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Abstract. A central goal in the long literature on fair division is the design of mechanisms
that implement fair outcomes, despite the participants” strategic behavior. We study this
question by measuring the fairness of an allocation using the geometric mean of the agents’
values, known as the Nash social welfare (NSW). This objective is maximized by widely
known concepts such as the Nash bargaining solution, proportional fairness, and the
competitive equilibrium with equal incomes; we focus on (approximately) implementing
this objective and analyze the Trading Post mechanism. We consider allocating goods that
are substitutes or complements and show that this mechanism achieves an approximation
of two for concave utility functions and becomes essentially optimal for complements,
where it can reach (1 + €) for any (e > 0). Moreover, we show that the Nash equilibria of
this mechanism are pure and provide individual fairness in the sense of proportionality.
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1. Introduction

We study a setting where m divisible goods need to be
distributed among n strategic agents with concave
valuations, and we analyze the classic Trading Post
mechanism, originally introduced by Shapley and
Shubik (Shapley and Shubik 1977). Our analysis shows
that every Nash equilibrium of the game induced by this
mechanism is “near optimal,” in the sense that the
Nash social welfare (NSW; the geometric mean of
the agents’ utilities) is always within a small factor
of the best possible, indicating that the equilibria strike a
desired balance between fairness and efficiency.

Our work builds on a literature that studies fair
division from a mathematical standpoint, which be-
gan with the work of Steinhaus during the Second
World War. This led to an extensive and growing
body of work on fair division protocols within eco-
nomics and political science (e.g., Young 1995, Brams
and Taylor 1996, Robertson and Webb 1998, Moulin
2003, Barbanel 2005). Recent years have seen an in-
creased amount of work on fair division coming from
operations research (e.g., Bertsimas et al. 2011, 2012)
and computer science (e.g., for a recent survey, see
Brandt et al. 2016, part II), which has focused on the
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computational and incentive issues that arise when
designing resource allocation mechanisms that are fair.
Although identifying an appropriate notion of fair-
ness for each setting can be a nontrivial task, a large
body of work in economics, particularly social choice
theory, is concerned with this very question, with
numerous solution concepts proposed in response.
Our fairness measure of choice herein is the Nash social
welfare, which dates back to the fifties (Nash 1950,
Kaneko and Nakamura 1979) and was proposed by
Nash as a solution for bargaining problems, using an
axiomatic approach. In a setting where n agents are
“bargaining” over a set of possible outcomes and each
outcome x yields utility u;(x) for each agent i, the NSW
objective points to the outcome with maximum geo-
metric mean of these utilities as a fair compromise.
Using this objective as a measure of fairness, we
seek to maximize it, and the main obstacle that we
focus on is informational: to optimize this objective,
we need to know the preferences of the participants.
When these preferences are private information of the
agents, we need to use some type of mechanism that
interacts with the agents in order to reach a desired
outcome. The obvious candidate would be the direct
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revelation mechanism known as the Fisher market
mechanism: ask the agents to report their preferences
and then compute the NSW-maximizing allocation
based on their reports. Unfortunately, it is well known
that agents can feign different interests and eventually
get better allocations (Adsul et al. 2010; Chen et al.
2011, 2012; Babaioff et al. 2014; Branzei et al. 2014).
This strategic behavior can cause the mechanism to
compute NSW-maximizing outcomes based on mis-
reported preferences that have little to do with real-
ity, leading to unfair allocations. In this work, we
address the following basic question.

To what extent can the Nash social welfare be maximized
when the participants are strategic?

We analyze a natural mechanism, known as the
Trading Post mechanism, and show thateven for small
markets it achieves outcomes that closely approxi-
mate the optimal NSW on every instance while si-
multaneously satisfying additional individual fair-
ness guarantees. To formally evaluate the quality of
this mechanism, we use the standard Price of Anar-
chy (PoA) measure (Roughgarden and Tardos 2002,
Koutsoupias and Papadimitriou 2009), which corre-
sponds to the ratio between the optimal NSW and the
NSW of the worst Nash equilibrium outcome ob-
tained by the mechanism.

Along with other standard welfare objectives, the
NSW objective is captured by a family of functions
known as generalized (power) means:

1 1/p
My(x) = (HZ[W(X)]F) .

i

In particular, the NSW corresponds to My(x), the limit
of M,(x) as p goes to zero (i.e., (IT;u;(x))r). Note that
optimizing the NSW objective is equivalent to max-
imizing the sum of the logarithms of the agent util-
ities (i.e., X;log(ui(x)); the latter can be derived via a
logarithmic transformation of the former), which is a
very commonly used objective for achieving a notion
called proportional fairness in networking (Kelly
1997, Kelly et al. 1998) and beyond (Bertsimas et al.
2011, 2012).

Although an extended treatment of the NSW ob-
jective can be found, for example, in Moulin (2003),
we highlight the fact that it achieves a natural com-
promise between individual fairness and efficiency. This is
in contrast to two other well-studied functions cap-
tured by M,(x): (i) the egalitarian (max-min) objective
attained as p — —oo and (ii) the utilitarian (average)
objective attained at p = 1, which correspond to ex-
treme fairness and extreme efficiency, respectively.
The former may cause vast inefficiencies, whereas the
latter can completely neglect how unhappy some
agents might be. The NSW objective lies between
these two extremes and strikes a balance between

them because maximizing the geometric mean leads
to more balanced valuations, but without neglecting
efficiency. For example, given two outcomes x and x’
where the former has higher NSW than the latter, if
some agent i prefers x’ because its utility thereis g > 1
times higher, then it must be that a transition from x
to x’ must be causing the geometric mean of the other
agents’ utility to drop by a factor at least q. This
suggests that agent i may be harder to satisfy, and it
provides a formal justification for choosing x over x'.
Also, note that this rationale naturally prioritizes low
utility agents as it is commonly easier to increase their
utility by a larger factor.

1.1. Our Results

The Shapley and Shubik mechanism (Shapley and
Shubik 1977) (see Section 7 for a discussion of re-
lated work) gives each participant a budget of some
artificial currency and asks them to distribute this
budget across the available goods. After the agents
choose how to distribute their budget, they receive a
fraction from each good that is proportional to the
amount they spent on it. Because the agents are strate-
gic, we assume that they distribute their budget aiming
to get an allocation that maximizes their utility, antici-
pating the strategic behavior of the other agents. There-
fore, using a game-theoretic analysis, we evaluate the
performance of this mechanism over the Nash equi-
libria of the induced game. To ensure the existence of
pure Nash equilibria, we enhance the mechanism with
an arbitrarily small parameter € > 0, such that each
agentneeds to spend atleast e amount of budgetonan
item in order to be allocated some portion of it.

