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Abstract

Efficient and truthful mechanisms to price resources on servers/machines have been the
subject of much work in recent years due to the importance of the cloud market. This paper
considers revenue maximization in the online stochastic setting with non-preemptive jobs
and a unit capacity server. One agent/job arrives at every time step, with parameters drawn
from the underlying distribution. We design a posted-price mechanism which can be effi-
ciently computed and is revenue-optimal in expectation and in retrospect, up to additive
error. The prices are posted prior to learning the agent’s type, and the computed pricing
scheme is deterministic, depending only on the length of the allotted time interval and on
the earliest time the server is available. We also prove that the proposed pricing strategy is
robust to imprecise knowledge of the job distribution and that a distribution learned from
polynomially many samples is sufficient to obtain a near-optimal truthful pricing strategy.
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1 Introduction

Designing mechanisms for a desired outcome with strategic and selfish agents is an
extensively studied problem in economics, with classic work by Myerson [30], and Vick-
rey—Clarke—Groves [37], for truthful mechanisms. The advent of online interaction and
e-commerce has added an efficiency constraint on the mechanisms, going so far as to pri-
oritize computational efficiency over classical objectives: e.g., choosing simple approxi-
mate mechanisms when optimal mechanisms are computationally difficult, or impossible.
Beginning with Nisan and Ronen [31], the theoretical computer science community has
contributed greatly to the field, in both fundamental problems and specific applications.
These include designing truthful mechanisms for the maximization of welfare and reve-
nue, and has also focused on learning distributions of agent types, menu complexity, and
dynamic mechanisms (e.g., [10, 13]).

We consider this question in the setting of selling computational resources on remote
servers or machines (cf. [2, 36]). This is arguably one of the fastest growing markets on
the Internet. The goods (resources) are assigned non-preemptively and thus have strong
complementarities. Furthermore, since the supply (server capacity) is limited, any mecha-
nism trades immediate revenue for future supply. Finally, mechanisms must be incentive-
compatible, as non-truthful, strategic, behaviour from the agents can skew the performance
of a mechanism from its theoretical guarantees. This leads us to the following question:

Can we design an efficient, truthful, and revenue-maximizing mechanism to sell time-
slots non-preemptively on a single server?

We design a posted-price mechanism which maximizes the expected revenue up to addi-
tive error, for agents/buyers arriving online, with parameters of value, length and maxi-
mum delay drawn from the underlying distribution. Three key aspects distinguish our prob-
lem from standard online scheduling:

1. Inour setting, as time progresses, the server clears up, allowing longer jobs to be sched-
uled in the future if no smaller jobs are scheduled until then.

2. Scheduling the jobs is not exclusively to the discretion of the mechanism designer, but
must also be desired by the job itself, while also producing sufficient revenue.

3. As the mechanism designer, we do not have access to job parameters in an incentive-
compatible way before deciding on a posted price menu.

These three features lie at the core of the difficulty of our problem. Our focus will be on
devising online mechanisms in the Bayesian setting.

In our online model, time on the server is discrete. At every time step, an agent arrives
at the server with a value V, length requirement L, and maximum delay D. These param-
eters are drawn from a common distribution, i.i.d. across jobs. The job wishes to be sched-
uled for at least L consecutive time slots, no more than D time units after its arrival, and
wishes to pay no more than V. Jobs are assumed to be rational agents having quasi-linear
utility in money, therefore they prefer the least-price interval within their constraints. The
mechanism designer never learns the parameters of the job. Instead, she posts a price menu
of (length, price) pairs, and the minimum available delay s. The job accepts to be sched-
uled as long as D > s, and there is some (length, price) pair in the menu of length at least
L and price at most V. We note that the pricing scheme can be dynamic, changing through
time. If, at time epoch ¢, an agent chooses option (7, 7,), then she pays 7, and her job will
be allocated to the interval [# + 5,7+ s + £]. She will choose the option which minimizes
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7. Throughout this paper, we assume that the random variables L, V, D are discrete and
have finite support, unless specified differently.

