 we have

IDUQ)ll-y = sup [U%(q)!. (8.41)
ENr=1

Thus, invoking the bounds (8.24), (8.13) when s = 0 or (8.14) for the case s’ > 0,
we obtain (8.37).

We turn next to the proof of (8.38). In this case, working from (8.2) and again
making use of the condition (8.34),

U @] < e sup [¥E @llo - sup 195 @llo + c(1 + sup 9@ lo) - sup %55 @llo

t<t* t<t* t<t* r<t*

2 Note furthermore that M is independent of * in the case when s’ > 0, cf. (8.13), (8.14).
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for any &, .§ e HY (']I‘z), where ¢ = c(I“’l/Z, Y, cp). Here using

ID*U@ gy = sup  1US5(q) (8.42)
1§ =1&l=1

and the bounds (8.24), (8.14), (8.16), the desired estimate (8.38) now follows.
We next address (8.39), (8.40). Here (8.1) and (8.36) result in

IUS (@) < c(1+ sup |0(@)ls) - sup %5 (@)l (8.43)

t<t* t<t*

and similarly, with (8.2),

UEE (@] < e sup 195 @l - sup [WE @5 + (1 + sup [18(@ly) - sup 145 (@)l

t<t* t<t* t<t* t<tr*

(8.44)

for any £, € HS/(TZ), s’ > 5. Thus, invoking (8.10) (with f = 0), (8.15), (8.17)
with (8.41)—(8.44), we obtain (8.39), (8.40) establishing the second item.

Regarding the final item (iii) observe that (8.1), (8.2) and the Sobolev embedding
of H*(T?) ¢ L>®(T?) when s > 1 we obtain bounds as in (8.43), (8.44) under (8.35)
for any s > 1. We therefore conclude this final item arguing as in the previous case.
The proof is now complete. O

Drawing upon Proposition 34 we now draw certain conclusions on the scope of
applicability of Assumption 8 to (1.11). For this purpose suppose C is a symmetric,
positive, trace class operator on L?(T2). Following the notations introduced above
in (2.2) we consider the fractional powers of C and associated spaces H, with norm
lql, = IC”Yqllo for y > 0, so that in particular we have the notation |q| = [|qllo. We
have the following corollary:

Corollary 35 Let C be a symmetric, positive, trace class operator on L*>(T?). Assume
that for some s > 0, and some y € (0, 1/2) there is a constant c1 such that

lalls <cilaly =c1lC""qllo forallq € H,, (8.45)

so that H,, C H® (T?).

(i) Under the spectral observation assumption, (8.34), Assumption 8 and 10 hold for
U and the given C. Additionally, if for this value of y, C' =2 is trace class in the
sense of (2.6), so that Assumption 5 holds, then Theorem 26 applies to (1.11).

(ii) Under (8.36), assuming that (8.45) holds for the value of s > 0 in (8.36) we have
that

|IDU(q)|-y < Mexp(clql}) (8.40)
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and that
IC” D*U(Q)C” |l £, e10) < M exp(clq[%) (8.47)

where || - || £u,) here denotes the standard operator norm of a real-valued bilinear
operator on Hy x Hy, and again the constants ¢ = c(s’, k., t*, 6y, co, 1V, I'),
M = M(s', k, t*, 0y, co, c1, ), I') are independent of q and a > 0 is as in (8.10).

(iii) In the case (8.35), if (8.45) holds for some s > 1 then we again have the bounds
(8.46), (8.47) for the corresponding values of y.