To model different types of goods and agent pref-
erences over the outcomes, we consider large classes of
extensively studied agent valuation functions. Com-
mon examples include linear (or additive) valuations
and Leontief valuations (Gale 1960, Codenotti and
Varadarajan 2004, Nisan et al. 2007). Additive valu-
ations capture the agent preferences in settings
where the goods are perfect substitutes (i.e., that can
replace each other in consumption, such as Pepsi and
Coca-Cola). On the other hand, Leontief valuations
capture perfect complements (i.e., goods that have no
value without each other, such as a left shoe and a
right shoe). Both of these valuation functions are
concave over the set of possible (fractional) bundles
allocated to the bidder. We measure the performance
of the Trading Post mechanism with respect to the
NSW objective, and our main result is:

Theorem (Informal). Any Nash equilibrium of the Trading
Post mechanism approximates the optimal Nash social
welfare within a factor of two for all concave valuations. For
Leontief wvaluations, the mechanism achieves an approxi-
mation of 1+ € for an arbitrarily small constant € > 0.
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Note that for Leontief valuations, the Trading Post
can get arbitrarily close to the optimal solution! As we
discuss in Section 7, this result can have a significant
impact in computing environments where Leontief
valuations are commonly used. Overall, our results
testify to the usefulness and robustness of the Trad-
ing Post mechanism: a good NSW approximation
implies that the geometric mean of agent utilities is
high, and so, happiness is well distributed across
the participants.

In Section 5, we complement our aforementioned
results regarding the NSW (an aggregate measure of
fairness) by also analyzing the Trading Post mecha-
nism with respect to proportionality, one of the fun-
damental notions of individual fairness. Proportion-
ality (not to be confused with proportional fairness)
requires that every agentiwho has a value of V; for the
bundle containing all of the goods receives utility at
least 1 V;. We show that the Trading Post mechanism
guarantees proportionality in any equilibrium, even
for general concave valuations.

Theorem (Informal). Every Nash equilibrium of the Trad-
ing Post mechanism satisfies proportionality for all con-
cave valuations.

In conjunction with the bounds regarding the NSW
approximation, the proportionality results imply that
the Trading Post mechanism guarantees a surprising
combination of both individual and aggregate fair-
ness for very general utilities. Furthermore, all of the
results regarding the NSW and proportionality also
hold for the weighted version of this problem where
each agent i may be endowed with a different budget
B; that signifies the agent’s importance or priority.

Finally, we prove that under some mild conditions,
the set of mixed Nash equilibria of the Trading Post
mechanism coincides with the set of pure Nash equi-
libria even for general concave valuations, which ex-
tends our (pure) PoA bounds for this mechanism to
mixed PoA. Also, in the process of obtaining a near-
optimal bound for Leontief in the Trading Post mech-
anism, we show that e-approximate market equilibria
for Leontief utilities approximate its Nash social
welfare by a factor of L. We believe that this result

(1+e)"
may be of independent interest.

2. Preliminaries

LetN ={1,...,n}beasetofagentsand M = {1,...,m}a
set of divisible goods. An allocation x is a distribution
of the goods to the agents such that x;; represents the
amount of good j received by agent i. Our goal will be
to allocate all the resources fully; it is without loss of
generality to assume that a single unit of each good is
available; thus, the set of feasible allocations is F =
{x € [0,1]™" | =L, x;; = 1Vj € M}. Agent i’s value (or

utility) for a bundle of goods is represented by a
nondecreasing, nonnegative, and concave valuation
function u; : [0,1]™ — Ryo.

2.1. Valuation Functions

Two very common and extensively studied valuation
functions are linear valuations (where the goods are
perfect substitutes) and Leontief valuations (where the
goods are perfect complements). Forboth, letv; = (v;1, .. .,
v;,m) € R, bea vector of valuations for agent i, where v;
captures how much agent i likes good j.

Perfect substitutes, defined through linear (addi-
tive) valuations, represent goods that can replace
each other in consumption. The utility of agent 7 for
bundle Xj is Mi(X,') = Z]nil 'Ui,]' . xi,]-.

Perfect complements, represented by Leontief utilities,
capture scenarios where one good may have no value
without the other, such as a left shoe and a right shoe, or
the central processing unit time and computer memory
required for the completion of a computing task. Givena
matrix of v;; > 0 values, for each agent i let D; = {j €
M]v;; > 0} be the set of items that the agent is inter-
ested in. In the Leontief model, the utility of agent i
forabundlex;is u;(x;) = minjep {x;;/v;;}: thatis, agent i
desires the items in the proportions v;; : V2 : ... : Ui
and gains no additional value from an allocation
increase in one good unless the other goods are also
increased according to these proportions.

A more general class of valuations, which captures
perfect substitutes and complements, is constant elas-
ticity of substitution (CE?). CES valuations take the
form u;(x;) = (21’21 vij-xg)ﬁ and interpolate between
additive and Leontief through the parameter p such
that —co < p <1, p #0. Leontief and additive utili-
ties are obtained when p approaches —co and equals
one, respectively.

All CES valuations are, in turn, part of a more
general class of concave valuation functions. In this
paper, we focus on nonnegative, nondecreasing, and
concave valuation functions but also consider special
classes, like the ones mentioned or ones that arise if
we impose additional conditions, such as strict mono-
tonicity (any additional conditions are mentioned in
our statements).

Given an allocation x, we may use u;(x) to denote
u;(x;). Also, if some agent’s utility u;(x) is equal to the
utility of that agent for being allocated all of the m
items fully, then we refer to this agent as satiated at
allocation x.

2.2. Fisher Market Equilibrium

Our setting is closely related to the Fisher market
model, and throughout the paper, we make use of the
market equilibrium notion from this model. Given a
set of agents with valuation functions u; and budgets



Branzei, Gkatzelis, and Mehta: Nash Social Welfare Approximation
Operations Research, 2022, vol. 70, no. 1, pp. 402—415, © 2021 INFORMS

405

B; > 1, a Fisher market equilibrium is an allocation x
along with prices (p));er, such that

1. For each agent i€ N, x; € argmax, ., SBiui(x)
(agents buy the best bundle they can afford).

2. For each good j €M, Yy x;j =1 if p; > 0; oth-
erwise, Yien Xi; < 1 (demand meets supply).

2.3. The Trading Post Mechanism

The Trading Post mechanism asks the agents to
choose how to distribute their budgets. After the
agents have chosen how much of their budget to
spend on each of the goods, the total spending on each
good j is treated as its price, and each agent i is
allocated a fraction of good j proportional to the
amount that i is spending on j. Therefore, the strategy
set of each agent i is S; = {b; € [0, B;]" | Zj”il b;j = Bi}.
Given abid profileb = (by, ..., b,), the induced prices
p are p; = Yen b;j for all j € M, and the allocation x is
such that

if b,',j >0
otherwise.

bij
Xij = k=1 bk
0

2.4. The Trading Post Mechanism with
Entrance Fee A

The Trading Post mechanism with entrance fee A€ (0,
1/m], denoted as T P(A), asks the agents to choose
how to distribute their budgets, and the strategy
space is the same as that of the standard Trading Post
mechanism. Given a bid profileb = (by, ..., b,) by the
agents, let b= (by,...,b,) be the “effective” bid
profile, which for every i € N and j € M, satisfies b;; =
b;jifb;; > Aand Ei,j = O otherwise. Then, the bid profile
b yields prices p such that p; = max{A, T b;;} forall
j € M, and the allocation x is such that

E,‘j 1.

