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Abstract—Correspondence identification is essential for multi-
robot collaborative perception, which aims to identify the same
objects in order to ensure consistent references of the objects by a
group of robots/agents in their own fields of view. Although recent
deep learning methods have shown encouraging performance on
correspondence identification, they suffer from two shortcomings,
including the inability to address non-covisibility in collaborative
perception that is caused by occlusion and limited fields of view of
the agents, and the inability to quantify and reduce uncertainty to
improve correspondence identification. To address both issues, we
propose a novel uncertainty-aware deep graph matching method
for correspondence identification in collaborative perception. Qur
new approach formulates correspondence identification as a deep
graph matching problem, which identifies correspondences based
upon graph representations that are constructed from the agents’
observations. We introduce a novel deep graph matching network
under the Bayesian framework to explicitly quantify uncertainty
in the identified correspondences. In addition, we design a novel
loss function that explicitly reduces correspondence uncertainty
and perceptual non-covisibility during learning. We evaluate our
approach in the robotics applications of collaborative assembly
and multi-robot coordination using high-fidelity simulations and
physical robots. Experiments have shown that, through address-
ing both uncertainty and non-covisibility, our approach achieves
the state-of-the-art performance of correspondence identification.

I. INTRODUCTION

Collaborative robotics, including multi-robot systems [4, 7,
38] and human-robot collaboration [33, 37], has been widely
studied over the past decades due to its effectiveness and flex-
ibility to address large-scale collaborative tasks. Collaborative
perception is a fundamental capability in collaborative robotics
for robots and other agents including humans in a collaborative
team to share information of the surrounding environment thus
achieving shared situational awareness among the teammates.
Collaborative perception has been widely applied in a variety
of real-world applications including human-robot collaborative
assembly [18, 20], multi-robot search and rescue [1, 45], and
connected autonomous driving [19, 49]. Correspondence iden-
tification is defined as a problem to identify the same objects
observed by multiple agents in their own fields of view, which
is considered an essential component to enable collaborative
perception [14, 17, 43]. For example, as illustrated by Figure
1, when a collaborative robot assists a human worker who
wears an augmented reality (AR) headset to assemble a chair,
they need to identify the correspondence of the chair parts in
order to ensure that both the robot and the human correctly
refer to the same object.

A motivating scenario of human-robot
collaborative assembling
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Fig. 1. This example motivates correspondence identification in collaborative
perception in the application of human-robot collaborative assembly. When a
collaborative robot assists a human worker who wears an augmented reality
(AR) headset to assemble a chair, they must identify the correspondence of
the chair parts in order to ensure that both the robot and the human correctly
refer to the same object used in the assembling operations. We propose a novel
Bayesian deep graph matching method for correspondence identification with
the capability of explicitly reducing correspondence uncertainty and perceptual
non-covisibility in collaborative perception.

Given its importance, many techniques have been developed
to address correspondence identification, e.g., based on visual
object reidentification [57, 59] and learning-free graph match-
ing [5, 6]. Recently, deep learning has attracted significant
attention for identifying correspondences in collaborative per-
ception due to its ability to learn from data and its robustness
to noise. For example, through learning visual features using
convolution neural networks (CNN) [41, 52], the methods for
object reidentification identified the same objects in different
frames and from different perspectives [22, 25, 36, 47, 46]. By
encoding spatial relationships of the objects using graph neural
networks (GNN) [11, 44], deep graph matching was designed
to learn graph similarities [48, 55] and graph representations
[12, 21] for correspondence identification. Compared with the
deep feature learning, deep graph matching is able to explicitly
integrate both visual and spatial information of the objects for
improved identification.

However, the current state-of-the-art deep graph matching
methods suffer from two key shortcomings that have not been
yet addressed for collaborative perception. First, the previous



approaches are not able to quantify and reduce the uncertainty
in identified correspondences. Uncertainty is always expected
in collaborative perception, e.g., due to sensor resolution limit
and measurement noise [15]. Without the capability of explic-
itly quantifying and addressing uncertainties during learning,
deep graph matching is not robust to noisy observations [24].
The second shortcoming stems from non-covisibility, which is
defined as the challenge that not all objects are observed by all
agents due to occlusion and limited field of view (Figure 1).
Non-covisibility makes objects in the observations that are ac-
quired from different perspectives to have no correspondence,
which has not been addressed by current deep graph matching
methods.

