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Abstract— We consider the problem of multi-robot sensor
coverage, which deals with deploying a multi-robot team in an
environment and optimizing the sensing quality of the overall
environment. As real-world environments involve a variety of
sensory information, and individual robots are limited in their
available number of sensors, successful multi-robot sensor cover-
age requires the deployment of robots in such a way that each
individual team member’s sensing quality is maximized. Addi-
tionally, because individual robots have varying complements of
sensors and both robots and sensors can fail, robots must be
able to adapt and adjust how they value each sensing capability
in order to obtain the most complete view of the environment,
even through changes in team composition. We introduce a
novel formulation for sensor coverage by multi-robot teams with
heterogeneous sensing capabilities that maximizes each robot’s
sensing quality, balancing the varying sensing capabilities of
individual robots based on the overall team composition. We
propose a solution based on regularized optimization that uses
sparsity-inducing terms to ensure a robot team focuses on all
possible event types, and which we show is proven to converge
to the optimal solution. Through extensive simulation, we show
that our approach is able to effectively deploy a multi-robot team
to maximize the sensing quality of an environment, responding to
failures in the multi-robot team more robustly than non-adaptive
approaches.

I. INTRODUCTION

Multi-robot sensor coverage is the problem of deploying
a team of robots in an environment in order to maximize
the observation of events or phenomena [1], [2]. Distributing
coverage of an environment among the members of a multi-
robot team allows their heterogeneous capabilities to be
fully realized, with robots capable of sensing specific events
moving to the best positions possible for that particular sensing
modality. In order to maximize the overall capability of a
multi-robot team, they must be enabled to deploy themselves
in such a way that balances their individual sensing capabilities.
Effectively solving this problem is crucial for the deployment
of multi-robot systems to address real-world applications such
as search and rescue [3] and security and surveillance [4].

As real-world environments consist of multiple types of
events and robots can possess only a limited variety of sensing
capabilities, individual robots must be capable of dynamically
balancing their sensor inputs in order to construct the most
complete view of the environment. For example, in a disaster,
a robot may possess the ability to sense both fire and radiation,
while a teammate possesses only a radiation sensor. A more
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Fig. 1. A motivating example of adaptation to team composition changes
for heterogeneous multi-robot sensor coverage. In heterogeneous multi-robot
sensor coverage, multiple robots are tasked with sensing multiple types of
events. On the left, three robots begin moving towards the fire to improve their
observations of it, while two robots move towards the radiation source. The
right side shows the robots moving towards the events, and a robot has failed
during operation. Our adaptive approach enables other robot team members to
change how they value their sensing capabilities, and one robot, highlighted
in green, shifts its weights to adapt to the change in the overall team sensing
capability and provide observations of the radiation in place of the failed robot.

complete view of this disaster environment would be gained
if the first robot focuses its attention on fire, while the second
robot focuses on radiation. As real-world environments can be
chaotic, these overall team capabilities can change, as sensors
or entire robots fail. Multi-robot teams must be able to adapt
to changes that occur, and continuously balance their available
capabilities in a way that provides the best overall observation
of the environment. Figure 1 shows a motivating example of
this, where a team of five robots is tasked with sensing and
monitoring fire and radiation in an environment. As the robots
operate, a robot that has been observing the radiation source
fails. An adaptive approach enables the multi-robot team to
react to this change in team capability, and a robot that had
focused on the fire now shifts towards sensing the radiation.

Because of its relevance to many real-world applications,
multi-robot sensor coverage has seen significant recent re-
search. Many early approaches focused on sensor coverage of
environments with only a single form of sensory information
by homogeneous robot teams [5], [6]. However, this limited
view of the problem fails to properly address real-world
environments with a multitude of event types. Several methods
have been proposed to address heterogeneous environments
where multiple types of events can occur and teams consist
of robots with mixtures of sensing capabilities, basing cover-
age on mixtures of probability distributions [7], information



maximization [8], and defined control laws [9]. These methods
all have the drawback of determining their balance of sensing
capabilities through fixed parameters, as opposed to balancing
the sensing capabilities based on the environment and the team
composition (i.e., with possible changes due to robot failure).