S ifbj; >0
Xij = 4 ke by g

0

otherwise.

2.5. Strategic Behavior and the Nash Equilibrium
In analyzing the performance of the Trading Post
mechanism, throughout the paper we consider agents
that are strategic and will therefore choose how to
distribute their budget aiming to maximize their
utility (in response to the corresponding strategic
choices of the other agents). A pure Nash equilibrium of
the Trading Post mechanism is a profile of bids b =
(b1,...,b,) such that every agent’s utility in the in-
duced allocation is greater than or equal to the highest
utility that they could achieve through a unilateral
deviation. A pure Nash equilibrium is not guaranteed
to exist for all instances in our setting, but we prove its
existence for large families of instances in Section 6.

2.6. Nash Social Welfare and the Price of Anarchy
Our measure for assessing the quality of an allocation
is its Nash social welfare. At a given allocation x, it is
defined as follows:

n

NSW(x) = (1_[ ui(xi))z.

i=1

In order to also capture situations where the agents
may have different importance or priority, such as
clout in bargaining scenarios, we also consider the
weighted version of the Nash social welfare objective.
Note that this is the objective maximized by the Fisher
market equilibrium solution when the agents have
homogeneous valuation functions, which include all
of CES and Leontief functions. We slightly override
notation and refer to the weighted objective as the
NSW as well. If B; > 1is the weight (budget) of agent i
and B = Y, B;is the total weight, the induced market
equilibrium in Fisher’s model maximizes the objective:

NSW(x) = (ﬁ ui(xi)BZ)B.

i=1

Note that we get back the original definition when
all agents have the same weight/budget. We would
like to find mechanisms that maximize the NSW
objective in the presence of strategic agents whose
goal is to maximize their own utility.

We measure the quality of the Trading Post mecha-
nism using the price of anarchy with respect to the NSW
objective. Given a problem instance Z and a set of pure
Nash equilibria E, the PoA of the Trading Post mecha-
nism for Z is the maximum ratio between the opti-
mal NSW—obtained at some allocation x*—and the
NSW atanallocation x € E (i.e., the ratio of the optimal
Nash social welfare and the Nash social welfare in the
worst Nash equilibrium: POA(Z) = maxyer {%}). The
price of anarchy of the mechanism for a class of in-
stances is the maximum of this value over all possible
instances in this class: maxz{PoA(Z)}.

3. Price of Anarchy of Trading Post for

Concave Valuations
In this section, we prove an upper bound of two on the
PoA for Trading Post mechanism with concave val-
uation functions. We first prove a lemma regarding
the structure of the Nash equilibria in the Trading
Post mechanism.

Lemma 1. In any Nash equilibrium allocation x of the
Trading Post mechanism, every agent who is not satiated
at x and has a valuation function that is nonnegative,
nondecreasing, and concave is spending only on items
that at least one other agent is also spending on.
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Proof. Assume that there exists a Nash equilibrium
allocation x where some agent i that is not satiated at x
is spending b;; > 0 on an item j that no other agent is
spending on (and is thus receiving all of that item).
Given that agent 7 is not satiated at x, there exists some
other bundle x’; such that u;(x’;) > u;(x;). Now, consider
the segment connecting x; to x’; in R": because the
utility function of agent i is concave, the utility for any
allocation y; on this segment, excluding x; itself, sat-
isfies u;(y;) > ui(x;). Also, because agent i is the only one
spending on item j, a unilateral deviation where that
agent reduces the spending on j to, say, b;;/2 would still
allow that agent to keep all of item j. However, then
the agent could appropriately use this spending on
other items in order to change its allocation to some y,
such as the one described. Specifically, if M" = {j € M |

xi; > x;;} is the subset of items that agent i gets more of
in x’; than in x; (this set includes no items on which
only agent i is spending because 7 gets those fully in x)
and p; = Yjen bij is the total spending for each item in
the Nash equilibrium that induced x, then agent i can
compute the amount b; to spend on each item j € M’ by
solving the followmg program:

b,
max «; such that ai(x;,]- - xl-,j) = J_ and
p]* + bj/]‘
bij>0, YieM; > biy=>by/2.

jeM’

The solution to this program will return some «a; > 0,
and the resulting allocation after this deviation will be
Vij = Xij +a,(x —xij) = (1 —ai)x;j +axj; for all jeM’
and y;; = x;; for allj € M\ M'. Because the utility of the
agent will be strictly higher after this unilateral devi-
ation, this contradicts the initial assumption that x is a
Nash equilibrium, thus proving the lemma. ©

In order to prove the PoA upper bound, we will also
be using the folklore weighted arithmetic and geo-
metric mean inequality stated in the following lemma.

Lemma2. For any nonnegative numbers p1,pa, . .., Pn and
nonnegative weights wy, wo, ..., w, with W = 3L, w;, we
have (1T, p" )Y/ Zﬂ% (i.e., the weighted geometric
mean of these numbers is always less than or equal to their
weighted arithmetic mean).

We are now ready to prove the main result of
this section.

Theorem 1. The Trading Post mechanism with concave
waluations has price of anarchy at most two.

Proof. Given a problem instance with concave valua-
tions, let x* be the allocation that maximizes the Nash
social welfare subject to supply constraints. And let X
be the allocation obtained under a Nash equilibrium
where b, where the price of each item j is p; = Xibij.

Let i be any one of the agents that is not satiated in X,
and for each item j, let p; = p, - — by j be the total bid on
item j from agents other than i. Note that, by Lemma 1,
p; > 0 for every j; otherwise, b would not be an equi-
librium because agent i could bid less on item j and still
receive all of it. Now, consider the allocation x’ that
arises if every agent k # i bids by (i.e., according to the
equilibrium), whereas agent 7 unilaterally deviates to a
bid of b}, for each item j such that for some a; > 0 and
every 1tem J:

’
b,

= (1)
P+l

ij

This bid, b}, corresponds to a solution of the follow-
ing program:

b
max o; st a;- *] Y and
b p] + bi,j
b;20, VjeM; Zb;,]:
jeEM

The allocation induced by this unilateral deviation
of iis
b

’ L] *

X = =q; X .. (2)
i ’ ’ 1 i

p;+ bw

If a; <1, the utility of agent 7 after this deviation is
ui(; - Xi) = au;(x") because of the concavity of u;. If, on
the other hand, a; > 1, then u;(«; - x}) > u;(x*) because
the utility is nondecreasing. Therefore, u;(a; - x}) >
min{a;, 1}u;(x*). However, X is a Nash equilibrium, so
this deviation of agent i cannot yield a higher utility
for i, which implies that

ui(X) > uilai - xi) =
u;i(x*) < 1
ui(%) ~ min{a;, 1}
By Equation (2), we get 3, b;, = 3 x;](p’ + b} ;). Because