We propose a novel Bayesian deep graph matching method
for correspondence identification, with the capability of explic-
itly modeling and addressing uncertainty and non-covisibility
in collaborative perception. We first represent each observation
acquired by an agent as a graph. Nodes of the graph encode
visual appearances of the detected objects in the observation
and the edges denote spatial relationships among the objects
in the robot’s field of view. Then, given two graphs built from
observations by a pair of agents, we formulate correspondence
identification as a problem of Bayesian deep graph matching.
Furthermore, we introduce a novel loss function that models
and reduces non-covisibility and uncertainty in the unidentified
correspondences during learning.

The key contribution of this paper is the introduction of the
first Bayesian deep graph matching approach that models and
addresses uncertainty and non-covisibility for correspondence
identification in multi-agent collaborative perception. Specific
novelties include:

« We introduce a novel approach for Bayesian deep graph
matching, which integrates graph matching with Bayesian
deep learning to solve correspondence identification. Our
approach explicitly models and quantifies uncertainty in
the identified object correspondences, thus improving the
interpretability of deep graph matching.

« We introduce a new loss function that reduces correspon-
dence uncertainty and perceptual non-covisibility, which
improves the robustness of correspondence identification
to noisy observations during collaborative perception.

The remainder of the paper is organized as follows. In Sec-
tion II, we review existing techniques for correspondence iden-
tification. In Section III, we introduce the proposed Bayesian
deep graph matching approach. In Section IV, we present and
discuss our experimental results in collaborative assembly and
multi-robot cooperation applications. Finally, we conclude the
paper in Section V.

II. RELATED WORK

A. Correspondence Identification

Conventional methods for correspondence identification can
be grouped into three categories, based on visual appearances
for object reidentification, spatial relationships for learning-
free graph matching, and pairwise association for multi-view

synchronization. The first category of methods calculate the
similarity of two observations based on local [9], global [57],
or semantic features [59]. The second category of methods
use the spatial similarity among objects using, e.g., distances
between the objects in pairwise graph matching [6, 29], angu-
lar relationships of objects in hypergraph matching [34, 42],
spatial relationships built by four or more objects in clique
matching [35], and a combination of multiple spatial rela-
tionships [5]. The third category of methods recognize object
correspondences by enforcing the circle-consistent constraints
in multiple views [10], e.g., based on convex relaxation [3],
spectral relaxation [32] and graph clustering [50].

The conventional methods require that the appearance and
spatial pattern of objects must be unique, which are not
robust to the perception uncertainty caused by occlusion, noisy
data and model bias. Recently, regularized graph matching
method is proposed [17], which addresses the observation
uncertainty by adding regularization terms into the graph
matching formulation. However, this method can not address
the uncertainty in the graph matching model, and is not able
to quantify the correspondence uncertainty caused by the
perception uncertainty.

B. Deep Graph Matching

Deep graph matching has attracted attention to address
correspondence identification in recent years. By aggregating
the local visual-spatial information around objects through
GNN, deep graph matching learns the similarity between
the local visual-spatial embeddings of the objects [48, 55].
The identified correspondence can be improved by designing
representative graphs [21] or by removing the correspondences
violating neighborhood consensus [12]. The accuracy of deep
graph matching can be improved by incorporating combina-
torial solvers [39], and the efficiency can be improved by
decomposing large graphs into small parts [30]. Deep graph
matching outperforms traditional learning-free graph matching
methods due to its ability to learn from data and its robustness
to noise. Compared with deep reidentification methods, deep
graph matching methods encode additional spatial information
of the objects, thus improving the representability.

C. Uncertainty Quantification

Recent deep learning studies have also focused on Bayesian
learning frameworks for GNN to quantify the uncertainty in
different domains. The type of the uncertainty obtained from
Bayesian GNN includes aleatoric uncertainty of the data and
epistemic uncertainty of the learning model [23], vacuity and
dissonance uncertainty from subjective logic perspective [12],
variance [16] and entropy [31].

The techniques to quantify the uncertainty can mainly
be divided into two categories, including non-Bayesian and
Bayesian techniques. The most well-known non-Bayesian un-
certainty quantification technique is deep ensemble, which
makes averaged prediction given a collection of parallel
networks [13, 27]. The shortcoming of the non-Bayesian



methods includes the lack of interpretability and computa-
tional expense (running multiple models at the same time).
Bayesian-based techniques focus on modeling the distribution
of network parameters for uncertainty quantification, including
Markov Chain Monte Carlo (MCMC) [26], Bayes by backprop
(BBB) [2] and Monte Carlo Dropout (MC dropout) [16].
The Bayesian-based techniques are widely used in various
applications, such as using Bayesian GNN with Dirichlet prior
[31, 55] and Gaussian prior [40] for node classification [54],
edge prediction [53] and graph classification [58].