In this paper, we introduce a novel formulation of multi-
robot sensor coverage that integrates the competing utilities
provided by multiple sensing capabilities into a unified frame-
work. We consider a heterogeneous team of robots, where each
individual robot possesses only a subset of possible sensing
capabilities, operating in an environment where multiple types
of events have occurred. The team is tasked with maximizing
the overall sensing quality of these events. We propose an
approach based on regularized optimization that finds weights
to optimally balance the utilities corresponding to the various
sensing capabilities, with an iterative solver proven to converge
to the optimal solution. At each point in time, our approach
identifies the optimal action for each member of the multi-robot
team, allowing each individual robot to balance its competing
sensing capabilities in order to maximize its overall sensing
quality and enabling the team as a whole to adapt to changes
in the environment and team composition.

We introduce two important contributions:
• We propose a novel formulation of heterogeneous multi-

robot sensor coverage, integrating multiple sensing capa-
bilities into a unified mathematical framework based on
regularized optimization. Our formulation identifies an
optimal balance between these competing utilities, and
does this at each time step, enabling adaptation to changes
in the environment and the composition of the robot team.

• We introduce an iterative algorithm to solve this proposed
problem, which is hard to solve due to non-smooth terms.
We show that this algorithm is theoretically proven to
converge to the optimal solution.

II. RELATED WORK

As multi-robot sensor coverage has connections to many
real-world robotics applications, it is an active research area
with multiple approaches that address various aspects of it. The
key divisions of research are sensor coverage approaches in
homogeneous systems and heterogeneous systems.

Homogeneous sensor coverage addresses environments with
only a single type of event or a multi-robot system with the
capability to only sense a single event modality. Accordingly,
most homogeneous sensor coverage approaches address the
problem of evenly distributing multiple robots spatially in
an environment, as there is no need to consider individual
capabilities [10], [11]. This has been accomplished through
Voronoi distributions [12], decomposition of an environment
into cells [13], estimating density functions [14], or represent-
ing an environment as a graph and utilizing graph partitioning
methods to assign robots to regions [15]–[17] or teams [18].
Additionally, partitioning an environment has been done by
calculating the information gain estimated from different
regions [19], using a market-based system to assign robots
based on information gain [20], or by planning paths that use
greedy algorithms to maximize spatial coverage [21].

Homogeneous sensor coverage has also been extensively
studied with the addition of real-world constraints. Main-
taining communication is important for the success of multi-
robot operations, and multiple methods have focused on the
deployment of robots with constraints on communication
[22]–[26]. These methods have been based on both line of
sight and distance thresholds, and have been applied to open
environments and obstructed ones such as hallways. Methods
have also examined the physical limitations of sensors and
attempted to incorporate this into the control laws that dictate
their coverage approaches. For example, visibility constraints
of cameras [27], limited range sensors [28], or limited field
of view sensors [29] have all been integrated into deployment
methods. These constraints provide realistic representations
of events and sensing. Finally, physical limitations on the
robots themselves have also been studied. Power limitations
were studied in [30], [31], where the real-world limitations
on mobile robot batteries were used to constrain the area that
a team could cover. Limitations on motors [6] and effects
of traction and slippage [32] also have been used to analyze
paths to coverage positions. Turning radius was used as a key
constraint in multiple works, particularly with maneuverability-
restricted robots such as boats [33]–[35].

While these various approaches towards homogeneous multi-
robot sensor coverage have been effective, they have the key
limitation of addressing only a single sensing modality, which
is a poor representation of real-world uses and applications.
To address this, heterogeneous multi-robot sensor coverage
attempts to solve the problem of coverage of multiple event
types with a multi-robot team that possess multiple forms of
sensors. Small multi-robot systems have been enabled to do
this through fixed scheduling algorithms [36], following (e.g.,
robots with heterogeneous capabilities move together so each
can provide a perspective based on their sensor complement)
[37], or integrating observations from robots performing other
tasks [38].

