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ABSTRACT
By allowing people to manipulate digital content placed in the
real world, Augmented Reality (AR) provides immersive and en-
riched experiences in a variety of domains. Despite its increasing
popularity, providing a seamless AR experience under bandwidth
fluctuations is still a challenge, since delivering these experiences
at photorealistic quality with minimal latency requires high band-
width. Streaming approaches have already been proposed to solve
this problem, but they require accurate prediction of the Field-Of-
View of the user to only stream those regions of scene that are most
likely to be watched by the user. To solve this prediction problem,
we study in this paper the watching behavior of users exploring
different types of AR scenes via mobile devices. To this end, we
introduce the ACE Dataset, the first dataset collecting movement
data of 50 users exploring 5 different AR scenes. We also propose
a four-feature taxonomy for AR scene design, which allows cat-
egorizing different types of AR scenes in a methodical way, and
supporting further research in this domain. Motivated by the ACE
dataset analysis results, we develop a novel user visual attention
prediction algorithm that jointly utilizes information of users’ his-
torical movements and digital objects positions in the AR scene.
The evaluation on the ACE Dataset show the proposed approach
outperforms baseline approaches under prediction horizons of vari-
able lengths, and can therefore be beneficial to the AR ecosystem
in terms of bandwidth reduction and improved quality of users’
experience.

CCS CONCEPTS
• Information systems → Multimedia streaming; • Comput-
ing methodologies → Mixed / augmented reality; Machine
learning algorithms; • Human-centered computing → User
studies.
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1 INTRODUCTION
Augmented Reality (AR) transforms the physical environment arou-
nd people into a digital interface. The blending of digital content
into the real world provides a great level of interactivity and immer-
siveness in a variety of domains including health-care, education,
entertainment and so on. With the introduction of AR develop-
ment toolkits (e.g., ARKit by Apple and ARCore by Google), highly-
detailed persistent AR experiences can now be accessible from
commodity smartphones and tablets. It is reported there will be
one billion AR users by 2020 [11]. Despite the increasing popularity
of AR, an important bottleneck towards its widespread adoption
is the large bandwidth requirement to deliver AR content. Pho-
torealistic AR experiences require an enormous amount of data,
such as high-res mesh and texture information, to make every AR
object look realistic when placed in the real world. Downloading
the experiences in high quality would result in high latency and
therefore sub-optimal user experience.

A similar problem has been investigated in the context of 360-
degree video delivery, with Field-Of-View (FOV)-dependent stream-
ing approaches [2, 12] being proposed to solve the problem. This
approach takes advantage of the fact that users’ FOV is limited
and only a subset of the whole 360-degree video can be consumed
at a single point of time. By streaming different regions of the
360-degree video at different qualities based on the current and
predicted users’ FOV, FOV-dependent approaches can reduce not
only the startup latency, but also the amount of data to be transmit-
ted, without significant impact on the quality of the video content
consumed by the user. A similar idea can be applied to AR content
delivery as well [9], such that only the AR objects currently or
likely to be in the FOV are delivered at higher quality. However,
the application of FOV-based approaches to AR applications comes
with its unique challenges. First, users can walk around in the AR
scenes, resulting in both translational and rotational movements, as
opposed to only rotational movements in the context of 360-degree
videos. Second, interactivity is an important part of an AR expe-
rience. Various triggers, linking AR objects to user/system events
and/or other objects, are introduced into AR scenes. Hence, the
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triggers and the interactivity associated with AR experiences may
have a significant impact on users’ exploration behaviors.

To address these issues, we introduce the first dataset collecting
movement traces of users exploring AR scenes, the AR Content
Exploration (ACE) dataset, which contains 6-DOF movement data
of 50 users watching 5 distinct AR scenes. As an effort to facil-
itate our and future data collection studies, we also propose an
AR scene taxonomy that considers the intrinsic characteristics of
AR applications. The taxonomy allows designing AR scenes with
different fundamental characteristics. Moreover, motivated by the
preliminary analysis results on the ACE dataset, we develop a vi-
sual attention prediction approach that jointly utilizes information
about users’ historical movements and digital objects positions in
the AR scene. The evaluation on the ACE dataset shows the pro-
posed approach significantly outperforms baseline approaches in
terms of prediction accuracy, from dead-reckoning to linear regres-
sion approaches. The improvement holds under variable-length
prediction horizons with minimal computational overhead.