Proof Regarding the first item we proceed to establish the conditions (2.7) and (2.8).
Observe that under (8.45)

GID*U @) 2y (s (2y) = ICY D*U@CY Il 2, 115) (8.48)

so that with (8.38) we infer (2.7). For (2.8) we demonstrate the stronger condition
(2.11). Again, due to (8.45) we have

ctllDU@l-s = [DU(Q)| -y (8.49)

so that (2.11) follows from (8.37).
Regarding the second and third items we simply apply (8.48), (8.49) now in com-
bination with (8.39) and (8.40). The proof is complete. O

Remark 36 Let A be the Stokes operator in dimension 2 with periodic boundary
conditions. Of course for any given s > 0 the condition (8.45) is fulfilled when
C = (A)”‘/ 2 for any « such that k > s/y. Here note, in regards to Assumption 5,
C = (A)™*/? has the eigenvalues A P& jle /2. Thus (2.6) entails the additional require-
ment« > 2/(1 —2y).

Note however that the examples considered in [12] involved a covariance C with
exponentially decaying spectrum so that (8.45) applies for any s > 0 and (2.6) for any
0<y<1/2

Remark 37 [Improved bounds in the time independent case]

We expect that improved, q-independent bounds on (8.3) and (8.4) can be achieved
through more sophisticated parabolic regularity techniques. In turn this could improve
bounds obtainable for DU and DU in the case of point observations (8.35). What-
ever the mechanism, we note that the numerical results in [12] suggest good mixing
occurs for the Hamiltonian Monte Carlo algorithm in this case of point observations
notwithstanding the fact that our current results do not cover this situation.

In this connection it is notable that a global bound on DU and D>U and hence
the conditions for 26 can be achieved for point observations in the time-stationary
analogue of (8.5) thanks to [1]. Let

q-VO=kAO+ f (8.50)
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on T2 for a given fixed f : T2 — R, ¥ > 0. We can consider, similarly to above,
the statistical inversion problem of recovering a divergence free q from the sparse
observation of the resulting solution @ : T?> — R. In this case, following the Bayesian
approach we again obtain a posterior measure of the form (1.11) with U given analo-
gously to (1.12) in the case of Gaussian observation noise.

As previously the task of estimating DU and D?U entails suitable estimates for

q-Vy© =xAYt —£-Vo(g),
and
q VyEE = eyt —E. vyt — vyt

over suitable directions &, é .
Suppose that ¢ obeys

q-Vo=kAp+g (8.51)

for some q : T> — R2, divergence free and g : T?> — R. According to [1, Lemma
1.3] we have that?

ol < cligller (8.52)

for any p > 1 where crucially the constant ¢ = c(p, k) is independent of q. Applying
(8.52) and carrying out other standard manipulations we have that

0@ 12 + IVO@IIF < cll £1I3 (8.53)

for ¢ = c(x) independent of q. As such a second application of (8.52), Sobolev
embedding, (8.18), and (8.53) yields

ISl < cll&lsh £ o (8.54)

for any s > 0 where the constant ¢ = c(s, ) is again independent of q. Moreover,
using that q is divergence free and (8.53)

IV Eilo < cligloll £llo (8.55)

with ¢ = c(s, k) independent of q. Finally (8.52) followed by

1€ e < c(IEN? + IEID). (8.56)

3 The result [1] is stated for (8.50) supplemented with Dirichlet boundary conditions but pursuing the proof
it is clear that this bound also applies in the spatially periodic case.

@ Springer



Stoch PDE: Anal Comp

for any s > 0 where ¢ = c(s, k) does not depend on q. Thus, arguing as in Proposi-
tion 32 but making use of (8.54), (8.56) we can therefore conclude that whenever

10@)| < collllre,

bounds as in (8.37), (8.38) must hold.

9 Outlook

This work provides an illustration of the power and efficacy of the weak Harris theorem
as a tool for the analysis of mixing in infinite-dimensional MCMC methods. Specifi-
cally our work addresses a Hilbert space version from [6] of the Hamiltonian Monte
Carlo method. Notwithstanding recent progress in this setting of infinite dimensional
MCMC algorithms, the understanding of mixing rates and the relatedly optimal choice
of algorithmic parameters remains in its infancy. Let us therefore point out a number
of interesting questions remaining to be studied which we plan to address in future
work.