For larger multi-robot teams, most approaches have utilized
different methods to optimize the ‘combined sensing quality’,
or the total information available to sensors across the possible
event types [9]. This has been done by optimizing a cost
function [39] or by identifying a distribution of robots that
matches an estimated sensing quality function [8]. Voronoi
regions have also been applied here, with their boundaries
based on multiple event types as opposed to a single one [12],
[40]. These approaches are generally fixed, assuming a static
event is occurring and modeling robots as valuing each of their
available sensors equally.

Limited approaches have been proposed to adapt to dynamic
changes in the environment. In [7], robots learn a model of
the events occurring from sensor observations, and base their
behavior on this model. This has also been accomplished with
a mixture of density functions to model complex events [41],
or by making online estimations of information gain in various
parts of the environment [2]. However, even these methods
lack the ability to adapt to changes in the team capabilities,
and so are unable to respond to sensor or robot failures.

In contrast to these reviewed approaches, our novel approach



to heterogeneous multi-robot sensor coverage is able to
balance available sensing capabilities in order to provide a
more complete view of the environment. Additionally, our
formulation allows a multi-robot team to adapt to changes in
the environment and team composition, responding to sensor
or robot failures.

III. OUR PROPOSED APPROACH

In this section, we introduce our novel approach to hetero-
geneous multi-robot sensor coverage that balances sensing
quality based on the capabilities available to each robot. We
denote matrices with uppercase bold letters and vectors as
lowercase bold letters. Given a matrix X = [xij ] ∈ Rn×m, we
denote its i-th column as xi and its j-th row as xj .

A. Problem Formulation

We address the problem of a heterogeneous multi-robot
team tasked with covering an environment where multiple
event types occur. We define N robot team members, each
located at a position denoted as pi for the i-th robot. Each
robot has a set of sensing capabilities denoted by a vector
ci ∈ RE , where E is the number of possible event types and
cij = 1 if the i-th robot has the j-th sensing capability, and
0 otherwise. We additionally define events occurring in the
environment, modelling each event with one or more density
functions centered on one or more positions (e.g., in a disaster
scenario, smoke may be spreading from a single fire or from
several). Events can be any of E different types, corresponding
to the set of available sensing capabilities.

Each robot estimates the density functions corresponding
to the events based on its own observations of them, where
φi,j(·) denotes the i-th robot’s estimation of the j-th event
type and returns a scalar value for a given position. At each
time step, each robot incorporates sensor observations at its
position based on its heterogeneous capabilities and updates
the corresponding φ(·) functions. As a robot moves towards a
source of an event, the value returned by the associated φ(·)
rises; similarly, if a robot were to move away from a source of
an event the value would fall. If a robot does not possess the
necessary sensing capability (i.e., cij = 0) then φi,j = 0 for
all positions.

To quantify the value of each of a robot’s heterogeneous
sensing capabilities, we define the utility associated with
moving towards an event type, and thus increasing the sensing
quality with respect to it. We introduce S = [sij ] ∈ RN×E as
the utility associated with sensing quality, where sij describes
the value of the i-th team member moving in the direction of
the j-th event type, given its current estimate of that event.
This utility is calculated using the gradient of φi,j with respect
to the robot’s current position pi. We denote the movement
implied by this gradient as pi→j , which is a movement in the
direction of the j-th event, based on the i-th robot’s estimate of
that event. Formally, the utility is based on the value returned
by φi,j if this movement is taken:

S = [sij ] =

{
φi,j(pi + pi→j) if cij = 1

0 if cij = 0
(1)

We note that just as the utility sij = 0 if the i-th robot cannot
sense the j-th event type, the movement pi→j is also equal to
the zero vector.

Given the described utility S, the objective of our problem
formulation is to maximize the overall sensing utility based
on each robot’s current estimation of the events occurring in
the environment. Each robot, given the utility of its various
capabilities, must find an optimal balance among them. We
apply this balance to the possible actions for each robot,
generating movements that allow them to maximize their
individual sensing quality based on their available capabilities.

B. Optimization to Balance Sensing Capabilities

We introduce an optimization-based formulation to identify
an optimal balance of the competing utilities of the various
sensing capabilities. First, we introduce the base objective
function, where we maximize the overall utility provided by S:

max
W
‖W � S‖1 (2)

where � denotes element-wise matrix multiplication and ‖ · ‖1
denotes the element-wise `1-norm of a matrix. We introduce
W ∈ RN×E , which weights the sensing utilities, with wij
specifically representing the weight that the i-th robot assigns
to sensing the j-th event type.