%;bj; = By, this 1mphes that B = X X (p; + bj;). Sub-
st1tut1r1g for x}, = a; - x7;, we get

u;(X) = min{a;, 1}u;(x")

®)

ij ij’

= i X, (P]' + bzl',]')' (4)
=

i

Also, we have 0 < x!; <1, and p; < p; for every item j.
As a result, for each agent i we have

g]x?ff(l?} + bf-,;) g]( ; ]P]) + é](x ]b;,])
é} +§b < Zmll(x;fjfa].) + B,

()
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To conclude the proof, we will now use the fact that
inequalities (3)-(5) hold for every agent i that is not
satiated in X. Note that for every agent 7 that is satiated
in X, we have 1;(X) > u;(x*). Let N, C N be the set of
agents for which a; < 1 and N¢ be the set of agents with
a; > 1 as well as the agents that are satiated in X. Using
this partition of the agents, we get

Ui (XT) c B;
Z Bi ui(X;) = Z min{a;, 1}

i=1 i=1

< 3o 3 (Sfn) +

€Ny i€Ng \ j=1

<2B. (6)

Using Equation (6) and the inequality of weighted
arithmetic and geometric means provided by Lemma 2,
we conclude that

The next theorem complements the upper bound on
the price of anarchy by providing a lower bound of
approximately 1.445, even for the special case of
linear valuations.

Theorem 2. The Trading Post mechanism has a price of
anarchy no better than e'/® ~ 1.445, even for the special case
of linear valuations.

Proof. Using two positive integers q and k < g as pa-
rameters, whose values are set later, we construct a
market with g+ 1 goods and g + 2 agents with equal
budget B; = 1. Each agent i < k has value v;; =1 for
good i and value v;; = 0 for all other goods j # i. On the
other hand, every agenti € [k + 1, q], apart from having
v;; = 1, also has some small but positive, value v;; = a
for all items j < k. The rest of that agent’s v;; values are
zero. Agent (g + 1) has a small but positive value a’ for
goodsf € [k + 1,4q] and value 2 for good (g + 1). Finally,
agent (g + 2) values only good (g + 1) at value 2. We will
set the values of 2 and a’ later. Consider the following
strategy b

VI<i<(q+1)byi=1 b)) =1

and the rest are zero.

In b, every agent i € [1, g] gets all of good i, whereas
agents (g + 1) and (g +2) share good (7 + 1) equally.
Thus, the utility of every agent i € [1,(9+2)] at b is
u;(b) = 1, giving NSW of one.

Next, we construct an alternative strategy profile s,
which for carefully chosen values of aand @’, is a Nash
equilibrium and has an NSW that approaches (1/¢)'/
as q — oo. In this strategy profile s, each agent i <k

spends all of its budget on good i, and agent (g + 2)
spends all of its budget on good (g + 1). On the other
hand, every agent i€ [k+1,4q] spends some small
amount € on item i and divides the rest of its budget,
namely (1 -¢), equally among the items in [1,k].
Agent (7 + 1) spends €’ onevery good i € [k + 1,4] and
spends the remaining 1 — (g — k)¢’ on good (7 + 1).
This leads to a price of 1+ 470178 = 10K o e
first k goods, a price of (e + €’) for goods j € [k +1,1],
and a price of (2 — (g — k)e’) for good (7 + 1). Itiseasy to
verify that the first k agents and agent (7 + 2) have no
incentive to deviate from this strategy profile because
they value only the single good on which they are
spending their entire budget. Next, we show that
none of the other agents want to deviate from s either
when the values of ¢,¢’,4, and a’ are set as follows:

1
e=——, €=6%

(9-k)
e ¢ g(1 - €) + ke)? V= 2(e +€')?
Cke+e)(g-1)(1-e)+ke’ T e(2—(q-k)e)

Note that all the agents in our market have additive
utilities. Let us denote the utility of agent 7 for a unit
amount of good j by v;;. We will first show the fol-
lowing property of Nash equilibrium in such markets
that will be useful to prove the theorem.

Claim 1. Let p and x be the prices and allocation corre-
sponding to the strategy profile s; then,

v(i,j), xi;>0= Yij (1-xj) = argmax%(l - Xik) .
P ko Pk
Proof. To the contrary, suppose x;; > 0 but for some
good k, Z;7’;_"(1 —x;j) < %(1 —xi). We will show this
implies agent i can deviate and gain. For a small-
enough 0 > 0, suppose agent i moves 6 money from
good j to good k. The difference in agent i’s utility in
that case is

=0 : . .
U,,]‘ (S i ) + (43 Sik + 0 - U,‘/]‘SI—J - Uj,ksi
pi—0 Pe+0 pj Pk
_ ik 6pk_sz'k_ Uij 6Pj—Si,j
pe+o pe pi=0  p
Uik Oij
=0 (1 =xp) ———=(1-x;)].
Pk+6( k) pj_(s( J)

Clearly, the expression is strictly greater than zero for
any 0 such that

vipi(1 = xi) — vijpe(1 — xi)

o<
vik(1 = xi + 011 — i)

Note that the upper bound on 6 is strictly positive
given our initial assumption, a contradiction. O
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At strategy s, each agent i€ [k+1,q+1] is allo-
cating positive amount on every good for which she
has some positive utility (i.e., v;; > 0); then, s;; > 0 for
every good j € [1, (g + 1)]. Therefore, using the claim,
it suffices to show that the value of %{f(l - x;;) is the
same for all the goods on which she is spending
money. Let us denote this quantity by t;; for ease
of notation:

V(i,j), let i',',]‘ = %(1 - xi,]‘).
pj

Foragent (q + 1), t441),;is the same forallj € [k + 1,4].
So, we only need to compare this value with #(;,1) (441

2 _1-(q-k)¢
(9-k)e (1 2-(q- k)e’) .
-z

(2-(g-ke)

On the other hand, by construction, foranyj € [q+1,k],
we have

1) (ge1) = 7

bger); =
2(e +€')?

e [ =5 )

For any agent ie[k+1,4] and good i, ¢ X

i = (e+e)

(1- (Ef—e)) (€+€ v For good j € [1,k], we have
b axk 1 (1 — 6)
" g(1—€)+ke q(1 —€) + ke

_ake((g-1)(1-e)+ke) €
(g1 -e)+ ke) C(e+e)?