One immediate avenue concerns the analysis of numerically discretized versions of
the HMC algorithm (2.16) which must be used in practice. Here the Metropolization
step, which is used to correct for the bias introduced by the discretization of (1.2), must
be accounted for. In a similar vein it would be useful to have error bounds between
the adjusted and unadjusted versions of the algorithm.

It is also worth noting that there are a number of variations on the infinite dimen-
sional HMC algorithm from [6] now available in the literature whose mixing properties
are poorly understood, particularly as we regard these different algorithms in com-
parative perspective. For example we note the Second-Order Langevin Hamiltonian
(SOLHMC) methods in [73] and the Riemannian (geometric) HMC approach devel-
oped in [3,9].

Although the above analysis is a nontrivial first step towards a better understanding
of (1.3) one may nevertheless view the time step condition (6.1) as restricting the
scope of our analysis to a perturbation of the linear Gaussian case; cf. Remark 16. It is
notable that similar small time step condition also appears in all the other recent studies
of the HMC algorithm that we are aware of [13,14,32,58]. We conjecture that for many
problems of interest this restriction on 7 may be far from optimal from the point of view
of mixing rates. Indeed this bound on 7" (6.1) turns on our treatment of the Lyapunov
structure in Proposition 20 and on the nudging scheme in Proposition 18 which could
presumably be improved with a more delicate treatment of the Hamiltonian dynamics
(1.2). As a starting point it would be of great interest to find some simple settings in
finite dimensions where this could be carried out.

As already noted above in the introduction, a primary motivation for considering
infinite dimensional MCMC methods concerns the Bayesian approach to PDE inverse
problems. While several large scale numerical studies have been carried out for some
specific problems a more systematic gallery of examples on which the performance
of algorithms have been experimentally tested would be desirable. Here our results
presented in Sect. 8 show that analysis of conditions on the potential U in (1.2) as
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arising from the Bayesian approach to PDE inverse problems can be quite involved.
Indeed, in the case of the advection-diffusion problem we consider here, it is not clear
that we can obtain a global Hessian bound on U for interesting classes of observations,
such as space-time point observations. Thus it would be useful to develop an analysis
that only requires that U is locally Lipschitz. More broadly, further examples of PDE
inverse problems as found in e.g. [78] should be analytically studied in this context to
obtain a broader sense of the variety of relevant conditions on U'.
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Appendix: Consequences for convergence of observables

Let P be a Markov kernel on a Polish space V and take {0, (q0)},>1,qoev to be the
Markov process associated with P starting from qg € V. Suppose that (1, is an invariant
measure for P. In addition to quantifying various abstract notions of distance, i.e. the
Wasserstein metric, between the measures p P" and p,, we are typically interested in
estimating

P”CD(qO)—/CD(q’)M*(dQ')’ (A1)
and also
1 n
;Z‘p(Qk((IO)) —/¢(Q’)M*(dQ’) (A.2)
k=1

for concrete observables @ : V — R and starting from any initial qg € V.

Typically, contraction bounds as in (6.2) and (7.13) which we demonstrated above
can be used to establish estimates for quantities like (A.1), (A.2). Indeed, if the p
appearing in the bounds (6.2) and (7.13) was actually a metric then the Kantorovich-
Wasserstein duality would immediately imply bounds for (A.1). Moreover, a number
of results in the literature, e.g. [41,52,53,55,56,77], yield a law of large numbers,
central limit theorems type convergence results from Wasserstein contraction bounds
as desired in (A.2). This appendix proceeds to show that useful bounds for (A.1), (A.2)
can still be achieved in our setting without presuming that the underlying distance p
is a metric. Notwithstanding the significant literature on such convergence results we
expect our approach here to be of novel interest even when the underlying distance is
a metric.
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In order to proceed, let us recall a few basic definitions:

Definition 38 Wesay that £ : VxV — R isadistance-like function if £ is symmetric,
lower-semicontinuous and it holds that £(q, q) = O if and only if q = q. We define
Wy : Pr(V) x Pr(V) — RT U {+00} to be the following Wasserstein-like extension
of £ to Pr(V) x Pr(V):