The rest of the paper is organized as follows. Sec. 2 reviews the
existing works on head movement datasets of users watching 360-
degree videos and FOV prediction approaches. Sec. 3 details the
proposed AR scenes taxonomy, the data collection methodology,
and analysis of the dataset. In Sec. 4 we present the prediction
approach for AR scenes delivery, followed by the evaluation in
Sec. 5, and discussion in Sec. 6. Sec. 7 concludes the paper.

2 RELATEDWORK
Several works have introduced datasets of head movements of users
watching 360-degree videos. In [13], 18 videos from 5 genres are
watched by 48 participants.To encourage participants to focus on
the scene content, participants are asked questions about virtual
objects after watching each scene. This methodology has been
proven effective and employed by subsequent studies. The videos
classificationmethod in [1] captures intrinsic properties of the video
content, which collects head movement data of 32 users watching
4 categories of 360-degree videos. The result shows moving objects
have an significant impact on users’ viewport patterns. A more
advanced video taxonomy is proposed in [7], which categorizes 360-
degree videos based on both moving objects and camera motion.

An important usage of users’ movement dataset is to predict
users’ movement in the future so as to improve bandwidth efficiency
and the quality of users’ experience. For example, the approach
proposed by Corbillon et al.[3] combines 360-degree video tiles and
FOV prediction by only requesting the video tiles overlapping with
the predict FOV at the highest quality. This greatly help reducing the
amount of bandwidth needed to stream 360-degree videos. Similar
techniques include offset projections [15]. All these approaches
require an accurate knowledge of the user’s future FOV.

For the user’s FOV prediction, existing solutions mainly utilizes
two types of information: users’ historical trajectory and video (or
scene) content information. Users’ historical trajectory is generally
described as the movement in 3-DOF in the context of 360-degree
videos studies. On the other hand, saliency maps provide informa-
tion about the probability that a certain region of the video may
attract human visual attention. These two types of information can
be used separately or jointly in the FOV prediction problem. The

Dead-reckoning method [6], for example, makes a future FOV pre-
diction only based on users’ historical trajectory. Bao et al. [2] use
linear regression to predict FOV center locations in the future, with
prediction horizons ranging from 100 ms to 500 ms. The study [4]
proposes a fixation prediction network, based on LSTM networks,
which leverages both historical FOV locations and video content
features to predict the future FOV trajectory.

3 ACE DATASET
3.1 Creation of ACE Dataset
In this section, we present the details of the data collection study
we performed on AR Content Exploration (ACE). Since the user
study can only accommodate a limited number of AR scenes, we
first introduce a taxonomy of AR scenes, which we use to design
five representative AR scenes. Then, we present the methodology of
our data collection, including the app developed for data collection,
the process of user study, and the dataset structure.

3.1.1 Taxonomy of AR Scenes. The AR scenes content strongly in-
fluences users’ exploration patterns. In order to study such patterns,
it is necessary to create as many diverse AR scenes as possible. For
this reason, we extract a set of intrinsic characteristics of common
AR scenes and propose an AR scene taxonomy to guide the AR
scene designs in our experiments, with the expectation that scenes
belonging to the same category should result in similar users’ ex-
ploration patterns. We also expect this taxonomy to support further
research in this domain, by providing a set of guidelines for the
design of additional AR scenes.

To this end, we explore the impact of multiple AR character-
istics on users’ movement and define four fundamental features
of an AR scene. First, the presence of moving virtual objects is
firstly introduced, as some studies have demonstrated how moving
targets in the scene guide users’ visual attention [8]. Second, the
layout style of the digital objects in the scene is expected to play
an important role as it may determine a coarse predefined path for
the users’ movement. Third, AR prototyping applications provide
various triggers so that the digital objects in the scene can respond
to users and/or system events. Such an interaction consists of the
trigger events and responses associated with the objects. Lastly,
the complexity of the AR scene is determined by the number of
digital objects within it. Generally, the more objects in the scene,
the more complex the scene is. In turn, the complexity of the AR
scene directly influences the users’ movements.