¢ (g -e) +ke)
Ckle+e)(g-1)(1-e) +ke|

=t

Thus, using Claim 1, it follows that s is a Nash
equilibrium. Next, it remains to show that the ratio of
total payoff at b and s goes to e!/¢ as g — 0. Let

k=q/e= (g—k)=q(e—1)/e, and
e=1/(q—k) = (1/g)(e/(e - 1)).
At s, the utility of every agenti e [k+1,q] is
b = € . (1-e)
"Tete g(1—€) +ke
1 e (-1)A-e)+ke
1+e 1+e g(l-e)+ke
_ 1, e (1-1/q)1—€)+ece
T l4+e (1+e) (1-€)+e)

a 1- e\ _ ade 2
(e+e’)( (—:+e’)_(e+e’)2_(2—(q—k)e’)2

Replacing € = 1/(g — k) in the lim; o u; — 1, Vi€
[k +1,4]. The utility of agent (g +1) is

_lg=kae  1-(q-k)e

o) T et e - (9 —k)e’
o 2(e +€')? € 1-(q-k)e
_(q k)e(z_(q_k)e,)2€+€/+22_(q_k)ez

_ 2(1+e) N 1-¢€
C(g-K@2-e€? T2-e

(¢ =€ e=1/(q-k)).

Again, replacing € = 1/(q — k) here and letting lim, oo X
ug+y — (0+(2/2)) = 1. The utility of agent (q+2)

i 5ome = = 7 —ry and therefore, limg e 14(g2) = 1.
Finally,
k k k
Vie[l,k],u = = = .
Pe Lkl u g1 -e)+ke q-e(g—k) q-1

Using the utility values of all the agents, we get that
the Nash social welfare ats as g — co tends to (k)q and
therefore, PoA is at least (q)ﬂ Because k = g/e, it is at
least et, which concludes the proof of Theorem 2. O

4. Price of Anarchy of Trading Post for

Leontief Valuations
In this section, we focus on the class of Leontief
valuations, which is a well-motivated subclass of the
concave valuations studied in the previous section,
and we show that we can achieve essentially optimal
price of anarchy bounds for these valuations.

As we show in Section 6.1, the games induced by
the Trading Post mechanism when the agents have
Leontief valuations may not always possess a pure
Nash equilibrium. We therefore also study the Trading
Post mechanism with entrance fee A > 0, which alle-
viates many of the equilibrium existence issues (see
Theorem 10). Also, because the value of A can be
arbitrarily small, the impact of this entrance fee on the
outcome of the game is insignificant. The main result
of this section is that, for an arbitrarily small constant
€ € (0,1/m), the Trading Post mechanism 7 P(A) with
A < €/m? has a price of anarchy of at most 1 + €.

In order to analyze the performance of the Trading
Post mechanism for Leontief valuations, we start by
defining a notion of approximate market equilibrium
that will be useful. Recall the definition of Fisher
market equilibrium from Section 2.

Definition 1 (e-Market Equilibrium). Given a problem
instance and some € >0, an outcome (p,x) is an
e-market equilibrium if and only if (i) all the goods
with a positive price are completely sold, (ii) all the
agents exhaust their budget, (iii) each agent gets an
e-optimal bundle at prices p; that is, for every bundle
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y € [0,1]™ that i could afford at these prices (p -y < Bj),
we have u;(y) < u;i(x;)(1 + €). Note that when € =0, it
is a Fisher market equilibrium.

The following theorem states that for every small-
enough € >0, all the pure Nash equilibria of the
Trading Post game with a small-enough entrance fee
correspond to e-market equilibrium outcomes.

Theorem 3. Let €>0. Then, for every 0 <A < min
< ,x}, every pure Nash equilibrium of the mechanism
T P(A) with Leontief valuations corresponds to an e-market

equilibrium.

Proof. Let b be a pure Nash equilibrium of 7P(A) and
x the induced allocation. For each agent i, let D; = {j €
M | v;; > 0} be the set of items that i has value for, and
let m; = |D;|. We also override notation and refer to u;(b)
as the utility of agent i when the strategy profiles are b.

First note that b;; > 0 for each agent i and item j € D;.
If this were not the case, then agent i would get zero
utility at strategy profile b; this is worse than playing
the uniform strategy z; = (B;/m,...,B;/m), which guar-
antees i a positive value regardless of the strategies of the
other agents b_;, namely

M‘(Z‘ B ) min 71.']'
I\“1s
jebi Zij Zk#zbk] Uij

{ Bi/m 1}
> ming—————- > 0.
]ED Bi/m + Xz B 47,

For each agentiand item j € D;, denote the fraction of
utility that i derives from j by

by 1
Sie by Ui

¢i,j =

Then, u;(b) = minjep, ¢, ;. Sort the items in D; in-
Creasmgly by their contribution to i's utility: ;; <,
.<¢,; ; it follows that u;(b) = ¢,;,- Let Si={j€
D |¢) qb“ } be the items received in the smallest
fraction (equal to i’s utility). If S; = M, then the analysis
is similar to the exact equilibrium case, where the prices
are strictly positive. The difficult case is when S; # M.
Then, agent i is getting a higher than necessary fraction
from some resource j € M\ S;. Thus, i would improve
by shifting some of the mass from item j to the items
in S. Because b is an equilibrium, no such deviation is
possible. Then, it must be the case that b;; = j=A for
allje D;\ S;.

Now interpret the bids and allocation as a market
equilibrium with Leontief utilities v and budgets B;, by
setting the prices to p = (p1,...,pm), where p; = 3L, b;;
for all j € M, and the allocation to x, the same as the one
induced by the bids b in the Trading Post game. We
argue that (p,x) is an e-market equilibrium. Clearly at

the outcome (p,x), all the goods are sold, and each
agent exhausts their budget. Moreover, observe that all
the prices are strictly positive. We must additionally
show that each agent gets an e-optimal bundle at (p, x).

Fix an arbitrary agent i. Let y; be an optimal bundle
for i given prices p, and let g;; be the amount of money
spent by i to purchase y;; units of good j at these prices.
An upper bound on the optimal value u;(y;) is attained
when agent i shifts all the money spent on purchasing
items outside S; to purchase instead higher fractions
from the items in S;. Because the strategy profile b is an
exact equilibrium in the game 7 P(A), the amount of
money spent by agent i on items outside S; is at most
(m —1)A; thus, i spends at most B; — (m — 1)A on the
remaining items in S;.

By an averaging argument, there exists a good j € §;
on which 7 spends the greatest amount of its money:
that is,

s _Bi—(m-1)A
P S S A
b2 1S:] ’
This will be the item for which the gain brought by
the deviation in spending is modest. Formally, the
maximum fraction of utility that i can get from item
j—without decreasing the ratios at which the other
items in S; are received—is

qij < E{/j + (m - 1)A

%l = PiUij (22:1 Ekff) i
O g
Ei,' 1€ _ .

= u,'(Xl')(l + 6),

where in the inequalities, we additionally used that
A<€*/m,B;>1VieN, and S; < m — 1. The identities
hold because item j is in the tight set S;. Then, u;(y,) <
P < ui i(x;)(1 + €). Thus, each agent gets an e-optimal
bundle, and so, (p, x) is an e-market equilibrium. ©

The following theorem, which we believe is of in-
dependent interest, states that in Fisher markets with
Leontief utilities, approximate market equilibria are
close to exact equilibria in terms of their Nash so-
cial welfare.