We(vi, 1n) = inf / L(q,q) I (dq,dq),
rec¢(y,m) Jyxv

where €(vy, v2) is the set of all couplings of vy, 1 € Pr(V).4

Relative to a given distance-like function £ we define ¢-Lipschitz in the obvious way
as:

Definition 39 Given a distance-like function £ : VxV — RT, wesaythat® : V — R
is £-Lipschitz with Lipschitz constant Ly > 0 if

|2(q) — ()| < Lat(q,q)

for any q, q' € V. We denote the set of £-Lipschitz functions as Lip,.

In order to verify that an observable @ is £-Lipschitz for the class of distance like
functions employed above, see Proposition 46 below.
Results for (A.1) can be drawn by using the following proposition.

Proposition40 Let £ : V x V — R™ be a distance-like function as in Definition 38.
Then, for every vy, vo € Pr(V) and every £-Lipschitz function @ : V — R,

; (A.3)

1
Witvr,vn) = 7 ‘ f ® (@i (dq) — / o (q)v2(dq)

where Lg is the Lipschitz constant associated with ®@. In particular, for any Markov
kernel P,

‘P"¢(QO)—/¢(Q)v(dQ) < LoWe(P"(qo. ), v), (A4)

valid for any measure v € Pr(V), qo € V and £-Lipschitz function ®.

Proof Fix vy, vy € Pr(V) and let I" € €(v;, v2). Note that

‘/@(Q)Vl(d(v —fq)(q’)vz(dq’) < f |®(q) — @(q)| I'(dq, dq")

< Lo / @ ) (dq.dq).  (AS)

4 The mapping Wy is also called the ‘optimal transport cost functional’ in the optimal transport literature;
see, e.g., [83].

@ Springer



Stoch PDE: Anal Comp

Inequality (A.3) then follows by taking the infimum in (A.5) over all I" € €(vy, 7).
O

We next present a first version of the strong law of large numbers (SLLN) relevant
for certain classes of mixing Markov processes. Note that this first result does not
require a spectral gap condition but see Proposition 43 below where we additionally
establish criteria for a central limit theorem under the stronger assumption of a spectral

gap.

Proposition 41 Suppose that P is a Markov kernel with a unique invariant measure [i.
We denote the associated Markov process as { Qk(qo) }k>0,q,ev- Let £ be a distance-like
function and introduce the notation

G(qo) :=Y_ Wi(PX(qo, ), ). (A.6)
k=0

Then, for any qo € V such that

G(qo) + sup E[G(Q(qo))*] < o0 (A7)

n>1

and such that, for some q €'V,

sup E[£(Q,(qo), §)*] < o0, (A.8)

n>1

we have that, for each @ € Lip,,

lim
n—oo

=0, (A.9)

1 n
Y 00 ) - [ @)
k=1

almost surely.

Remark 42 The scope of applicability of Propositions 40 and 41 reaches beyond
Proposition 43 below which is more specialized to our setting. See, for example, the
sub-geometric rates of convergence in the Wasserstein distance given in [19,30,31].

Proof Take {F,},>1 to be the filtration associated with the Markov process
{0k (q0) }k>0,99cv- Given any @ € Lip,, we define

o0

MY =" (E(P(Qk(q0)| F) — E(P(Qk(q0))) (A.10)

k=0

> Note that under (A.7) every Lip, C L (1) so that [ @(q)se«(dq’) is a well defined, finite quantity.
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where
®(qo) := (qo) —/‘P(fl)u*(d(l) (A.11)

Invoking the Markov property,

M =3 @)+ (P B0 - Prd@n). (A1)

k=0 k=0

so that, rearranging, we have

Iy : I B k1 G M,
= P (Quao) ~ / P@p(dd) = Y (PP (a0) - P B(Qu(an))) + =
k=0 k=0
=1+ 1", (A.13)