Given the promising performance of using GNN to represent
single observations, there exists no Bayesian learning frame-
works for deep graph matching to address correspondence
identification in collaborative perception. In addition, previous
deep graph matching methods assume that all objects in the
source observation are also present in the target observation,
which are not applicable to correspondence identification with
non-covisible objects. The approach proposed in this paper
explicitly addresses the challenges of both uncertainty and
non-covisibility in deep graph matching for correspondence
identification in collaborative perception.

III. APPROACH

Notation. Matrices are represented as boldface capital let-
ters, e.g., M = {M,;} € R™™, with M, ; denoting the
element in the i-th row and j-th column of M. Vectors are
denoted as boldface lowercase letters v € R™ and scalars are
denoted as lowercase letters.

A. Problem Formulation

We propose to formulate correspondence identification in
collaborative perception as a deep graph matching problem.
Given an observation that’s acquired by a robot, we represent
it as an undirected graph G(V, A, E). The node matrix V =
[Vi,Vva,...,vy] T € R™" 4 denotes the central positions of
the objects detected in the observation, where v; € R is
the position of the i-th object and n is the number of objects.
The attribute matrix A = [a;,ay,...,a,] € R™*% encodes
appearance features of these objects, where a; € R% denotes
the feature vector of the i-th object. The edge matrix E =
{E; ;} € R™*™ denotes the pairwise adjacency of the nodes.
If v; and v; are connected, E; ; = ||v; — v;||2 is computed
as the distance between v; and v;.

Given this graph representation, we compute the local
embeddings of the objects, which capture the neighborhood
visual-spatial information around the objects. The local em-
beddings are computed by H = (A, E), where ¥ is a GNN
that is defined as follows:

h! =c(W'hi™'+ > o!(E,;) -hi) (1)

JEN(3)
where W denotes the trainable parameter of GNN, N (7)
denotes the neighborhood objects of the i-th object, ®(E; ;)
denotes the trainable B-spline kernel function, which uses
graph edges connected to the i-th robot to compute the weight
of its neighborhood objects for local information aggregation,

o denotes the non-linear function ReLu, and [ € {1,2,...,L}
is the number of layers in the forward process of the GNN.
The initial embedding is defined as h? = a;.

In collaborative perception, observations acquired by a
pair of robots are represented as two graphs G(V, A E)
and G'(V', A’ E'), respectively. We calculate their respective
embedding vectors H and H' using Eq. (1). Then, the visual-
spatial similarity of G and G’ can be computed as follows:

S=HH™ =V(AE)W' (A E) 2)

where S = {S;}"*" denotes the similarity matrix with
S, indicating the similarity between the i-th object in graph
G and the i'-th object in G’. Since local embeddings may
not be sufficiently distinct when objects have similar local
visual-spatial structures, we improve the similarity matrix S
as follows:

S=HH'T + (D) (3)

where ¢ denotes a multi-layer perceptron that is computed as
the concatenation of two linear functions with a ReLu non-
linear function, and D denotes the measurement of neighbor-
hood consensus [12], which is computed by D; ; = Z; . — Z;,:
with Z = U(A,E) and Z’ = U(STA,STES) based on
Eq. (1). The intuition is as follows. If the similarity based
on local embeddings (Eq. 2) between two graphs G and G’
can result in correct correspondences (e.g., a large similarity
indicates a correct correspondence), when the visual-spatial
information of G’ is replaced with the information of G
given the correspondence (e.g,. replacing A’ by ST A), the
embedding of G and the new embedding of G’ should be the
same. Otherwise, the difference D, as a measurement of the
neighborhood consensus, between the two embeddings of G
and G’ is used to update the similarity matrix.