As a result, we propose a four-feature taxonomy for AR scenes,
consisting of: (1) the number of digital objects, (2) the number of
digital moving objects (taking on values from {zero, single, multi-
ple}), (3) the layout style of digital objects (including linear, circular,
multi-row, stratified, and random), and (4) triggers (described later
in the section). Based on the above taxonomy, we create five repre-
sentative AR scenes shown in Figure 1, with scene characteristics
reported in Table 1. The scenes were created using the Reality Com-
poser by Apple while models for digital objects in the scenes are
either built-in resources of the app or downloaded from Sketchfab1.

For all scenes, the right-handed coordinate system is used for the
6-DOF user movement, with z-axis pointing towards the direction

1https://sketchfab.com accessed Mar. 27, 2020
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Table 1: Description of the AR scenes used in our study

Scene 1 Scene 2 Scene 3 Scene 4 Scene 5
Theme Solar System Apple Sweetness Toy Room Global Food Fiction

# of objects 17 28 9 16 10
# of moving objects zero zero single multiple single

Layout style linear circular multi-row stratified random
Trigger type action action distance action time

Scene 1: The Solar System Scene 2: Apple sweetness Scene 3: The toy room Scene 4: Global Food Scene 5: Fiction

Figure 1: AR scenes

of the viewer, and the user is initially positioned at the origin point
of the scene. As this study represents the first attempt to model the
exploration patterns for AR applications, we are only concerned
with the visual stimuli coming from visual action triggers. The
scene setting is placed in the real-world environment in a fixed
relationship in terms of size, location and scale of digital objects.
No manipulation by the user is allowed in the experiment, except
interactions via the provided triggers. Three types of triggers em-
ployed in the scenes are described as follows. For Scene 1, action
triggers are added to all planets. Once the user taps a planet, the
description image appears by its side. The image stays in the scene
unless the user taps on it. Similarly, action triggers are also intro-
duced in Scene 2 and Scene 4. In Scene 3, a distance trigger is added
to the 3D bird model. Once the user is in the proximity of the model,
the bird is activated to fly around. The limit of proximity can be
specified by the scene creator. The third type of trigger, time trigger,
is instead used in Scene 5. With this trigger, two objects in Scene 5
(basketball hoop and balloon) rise from the ground after a specific
period of time passes from the beginning of the experience.

3.1.2 Data Collection Methodology. We develop an iOS application
that allows participants to explore AR scenes, and records their
movements in 6-DOF on the basis of ARKit and RealityKit. The
data is recorded to a Firebase database2 in real time. The app can
run on an iPad or iPhone. No head-mounted devices are needed in
this case. To use the app, the participant is first prompted to input
the assigned subject ID and then to click the start button to begin.
During the experiment, the actual camera feed from the device is
also recorded for later analysis and verification. The interaction
between the participant and virtual objects is recorded too.

The experiments are carried out in a university lab (about 27
square meters), which is for the most part empty. In the experiment,
each participant is involved in one session lasting between 10 and
15 minutes. Each data collection session consists of three parts:
training session, watching session and final survey. The training

2https://firebase.google.com

session is designed for participants to learn the experiment flow
and practice using the app. In our experiments, the participants are
instructed to stare straight at the iPad screen, and move the iPad
and their body together. In the watching session, each participant
watches the five designed AR scenes, consecutively. During the
experiment, participants can walk around to explore and interact
with the virtual objects.When the exploration is considered finished
for a specific scene, the participant is asked to report the number
of 3D objects present in the scene. This follows the tradition of
visual attention studies in 360-degree videos [13] and guarantees
the participant is paying attention to the scenes content. Finally,
the participant is required to answer a questionnaire, concerning
the user’s demographic information, previous experience with AR
technologies, and the experience with the experiment.

ACE dataset has been publicly released at https://cs.gmu.edu/~
sqchen/open-access/ACE-Dataset.tgz. It contains the following direc-
tories: AR Scenes, which contains all five AR scenes; Questionnaires,
including all subjects’ survey responses; Traces which contains
the FOV trace of all subjects. Each trace has the same structure:
(subjectID, sceneID, timestamp, loc_x, loc_y, loc_z, pitch, yaw, roll),
where the first two values indicate which AR scene is watched by
which participant. The rest describes the participant’s position and
orientation in 6-DOF. Table 2 shows the demographics info of the
participants, along with their experience with AR technologies.

