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Abstract. Quantum noise is seen by many researchers as a problem to be 

resolved.  Current solutions increase quantum computing system costs 

significantly by requiring numerous hardware qubits to represent a logical qubit 

to average the noise away.  However, despite its deleterious effects on system 

performance and the increased costs it creates, it may have some potential uses.  

This paper evaluates those.  Specifically, it considers how quantum noise could 

be used to support the fuzzing cybersecurity and testing technique and AI 

techniques such as certain swarm artificial intelligence algorithms.  Fuzzing is 

used to identify vulnerabilities in software by generating massive amounts of 

input cases for a program.  Quantum noise provides an effective built-in fuzzing 

capability that is centered around the actual answer to a computation.  This same 

phenomena, of clustered and centered fuzz-noise around the answer of an 

operation, could be similarly useful to AI techniques that can make effective use 

of lots of point values for optimization.  Effectively, by concurrently considering 

the ‘multiverse’ of possible results to an operation, created by compounding 

noise, more beneficial solutions that are proximal to the actual result of an 

operation can be identified via testing quantum noise points with an effectiveness 

algorithm.  Both of these potential uses for quantum noise are considered herein. 
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1 Introduction 

The development of a robust, commercially utilizable quantum computer has been 

slowed by the inherent noise of qubits. Quantum noise remains a significant problem 

for quantum system development and use; however, despite the impairment of system 

operations that it causes and the additional expense of duplicating physical qubits to 

create logical qubits that average out the noise, it may have some beneficial uses. 

This noise is very problematic.  In fact, the error caused by the decoherence of qubits 

makes many desirable quantum computing applications presently impractical [1].  

However, this is expected to be a temporary and solvable issue [2].  At present, research 

is focusing on its mitigation [2]. 



However, while noise may cause a problem for some quantum computing uses, it 

may be beneficial for other ones.  It can, prospectively, be used for fuzzing and some 

artificial intelligence (AI) techniques. 

With fuzzing, the noise may provide an inherent testing capability.  Fuzzing [3] is 

common technique which is an effective and popular approach to automated software 

defect identification (ASDI). ASDI identifies bugs that may have been missed or even 

intentionally discounted by a human analyst.  It does this by trying lots of possible 

inputs to a program to see whether they work as expected – or cause a security issue of 

some kind.  Using fuzzing, developers and analysts can identify areas within a program 

that pose security threats or have defects.  

In addition to fuzzing, the quantum noise may be effective for systems that evaluate 

numerous possible solutions as part of AI optimization.  Techniques like particle 

swarm, packet swarm and genetic algorithms intentionally make small changes to 

known solutions to see if these modified versions perform better (or more poorly) than 

their predecessor.  Beneficial changes are retained (and, typically, an attempt to further 

refine them is made); harmful changes are discarded.  Quantum noise produces these 

types of small changes and may ‘stack’ changes over time (compounding the error from 

the ideal answer), thus identifying additional prospective solutions to evaluate using the 

system’s goodness metric. 

In both cases, non-ideal qubit values from quantum noise could potentially be 

harnessed, transforming an unfortunate property of quantum computing into a usable 

capability for detecting software defects and expanding the search space (or, perhaps, 

even both concurrently). Noise utilization could be another immediate benefit of 

quantum computing capabilities.  Even as solutions to mitigate or correct for noise are 

developed in the future – many of which involve using multiple qubits as one logical 

qubit to average noise impact away – these capabilities could still be utilized by polling 

physical qubit values directly (which will likely need to be done for the averaging 

function, anyway). 

This paper reviews the potential for fuzzing and artificial intelligence to make use 

of this otherwise negative by-product of quantum computing.  It continues with a 

review of relevant prior work.  Following this, the use of quantum noise for fuzzing is 

reviewed.  Next, the multiverse concept, which is integral to some potential AI 

techniques use of quantum fuzzing, is discussed.  This is followed by a discussion of 

quantum noise enabling AI techniques, before concluding. 

2 Background 

This section presents prior work in several areas that provide a foundation for the work 

that is discussed herein.  First, prior work on quantum computing is presented.  Next, 

quantum noise is described.  Then, fuzzing and vulnerability detection are discussed.  

Finally, the multiverse theory is reviewed. 