To control the formation of this weight matrix, we introduce
the following constraints:

W1E = 1N W ≥ 0 (3)

where 1N is a vector of 1s of length N . We introduce these
constraints to ensure that all weights are positive and so that
the weights assigned to each individual robot in W sum to 1
(i.e., no weight for a sensing capability can grow unreasonably
large).

Next, we introduce a regularization term to encourage the
assignment of at least one robot to each event type in the
environment. To do this, we introduce the `2-norm on each
column of W and define the event norm:

‖W‖E =

E∑
e=1

‖we‖2 (4)

Because of the constraints introduced above, the values in W
are bounded to be between 0 and 1, and each row sums to
1. Maximizing this norm encourages values to form in each
column of W, meaning that each event receives weights from
a robot. Otherwise, multiple robots could assign the maximum
weight of 1 to a single event, leaving others unattended.

We also introduce a regularization term to enforce temporal
consistency in the weight matrix. We note that if a robot is
moving in the direction of an event in order to improve its
sensing quality, abruptly switching directions at the next time
step to move towards an alternative event is not ideal; changes
should be gradual so as to not lose progress made towards
improved sensing quality. To enforce this, we introduce
specifying W as Wt, indicating the weight matrix at time step



t, and add a penalty term based on the difference between the
value of Wt with the value at the previous time step, Wt−1:

‖Wt −Wt−1‖2F (5)

where ‖ · ‖2F denotes the squared Frobenius norm. We initialize
W0 to give equal weights to all available sensing modalities,
i.e. if the i-th robot is capable of sensing x of the E possible
sensing modalities, then each entry wij = 1

x .
Our final objective function combines these introduced terms

into a unified regularized optimization problem that identifies
an optimal balance between the competing utilities of the
available sensing capabilities:

max
Wt

‖Wt � S‖1 + γ1‖Wt‖E − γ2‖Wt −Wt−1‖2F

s.t. Wt1E = 1N ,Wt ≥ 0. (6)

where γ1 and γ2 are hyperparameters controlling the impor-
tance of the two introduced regularization terms.

Earlier, we introduced pi→j , or the movement of the i-th
robot in the direction of the j-th event. The overall movement
ṗi for the i-th robot is based on a combination of these
movements, weighted by the weight matrix Wt = [wij ]
computed for time step t in the objective function:

ṗi =

E∑
j=1

wijpi→j (7)

This overall movement update ṗi is scaled to unit length and
added to the previous position pi to arrive at the new position:

pi = pi +
ṗi
‖ṗi‖2

(8)

C. Optimization Algorithm

Because of the non-smooth terms and equality constraints,
Eq. (6) is hard to solve. We propose an iterative solution based
on the Augmented Lagrangian Multiplier (ALM) method,
similar to [42], in which we can transform constraints into
penalty terms in the objective formulation.

Algorithm 1: The general ALM method to solve Eq.
(9)

1 Set 1 < ρ < 2 and initialize µ > 0 and Λ.
2 while not converge do
3 Update X by solving

minX f(X) + µ
2 ‖h(X) + 1

µΛ‖2F ;
4 Update Λ by Λ = Λ + µh(X)
5 Update µ by µ = ρµ;

We consider problems of the form

min f(X) s.t. h(X) = 0 (9)

Constrained optimization problems in this form can be solved
by the general ALM method described in Algorithm 1. The
equality constraint of h(X) = 0 is transformed into the penalty
term added to f(X) in Line 3. This line and the updates to µ
and Λ are repeated until the value of X converges.