Then, correspondence identification is formulated as a graph
matching problem as follows:

arg mYaX STY S.t. Y]-n’><1 S 17I,><17YT17L><1 S 171,’><1 (4)

where Y = {Y,»} denotes the correspondence matrix, with
Y, = 1 meaning that the i-th object in G corresponds to
the #/-th object in G’, and 1 is a vector with all ones. Eq. (4)
aims to maximize the overall similarity of objects’ embedding
given the correspondence matrix Y. The constraints are used
to guarantee one-to-one correspondences by enforcing each
row and column in Y to at most have one element equal to
1. Gradient-decent methods can be used to solve Eq. (4), e.g.,
using the Sinkhorn algorithm [56, 12] that is efficient and strict
with one-to-one correspondence constraint.

B. Quantifying Uncertainty in Correspondence Identification

Uncertainty always exists in robot perception. We propose
a Bayesian deep graph matching method that re-designs deep
graph matching under the Bayesian learning framework to
quantify uncertainty in correspondence identification.

We represent the trainable parameter W in a distribution
form instead of taking fixed values. Given a set of N training



instances X = {G, G5 }V with ground truth Y = {Y;}V,

W is computed as:

pY|X, W)p(W)
pYV|X)

where p(W|X, Y) is the posterior distribution of W' estimated

from its prior distribution p(W). Given p(W|X,)), the

inference process is defined as follows:

p(YIG,G, X, Y) =
/ p(Y|S)p(SIG,G', W)p(W|X, )dW  (6)
WweQ

p(W[X,Y) =

®)

Under our framework of Bayesian learning, p(Y|G,G’, X,))
represents the correspondence matrix Y in a distribution form,
rather than taking fixed values through marginalizing over the
posterior p(W|X,Y). p(Y|S) denotes the probability of Y
given S, and p(S|G, G’, W) denotes the probability of S given
the pair of graphs G, G’ as input and the model parameter W.
Directly computing the integral in Eq. (6) requires to exploit
over all the parameter space €2, which is intractable for the
gradient descent-based inference. In order to address this
challenge, we adopt the dropout variance inference [16] to
obtain the approximated posterior distribution ¢(W) instead of
p(W|X,Y) by minimizing the Kullback-Leibler divergence:

min KL(go(W)[[p(W]X, Y)) =

. q0(W)
W)log — 2 "2) 7
mgm/WEQ q9(W) log WD) (7

where § = {M;,Ms,..., My} denotes the variational pa-
rameter with M; denoting the deep graph matching network’s
parameters without dropout operations, and N denotes the
number of layers in the network.
During training, we sample W; from gg(W) using dropout
as follows:
W, = M, - diag([2:;]1))
z;j ~ Bernoulli(p;),i = Ky
®)

where z; ; denotes the binary variable obtained from the
Bernoulli distribution given probability p;. If z; ; = 0, the j-th
unit of the (¢ — 1)-th layer is dropped out. When performing
inference during execution, we also enable dropout in our
Bayesian deep graph matching approach to sample W. That
is, the distribution of correspondence is inferred by:

p(Y|G6,6", X,Y) =~

1,2,...L,j=1,2,..

1 T
7 2 p(Y[S)p(SIG.¢" W), W ~ g(W)  (9)
t=1

where 7T is the number of sampling. We define the final corre-
spondence as the expectation of the correspondence samples
sampled from Eq. (9), which is denoted as E(p(Y)), where
E denotes the expectation function. The uncertainty of each
correspondence is defined as follows:

H(E(p(Y); ;) = —E(p(Yi;)) *log(E(p(Yi;)))  (10)

where H is the Shannon entropy. The entropy encodes the total
uncertainty in the correspondence results including both data
uncertainty in robot observations and model uncertainty in the
graph network [8].

The loss function for our Bayesian deep graph matching
approach is defined as follows:

Leoia = —log (1/||SoY*oE(Y)|1> (11)
nn

where o represents the element-wise product, n and n’ are
the number of objects in graph G and G’ respectively, and
Y* denotes the ground truth of the correspondence matrix,
with Y7, = 1 denoting the ground truth of correspondence
between the i-th object in graph G and the #’-th object in
graph G’. Because the negative log loss requires the value in
range of [0, 1], we use sum-averaged function to normalize the
overall similarity. Given the Bayesian dropout approximation
theory [16], minimizing the negative-log loss function L.,;q
is equivalent to the minimization of the KL-divergence in Eq.
(7). Accordingly, training our proposed deep graph matching
model with gradient descent enables the learning of an approx-
imated distribution of weights, which allows us to quantify
uncertainty in the identified correspondence results.