 

2.1 Quantum Computing 

Quantum computing is the application of quantum mechanics to computing. It 

utilizes qubits, which are the quantum counterpart to the binary bits used in classical 



systems. Qubits use the principle of superposition to assume a probabilistic state of both 

zero and one. Superposition and quantum entanglement are key properties of quantum 

computers which allow them to process a variety of tasks significantly faster than the 

fastest classical-style computing systems.  

A selection of algorithms have been proposed to utilize the capabilities of quantum 

computing for applications such as identifying prime factors of large integers [4], 

searching for elements in large, unsorted list [5], and generating true random numbers 

[6]. At present, there is significant ongoing research which is focusing on the 

implementation of quantum computing for commercial applications [7], advancing 

classical computing fields such as artificial intelligence [8], and developing 

cryptography techniques for increased communications security [9].  

A current byproduct and limitation of quantum computing is quantum noise. It is, at 

present, one of the largest obstacles to developing large-scale quantum computers that 

can be used for many targeted applications [10].  Quantum noise refers to the degree of 

uncertainty associated with a physical state during computation. Quantum noise affects 

the overall accuracy of qubits and consequently can potentially result in inaccurate 

computation results.  

 

2.2 Quantum Noise 

Quantum noise describes the decoherence of particles, which is a principle of quantum 

mechanics. This noise comes from fluctuations in the momentum of electrons at optical 

frequencies and from the inherently uncertain, dynamic nature of electric and magnetic 

fields [11].  Left unchecked, it will compound, moving some qubits further from their 

ideal (probabilistic) value over time.  Figure 1 depicts the compounding decoherence 

of qubits, over time, starting from an arbitrary configuration and with an arbitrary 

amount of time between each depicted phase.  

 

 

Figure 1. Qubit decoherence over time. 

Quantum noise is recognized as one of the largest challenges in developing large-

scale quantum computers.  It is theorized that quantum systems with adequately low 

noise levels can be used to solve problems that are intractable by classical computers 

[10].   



The noise-decoherence of qubits results in erroneous outputs for computations.  The 

mitigation of quantum noise has been a key area of research focus. Numerous different 

methodologies have been proposed for resolving qubit decoherence to produce accurate 

computation. Duan & Guo [12], for example, proposed a noise-suppression scheme 

based on pulse control that mitigates noise using the application of a sequence of bit-

flipping and phase-flipping methods.  

Machine learning techniques have also been proposed as a solution for detecting and 

mitigating quantum decoherence.  Cuozzo, et al. [13] discusses how machine learning 

algorithms can be used to suppress quantum noise using spatial masks applied to a 

pump beam.  However, as described by Ball [14] and herein, the inherently random 

nature of noise in qubits has the potential to be harnessed for a variety of applications. 

 

2.3 Fuzzing for vulnerability detection 

Fuzzing is a common security assessment technique which has been used to identify 

weaknesses in a variety of different types of software. Vulnerability assessment and 

detection provides developers and IT staff with insight on how attackers could exploit 

weaknesses to access, corrupt, modify or delete sensitive data [15] or otherwise 

interfere with program operations.   

Fuzzing begins with generating large amounts of random test cases of varying 

quality.  These test cases are constructed to be accepted by the program but are designed 

to cause the program to fail when processing them. The performance of the application 

being tested is monitored when running the test cases, by the fuzzing software, to detect 

faulty behaviors [3].  Any abnormalities that are detected are then assessed to determine 

the location and source of the fault.  

Through using this process, the principal benefit of fuzzing, that the detection of 

vulnerabilities becomes automated, is realized. This is critical, because large-scale 

software systems and deployed environments make it impractical for human analysts 

to effectively locate all vulnerabilities.  Relying solely on human assessors runs the 

significant risk of missing a potentially harmful defect in a program. By implementing 

fuzzing, large-scale detection of vulnerabilities can be performed for a target program.  

Analysts are then freed to focus on testing areas of particular concern and complex 

logic that fuzzing may not fully test, as well as evaluating and implementing appropriate 

remedial actions for any defects that are detected [16]. 

 

2.4 The Multiverse Theory and the Many-Worlds Interpretation  

Fuzzing is not the only conceptual use for quantum computing error data.  One 

interesting property about the error produced by some quantum computers is the fact 

that it compounds over time, as additional error occurs for qubits that already have 

experienced error.  In this regard, quantum error embodies principles of the many-

worlds interpretation (MWI) of quantum mechanics.  MWI proffers that there are many 

– if not infinite – worlds, which exist concurrently [17]: some are basically the same as 

this reality, while others are dramatically different.  Figure 2 depicts both compounding 

quantum computing error and MWI. 