1.1 Summary of our results

1. We model the problem of finding a revenue maximizing pricing strategy as a Markov
Decision Process (MDP). Given a price menu (length, price) and a state (minimum
available delay) s at time ¢, the probability of transition to any other state at time ¢ + 11is
obtained from the distribution of the job’s parameters. The revenue maximizing pric-
ing strategy can be efficiently computed via backwards induction. We also present an
approximation scheme in the case where V is a continuous random variable.

2. We prove that the optimal pricing strategy is monotone in length under a distributional
assumption, which we show is satisfied when the jobs’ valuation follows a log-concave
distribution, parametrized by length. Recall that log-concave distributions are exactly
those which have a monotone hazard rate. This implies the existence of an optimal
pricing mechanism which ensures truthfulness in the finite horizon setting when the
distributions are known. This is extended to the infinite discounted horizon setting,
incurring a small additive error. We also demonstrate good concentration bounds of the
revenue obtained by the optimal truthful posted price strategy.

3. We finally investigate the robustness of the pricing strategy. We first show that a near
optimal solution is still obtained when the distribution is known with a certain degree of
uncertainty. We complement this result by analyzing the performances of the proposed
pricing strategy when the distribution is only known from samples collected through the
observations of the agents’ decisions. We provide a truthful posted price e-approximate
mechanism if the number of samples is polynomial in 1 /¢ and the size of the support of
the distribution.

1.2 Related work

A good starting point for a review of the revenue maximization in the cloud market litera-
ture is given by the paper of Kash and Key [21]. It offers a thorough discussion of the chal-
lenges and different dimensions of complexity of the problem, with pointers to the related
literature. For comparison, our model falls within their unidimensional offering framework,
since each job is only interested in getting allocated in its entirety paying a price as low as
possible.

Probably the work closest to ours is Kash et al. [22]. There the authors studied the
steady state of a stochastic process in which i.i.d. jobs arrive at discrete time steps, each
job is characterized by a length and a value-per-unit that are drawn independently from two
known distributions. The main result of the paper is the design of a price-per-unit scheme
that approximates within a multiplicative factor of 2 the revenue (or the welfare) extracted
by the best price menu. This work has three main differences from ours: first, their focus
is on the simple vs optimal side of the problem (i.e., fixed price-per-unit vs optimal price
menus), second we consider the additional constraint given by the deadlines and finally
in our model the jobs are drawn from a possibly correlated distribution (a feature which
increases the complexity of the pricing problem). Kash et al. [22] also showed how to gen-
eralize their results for multiple servers, this is also an interesting direction for further work
in our model.
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Another line of work studies the game-theoretical problem of adopting pricing strate-
gies when multiple server providers (or different services within the same provider) com-
pete for the jobs. Dierks and Seuken [11] investigated the interplay between two types of
services offered by server providers; i.e., the main market where computing time is sold
at a fixed price and the spot market where the resources left unused by the main market
are priced dynamically. The same authors studied in [12] the competition between fixed
price-per-unit strategies with respect to type-dependent ones, characterizing the Bayesian
Nash Equilibria of a market where different server providers use the two strategies. Kash
et al. [23] considered the problem faced by a server provider that is willing to periodically
adopt new technologies and has to devise a pricing strategy that takes into consideration
the switching cost of its clients from the old contract to the new ones.

We also mention two more applied papers: Kilcioglu et al. [24] addressed the problem
of computing a price menu for revenue maximization with different machines and offered
extensive numerical experiments. Babaioff et al. [2] proposed a system architecture for
scheduling and pricing in cloud computing.

Revenue maximization is not the only objective considered in a mechanism design per-
spective of the cloud pricing problem. Azar et al. [1] provided a mechanism for preemp-
tive scheduling with deadlines maximizing the total value of completed jobs (i.e., welfare).
Chawla et al. [8] studied “time-of-use” pricing mechanisms, to match demand to supply
with deadlines and online arrivals. They assume large-capacity servers, while seeking to
maximize welfare in a setting in which the jobs arriving over time are not i.i.d.

Another possible objective for the design of incentive-compatible scheduling mecha-
nisms is the total value of completed jobs, which have release times and deadlines. Porter
[32] solved this problem in an online setting, while Carroll et al. [6] did the same in the
offline setting for parallel machines, and Strole et al. [35] in the online competitive set-
ting with uncertain supply. Jain et al. [20] focused on social welfare maximization for non-
preemptive scheduling on multiple servers and obtained a constant competitive ratio as the
number of servers increases.