Let us show that, for each of the terms Tj(”), lim,, 0o Tj(”) = 0 a.s. in order to infer
the desired conclusion.
Start with Tl("). Here note that, with (A.4),

G(qo) + G(Qx(q0))

IT™] < Lo
n

(A.14)

where L is the Lipschitz constant associated with @. Form the sets A, := {|T1(")| >
n~1/4}. With (A.14) and the Markov inequality we find

> 2 E(G G(0, 2
ZP(An)qu> (G(qo) ;/;Q (90)) < 2L (G(q)?
n=1

n=1

oo
1
+supEG (Qn(q0)®) Y 32
n>1 n=1 "

Hence, invoking the Borel-Cantelli lemma and the condition (A.7), we infer that

PP(A, infinitely often) = O which amounts to the desired convergence for T](").
Regarding the second term Tz("), we claim that {M,? }n>0 1S a mean zero, square

integrable martingale. From the definition of {M,‘f> Inen in (A.13) it follows immedi-

ately that My = 0. Now in view of (A.12), notice that for any n > 1 the increments
M? — M?® | have the form

MP = MP = B(Qu@)) + Y (P B(00(a0) — P E(Q0-1(0)).
k=0
(A.15)
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Thus, for any n > 1, using that @ € Lip, and recalling the definition of G we have

EMP = MP)? < 46@? + 413 [E0@. 04(a0)? +EG(Q,-1(a0)? +EG(Qn(@0))?]
(A.16)

where q € V is selected as in (A.8). With (A.7), (A.8) and noticing that

n 2 n
]EM}% =K (Z(Mk — Mkl)) <c(n) Z]E My — 1Wk71)2 ,

k=1 k=1

we conclude that {Mf }nen is square integrable. To show that {M,f’ }neN 1S a martingale
observe that for any n > 0, using standard properties of conditional expectations,

MPIFD) = (BE@(Qx(q0) | Fur )| F) — E(@(Qk(qo)) = M. (A7)
k=0

With this in hand we recall a martingale convergence theorem from [22] (see also
[55, Appendix A.12]) which can be stated as follows: Let {M, },,en be a square inte-
grable, mean zero martingale. If

i E(My — Mi—1)?
_— < 0

P (A.18)

k=1

then

lim — =0 almost surely.
n—oo n

In view of the bound (A.16) and again invoking the standing conditions (A.7), (A.8)
we find that the condition (A.18) is satisfied for {M,‘lp }nen and hence we infer that

lim,, 0o A

= 0 almost surely. The proof is now complete. O

In order to obtain rates of convergence for (A.2) we can furthermore establish a
central limit theorem (CLT) result by now directly imposing a ‘spectral gap’ condition.
For this stronger convergence result we again rely on the decomposition (A.10), (A.13)
now in conjunction with a Martingale central limit result from [53] which we recall
as Theorem 45 below.

Proposition 43 Let P be a Markov kernel on a complete metric space (V, p). Take
{01(90)}n>0,g0eV to be the associated Markov process. Let V : V — R be a function
satisfying the following Lyapunov type assumption:

E[V(Qn(q0)*] < "V (qo)* + K (A.19)
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for some constants k € (0, 1), K > Qindependent ofn > 0. Consider the distance-like
functions

£p(q, @ = VI1 A p(q, DI+ V(@ + V(@P) (A.20)

for p > 1. We assume that for p = 1, 2 the contraction condition
We, W1 P", v P") < cre” "W, (vi,v2)  forany vi, vz € Pr(V), (A.21)
is maintained, where c1, ¢y are constants independent of n but which may depend on

p.
For @ € Lipy,, let

] n
Xn(®) := ZCD(Qk(QO)) - / @ (q)ux(dq"),
k=1

where [y is the unique invariant measure for P; cf. Remark 44. Then, under these
circumstances, for any @ € Lipy,,

X, (@) >0 asn— o0 (A.22)
almost surely and moreover
VX, (@) = N(@©O,c%(®)) asn — oo, (A.23)

i.e. \/n X, (D) converges weakly to a real-valued gaussian random variable with mean
zero and covariance o*(®), where 0*(®) is specified explicitly as (A.36) below.