Following this general form, we can rewrite our final
objective function in Eq. (6) and move the constraint of
Wt1E = 1N into the objective function as a penalty term.
At the same time, we rewrite our objective as a minimization
problem as opposed to maximization:

min
Wt

− ‖Wt � S‖1 − γ1‖Wt‖E + γ2‖Wt −Wt−1‖2F

+
µ

2
‖Wt1E − 1N +

1

µ
λ‖2F (10)

s.t. Wt ≥ 0.

where µ and λ are introduced as multiplier variables.
We also note that ‖Wt � S‖1, the element-wise `1-norm of

the Hadamard product, or element-wise matrix multiplication,
can be rewritten as the Frobenius inner product, which is equal
to the trace of the matrix product. For the first term in our
objective function, this means that

‖Wt � S‖1 = 〈Wt,S〉F = trace(W>
t S) (11)

This makes our actual objective function

min
Wt

− trace(W>
t S)− γ1‖Wt‖E + γ2‖Wt −Wt−1‖2F

+
µ

2
‖Wt1E − 1N +

1

µ
λ‖2F (12)

s.t. Wt ≥ 0.

To solve this rewritten objective function, we take the
derivative with respect to Wt and set it equal to 0:

− S− γ1WtD + 2γ2Wt − 2γ2Wt−1

+ µWt1E1
>
E − µ1N1>E + λ1>E = 0 (13)

Here, D is a diagonal matrix such that

D = [dii] =
1

2‖wi‖2
(14)

After rearranging Eq. (13), we see that the update to Wt at
each step is:

Wt =

(
S + 2γ2Wt−1 + µ1N1>E − λ1>E

)
(
− γ1D + 2γ2I + µ1E1

>
E

)−1
(15)

Finally, to ensure the Wt ≥ 0 constraint is incorporated, we
threshold the values in Wt:

Wt = max(Wt, 0) (16)

After updating Wt, we also update µ and λ:

µ = ρµ (17)
λ = λ+ µ(Wt1E − 1N ) (18)

where ρ is a value chosen such that 1 < ρ < 2. These steps
are repeated until the value of Wt converges. This process is
formally defined in Algorithm 2.

Computational Complexity. In Algorithm 2, Lines 3, 5,
6, and 7 are trivial and can be computed in linear time.



Algorithm 2: Our Algorithm to Solve Eq. (6).

1: Set 1 < ρ < 2 and k = 0. Initialize the penalty coefficient
µ0 > 0 and the multiplier term λ0. Initialize the weight
matrix Wt.

2: repeat
3: Compute Dk = diag

(
1

2‖wi‖2

)
.

4: Compute Wk+1
t by Eqs. (15) and (16).

5: Update λ by λk+1 = λk + µk(Wk+1
t 1E − 1N ).

6: Update µ by µk+1 = ρµk.
7: k = k + 1.
8: until convergence;

The computational complexity of our proposed solution is
determined solely by Line 4, which computes both a matrix
inverse and a matrix multiplication. Respectively, these have
complexities of O(E3) and O(NE2). Typically, N will be
much larger than E (i.e., a scenario where the number of
possible event types exceeds the number of available robots is
not one that will be able to be comprehensively sensed, and so
the number of robots will need to increase). When this is the
case, the overall complexity of each iteration of our proposed
solution algorithm is O(NE2).

Convergence. Under the condition that 0 < µk < µk+1,
the general ALM approach described in Algorithm 1 is proven
to converge to an optimal value of X [43]. As we initialize
µ0 > 0, then 0 < µk holds at k = 1. We also initialize the
parameter ρ such that 1 < ρ < 2, and this parameter controls
the only update to µ in Line 6. Thus, µk+1 cannot be less than
µk, as this would require that ρ < 1, and so µk < µk+1 holds
at every step.

IV. EXPERIMENTS

A. Experimental Setup

In order to comprehensively evaluate our adaptive multi-
robot sensor coverage approach, we performed both extensive
simulations in a high-fidelity simulator to integrate real-
world control considerations. This simulator also required our
approach to integrate with the Robot Operating System (ROS),
as would be necessary on physical robots.

We evaluate the effects on various combinations of multi-
robot team sizes (N = {5, 10}) and numbers of event types
(E = {2, 3, 4}). Evaluation is conducted with each event type
being randomly generated at two positions. Members of a
multi-robot team are also initialized at randomly generated
positions near a chosen start area in this environment, with
only a subset of E possible sensors available to each robot. We
conduct each simulation until t = 75. In order to demonstrate
the adaptive abilities of our approach, we simulate various
numbers of robot failures during the simulation.