Note that revenue maximization is arguably a harder objective than welfare or total allo-
cated time. As an example, consider a simplified instance where the jobs have all unitary
length and the mechanism has to learn the underlying distribution by posting prices (as we
do in Sect. 4.2); the welfare maximizing strategy ignores the learning problem and always
accepts the arriving job, e.g., setting the price to 0, while a revenue maximizing mecha-
nism would need to identify Myerson’s reserve value. Although our focus is on a different
objective, we nevertheless share many modelling assumptions with the welfare maximiza-
tion papers: we also consider posted prices, stochastic jobs and assume each job to be char-
acterized by length, value, arrival time and internal deadline.

Posted price mechanisms (PPM) have been introduced by Sandholm et al. [34] and have
gained attention due to their simplicity, robustness to collusion, and their ease of imple-
mentation in practice. One of the first theoretical results concerning PPM’s is an asymp-
totic comparison to classical single-parameter mechanisms by Blumrosen et al. [5]. They
were later studied by Chawla et al. [9] for the objective of revenue maximization, and
further strengthened by Kleinberg et al. [25] and Diitting et al. [15]. Feldman et al. [16]
showed that sequential PPM’s can %—approximate social welfare for XOS valuation func-
tions, if the price for an item is equal to the expected contribution of the item to the social
welfare. Recently, Diitting et al. showed how simple PPMs outperform the best known
complex mechanisms in double auctions [14].

The intrinsic truthfulness of posted price mechanisms and the specific structure of the
feedback received by the mechanism (i.e., the trade happens or not given the posted prices)
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have been investigated extensively in the online learning community, starting from the
seminal work of Kleinberg and Leighton [26]. We refer the interested reader to the survey
by den Boer [13] and the more recent paper by Cesa-Bianchi et al. [7] for additional related
work. Notice that this type of feedback problems are similar to the ones we encounter in
our problem: posting a price menu and observing that a job of length £ gets scheduled for
price p let us infer that the value of the sampled job is larger than p, but does not tell us its
exact value.

The systematic study of sample complexity of revenue maximizing auctions has been
initiated in the seminal work of Morgenstern and Roughgarden [28]. In a follow-up paper
from the same authors, simple auctions have also been analyzed [29]. Sample complex-
ity for revenue maximization has recently been studied by Cole et al. [10] showing that
polynomially many samples suffice to obtain near optimal Bayesian auction mechanisms.
A generalization to multidimensional auctions has recently appeared in [18]; we also men-
tion [19] that exhibits tight bounds on the sample complexity of many problems related to
mechanism design.

1.3 Structure of the paper

In Sect. 2 we describe the problem as a Markov Decision Process. In Sect. 3 we present
an efficient algorithm for computing optimal policies for the finite time horizon given full
knowledge of the distribution of the jobs’ parameters. This is then extended to other set-
tings in Sects. 3.3 and 3.4.

In Sect. 3.5, we demonstrate that the optimal policy is monotone and in Sect. 3.6 we
describe the concentration bounds on the revenue of a pricing policy. Sections 4.1 and 4.2
give the learning algorithm and error bounds for computing the pricing policies with only
(partial) sample access to the job distribution.

Finally, Sects. 4.3 and 5 are devoted to describing and summarizing the achieved results
and future directions of research.

2 Model

Notation In what follows, the variables ¢, Z or L, v or V, and d or D are reserved for describ-
ing the parameters of a job that wishes to be scheduled. Respectively, they represent the
arrival time ¢, required length £, value v, and maximum allowed delay d. The lowercase
variables represent fixed values, whereas the uppercase represent random variables. Script-
uppercase letters £, V, D represent the supports of the distributions on L, V, and D, respec-
tively; and the bold-uppercase letters L, V, D represent the maximum values in these respec-
tive sets. Finally, x is reserved for pricing policy, whereas p is reserved for probabilities.