C. Reducing Perceptual Non-covisibility and Correspondence
Uncertainty

Since non-covisible objects are observed only by one robot,
they do not have correspondences. To explicitly address this
challenge, we design a novel loss function that integrates
non-covisibility into the learning process, which is defined as
follows:

Lypon = —log (nlnl|exp(—SoNoE(Y))||1> (12)
where N € R™*"" denotes an indicator matrix that includes
the indices of non-covisible objects in Y, with N; » =1
indicating that the correspondence Y ;s is constructed by non-
covisible objects. For example, if the i-th object in graph G
or the i'-th object in graph G’ is non-covisible object which
has no correspondence, then N; ;; = 1. In Eq. (12), we first
calculate the similarity of the correspondences constructed by
non-covisible objects as S o N o E(Y). Then, the similarity
of non-covisible objects is converted to a normalized penalty
term and added to the overall loss.

Similarly, we also explicitly model the quantified uncer-
tainty as a penalty term that is added to L ,;q to improve the
robustness of deep graph matching, which is defined as:

Lone = —log (nlnln exp (—H (E(Y))) ||1> (13)
where H(E(Y)) is our quantified uncertainty in the identified
correspondences.

Our final loss function is represented as L = L.yiq +
Lonon + Lune. Minimizing this loss function during training
is equivalent to maximizing the similarity of correct corre-
spondences and minimizing the similarity of non-covisibile



(a) Observations by two robots in SFAT

(b) Observations by a robot and a human wearing an
AR headset in RFAT

(c) Observations by two robots in SMRC

Fig. 2. Examples of the color image observations that are acquired by a pair of agents from different perspectives in the experimental scenarios of SFAT,

RFAT and SMRC.

objects and matching uncertainty. During execution, given
the quantified uncertainty in the identified correspondence,
we further improve the correspondences results by defining a
threshold ), in order to remove the correspondences with high
uncertainty values [17]. Specifically, if H(E(p(Y),;)) > A,
the correspondence Y; ;- is removed.

IV. EXPERIMENTS

We evaluate our approach with simulations and physical
robots in three scenarios. Specifically, we examine the ex-
perimental results of our approach compared with previous
methods and discuss the characteristics of our approach.

A. Experimental Setups

We use two high-fidelity robotics simulations and physical
robots to evaluate our method for correspondence identifica-
tion in collaborative perception applications, including Sim-
ulated furniture assembly tasks (SFAT) as shown in Figure
2(a), Real-world furniture assembly tasks (RFAT) as shown in
Figure 2(b) and Simulated multi-robot coordination (SMRC)
as shown in Figure 2(c).

We construct each observation as a graph with node at-
tributes generated from appearance features [17]. The edges
are generated by Delaunay triangulation given the 2D camera
coordinates of objects in SFAT and RFAT and 3D real world
coordinates of objects in SMRC. For the B-Spline GNN VU,
we set the number of convolutional layers L = 2 with each
layer using a kernel size of 5 in each dimension and a hidden
dimensionality of 256. Each convolutional layer is followed
by dropout with probability 0.4. For the MLP ¢, each linear
layer is followed by dropout with probability 0.2. In all the
experiments, we use ADMM as the optimization method. We
run 150, 250, 100 epochs for our approach in SFAT, RFAT and
SMRC, respectively. The number of samplings 7" for Bayesian
inference is set to 20.

We implement the full version of our approach using £ =
Lecoid + Lnon + Lunc as the loss function. We also implement
two baseline methods, using L.,;q + Lnon that addresses
only non-covisibility, and L..;q + Lyne that addresses only
uncertainty. In addition, we compare our approach with four
previous correspondence identification methods, including two
learning-free graph matching methods and two deep learning-
based methods. They are:

o Multi-order graph matching (MOGM) [5], which inte-
grates multiple different attributes in a learning-free way
to identify correspondences.

o Regularized graph matching (RGM) [17], which ad-
dresses perception uncertainty and non-covisible objects
in a learning-free way to identify correspondences.

e Graph convolutional network-based graph matching
(GCN-GM) [11], which identifies correspondences by
only optimizing the loss of overall similarity between two
observations.

e Deep graph matching consensus (DGMC) [12], which
uses the similarity of embedding vectors obtained by
graph neural networks for correspondence identification
while checking the neighborhood consensus of identified
correspondences.