In all evaluations, we considered the metric of sensing
quality, or the improvement of sensing performance over the
base deployment of the multi-robot system. This metric relates
the sensing quality at a specific point to the initial sensing
quality when robots are randomly positioned in an environment.
That is, if a system begins with robots deployed within an

environment and they each proceed intelligently based on
their sensors, then the overall sensing quality would improve.
Specifically, we look at the improvement of sensing quality at
the end of the simulation.

As our approach is not only adaptive to the distribution of
sensors but the availability of sensors as a dynamic system
proceeds (i.e., in the real world, robots can fail or lose sensing
capabilities due to environmental factors), we consider a
number of alternate approaches in order to demonstrate the
effectiveness of our approach. We compare to three alternate
approaches in order to evaluate our proposed method for multi-
robot sensor coverage:

1) Baseline: This approach sets γ1 = 0 and γ2 = 0, and
so continues to find a weight matrix W that maximizes
the available utility but does not utilize regularization
to influence the development of W. This approach
still attempts to adapt each robot’s weighting of its
capabilities in order to provide a complete view of the
environment.

2) Equally Weighted: This approach defines an equally
weighted W, where each robot assigns identical values
to each of its available sensing capabilities (i.e., if a robot
has two sensing capabilities, it assigns a weight of 0.5
to each of them). This approach does not adapt to the
availability of sensors or the failure of robots during the
sensor coverage task.

3) Single Capability: This approach randomly selects an
available sensing capability for each robot and only
allows the robot to use that sensor (i.e., if a robot has an
RGB camera and a depth camera, this approach limits
the robot to only one and ignores the other). Similar to
the Equally Weighted approach, this approach does not
adapt to changes in the system as the robots operate.

B. Evaluation on Simulated Multi-Robot Systems

We present extensive quantitative results in Table I. For each
combination of N = {5, 10} and E = {2, 3, 4}, we conduct
simulations with 0, 1, 2, and 3 robot failures. Each combination
of parameters and failures is simulated 100 times. We report
the improvement in sensing quality at the end of the simulation
and at its highest point. This is reported as a multiple of the
initial sensing quality, e.g. if the initial sensing quality is 0.50
and the sensing quality at the end of the simulation is 5.00, we
report an improvement of 10.00.

We observe that our full approach consistently provides
the largest sensing quality improvement, across nearly every
combination of N , E, and number of robot failures. This
demonstrates the effectiveness of our approach to identify an
optimal weighting of available sensing capabilities, assigning
weights in the context of the capabilities available to the
overall team. Additionally, we see that as the number of
robot failures increases, our approach widens its performance
gap over the compared approaches, indicating that its ability
to adapt to changes in the multi-robot team best enables it
to overcome robot failure and continue to provide effective
sensing performance. In some cases, our approach provides
multiple times as much sensing improvement as the compared



TABLE I
SENSING QUALITY IMPROVEMENT

Results are reported as multiples of the initial sensing quality. E.g., an initial sensing quality of 0.50 and a final sensing quality of 5.00 will be reported as 10.00.
For each combination of N and E, we report with results with 0, 1, 2, and 3 robot failures. The best improvements are highlighted in bold text.

# of Robots (N ) Approach 2 Events (E = 2) 3 Events (E = 3) 4 Events (E = 4)

N = 5

Baseline 9.99 / 6.69 / 5.75 / 2.88 8.85 / 8.05 / 5.12 / 3.24 10.02 / 9.00 / 5.50 / 2.23
Equally Weighted 8.87 / 5.69 / 4.94 / 2.77 9.47 / 7.61 / 4.99 / 2.89 6.47 / 5.50 / 3.73 / 2.38
Single Capability 9.66 / 6.68 / 6.18 / 2.71 7.88 / 6.45 / 4.96 / 2.83 6.37 / 3.96 / 2.98 / 1.60

Our Full Approach 12.94 / 11.44 / 7.22 / 4.30 11.55 / 11.45 / 6.26 / 5.15 10.84 / 8.41 / 5.27 / 3.92