Single-machine, non-preemptive, job scheduling A sequence of random jobs wish to be
scheduled on a server non-preemptively, for a sufficiently low price, within a time con-
straint. Formally, at every time step ¢, a single job with parameters (L, V, D) is drawn from
an underlying distribution Q over the space £ XV X D. It wishes to be scheduled for a
price # < V in an interval [a, b] such thata —t < Dand b —a > L.

Price menus Our goal is to design a take-it-or-leave-it, posted-price mechanism which
maximizes the expected revenue. At each time period, the mechanism posts a “price menu”
that specifies L prices (i.e., one for each one of the L possible lengths of the next job) and an
earliest-available-time s,, indicating that times ¢ through 4+ s, — 1 have already been scheduled
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(s, will henceforth be referred to as the state of the server). We let S := {0, ..., D + L} to be
the set of all possible states. The state of the server at a given time ¢ is naturally a random vari-
able which depends on the earlier jobs and on the adopted policy 7. As before, we will denote
with s or s, the fixed value, and with S or S, the corresponding random variable. The price
menu will be given by z, a function of the current time, the state of the server and the length
of the job arriving. So if we are at time ¢ and the server is in state s,, then the prices are set
according to 7,(s,, -) : £ — R. The reported pair (z,(s,, -), 5,) is computed by the scheduler’s
strategy, which we determine in this paper. Once this is posted, a job (L, V, D) is then sampled
i.i.d. from the underlying distribution Q.

IfV > n,(s,,¢)forsomeZ > L, and D > s,, then the job accepts the schedule, and reports
the length £ > L which minimizes price. Otherwise, the job reports # = (0 and is not sched-
uled. To guarantee truthfulness, it suffices to have x,(s, -) monotonically non-decreasing for
every state s: the agent would not want a longer interval since it costs more, and would not
want one of the shorter intervals since they cannot run the job. It should be clear that the
mechanism’s strategy is to always report monotone nondecreasing prices, as a decrease in the
price menu will only cause more utilization of the server, without accruing more revenue. The
main technical challenge in this paper, then, is to show that under some assumptions, the opti-
mal strategy is monotone nondecreasing, and efficiently computable.

Revenue objective Revenue can be measured in either a finite or an infinite discounted hori-
zon. In the finite case, only 7 time periods occur and we seek to maximize the expected sum
of revenue over these periods. Recall that the job parameters are drawn independently at ran-
dom from the underlying distribution, so the scheduler can only base the “price menu” on the
state of the system and the current time. Thus, the only realistic strategy is to fix a state-and-
time-dependent pricing policy 7 : [TIX SX L = R, “x,(s,£)”, where[T] := {0, 1, ..., T}.

Let XY= {&, :={,L,,V,D)), X, :=(2,L,,V,,D,), &;, ... } be the random sequence
of jobs arriving, sampled i.i.d. from the underlying distribution. Let 7 : [T] X SX £ — R be
the pricing policy. We denote as Rev,(X, ) the revenue earned at time ¢ with policy z and
sequence X. If X, does not buy, then Rev, (X, 7) = 0, and otherwise, it is equal to «,(s,, L,). We
denote as CmlRev; the total (cumulative) revenue earned over the T periods. Thus,

CmiRev (X, 7) 1= ¥ Rev,(X, 7). (1)

The expected-future-revenue, given a current time and server state, is denoted with:
T
UZ(9) = Eq | X7, Revi(m, XS, = s], @)

The subscript of the expectation X, denotes that we consider only jobs arriving from time
t onward. Our objective is to find the pricing policy # which maximizes Ug (s = 0). Call this
#*, and denote the expected revenue under z* as U; (-).

In the infinite horizon setting, the future revenue is discounted at an exponentially decay-
ing rate. Formally, revenue at time 7 is worth a y’ fraction of revenue at time 0, for some fixed
y < 1. More precisely, we seek to maximize the y-discounted future revenue,

CmiRev (X, ) 1= Z y'Rev (X, 1)
=0

over the choice of 7 : NXSX L — R.
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3 Bayes-optimal strategies for sever pricing

In this section, we seek to compute an optimal monotone pricing policy
x : [T1XSX L — R which maximizes revenue in expectation over T jobs sampled i.i.d.
from an underlying known distribution Q. We also extend this result in two directions:
in the infinite-horizon discounted case in Sect. 3.3 and for jobs whose value is distrib-
uted continuously in Sect. 3.4.