Following a standard experimental setup [6, 17], precision
and recall are adopted to evaluate our approach. Given the
identified correspondences, precision is defined as the ratio
of correct correspondences over all the identified correspon-
dences. Recall is defined as the ratio of identified correspon-
dences over all ground truth correspondences. In addition, we
also use F1 score as a measurement of the overall performance,
which is defined as =2~ where p denotes the precision and

(ptr)°
r denotes the recall.

TABLE I
QUANTITATIVE RESULTS BASED ON THE METRICS OF PRECISION AND
RECALL OVER SFAT, RFAT AND SMRC.

Method SFAT RFAT SMRC
Recall [ Precision | Recall | Precision | Recall [ Precision

MOGM [5] 0.4385| 0.2332 [0.2298 | 0.2467 |0.7184| 0.7136
RGM [17] 0.4434 1 0.2841 [0.2871| 0.3012 |0.7878 | 0.7735
GCN-GM [11] {0.9078 | 0.5398 |0.7580| 0.8916 |0.9321| 0.8481
DGMC [12] 0.9105| 0.5441 [0.9933| 0.8971 |0.9388 | 0.9037
Leoid + Lnon [ 09122 0.5526 [0.9960 | 0.9036 [0.9477| 0.9319
Leoid + Lune [0.9053] 0.7011 [0.9937| 0.9038 [0.9529| 0.9611
Ours 0.9216 | 0.7026 |0.9920| 0.9498 |0.9503| 0.9683

B. Results on Furniture Assembly Simulations

Our approach is first evaluated on SFAT, in which the
correspondences of objects are identified for multi-robot col-
laborative furniture assembly. Correspondence identification
is used to make the robots refer to the same object in their
respective field of view. The SFAT scenario is challenging due
to the existence of a large number of non-covisible objects and
strong occlusion in multi-robot observations.



(b) DGMC [12]

(d) GCN-GM

(c) Ours

(f) Ours

(2) GCN-GM

(h) DGMC

(i) Ours

Fig. 3. Qualitative experimental results of our approach over SFAT (first row), RFAT (second row), and SMRC (third row), and comparisons with GCN-GM
and DGMC. Green lines denote correct correspondences and red lines denote incorrect correspondences. [Best viewed in color.]

Scenario on human-robot
collaborative assembling task

Step1 Step2 Step3 Step4 Step5 Step6

Robot view:

Fig. 4.
assembly. The Baxter robot assists a human collaborator who wears an AR
headset to collaboratively assemble an IKEA chair.

lustrations of several steps in the scenario of robot-assisted furniture

SFAT consists of three subtasks, including assembling a
shelf, chair and table. Each subtask includes 750 data in-
stances. Each instance consists of a pair of RGB images
observed by two robots from different perspectives. In each
image, at least 5 objects are detected. The ground truth
correspondences are obtained from the simulator [28]. 400 data
instances are used for training and 350 instances are used for
testing. The quantitative results are obtained by averaging 4
times of the experiments.

The qualitative results obtained by our approach on SFAT
are presented in Figure 3(c). We can see that our approach can
accurately identify correspondences. Compared with GCN-
GM and DGMC as shown in Figure 3(a) and Figure 3(b),
our approach obtains a significant improvement when faced
with strong non-covisibility and perception uncertainty caused

by occlusion. In addition, our method can remove correspon-
dences with highly quantified uncertainty, which can further
reduce the number of incorrect correspondences caused by this
uncertainty and non-covisibility.

The quantitative results from SFAT are presented in Ta-
ble I. We observe that our baseline methods L.oiq + Lnon
and L.o;q + Lune generally achieve better performance than
the deep-learning methods GCN-GM and DGMC, as GCN-
GM and DGMC only focus on minimizing the loss of the
overall similarity. Thus, the results indicate the importance of
addressing non-covisibility and correspondence uncertainty in
correspondence identification. Since only 2D spatial informa-
tion is available in SFAT, learning-free methods MOGM and
RGM perform poorly due to their reliance on high-quality
observations. The deep learning-based methods GCM-GM
and DGMC perform significantly better due to their learning
capability. The full version of our approach obtains the best
performance due to its ability to address non-covisibility and
perception uncertainty in multi-robot assembly tasks.

C. Results in Real-world Furniture Assembly Scenarios

Our approach is further evaluated on RFAT, in which a
human and a robot collaboratively assembly an IKEA chair.
Figure 4 provides the details of the scenario, in which the
Baxter robot assists a human collaborator wearing an AR
headset to assemble an IKEA chair. The RFAT scenario is
challenging as it contains a diverse set of furniture parts
observed by the robot and the human collaborator from two
different perspectives and both of the perspectives contain a
large number of non-covisible objects and strong occlusion in
the observations.