MWI is similar to the multiverse theory, which asserts that there are an infinite 

number of universes operating in parallel to this one, which happen to be beyond the 

realm of observation [18]. The multiverse theory seeks to explain the nature of the 



universe – and potential universes – as observed, while MWI is based on a property of 

quantum mechanics. While physicists have studied the existence of billions of parallel 

universes, humanity currently lacks the resources to determine its accuracy [19].   

MWI, on the other hand, is based on the collapse of a wavefunction being explained 

by quantum decoherence (a loss of information due to environmental interactions). The 

MWI suggests that all possibilities of a quantum measurement are present in at least 

one of many parallel worlds.  This prevents various quantum paradoxes through the 

idea that every feasible outcome is realized in some different universe.  

 

 

Figure 2. Depiction of compounding quantum computing error and the many-worlds 

interpretation. 

Figure 2, thus, depicts the nature of both compounding error and the MWI / 

multiverse model. The left-most block represents the ideal, without any error present, 

in a compounding error depiction.  In MWI / multiverse, it represents the present, where 

instantaneously a variety of different possibilities for outcomes exist. The sub-blocks, 

under the compounding error model, represent different degrees of compounded error 

(those that are directly connected to the left-most block have less error than those 

further to the right).  For each case created by error compounding upon error, less qubits 

will be in that state.  In MWI / multiverse, the blocks to the right of the left-most block 

represent alternate worlds where the various possibilities are realized.  

The MWI / multiverse theory correlates with the large problem in quantum 

computing of quantum decoherence in qubits [20].  This decoherence causes erroneous 

outputs when performing quantum computation, as the environment surrounding qubits 

leads to a loss of information [21], rendering present quantum systems unreliable (i.e., 

the result of a single qubit may not be the ideal value). Techniques for quantum error 



correction have been studied.  These include the use of multiple physical qubits for each 

logical one [22] as well as a variety of error correction protocols [23].  

Continuously calculating certain tasks on an array of noisy, physical qubits is 

comparable to MWI / multiverse, in that inaccuracies produced by quantum 

decoherence result, over time, in a larger magnitude of error as more tasks are 

performed by the quantum computer.  

3 Quantum Noise Fuzzing   

As discussed in Section 2.3, fuzzing is performed by generating numerous input cases 

which are designed to test a target area within a piece of software. Fuzzing can be 

targeted at specific areas or functions or use a completely untargeted ‘brute force’ 

approach to the detection of software defects that could potentially result in security 

vulnerabilities or other issues with a program. The data of fuzzing input cases is 

intentionally faulty to test a variety of software characteristics [24] with a goal of 

detecting otherwise unknown vulnerabilities.  

Coverage of the vulnerability search space is important to maximize the efficacy of 

fuzzing testing, thus, randomized input values are very well suited to use for fuzzing. 

Quantum computing inherently produces such random values, centered around an ideal 

value, as part of its operations, due to the endemic-to-system noise which results from 

the qubit’s environmental interactions.   

At present, noise must be handled at the application level, so getting access to noise 

values is quite straightforward.  If a program desires to use averaging to mitigate noise, 

this will typically require the task to be performed several times.  Thus, all values of 

the ideal result (the average that removes the impact of the noise) and the noise-present 

results are available for storage and use for fuzzing or other purposes.  Figure 3 depicts 

how fuzzing might be conducted using a quantum computing system.  Fuzzing could 

be conducted during special testing sessions.  Alternately, all noise data that is a 

byproduct of operations could be stored to run for testing purposes when the system is 

not otherwise engaged in processing activities. 
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Figure 3. Process flow for quantum computing byproduct fuzzing. 

At present, noise is a byproduct of quantum computing operations and is seen as a 

key obstacle in the development of large-scale quantum computing systems.  

Conventional fuzzing, which is needed for detecting unknown vulnerabilities in a given 

program, typically requires task generation capabilities that tend to be costly to operate 

and execute [25].  The potential to use quantum noise as either a generation mechanism 



for test data or a constant source of test data for software that uses quantum computing 

exploits a synergy between these two areas. 

A noise implementation of fuzzing could potentially reduce fuzzing costs related to 

the generation of input tasks for a program.  Prospectively, there may even be ways to 

use quantum noise from one process to facilitate fuzzing of another process.  For 

example, the quantum noise could be recalculated as offset data that could be applied 

to another variable related to a different piece of software that was being subject to 

fuzzing testing. 