3.2 ACE Dataset Analysis
We aim in this section to provide a high-level analysis of the ACE
dataset. Particularly, we are interested in determining whether
common features can be identified for different scenes exploration.
This is an important pre-requisite for the development of effective
user’s movement prediction algorithms in AR applications.

A clustering algorithm [10] is used on the ACE dataset to identify
possible movement patterns. However, since participants are en-
couraged to freely explore the scene without time limit, the duration
of the watching session varies from person to person. Therefore,
we first re-sample the movement data for each AR scene so that
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Figure 2: Illustration of FOV space[2]

Scene 1 Scene 2 Scene 3 Scene 4 Scene 5
0

2

4

6

8

10

12

14

16

N
u

m
b

er
of

C
lu

st
er

s

Figure 3: # of Clusters per Scene
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Figure 4: # of Subjects for Top-5 Clusters

Table 2: Participants demographics

Gender Age AR Experience

Female : 19
Male : 31

18-20 : 6
20-24 : 19
25-30 : 18
>30 : 7

Never : 2
1-5 times : 14
6-10 times : 31
>10 times : 3

the duration of the watching session per scene remains the same
among all participants. For each scene, the maximum watching
session duration is used as the standard length. For those shorter
sessions, a linear interpolation is applied to construct new data
points in 6-DOF within the range of the existing movement data.

After data pre-processing, we cluster traces for which the FOV
space, which is described as a squared pyramid as shown in Figure 2,
overlapsmore than 80% for about 60% of thewholewatching session.
We choose to cluster traces on the basis of the actual FOV instead
of the 6-DOF movement traces because two users with different
movement traces may look at the same objects. For the cluster
analysis results, Figure 3 shows the number of identified clusters
for each AR scene, while Figure 4 shows the average number of
participants in the 5 most populated clusters for each AR scene.
The fewer the number of clusters, the more similarity participants
share in the exploration of the AR scene.

As shown in Figure 3, a large number of clusters for Scene 5
entails that the scene does not have predominant features with
enough saliency to attract users. In Scene 5, 7 virtual objects are
located randomly in the scene, and no semantic relationships exist
among the 3D objects (see Figure 1Scene 5:). Therefore, participants
demonstrate different watching patterns. Moreover, we find that
the time trigger does not influence participants in the same way
as the other two triggers (e.e., action- and distance-based). Indeed,
without explicit direction, few participants would notice the rising
objects (basketball hoop and balloon).

In contrast, the numbers of clusters for both Scene 1 and Scene 2
are small, as shown in Figure 3. In Scene 1, all planets are placed in
a straight line. When the participant stands at the origin point, the
straight line of planets appears exactly in front of the participant.
Moreover, the natural semantic relationship of the planets’ objects
attracts the participants to move forward along the planets’ line to
watch objects and description images activated by users’ actions.
To study the relationship between the user and digital objects, we
retrieve the object access sequence as did in the study by Zhou et al
on the area of interest in 3D scenes [16]. The sequence is retrieved

in time order by aligning the trace data with the recorded videos.
If all planets in Scene 1 are labeled as following: Sun (0), Mercury
(1), Venus (2), Earth (3), Mars (4), Jupiter (5), Saturn (6), Uranus (7),
and Neptune (8), and associated 2D descriptions are numbered 1’
— 8’, the object access sequences for most participants is {8/8’, 7/7’,
6/6’, 5/5’, 4/4’, 3/3’, 2/2’, 1/1’}, i.e., explore each planet from furthest
to closest to the Sun. Similarly, in Scene 2, most participants walk
along the circle of 3D apples to examine the apple objects. In this
case, the behaviors differ in the movement direction, i.e., clockwise
or counterclockwise.