Remark 44 The condition (A.21) ensures the existence and uniqueness of the invariant
measure (L, as observed in [43]. Moreover, (A.19) implies the following moment bound
for ey

/ V(@) (dq) < K < oo (A24)

As such, using that @ € Lipg1 and (A.20), we have

/ |®(q)px(dq) < [P@]+ Lo (1 + vV + / \/V(q/)u*(dQ’)>

for any q € V so that with (A.24) we are guaranteed that [ |®(q')|u«(dq’) < oo.

Our proof relies on the following abstract result from [53, Theorem 5.1] which we
reformulate here for clarity and the convenience of the reader.

Theorem 45 Let {M, },>0 be a square integrable, mean zero martingale, relative to a
Siltration {F, }n>0. Assume that:
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(i) we have the uniform bound

supE(My41 — M,)? < co. (A.25)
n>0
(ii) Foreverye >0
n—1
2 —
Jim LS E(Mpt = M)Wy gy el =0 (A26)
m=0
(iii) For every e > 0,
n mk—1

2
lim hmsup— oy E[(l + (Mg — M) )“\M,-—M(mﬂ)uzew?k] —0.

k— 00 nk
n—00 m=1 j=(m—1)k

(A.27)
(iv) There exists a constant o2 > 0 such that
n 1 mk—1
M2 _ A2
Jim h,?ii‘ipn DBl X E(Mjn = M F o) = 07| =0,
m=1 j=(m—"1k
(A.28)

Then, under these four conditions,

M, 5
— = N(@0,0°) asn — o0,

Jn

(that is in distribution) where o2 is the constant appearing in (A.28).
With this result in hand we turn to the proof of Proposition 43.

Proof (Proof of Proposition 43) To prove (A.22) we simply show that (A.21), (A.19)
imply (A.7), (A.8), with £ = £1, so that we can directly apply Proposition 41. Observe
that, for any q € V we have

o o0

D Wi (PR@, ), i) < Wi, B i) Y ek 5c< V(@) +/¢V(q )ix(dg )).
k=0 k=0

Noting that, with (A.24), we have [ /V(q')u«(dq’) < oo and with (A.19) we infer

supg>o EV(Qk(qo)) < oo so that (A.7) holds. Regarding (A.8) we have, for any

q0.q€V
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sup E€1 (Qn(q0). @) < ¢ (1 + sup Ey/V (Qn(q0)) + JV@) =c(1+VV@) +VV@).

n>1 n>1

where the last inequality again follows from (A.19).
Let us next turn to establish the convergence to normality, (A.23). Fix & € Lipy,.
Here, working from the identity (A.13), we have

kg k4G M? i) s
ﬁxn<@>_ﬁ§)(P B (qo) — P q)(Qn(CIo)))-i-ﬁ-—Tl +7,",

(A.29)

where M2 is the martingale defined as in (A.12). We would like to show that
lim,, 00 7" = 0 in probability and that 7," converges in distribution to a normal
random variable in order to conclude (A.23) from the ‘converging together lemma’;
cf. [33].

Regarding the first term 7,", with (A.4) and (A.21), it follows

_ Lo
7| < 72 > OVe, (PX(@o, ), 1) + We, (PF1(Qu(q0) ). 1)
k=0

¢ (1+ V@) + VV{(Cn (@)
Jn

C
< 7(WK1(5q0’ 1) +We, (80, (q0)> 7)) <

where we used that £; has the form (A.20) for the final bound. With this estimate and
our assumption (A.19) we find that lim,,_, oo ElTl(”)l = 0 so that Tl(") decays to zero
in probability as desired.

We address the second term Tn(z) by verifying the conditions of Theorem 45. As in
(A.16), (A.17), it is clear that {M,? }n>0 1s a mean zero square integrable martingale.
We therefore proceed to establish each of the bounds (A.25)—(A.28) for {M,‘f }n>0 in
turn.