RFAT includes 500 data instances. Each instance includes



a pair of RGB images obtained by a robot and a human who
wears a Hololen2 AR headset. In each image, at least 5 objects
are detected. The ground truth correspondences are obtained
through the Scalabel software [51]. 250 data instances are used
for training and 250 instances are used for testing.

The qualitative results obtained by our approach in RFAT
are presented in Figure 3(f). We can observe that our ap-
proach can accurately identify correspondences and obtain a
significant improvement over the other graph learning methods
(GCN-GM and DGMC). In this scenario, the existence of
strong non-covisibility and perception uncertainty hinders the
performance of deep learning-based methods GCN-GM and
DGMC, which only minimize the similarity loss during learn-
ing. Our approach can address these challenges by integrating
non-covisibility and perception uncertainty into the learning
process. By quantifying uncertainties of correspondences, our
method can further reduce the number of incorrect correspon-
dences caused by perception uncertainty and non-covisibility.

The quantitative results obtained in RFAT are presented in
Table I. We can see that our baseline methods Le.oiq + Lrnon
and L;yiq+ Lync outperform the deep learning-based methods
GCN-GM and DGMC, which only consider minimizing the
loss on the overall similarity. Our full version approach obtains
the best performance (based on the F1 score) by addressing
non-covisibility and perception uncertainty for correspondence
identification in human-robot collaborative assembly task.

D. Results in Multi-robot Coordination Scenarios

Our approach is finally evaluated in the scenario of multi-
robot coordination, in which a group of robots is observed
by two ground robots. In the observations, there exists strong
perception uncertainty caused by long distances between the
observers and the observed objects, low resolution of the
acquired images, and the lack of textures of objects in ob-
servations.

SMRC includes 600 data instances. Each instance is
recorded by two robots from different perspectives and in-
cludes a pair of RGB images with at least 7 detected objects,
with depth images and ground truth correspondences obtained
from the simulation. We use 200 instances for training and
400 instances for testing.

The qualitative results of our approach in SMRC are shown
in Figure 3(i). We observe that our approach can correctly
identify the correspondences. The results of GCN-GM and
DGMC are shown in Figure 3(g) and Figure 3(h) separately.
It is observed that the objects far away from the camera are
identified incorrectly due the perception uncertainty caused
by the low resolution of objects. In addition, GCN-GM and
DGMC focus on maximizing the overall similarity, which is
affected by non-covisibility. Thus, addressing correspondence
uncertainty and non-covisibility are important for correspon-
dence identification.

The quantitative results on SMRC are presented in Table
I. Due to the 3D information provided by SMRC, MOGM
and RGM obtain superior results compared to their results

in SFAT and RFAT. The deep learning-based methods GCN-
GM and DGMC further improve on this performance due
to their learning capability. Our approach achieves the best
performance compared with these four methods by addressing
non-covisibility and perception uncertainty in the multi-robot
coordination scenario.

TABLE II
QUANTITATIVE ANALYSIS ON THE INFLUENCE OF THRESHOLDING THE
IDENTIFIED CORRESPONDENCES BASED ON THE QUANTIFIED
UNCERTAINTY. THE METRIC REPORTED IS THE F1-SCORE OVER SFAT,
RFAT AND SMRC.

[ Method | Before threshold [ After threshold |
SFAT 0.7009 0.8303
RFAT 0.9695 0.9724
SMRC 0.9456 0.9686

E. Discussion

We further evaluate various characteristics of our approach,
including the importance of uncertainty quantification in cor-
respondence identification, the performance of our approach
using different uncertainties, and hyperparameter analysis.

1) Uncertainty Quantification in Correspondence ldentifi-
cation: Figure 5 shows the effect of quantifying the corre-
spondence uncertainty on correspondence identification. We
can see that incorrect correspondences correspond to objects
with large perception uncertainty caused by occlusion, which
leads to a much larger correspondence uncertainty for incorrect
correspondences (visualized with a red line, with the width
representing uncertainty) than the correct correspondences
(visualized with a green line). Given the quantified correspon-
dence uncertainty, we can further improve the correspondences
results by defining a threshold A, in order to remove the
correspondences with high uncertainty values. As shown in
Table II, the performance of our approach in all three scenarios
is improved by thresholding the correspondences given the
quantified uncertainties. Thus, utilizing the quantified uncer-
tainty for correspondence identification can effectively reduce
the number of incorrect correspondences.