Scene 3 and Scene 4 provide intermediate similarity in explo-
ration patterns compared to the other scenes (Figure 3). Objects
in Scene 3 are placed in multiple rows, so the watching behaviors
are more dispersed than the first two scenes. The participant may
choose different ways to finish the scene exploration. Moreover,
the flying bird activated by the distance trigger further diversifies
the possible movements. Similar results can be seen for Scene 4. By
comparing object access sequences retrieved from the traces, it is
observed that traces in the same cluster lead to highly similar object
access sequences. This observation is the basis of our approach to
predict objects to be likely watched by the user in the near future.

4 FIELD-OF-VIEW PREDICTION
Motivated by results presented in Section 3.2, we present a new
prediction approach based on the users’ object access sequence
pattern. Being able to correctly predict this sequence could allow
to pre-load objects that are most likely to be watched by the user
in the near future.

We first extract the virtual objects in the users’ FOV space (Figure
2) for each timestamp of the watching session, for each user trace.
Virtual objects in the scene are labeled with integers in the ascend-
ing order. The object access extraction result for each timestamp is
potentially a set of objects. In this work, however, we only consider
the closest one to the user in FOV as actually being watched by the
user, since the interaction with a specific object forces the user to
focus on the object. Inspired by how the Hamming distance quanti-
fies the distance between two strings of equal length [5], we define
the distance between two object access sequences as the number of
symbols which are different at the same position in both sequences.

Next, we apply agglomerative hierarchical clustering to partition
a set of object access sequences into a set of clusters [14]. We use
the traces from 30 participants as the training set and the remaining
20 traces for test. Based on the computed Hamming distance of
every pair of object access sequences, we group sequences into
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a hierarchical tree. The process is repeated until a single cluster
is reached. We use the results shown in Figure 3 to set the input
parameter for each scene in advance. For each cluster, we choose as
representative the sequence with the minimum average Hamming
distance to others within the cluster. The result of this step is, for
each scene, a set of representative sequences.

During testing, we dynamically select the most matched patterns
from the resulting set found during training, which entails selecting
the sequence with the minimum Hamming distance to the user’s
current sequence. Once the next element of object access sequence
is updated but not matched with the choice, a new selection process
is performed for the updated user sequence.

5 EVALUATION
We compare the proposed prediction algorithm with other three
existing approaches: (i) No prediction (NP), which uses the current
FOV as the future FOV, (ii) Dead Reckoning (DR) [6], which uses the
user’s velocity to predict the future FOV, (iii) Linear regression (LR)
model, which predicts the future FOV based on the past trajectory.
We evaluate the four solutions on the ACE dataset we collected, in
terms of prediction accuracy and prediction time cost, with variable
prediction horizons for all scenes. To compare the prediction accu-
racy of four approaches, we need to convert the FOV prediction
results for NP, DR, and LR into object access sequences. As for our
method, only the closest object in users’ FOV is considered. If no
object is present in the predicted FOV space, the symbol X is added
to the sequence.

The results of experiments are presented in Figure 5(a) to Figure
5(e). We can observe that all approaches demonstrate high predic-
tion accuracy when the prediction horizon is shorter than 500 ms.
However, the prediction accuracy for NP, DR, LR decreases quickly
as the prediction horizon increases, implying the non-linearity of
FOV trajectories. In contrast, our proposed solution based on the
object access sequences patterns outperforms all three baselines by
a large margin when the prediction horizon is longer than 500 ms.

For the first two scenes, the accuracy of our proposed approach
maintains a high value. This can be attributed to the very limited
number of object access sequence patterns for the first two scenes.
The results are in accordance with our previous analysis in Section
3.2. For the solar system scene, most participants explore the scene
by walking along the planets straight line (see Figure 1Scene 1:).
Similarly, for Scene 2, two clusters, representing participants ex-
ploring the scene in clockwise or counterclockwise direction, are
sufficient to cover most participants.

Scene 3 and Scene 4 demonstrate intermediate similarity in ex-
ploration patterns, compared to the other three scenes (figure 3).
Because of the limited number of clusters, the prediction accuracy
of our approach for both Scene 3 and 4 is still better than the three
baselines. Even so, the accuracy for these two scenes is lower than
that of Scene 1 and 2, mainly because of more complex scenes layout
and more diverse exploration patterns.