Start with (A.25). Working from the identity (A.15), we observe that, for any m > 0,

o0

4
(MP = ME)* < cd(Qmi1(qo)* +c (Z PG (0,11 (q0)) — Pk“aﬁ(gm(qo)))
k=0

< c(1(Qm+1(00), 0 + V(Qn+1(@0)? + V(Qm(go))? + D
< c(V(Qm11(@0)? + V(Om(go)* + 1)

where we have used (A.4) and (A.21). Therefore, invoking (A.19), we have now shown

sup E(MY, | — M2)* < o0 (A.30)

m=>0

@ Springer



Stoch PDE: Anal Comp

so that, in particular, (A.25) holds. Furthermore since, forany € > Oandany 0 < m <
n

1/2

El(Mry1 = M) Wyo, _yaise il < (M = M) T PAMT = M| = e

1 O b4
< - E(Myy, — M)
we infer (A.26).

Regarding (A.27) we proceed in a similar fashion. For (m — 1)k < j < mk — 1
and any m, n, k > 1 we have

@ @2
IE[(H(Mjﬂ - Mj ) )]1|M;P—M5§1_l)k\zem]

¢ ? o 4\ '/? ? @ 172
Sel/z(nk)l/“ (E(l + My = M) )) (Ele - M(m—1)k|) (A31)

We estimate the last term between parentheses in (A.31) as
j—1
EIM? — MGyl < Y EBIME, —MP| <c(j—(m—Dk) <ck, (A32)
I=(m—1)k
where in the second inequality we used (A.25). Combining (A.31) and (A.32) now
yields (A.27), where we notice carefully that having the lim sup as n — oo applied

first is crucial.
Let us turn to the final bound (A.28). Take

00 2
(g, §) = [ai(q) + Y (P a(g) - P"“qi(«i))] (A33)
k=0

Now for any j > (m — 1)k and with m, k > 1 we have

E((M]q:-l - M}p)2|}—(m71)k)
= E¥ (Q(j+1-m—1)+m -1k (Q0): Q (j—m—1)k)+(m—1k (A0) | Fm—1))
= Hj—m-1x(Qm-1k(qo))

where we have used the Markov property at the last step. Here for any / > 0
Hi(qo) := E¥(Q1+1(q0). Q1(q0)) = P'T"(qo)
with

I"(qo) = E¥ (Q1(q0), q0)- (A.34)
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Working from these identities we find, again for any j > (m — 1)k and withm, k > 1

1 mk—1 1 mk—1
© 2 EWMP =MD Fm0 =1 D0 Him- 0k (Qun-1yk(@0)
Jj=(m—1k j=m—Dk

k—1 k—1

1 1 .
= X;)HJ(Q(mfnk(QO)) =7 2(:) P/ T (Qm-1)k(qo))-
J= Jj=

As such,
1 1 mk—1
2 2
- > E 3 Y BT, = MY Fmeip) — o
m=1 j=(m—1k
1 1kfl
- m=Dk [ I 2
<- le . Zou) r'(go) — oI, (A.35)
m= j=

which is valid for any 0 < 62 < oc.
With the aim of once again combining (A.4) with (A.21) we now take

62 = 02(®) i= / (@ (d). (A.36)

with I as in (A.34). We will show presently that whenever @ is £;-Lipshitz then
I' is £;-Lipshitz, namely (A.45) below. This being so, as in (A.24), it is clear that
02(®) < oo for any {1-Lipshitz @. Moreover, invoking once again (A.4) and (A.21)
we obtain that

k—1 k—1
1 Y 1pi I3 ' T
E IPJF(qO) N 02(®)| = TF § W/éz(Pj(qu ), ﬂ*) = w
j:0 j:0

(A.37)