Even as quantum computing systems evolve to mitigate the effect of noise (for 

example, by using lots of physical qubits as part of a single logical qubit for inherent 

averaging), as long as it is possible to obtain the raw data from the physical qubits, the 

underlying hardware noise can be used to facilitate testing, as described above.  

Notably, if a technology was developed that eliminated qubit noise at its source, this 

would render this secondary use of the noise data unworkable.  

Effectively, this technique can be described mathematically as, in aggregate, 

identifying the numerical value of each qubit’s decoherence and applying it to data that 

either is part of the same quantum computing job or to other software using an 

appropriate algorithm for the application of noise values to fuzzing test case generation.  

A considerable advantage of harnessing noise for fuzzing techniques is that, unlike 

other fuzzing approaches, quantum noise fuzzing makes use of an otherwise non-ideal 

byproduct of quantum computations to perform the fuzzing at a lower computational 

cost, as compared to implementing fuzzing without this approach. In using quantum 

noise for fuzzing, the computational costs associated with the generation of a large 

magnitude of pseudorandom values for testing the integrity of software are reduced. 

Thus, quantum noise fuzzers would avoid fuzzing value generation costs, and may 

generate more effective random fuzz values, by virtue of the inherent random number 

generation capabilities [26] of quantum computing.  

4 Quantum Noise and the Multiverse Theory / Many-Worlds 

Interpretation 

The premise of the many-worlds interpretation and multiverse theory is that any one 

universe, where a given set of options from within the set of possible outcomes has 

occurred, is one of potentially nearly infinitely many parallel universes. This has a 

direct parallel to quantum computing: consider an individual, physical qubit that is 

probabilistically superposed in all states concurrently. There are theoretically infinite 

possibilities for the measurement of this qubit. A many-worlds interpretation of this 

suggests that, regardless of what is measured in a given universe, all possible 

measurements are existent in at least one universe.  

Quantum theory posits that an isolated system (in this case, a qubit) can be 

represented by a state function. Here, the function representation of this system evolves, 

as projected by Schrodinger’s equation. Upon measurement of this system, its state 

ultimately ‘collapses’ to a single measured value.  This is a decoherence of state 

resulting in a loss of information [27].  The many-worlds interpretation mitigates 

concerns for collapsing wave functions, in that the measurement of a superposed state 



causes a collapse in the state’s wave function, where MWI recognizes that the non-

resultant measurement is assumed in a different world [28]. 

As more computations are performed using a collection of physical qubits, the level 

of decoherence compounds in a manner that is similar to MWI and the multiverse 

model.  Just like successive choice opportunities result in numerous possible outcomes 

and that become ‘worlds’ under MWI, compounding noise results in numerous possible 

states based on different combinations of noise impact across operations. 

As time progresses under MWI, the parallel worlds can change drastically, with 

respect to the ‘original’ world at a given starting time. Likewise, as time progresses for 

operating qubits, decoherence consequently results in increased magnitudes and 

distributions, across entangled and operation-associated qubit combinations, of error.  

5 Quantum Noise and Artificial Intelligence 

A key prospective area to leverage quantum noise is in artificial intelligence. Artificial 

intelligence techniques include a variety of optimization, classification and learning 

algorithms.   Multiple artificial intelligence techniques, such as search, are used for 

single-agent pathfinding problems, two-player games, and constraint-satisfaction 

problems [29]. Alternatively, some supervised machine learning algorithms, such as 

Naive Bayes, can be implemented as a methodology for text classification [30]. 

The inherently random nature of quantum noise has the potential to be utilized for 

optimization and machine learning artificial intelligence techniques. Machine learning 

algorithms harness randomness for optimization and to solve deterministic problems, 

such as voting that results in a draw, where (when applicable) randomness can be used 

to determine the outcome. Some training-based machine learning applications require 

vast amounts of input values, many of which could potentially benefit from a random 

capability for optimization [31]. Figure 4 illustrates how quantum noise can be used as 

part of an artificial intelligence implementation. Quantum processing is included after 

classical artificial intelligence data preparation and prior to classical computing result 

measurement.  This workflow demonstrates a potential approach to applying quantum 

noise value generation to expedite artificial intelligence processes. Models such as 

random forest (RF) are examples of effective classification algorithms for commonality 

identification and grouping of large datasets. Here, an enhanced degree of random in 

decision tree generation may result in increased efficacy of overall classification. The 

random nature of RF is found in both the random origin of a tree within the RF structure, 

and the tree node as a subset of features being randomly chosen to produce the best 

possible split. [32] 

Harnessing the properties of noise in quantum computation for the generation of 

input values, optimizing machine learning algorithms, and classification of variables in 

large data sets are a few example applications of its effective use. 