Theorem 4. The Nash social welfare at an e-market equi-
librium for Leontief utilities is at least a ﬁ factor of the
optimal Nash social welfare.

Proof. For any given problem instance, let (p’,x’) be an
e-market equilibrium, and let (p*,x*) be exact market
equilibrium prices and allocation. By abuse of notation,
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let u;(p’) denote the optimal utility agent 7/ can obtain at
prices p’ (i.e., ui(p’) = max{u;(y) |y =0; p’ -y <B}).

For Leontief utility functions, the following Eisen-
berg and Gale (1959) convex formulation captures the
market equilibrium allocation:

n
max > B;-logu;
i=1

x,.
u <=2, VieN,jeM
Uij (7)

n
Sxj<1, VieM
i=1

such that

x;20, VieN,jeM.

Note that, if (u”, x*) is the optimal of the formulation,
thenu} = u;(x}) for every agent i. In order to get a utility
of one at prices p, agent i would need to buy at least v;;
units of good j and thereby, spend a total amount of
money equal to ¢,(p) = X;v;p;. Using this, Devanur
(2010) derived the dual of this convex program:

min Z pi— Z Bilog(¢(p)) + > Bilog(By) — > B;
j i i i
such that Vj:p; > 0.

Note that the term (3; B;log(B;) — X; B;) is a constant
for a given market because B;’s are constants and
hence, is omitted in Devanur (2010). Because (p*, x*)
is a market equilibrium, using strong duality and the
fact that agents spend all their money at equilib-
rium (ie., 3 p]’f = >;B)):

3% Bilog(u(x) = - 3% Bilog(o(¢)

+ Z B; IOg(Bl) (8)

Furthermore, at the e-market equilibrium (x’, p’), all
the agents spend all their money, implying >;p; =
> Bi. Because p’ is a feasible dual solution:

— 2 Bilog(¢(p7)) + 2 Bilog(By)
< - Z Bilog(¢(p’)) + Z B;log(By).

Substituting the left-hand side using Equation (8) and
taking an antilogarithm on both sides yield

[Tut)" <1 (J,if))&' ®)

i i

Because agent i has total of B; budget out of which
she needs ¢(p’) to derive one unit of utility, the maxi-
mum utility she can derive from the optimal bundle at
prices p’ is

B;
b(p')

Vi: u(p’) = (10)

Because (x/,p’) is an e-market equilibrium, each
agent gets an e-optimal bundle, so u;(p’) < u;(x})(1 + ¢€).
According to (10), this implies % < u;(x})(1 + €), which
combined with (9) gives

«\B: B; )”"' B NBi
ui(x; )< <(1+e u;(x;) ™.
[Tt (5] < 0+°T Tt

Because the Nash social welfare at x is (H,vui(xi)Bf)%,
the result follows. O

Finally, we can state the main result of this section.

Theorem 5. For every € > 0, the Trading Post game T P(A)
with entrance fee 0 < A < min{% , A} has a price of anarchy

of 1+ ¢, even for arbitrary budgets.

Proof. By Theorem 3, every pure Nash equilibrium of
TP(A) corresponds to an e-market equilibrium. By
Theorem 4, every e-market equilibrium attains at least a
fraction - of the optimal Nash social welfare. Thus,

the price of anarchy of 7P(A) is (1 +€), which com-
pletes the proof. O

5. Individual Fairness Guarantees

The price of anarchy bounds of the previous sections
provided us with an aggregate measure of (approx-
imate) fairness for the outcomes of the Trading Post
mechanism. We now show that the Nash equilibria of
Trading Post also satisfy an important notion of in-
dividual fairness: proportionality. That is, each agent
i gets a fraction of at least B;/B of its maximum utility
(i.e., the utility of the agent for receiving all items in
full); for the case of equal budgets, the guarantee is
1/n. Recall that B; is the agent’s budget, Bis the sum of
budgets, and m is the number of items.

Theorem 6. For each A >0, in each Nash equilibrium of
T P(A) with concave utilities, each agent i gets a value of
B.(1 - of its maximum utility (taken over all bundles),
where €; = —A'(’;’i_l).

Proof Sketch. The proof can be found in the e-com-
panion and is based on showing that at any Nash
equilibrium b, every agent i has a “safe” strategy
profile y,; that guarantees the agent a fraction of its
maximum possibly utility that is (approximately) pro-
portional to its budget. Because b is a Nash equilibrium,
strategy y, must to be dominated by b;, so the agent is
getting its proportionality value in the equilibrium. A
key tool for establishing proportionality is a combina-
tion of Lemma 1 and a lemma stating that for all concave
utilities, and every agent i, the price of every item j that
agent i values at x is strictly positive (see Lemma EC.1 in
the e-companion). O
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Note that for the standard Trading Post mechanism
(i.e., for A =0), this result yields exact proportion-
ality, but it also provides approximate proportion-
ality for 7P(A) with A > 0.

6. The Trading Post Mechanism and

Equilibrium Existence

The previous sections proved aggregate and indi-
vidual fairness guarantees satisfied by any pure Nash
equilibrium of the games induced by the Trading Post
mechanism. In this section, we discuss the conditions
under which such equilibria are guaranteed to exist.
The missing proofs of this section can be found in
the e-companion.

Even for the case of additive valuations, if there do
not exist at least two agents with positive value for
each good, then a pure Nash equilibrium may not
exist. For instance, consider a game with two agents,
two items, and additive valuations v17 =1, v1, =0,
U1 = 22 = 0.5. Through a case analysis, it can be seen
that both agents will compete for item 1, whereas
agent 2 is the only one that wants item 2. As a result,
agent 2 will successively reduce its bid for item 2 in
order to raise its bid for item 1 and get a higher
fraction of it. However, in the limit of its bid for the
second item going to zero, agent 2 loses the item.

To address this issue, Feldman et al. (2009) intro-
duced a mild technical condition known as perfect
competition and proved the existence of pure Nash
equilibria in the Trading Post mechanism for additive
valuations under perfect competition. This condition
states that for each good j, there exist at least two
bidders that demand a strictly positive amount of j
when the good is priced at zero. For concave valuation
functions that are differentiable, the condition can be

generalized as 5-* ‘7”’ (x), gfk (x) > 0 for any allocation x =

(Xg)gems where x] =0. Usmg this generalization, we
extend the result of Feldman et al. (2009) and prove
the existence of pure Nash equilibria for the Trading
Post mechanism and CES valuations with p € (-0, 1].

Theorem 7. The Trading Post game with no minimum bid
has exact pure Nash equilibria for all CES utilities with
perfect competition and p € (—oco0,1].

Using the same sequence of arguments, we also
show equilibrium existence for all concave, contin-
uous, and strictly increasing valuations.

Theorem 8. The Trading Post game with no minimum bid
has exact pure Nash equilibria for all concave, continuous,
and strictly increasing utilities.