We first model the problem of maximizing the revenue in online server pricing as a
Markov Decision Process that admits an efficiently computable, optimal pricing strat-
egy. The main contribution of this section is to show that, for a natural assumption
on the distribution Q, the optimal policy is monotone. We recall that this allows us to
derive truthful Bayes-optimal mechanisms.

3.1 Markov Decision Processes

The theory of Markov Decision Processes is well suited to model our problem. A
Markov Decision Process is, in its essence, a Markov Chain whose transition probabili-
ties depend on the action chosen at each state, and where to each transition is assigned a
reward. A policy is then a function 7 mapping states to actions. In our setting, the states
of the system are the ones outlined in Sect. 2 (i.e., the possible delays before the earliest
available time on the server), and the actions are the “price menus.” At every state s, a
job arrives, and according to its random features and the prices offered, is scheduled.
The next state is either max{s — 1,0}, if the job does not choose to be scheduled (since
we have moved forward in time), or s+ — 1, if a job of length £ is scheduled, since
we have occupied £ more units. The transition probabilities depend on the distribution
of job lengths, and the probability that a job accepts to be scheduled given the pricing
policy (action). Formally,

_ o _[PL=tV,2a(5.0).D,>5] if£>1
Pls,y =s,+¢ —11= { 1= 0 Plsy = 5, + K] H/=0 3)

(Transitions to state “—1” should be read as transitions to state “0”.) Note that a job of
length £ may choose to purchase an interval of length greater than ¢, which would render
these transition probabilities incorrect. However, this may only happen if the larger inter-
val is more affordable. It is therefore in the scheduler’s interest to guarantee that z,(s, -)
in monotone non-decreasing in £, which incentivizes truthfulness, since this increases the
amount of server-time available, without affecting revenue. Thus we restrict ourselves to
this case.

It remains to define the transition rewards that correspond to the revenue earned. For-
mally, a transition from state s, to s, + £ — 1 incurs a reward of r,(s, Z), whereas a tran-
sition from state s, to s, — 1 incurs no reward. We wish to compute a policy # in such a
way as to maximize the expected cumulative revenue, given as the (possibly discounted)
sum of all transition rewards in expectation.

Example 1 Consider the following situation, where the server is in state s, = 1 and the job
distribution is as follows:
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(1,1, 3) with probability 0.3
(L, V,,D,) =4 (2,4,3) with probability 0.5
(2,2,4) with probability 0.2

The following price menu is then posted: length 2 jobs cost 3, while unitary length jobs
have cost 1. If the job arriving is (1, 1, 3), then the state of the server at time ¢ + 1 is still 1
(one job completed, one job of length 1 scheduled) and the revenue extracted corresponds
to the first entry of the price menu, i.e., 1. In the second case, if the job has parameters
(2, 4, 3), then the server transitions to state 2, since the length 2 job is accepted at a price
of 3. In the last case, the price requested by the server is too large, the job does not get allo-
cated and the system goes to state 0 without earning any money.

Algorithm 1: Backwards induction algorithm (BIA) as in [33]
Data: MDP with states S, actions A, and rewards R; and a horizon T
Result: Optimal policy 7* : [T] x § — A.
Initialize UF(s) < 0 for all s € S.
for ¢t from T — 1 to 0, descending do
for s € S do

Ui (s) + %aj({ ZE;SP[SHI = 5'|s,a] (Reward(s — s'|a) + Utﬁrl(s’))}

i (8) argmax{ Z P[si41 = s'|s, a] (Reward(s — s'|a) + Utﬂrl(s'))}
acA
s'eS

return 7w

3.2 Solving for the optimal policy with distributional knowledge

In this section, we present a modified MDP whose optimal policies can be efficiently com-
puted, and show that these policies are optimal for the original MDP. For now, we assume
that the mechanism designer is given access to the underlying distribution Q while, in the
following sections, we show how it is possible to learn from sample enough information on
0 to design a good strategy.