Combining (A.35), (A.37) with (A.19) we find

1 n 1 mk—1 o - 5
— D Bl Y EMP = MDA F i) — 0%(@)
m=1 j=(m—1k
n n
_ _ 14+ 4V
<53 POV L V(ge) < = 371+ Dk /Y (gg) < SV V(0D

which yields the final item (A.28).
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We therefore conclude the proof by showing that I" € Lip,, whenever & € Lip, .
Observe that from (A.34) we have

r@-r@=E[(¥0@ o -v¥Q1@ 0¥ 0@ o +vV¥ Q1@ )
(A.38)

From (A.33) and invoking (A.4), (A.21) we have that

W% (Q1(@).q) — V¥ (01(@), D)l

<19(01(@) — 2(Q1@)| + 1 Y_ (P (01(q) — P 2(01@))

k=0
+1) (P o(g — P o @) (A.39)
k=0
< et (Q1(@), Q@) + £1(q, @) (A.40)

On the other hand, again with (A.4), (A.11) and (A.21) we also obtain the bound

V¥ (01(), @) + V¥ (1@, D)
<c(1P(Q1@)] + 1P (Q1@)] + We, (80, q)s 1) + Wey (80, @) 1x)
+Wasse, (8q, 1) + We, (84, 1))

= (1+VV(Q1@) +VV(Q1@) + V@ +VV@)
= ¢ (VIFV@i@) + V(@) +VI+ V@ + V@) (A41)

Now observe that, for any q, q € V

41(q, v 1+ V(@ + V(Q) = 20(q, @), (A.42)

so that combining this simple observation with (A.38)—(A.41) we find

II'(q) — (@] (A.43)
< cE[(€1(Q1(q), Q1(@) + £1(q, @) /1 + V(Q1(@) + V(Q1(@)
+V1+ V(g + V@)l

< CEE2(Q1(0), Q1(@) + cti(q. DE (VI V(Q1@) + V(21@)
+ey/T+ V@ +V@EO(Q1(@. 01@) +cla(q ). (Add)

Now notice that, under (A.19) we have

E(VI+ Vi@ + V(@) = e/T+ V@ +V@.
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On the other hand, notice that we may take Q1(q) and Q1(q) to be any coupling of
P(q, ) and P(q, -) in (A.44). As such, with (A.44) and these two observations

II'(q@) — I'(@] = Wi, (P(q, ), P(Q, ) + cli(q, @1+ V(Q) + V(Q)
+cWe, (P(q, ), P(q, )V 1+ V(@) + V(@ + cla(q, @),

so that with (A.42) and a final invocation of (A.21), we have

II'(q) — I'(@)] = cba(q, ). (A.45)

The proof is now complete. O

We conclude this section with the following proposition which gives a sufficient
condition for a function to be £-Lipschitz for a class of distance-like functions including
those appearing in the main results of this work.

Proposition 46 Let (V, || - ||) be a Banach space and consider distance-like functions
of the form

€, q) = \/(”q;—q” A 1) I+ Vg +V@ (A.46)

where we suppose that ¢ > 0and V : V — [0, 00) is convex. Given any continuously
differentiable function @ : V — R, define

Lo = sup max{2|2(q)|, ﬁIID¢(q)|I}_ (A47)

qeV V14 Vg

If Ly < oo then @ is £-Lipschitz, with Lg providing a suitable Lipschitz constant.

Proof Fix any q,q € V. We consider separately the cases when ||q — q|| > ¢ and
when ||q — q|| < ¢. In the first situation when ||q — q|| > & we estimate

@ - 0@ < VITV@ I V@ (2D 1P@L ), g d).
B Vi+V T+ V@

Now consider the case when ||q — q|| < e.Letq; = q + s(q — q), for s € [0, 1] and
observe that

1
|2(q) — 2(@) < IIQ—QII/ IDP(qy)llds

llq —qll (I|| \/_||D¢’((Is)||
14+ V(qy
/\/ ( (@ - L,

+sV(@+ (1 —-9)V(@)ds < Lot(q,q)
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where we have used the convexity of V for the penultimate bound. The proof is

complete. O
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