Proof. The proof can be found in the e-companion and
uses Reny’s theorem for discontinuous games. In par-
ticular, we show that even though a best response may
not exist, the game satisfies a property of “better-reply

security”—at all points in the closure of the graph of the
payoff function, there is an agent that can change its
bidding strategy to strictly improve compared not only
against the current strategy profile but also against
any small deviations of the other agents around the
current profile. O

6.1. Leontief Valuations

Although the existence proofs capture several im-
portant classes of valuations, they do not capture
Leontief valuations. Leontief valuations are concave
and continuous, but they are not strictly increasing.
Also, the adaptation of the perfect competition con-
dition would require that for every item j, there exist
at least two distinct agents i,k € N such that v;; >0,
v > 0. However, even after imposing this condition,
the existence of pure Nash equilibria in Trading Post
is not guaranteed for Leontief valuations as demon-
strated by the following example.

Example 1. Consider a game with two agents and two
items, where agent 1 has values v;; = v;, = 0.5 and
agent 2 has v = 0.9, v, = 0.1. Assume there is a pure
Nash equilibrium profile b. Because both agents re-
quire a nonzero amount from every item for their utility
to be positive, we have that b;; > 0 for all 7,j € {1,2}.
Denote by =b11 and by =byq; then, bip =1-b; and
b1 = 1- by. Note that each agent must receive the two
items in the same ratio relative to its valuation; that is,

b; 1 1-b\ 1
i (b) (bl + bz) U1 (b1 + bz) U,z (11)

Otherwise, if the two ratios were not equal, then an
agent could transfer weight among the items to im-
prove the smaller fraction. Then, the requirement in (11)
is equivalent to the following equations:

b\ 1 (1-b) 1 B
(b1+b)0_ (lerbz)o.5‘:’bl‘b2 12)

and

b1+l’]2 b1+b2 0.1

by )Ol—(l bz) ! & 8% +8b1by = 9by +7h, .

(13)

Combining Equations (12) and (13), we get that by = 1
and b, =1, which contradict the requirement that
b1,b, €(0,1). Thus, the equilibrium profile b can-
not exist.

The issue illustrated by this example is that the
Trading Post cannot implement market outcomes
when there exist items priced at zero in the corre-
sponding market equilibrium. Our next theorem
generalizes this observation by identifying the pre-
cise conditions under which the Trading Post mech-
anism has pure Nash equilibria for Leontief valuations,
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depending on whether the corresponding market equi-
librium has prices that are strictly positive or not.

Theorem 9. The Trading Post mechanism with Leontief
waluations and perfect competition has pure Nash equilibria
if and only if the corresponding market equilibrium prices are
all strictly positive. When this happens, the Nash equilib-
rium utilities in Trading Post are unique, and the price of
anarchy is one.

This theorem shows a correspondence between the
pure Nash equilibria of Trading Post and the corre-
sponding market equilibria with respect to the agents’
valuations. We now show that the Trading Post mech-
anism with entrance fee always has a pure Nash
equilibrium for Leontief valuations for any A > 0. The
proof uses an application of Glicksberg’s theorem for
continuous games.

Theorem 10. For instances with Leontief valuations, the
Trading Post mechanism with entrance fee, T P(A), is
guaranteed to have a pure Nash equilibrium for every A > 0.

Proof. Let 7P(A) be the Trading Post game with en-
trance fee A. We first show that a variant of the game,
TP'(A), where the strategy space of each agent i is
restricted as follows, must have a pure Nash equilibrium.
¢ iisforced tobid atleast A on every item j with the
property that v;; > 0.
¢ imust bid zero on every item j for which v;; = 0.

Clearly, the strategy space S; of each agent i is a
nonempty compact convex subset of a Euclidean
space. Moreover, the utility function of each agent is
continuous in x and quasiconcave in the agent’s own
strategy (e.g., Cambini and Martein 2009, chapter 2).
We therefore use the following theorem from Debreu
(1952), Fan (1952), and Glicksberg (1952).

Lemma 3 (Debreu 1952, Fan 1952, Glicksberg 1952).
Consider an n-player strategic form game whose strategy
spaces S; are nonempty compact convex subsets of a Eu-
clidean space. If the payoff functions u; are continuous in s =
(S1,...,54) and quasiconcave in s;, then there exists a pure
strategy Nash equilibrium.

The conditions of Lemma 3 apply, and so, 7P’'(A)
has a pure Nash equilibrium b. Consider now the
Trading Post game with minimum bid A, 7P(A). Note
that the strategy profile b dominates every other strat-
egy in 7 P(A), including those that allow the agents to
bid zero on items of interest to them because such
strategies can only decrease utility. Thus, b is also a
pure Nash equilibrium in 7 P(A), which completes
the proof. O

6.2. Beyond Pure Nash Equilibria
Finally, we show an interesting fact regarding the
mixed Nash equilibria of the Trading Post mechanism.

The set of mixed Nash equilibria of a game is a
generalization of pure Nash equilibria where agents
can use randomization in choosing their strategy, and
unlike pure Nash equilibria, mixed Nash equilibria
are guaranteed to exist in every game induced by the
Trading Post. Although in most games, the set of
mixed Nash equilibria is a strict superset of pure Nash
equilibria, we show that for the games induced by
the Trading Post mechanism, these sets coincide
when no agent is satiated. Details of this result may be
found in the e-companion, where we show the fol-
lowing theorem.

Theorem 11. For instances with additive valuations, every
Nash equilibrium of the corresponding Trading Post game
where no agent is satiated is pure. Further, the result extends
to concave wvaluations if a mild condition of enough com-
petition is satisfied. For markets with Leontief valuations, the
result holds for the Trading Post mechanism with entrance
fee, TP(A), for any A > 0.

One implication of this result is that all the results of
the previous sections, which focus on the quality of
pure Nash equilibria, directly extend to mixed Nash
equilibria where no agent is satiated. Given the low
price of anarchy bounds achieved by the Trading Post
mechanism, one may wonder if this mechanismin fact
has a unique equilibrium. However, we rule this out
through constructions for both additive and Leontief
valuations provided in the e-companion.

7. Related Work
The paper most closely related to our work is that of
Cole et al. (2013), which proposes truthful mecha-
nisms for maximizing the Nash social welfare ob-
jective. One of the truthful mechanisms that they
propose, the Partial Allocation mechanism, guaran-
tees a 2.718 approximation of the optimal NSW for
both linear and Leontief valuations. In fact, the Partial
Allocation mechanism guarantees that every agent
receives a 2.718 approximation of the value that it
would receive in the Nash social welfare-maximizing
allocation. However, in order to ensure truthfulness,
this mechanism is forced to keep some of the goods
unallocated, which makes it impractical for many
settings. Very recent work by Abebe et al. (2020)
showed that this mechanism can be modified to
achieve truthfulness without keeping any goods unal-
located, but this comes at a cost of a superconstant ap-
proximation and a more complicated mechanism.
Complementing this work, our paper analyzes a simple
and well-studied mechanism that allocates everything.
The Trading Post mechanism has been studied
in an extensive body of literature over the years,
sometimes under very different names, such as the
Shapley-Shubik game (Shapley and Shubik 1977),
the Chinese auction (Matros 2007), the proportional
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sharing mechanism (see, e.g., Brams and Taylor 1996
and Feldman et al. 2009), and the Tullock contest in
rent seeking (Buchanan et al. 1980, Moldovanu and
Sela 2001, Fang 2002), the latter being a variant of the
game with a different success probability for items
that nobody bid on. The Trading Post can also be
interpreted as a congestion game (e.g., Georgiou
et al. 2006) or an all-pay auction when the budgets
are intrinsically valuable to the agents. The dynamics
of Trading Post in exchange market settings were
studied in Branzei et al. (2018, 2019).