Since the problem has been modelled as a Markov Decision Process (MDP), we may
rely on the wealth of literature available on MDP solutions, in particular, we can leverage
the backwards induction algorithm (BIA) defined in Section 4.5 of the book by Putter-
man [33], included as Algorithm 1. However, we still need to ensure that this standard
algorithm (1) runs efficiently, and (2) returns a monotone pricing policy.

Apart from the theoretical machinery of MDP and BIA, the key feature is that past
prices do not contribute to future revenue insofar as the current state remains unchanged.
Thus, to compute optimal current prices, we need only know the current state and expected
future revenue. The idea is then to compute the optimal time-dependent policy and the
incurred expected reward, for shorter horizons, then use this to recursively compute the
optimal policies for longer horizons.
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The total runtime of the BIA is O(T|S]||.A|), where S and A denote the action and
state spaces, respectively. Note that the dependence on T is unavoidable, since any opti-
mal policy must be time-dependent. Recall that L and D denote the maximum values that
L and D can take, respectively, and V is the set of possible values that V can take. Denote
K :=max{D + L, |V|}. If we define the action space naively, we have |S| =D + L <K,
and | A| < KL, Thus, a naive definition of the MDP bounds the runtime at K°®), which
is far from efficient. Requiring monotonocity only affects lower-order terms.

Algorithm 2: Optimal policy in finite horizon

Data: Distribution @, L, V, S and horizon T

Result: Optimal policy 7* : [T] x S x L — R.

Initialize U7 (s) < 0 for all s € S, and up(s,£) < 0 foralls € S, ¢ € L.
for ¢t from T — 1 to 0, descending do

for s € S do
for ¢ € L do
PSY PV > p, D > s|L ={]

ui (5,) = max {]P’f;z (A Ufpa(s 4+ £=1) = Ufyy(s — 1)) + Uy y (s — 1)}
(s, 4) arglerl\]ax {]PZ*[‘ (U (s +0—=1) = Uiy (s — 1)) + Uy (s — 1)}
o

Uj(s) < Z[g‘IF’[L = Luj (s, ¥)
return 7*

Modified MDP To avoid this exponential dependence, we can be a little more clever
about the definition of the state space: instead of states being the possible server states,
we define our state space as possible (state, length) pairs. Thus, when the MDP is in
state (s, ), the server is in state s, and a job of length # has been sampled from the dis-
tribution. Our action space then is simply the possible values of z,(s, ¢), and the transi-
tion probabilities and rewards become:

PV > z,(5,¢),D>s|[L=CIP[L' =¢'] ifs =s+¢-1
Pl(s,2) = (5", )|al =3 PV < rm,(s,)or D < s|IL=FIP[L' =¢'] if s =5—1
0 otherwise
“4)

7 (s,0) ifs =s+¢ -1

R((s,2) = (s',¢)|x) = { 0 otherwise ©)

So, we get |S| = (D +1L) L <K>? |A| <K and therefore the runtime of the algorithm
becomes O(TK?). A full description of the procedure is given in Algorithm 2.

It remains to prove that it is correct. We begin by claiming that these two MDPs are
equivalent in the following sense:

Lemma 1 For any fixed pricing policyzn : [TI X SX L — R,
Ur(s) = E [uf(s,L)| VI €T, s €S,

where the U7 (-)’s are as in (2), and the u} (-, -)’s are from the modified MDP.
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Proof We prove this result by induction on ¢; the statement is trivially true for t =T
since in that case everything is zero, so we focus on what happens for a generic r < 7,
knowing that E [ ur (s, L’)] =Ur  (5) for all s. For the fixed policy z, we define
piy =P[V > n,(s £),D > s|L = £]. Then,

E [uf(s,D)] = Y PIL=¢1u(s,¢)

el

X PIL = 1505, O], + 0, E [ s+ £ = 1,1
CeL

+0 =P Ey [, 6= 1.10])

X PIL = #1505, O], +P{Uy 5+ £ = D)
cel

+(L=p{ Uz (5= 1)

E v[Rev, (7, X) + U, (S,41 (S D) | S, = 5]
2 UF(s).