Swarm intelligence techniques could also potentially benefit from quantum noise. 

Swarm intelligence (SI) is a decentralized, collective collaboration of potentially self-

managing systems inspired by biological examples of social insects and flocking 

behaviors of vertebrates. Here, algorithmic frameworks such as Ant Colony 

Optimization distribute, access, and utilize information [33], incentivized by the pursuit 

of a common goal. Comparable to how a large magnitude of individual ants operate in 



a collaborative manner to determine the shortest path between their nest and a food 

source, computational SI can be utilized to solve a variety of complex, large-scale tasks, 

such as optimization [34] and management of IoT operations, where the real-time, 

dynamic nature of an IoT environment requires large-scale process management, 

capabilities [35]. Examples of large-scale SI utilization are in electrical load 

forecasting, intrusion detection and machine learning optimization [36]. The random 

nature of quantum noise could be applied to the generation and distribution of artificial 

entities within a swarm, effectively making use of an otherwise detrimental factor of 

quantum computing. It could also be applied to particle property manipulation in 

particle swarm optimization.  Particle swarm optimization [37] is a technique where 

particles are moved within an assessment matrix area to attempt to determine optimal 

solutions. 
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Figure 4. Use of quantum noise as part of an AI system. 

6 Conclusions and Future Work 

This paper has discussed how quantum computing noise can prospectively be used for 

fuzzing, for program testing and vulnerability identification, and as part of artificial 

intelligence techniques.  Noise is a deleterious property of quantum computing which 

research has shied away from harnessing; however, Ball [14] correctly suggests that 

quantum noise can be utilized for numerous different applications.  

Computational fuzzing is a potentially beneficial area of use due to the similarities 

between the input data expansion process and quantum computing noise.  Fuzzing is a 

frequently used technique for identifying faults in software and its operating 

environments.  This paper has discussed how quantum noise values could potentially 

be leveraged for generating the random input tasks necessary for fuzzing and the 

potential benefits of doing so.  

Fuzzing was suggested as an immediately possible way of making beneficial use of 

quantum noise, however, it is one among a plethora of potential uses.  Other possible 

uses were also discussed, such as optimization, artificial intelligence and swarm 

intelligence.  Artificial intelligence, in particular, presents a number of options for 

leveraging quantum noise.  Noise can prospectively be used as part of a modification 

to existing swarm intelligence-style techniques.  As many AI and machine learning 

algorithms are dependent on processing large sets of possible data values to identify 

optimal ones, automatically generating, without significant associated computational 

cost, values that are proximal to a current value is inherently valuable.  Techniques 

developed specifically for quantum computing implementation may also be designed 

to utilize this property, inherently; however, even classical optimization techniques 



which are interacting with quantum computing data or which are trying to optimize 

quantum computing processes, could prospectively make use of the noise.  

The compounding nature of decoherence with respect to time was also discussed and 

it was compared to the principles of the multiverse model and multi-world 

interpretation of quantum mechanics. The utility of this expanding tree-like structure 

of noise-produced values was discussed as a prospective value to some artificial 

intelligence algorithms, as it would enhance search space coverage. 

The proposed uses are examples of how different techniques could, ultimately, allow 

a passively produced and (at least with current technology) inevitable product of 

quantum computations to be used effectively.  While this doesn’t eliminate the noise 

issue for calculations, it does show that this property could be prospectively useful for 

some applications.  Each of these prospective applications requires further review to 

gain an understanding of the benefits of their use of quantum computing noise 

capabilities.  This, and the identification of other areas of quantum noise benefit, are 

key areas for future work.   

Future work will be needed to consider the practicality of harnessing quantum noise 

for fuzzing implementations in terms characteristics such as efficacy and overall 

computational cost. Similarly, consideration should be given to the inherent quantum 

capability of generating random numbers and this value in the production of quantum 

fuzz. Quantum fuzzing should also be considered for use in the generation of fuzz 

values for software weakness detection.  Quantum fuzzing may also find use in other 

areas such as machine learning optimization methodologies (such as particle swarm).  
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