The Trading Post mechanism is also closely related
to the proportional mechanism that received a lot of
attention in the networking literature, leading to one
of the classic papers on the price of anarchy by Johari
and Tsitsiklis (2004). Just like in our setting, this work
studies a mechanism that asks the agents to bid on a
set of divisible goods and then allocates these goods in
proportion to the bids. However, unlike in our set-
ting, where the budget that the agents are using for
the bids is artificial, the proportional mechanism of
the networking literature uses real monetary bids.
This difference has a crucial impact on the equilib-
rium structure because the agents in the games that
we analyze wish to spend all of their budget (as it has
no value beyond this setting), whereas the agents
facing the proportional mechanism may prefer to
keep their money if the prices are too high.

The question of equilibrium existence also arises in
the proportional mechanism literature, as the games
that it induces may not have pure Nash equilibria
because of discontinuities in the payoff functions of
the agents. To address this issue, Johari and Tsitsiklis
(2004) augment the strategy set of each agent by
allowing them to request a nonzero amount of a good
provided that no other agent wants that good. Feldman
et al. (2009) study the same setting as ours, for ad-
ditive valuations, and resolve the issue of equilibrium
nonexistence by considering only settings where each
item is valued by at least two agents. Very recently,
Plaut (2019) considers an alternative augmentation
of the game to ensure pure Nash equilibrium exis-
tence by allowing nonlinear constraints on the bids
as an alternative to the entrance fee that we consider
in this paper.

Part of the motivation for studying the class of
Leontief valuations is the fact that they are considered
to be natural valuation abstractions for computing
settings where jobs need resources in fixed ratios,
exhibiting extreme complementarity. In a very impactful
paper, Ghodsi et al. (2011) defined the notion of
Dominant Resource Fairness (DRF), which is a gen-
eralization of the egalitarian social welfare to multiple
types of resources. This solution has the advantage

that it can be implemented truthfully for Leontief
valuations. Parkes et al. (2015) assessed DRF in terms
of the resulting efficiency, showing that it performs
poorly. Dolev et al. (2012) proposed an alternate
fairness criterion called Bottleneck-Based Fairness,
which was subsequently showed by Gutman and
Nisan (2012) to be satisfied by the proportionally
fair allocation. Gutman and Nisan (2012) also posed
the study of incentives related to this latter notion as
an interesting open problem. It is worth noting that
Ghodsi et al. (2011) acknowledge that the Fisher
market equilibrium (i.e., the NSW-maximizing allo-
cation) would actually be the preferred fair division
mechanism in their setting and that the main draw-
back of this solution is the fact that it cannot be
implemented truthfully. Our results show that the
Trading Post mechanism can, in fact, approximate
this outcome arbitrarily well, thus shedding new light
on this setting.

Finally, the NSW objective has played a central role
in the literature on fair division of indivisible goods.
This work has used a list of novel algorithmic tech-
niques to show that a constant approximation of this
objective can be computed in polynomial time (Anari
et al. 2017, 2018; Cole et al. 2017; Barman et al. 2018;
Cole and Gkatzelis 2018; Garg et al. 2018, 2020) and
that its optimal allocation is approximately envy free
(Caragiannis etal. 2019b). Also, more recent work has
studied the extent to which approximately maxi-
mizing the NSW can be combined with approximate
envy-freeness properties when some of the items could
be donated (Caragiannis et al. 2019a, Chaudhury
et al. 2020).

8. Discussion and Future Directions

A very natural alternative to the Trading Post mecha-
nism, studied in this paper, is the Fisher market
mechanism, which is a well-studied direct revelation
mechanism. In the Fisher market mechanism, the
agents are asked to directly report their valuations to
the mechanism, and then, the mechanism computes
the Fisher market equilibrium based on these valu-
ations. Prior work on this mechanism has revealed
thattheagents may gain by strategically misreporting
their valuations. Adsul et al. (2010) studied the agents’
incentives and proved the existence and structural
properties of Nash equilibria for this mechanism.
Extending this work, Chen et al. (2011, 2012) proved
bounds on the extent to which an agent can gain by
misreporting for various classes of valuation func-
tions, including additive and Leontief. Branzei et al.
(2014) showed bounds for the price of anarchy of this
mechanism with respect to the social welfare objec-
tive, and Cole and Tao (2016) studied large markets
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under mild randomness and showed that this price
of anarchy converges to one. The price of anarchy
of the Fisher market mechanism with respect to the
Nash social welfare was studied in Branzei et al. (2017),
where it was shown to be at most two for the case
of additive valuations but equal to n for Leon-
tief valuations.

The most compelling difference between the Fisher
market mechanism and the Trading Post mechanism
is for Leontief valuations, where Trading Post approxi-
mates the NSW arbitrarily close while still guaran-
teeing fair outcomes to each individual. A possi-
ble justification for the significantly stronger Leontief
bounds is that the Trading Post mechanism limits the
extent to which an agent can affect the outcome, thus
also limiting the extent to which things can go awry.
Specifically, when an agent deviates in the Trading
Post mechanism, this deviation has no effect on the
way that the other agents are spending their budget.
On the other hand, an agent’s unilateral deviation in
the Fisher market mechanism can lead to a market
equilibrium where the other agents’ spending and
allocation have changed significantly. In addition to
this, in the Fisher market mechanism an agent can
affect the price of an item even if the agent does not
end up spending on that item in the final outcome.
This is in contrast to the Trading Post mechanism
where an agent can affect only the prices of the items
that this agent is spending on, so the agents are forced
to “put their money where their mouth is.”

In terms of problems that our paperleaves open, the
most obvious one would be to close the gap between
the price of anarchy upper and lower bounds for
concave valuations. Also, as we show in Section 6.2,
our price of anarchy upper bounds also applies to
mixed Nash equilibria for instances where no agent is
satiated, but it would be interesting to understand the
extent to which lower-quality mixed Nash equilibria
can arise in the presence of satiated agents. Another
open problem would be to provide bounds for the
price of stability (PoS) of the Trading Post mechanism
(i.e., theratio of the optimal NSW over the NSW in the
best (instead of worst) equilibrium). For Leontief
valuations, our PoA upper bound can be arbitrarily
close to one, thus resolving this question, but for
general concave valuations, we are not aware of any
known lower bounds for the PoS.
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