For Scene 5, the prediction accuracy of our approach is still better
than that of the other solutions, even though the digital objects
are placed randomly, and participants demonstrate very different
movement patterns. The underlying reason for these results is the
employment of the object access sequences pattern for the cluster

analysis, instead of the explicit FOV. Indeed, two users with different
movement traces may look at the same objects even if their FOVs
do not overlap at all.

We also investigate the prediction time cost of four approaches,
for Scene 3. Figure 5(f) reports the prediction time of all approaches,
for a specific participant under prediction horizons of varying
length. The time cost of both NP and DR solutions are low and
stable. The NP solution does not perform any computation, so the
time cost is always zero. The time cost of DR solutions is low and
stable. The other two solutions are similar, varying from 4.5 ms to
7.9 ms. We also calculate the average prediction time cost across all
scenes and all traces, shown in Table 3. As the table shows, the time
cost of our solutions is very close to DR, and thus can be considered
negligible.

Table 3: Comparison of average prediction time (ms)

Scene 1 Scene 2 Scene 3 Scene 4 Scene 5
NP 0 0 0 0 0
DR 4.7 4.9 5.0 4.8 4.4
LR 4.9 5.1 5.4 5.2 4.7
OURS 4.5 4.5 5.3 5.5 4.6

6 DISCUSSION
As a first attempt to investigate the potential of FOV prediction for
AR applications, our proposed approach jointly utilizes users’ tra-
jectory and AR scene content information. Inspired by the fact that
participants may follow specific object access patterns (although
they could move freely during the data collection study), the pre-
diction based on such pattern is a promising solution to effectively
predict the scene content that is likely to be accessed in the future.
In the experiment, since users have to move and interact with ob-
jects in a limited space, the complexity of the scenes is limited in
the current dataset. So the usefulness of the FOV prediction may be
weakened in such small AR scenes. However, as suggested in [9],
streaming of AR scenes is necessary to ensure good user experience
as AR scenes may contain many objects that are often large in
size (tens to hundreds of MB per object), especially with increased
photo-realism. The time it takes to cache each object will likely to
exceed the duration of the viewing session. Hence, it is necessary to
have FOV prediction to determine the right priority and therefore
decide on the best object and quality level to prefetch.

As an initial step, our work has several limitations and can be
improved in following directions. First, the Hamming distance is
employed here to measure the distance between two objects access
sequences. Extra test is required to avoid mis-clustering. Therefore
new distance measurement such as Jaccard index may be used to
replace it in the future work. Second, the normalization on users’
movement traces can impact the length of the prediction horizon,
because it stretched the time users spent on partial or all actions
while they were exploring the scenes. The performance of the pro-
posed approach may thus degrade with increase of the prediction
horizon. In the future, we expect to improve the prediction under
longer horizons with higher precision.
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(c) Prediction Accuracy for Scene 3
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(d) Prediction Accuracy for Scene 4

0.25 0.5 2 5
Prediction Horizion (in seconds)

0

20

40

60

80

100

P
re

d
ic

ti
on

A
cc

u
ra

cy
(

76.7

67.4
61.8

55.2

85.4 85.5
81.3 80.0

NP

DR

LR

Ours

(e) Prediction Accuracy for Scene 5
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Figure 5: Prediction Accuracy and Time under Variable-Length Prediction Horizons

7 CONCLUSION
In this work, we propose a taxonomy to classify AR scenes based
on the number of moving objects and virtual objects, scene layout
and type of triggers. Following the taxonomy, five AR scenes are
designed and a 50-user study is conducted to collect 6-DOF move-
ment data while subjects explores the scenes. The resulting ACE
dataset represents the first publicly available dataset on AR scene
exploration. Moreover, we have proposed and implemented a new
approach that utilizes both users’ movement trace and AR scene
information to predict scene content to be likely viewed in the near
future, and therefore potentially improve the AR scene delivery. In
our solution, users’ movement trace data are translated into objects
access sequences. The common users’ object access patterns are
then extracted to predict new user’s movement in the same scene.
We evaluate the approach with three baseline algorithms on the
ACE dataset. The results show that our proposed method signifi-
cantly improves the prediction accuracy even under long prediction
horizons, with negligible computing costs.
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