N = 10

Baseline 10.35 / 10.30 / 7.76 / 5.93 11.85 / 8.89 / 7.69 / 6.83 7.99 / 7.48 / 6.29 / 4.24
Equally Weighted 10.59 / 10.12 / 8.39 / 6.48 7.09 / 6.77 / 6.30 / 2.05 6.28 / 5.80 / 4.99 / 3.46
Single Capability 9.84 / 9.06 / 6.50 / 5.77 7.20 / 5.63 / 4.98 / 4.05 6.36 / 5.90 / 5.40 / 4.87

Our Full Approach 13.19 / 11.25 / 9.69 / 8.92 11.35 / 9.56 / 8.33 / 7.87 12.64 / 9.66 / 6.56 / 5.79

(a) Initial State (b) Deployment (c) Failure (d) Adaptation
Fig. 2. These figures show a qualitative evaluation of our approach in a high-fidelity robot simulator. Figures 2(a) - 2(d) show the progression of a multi-robot
team as it moves through a simulated high-fidelity environment. The robot team members individually travel to optimize their own sensing qualities, yet through
our proposed approach they adapt to the available capabilities and react accordingly. When failure occurs in the robot marked with the red arrow in Figure 2(c),
another robot, marked with a green arrow in Figure 2(d) is able to adapt and shift towards sensing that event.

approaches. For example, for N = 10, E = 3, and three robot
failures, our approach is able to increase sensing quality 7.87
times the initial value, while the Equally Weighted approach
only doubles it. This shows the main strength of our approach,
in that it is able to adapt to changes in team composition
(i.e., failure) and continue to optimally balance the remaining
available sensing capabilities.

In a few combinations, our baseline approach with γ1 = 0
and γ2 = 0 slightly edges out our the full approach, and when
it does not it still consistently performs the second best or
very near to it. This shows that even without our introduced
regularization terms that distribute weights among event types
and maintain temporal consistency, our approach’s ability to
identify an optimal balance between sensing capabilities is
much more effective than relying on a either a single capability
or an equal weighting of capabilities.

Figure 2 shows qualitative results from example simulation
of multi-robot sensor coverage in an urban environment. The
initial state is seen in Figure 2(a), with five Husky ground
robots. Three events are simulated, located down each road
entering the three-way intersection. Figure 2(b) shows the
ground robots deploying towards the simulated events. Two
robots are moving towards the left road, one moving up the
road entering the top of the frame, and the remaining two
towards the road on the right. Figure 2(c) shows the simulated
failure, with the Husky robot marked with the large red arrow
failing. As this was the only robot moving towards the event
at the top of the frame, existing approaches that cannot adapt
would lose observations of this event. In Figure 2(d) we see
that our approach is able to adapt to this failure. One of the

robots that had been moving left has shifted its weighting of its
sensing capabilities and is now moving towards the top of the
frame to provide observations of that event. Approaches that
prioritize only a single sensing modality or that do not adjust
the weighting of sensing modalities would not be able to adapt
to this failure, leaving the event type completely unobserved.

V. CONCLUSION

Multi-robot sensor coverage is the problem of deploying
a multi-robot team in an environment in order to maximize
the overall sensing quality. Real-world environments consist
of a variety of event modalities, and so in order to provide a
complete and comprehensive view of an environment, a multi-
robot team must deploy intelligently based on its available
sensing capabilities. In addition, failures can occur to both
sensors and robots, and so a multi-robot team must be able
to adapt to these, and change its behavior to continue to
provide high-quality sensing. In this paper, we present a novel
formulation of heterogeneous multi-robot sensor coverage in
which we provide an adaptive approach based on regularized
optimization. We propose a problem formulation that integrates
multiple sensing capabilities and identifies an optimal balance
of these capabilities at each time step, adapting to not only the
available capabilities but also changes in the environment and
the multi-robot system. We introduce an iterative algorithm to
solve this formulated problem, which we show is proven to
converge to an optimal solution. Through extensive simulation,
we demonstrate that our approach provides effective multi-
sensor robot coverage, outperforming methods that focus on a
single capability or that are unable to adapt to changes in robot
capabilities.
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