TABLE III
QUANTITATIVE ANALYSIS ON THE PERFORMANCE OF OUR APPROACH
USING DIFFERENT TYPES OF UNCERTAINTY. THE METRIC REPORTED IS
THE F1-SCORE OVER SFAT, RFAT AND SMRC.

[ Methods [ SFAT | RFAT | SMRC |
Epistemic [8] 0.7009 0.9722 0.9456
Aleatoric [8] 0.8303 0.9695 0.9676
Shannon Entropy [8] 0.8143 0.9724 0.9688

2) Different Types of Uncertainties: One of our proposed
novelties is to integrate the quantified uncertainty into the
loss function and to use it for the removal of incorrect
correspondences. Thus, we analyze the performance of our
approach by using three different types of uncertainty for
correspondence identification, including epistemic uncertainty,
aleatoric uncertainty, and the Shannon entropy (the sum of
epistemic and aleatoric uncertainty). Epistemic uncertainty is
defined as the ambiguity in the learning model (e.g. caused
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Fig. 5. Qualitative experimental results of our approach, with identified correspondences thresholded based upon the quantified correspondence uncertainties.
Green lines denote correct correspondences and red lines denote incorrect correspondences. A wider line denotes a greater value of uncertainty in the identified

correspondence. [Best viewed in color.]

by the out-of-distribution data) and aleatoric uncertainty rep-
resents the ambiguity of data (e.g. caused by low texture
regions in observations) [8]. Shannon entropy represents the
total uncertainty, as defined in Eq. (10). Given the F1 scores
reported in Table III, we can see that using aleotoric uncer-
tainty achieves the best performance in SFAT, which indicates
the presence of large data uncertainty caused by perception
uncertainty in this scenario. The poor performance obtained
from using epistemic uncertainty indicates the low model
uncertainty in SFAT due to the large amount of training data.
In RFAT and SMRC, the improved performance obtained from
using epistemic uncertainty indicates large uncertainty in the
learning model. Shannon entropy generally performs the best
due to the representation of both model and data uncertainty.
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Fig. 6. Hyperparameter analysis based on the metric of F1 scores.

3) Hyperparameter Analysis: We use the hyperparameter
A to threshold the identified correspondences based on the
quantified correspondence identification, in order to remove
incorrect correspondences with high uncertainty. We randomly
choose 80 pairs of graphs in each of SFAT, RFAT and SMRC,
and perform sensitivity analysis to analyze the performance
influenced by A based on the F1 score. As shown in Figure
6(a), the results indicate that our approach obtains the best
performance when A = 0.7 on different scenarios.

The performance of our approach is also influenced by the
dropout rate and sampling numbers of our model. Based on

the F1 score, we evaluate the performance of our approach
in the SFAT scenario with the dropout rate in the range of
[0.1,0.8] and the sampling number in the range of [10, 100].
Given the results shown in Figure 6(b), we can see that our
approach obtains the best performance when the dropout rate
is in the range of [0.4, 0.5] and the performance decreases fast
as the dropout rate increases from 0.6 to 0.8. The sampling
number has several optimal values in our evaluation range,
including [20, 30], [50, 60] or [80, 90].

V. CONCLUSION

It is important to address correspondence identification in
order to enable multiple agents (including robots and humans)
to refer to the same objects within their own fields of view
when performing collaborative tasks. To address the key short-
comings of the current deep graph matching methods, includ-
ing the lack of ability to reduce correspondence uncertainty
and perceptual non-covisibility, we propose a novel method us-
ing Bayesian deep graph matching for correspondence identi-
fication. Our method formulates correspondence identification
in collaborative perception as a deep graph matching problem
under the Bayesian learning framework to quantify correspon-
dence uncertainty. We improve our approach’s robustness by
explicitly penalizing correspondences with high uncertainty
values and correspondences caused by non-covisible objects.
Extensive experiments are conducted to evaluate our method in
collaborative furniture assembly and multi-robot coordination
applications based on high-fidelity simulations and physical
robots. Experimental results show that our method outperforms
the previous and baseline methods and achieves state-of-the-art
performance of correspondence identification in collaborative
perception.
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