Note that in the second equality we just expanded the uf (s, £) term conditioning on the
transition at time ¢, while the following equality follows from the inductive hypothesis. The
last two inequalities then follow from the definitions in Egs. (1) and (2). O

This lemma, however, does not suffice on its own, as agents may behave strategically
by overreporting their length, if the prices are not increasing. This would alter the transi-
tion probabilities, breaking the analysis. In Sect. 3.5 it is proved that, under some natural
assumption on the probability distribution, this can not happen: the optimal policy for non-
strategic agents is monotone, and therefore truthful.

3.3 Infinite time horizon

Algorithm 2 does not allow us to immediately compute a solution for the infinite dis-
counted horizon case. However, we can exploit the discounting factor on the revenues to
obtain an approximation of the infinite optimum: it suffices to consider the truncated prob-
lem up to a certain sufficiently large 7 and solve it optimally using the algorithm presented
above. Formally, we have the following Lemma.

Lemma 2 For any € > 0 and T > log, (e(1 —y)/V), let = be the pricing policy computed
by the finite-horizon algorithm up to time T. Let @ be the time-independent pricing policy
such that 7(-,-) 1= my(-, ). Then the expected performance of the optimal policy in the infi-
nite horizon is within an additive € of expected performance of 7.

Proof Note that in order to compute policy 7 it is straightforward to add the discount factor
to Algorithm 2. Let z* be the Bayes-optimal infinite-horizon strategy — which is known to
be time-independent — and let z be as in the statement (where we set z,(s, £) = oo for all
t > T). Then, in expectation over time O through 7, pricing as z yields greater revenue than
following z*. Conversely, in expectation over all time, pricing as z* yields greater revenue
than 7. However, after time 7, the maximum possible revenue due to any policy is
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YprV=yl-v. (ﬁ) <e
And so the difference in revenue due to following 7z or z* is at most €, since 7 is sufficiently
large.

It remains to show that 7 performs better than z overall. Let z’ be the policy which
agrees with 7, for all ¢ < i, then equals z,_; for > i. Observe that, z! is optimal in expecta-
tion over the interval [1, T + 1], and is equivalent to = = ¥ for the first step. Therefore, 7!
performs better than z. Similarly, we can argue z'*! performs better than z' over the inter-
val[i, T + i] and equally before, hence performs better overall.

Thus, we have a sequence of policies 7 = a0, 7, 72, ... converging to 7, and whose
expected revenue is monotone nondecreasing along the sequence. Therefore, the expected
revenue due to 7 is greater than that of z, which is an € additive-approximation to the opti-
mal policy. a

Therefore, we have reduced the infinite discounted horizon problem to the finite one.
The discount factor y can be easily inserted in all proofs of the paper where needed without
affecting the results. We remark that this truncation procedure is analogous to the classical
value iteration technique [33].

3.4 Approximation algorithm for continuously supported values

Similarly to what we have done in the previous section, we analyse how to generalize Algo-
rithm 2. Note that it assumes that the value of the jobs (V) is discretely supported, and the
running time depends on |V]. In this section, we analyze the error incurred by discretizing
the space of possible values and then computing the optimal policy.

Let n > 0 be some desired small grid size, and suppose we only allow ourselves to set
prices which are multiples of #. We claim that this incurs a small loss to the total revenue.
It implies that the results for the finite and infinite discounted problem can be applied also
in this case, paying a small additive error term.

Recall that p?(u) :=P[V > u,D > s|L = £],U(s) = E  [u(s,L)], and

iy (s, ) 2= max [p{ () (4 + Uy, s+ € = D) + (1 =pL (), (s = D]

Similarly, we can define U *n(s) and u} (s ), restricting the maximum to choosing g from
multiples of #. In the following we use n - Z to refer at the grid of integer multiples of #.

Lemma 3 The following inequality holds for all s and t:
U (s) = Uy, (9] < (T = 0.

Proof We show this Lemma by induction on the value of ¢, decreasing. To simplify the
notation, define for all .

A, = max |U(s) — U;fﬂ(s)l.
For t =T + 1 the claimed inequality follows trivially, since 4;,; = 0. We are left with

bounding inductively the value of 4,. By the usual trick of conditioning with respect to the
outcome of the transition at time ¢ and some algebraic manipulation, we get that
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uin(s, £)
= max [P/ o)1 + ULy (54 € = D) + (1 =pL DU, (5= D)
> max [pf(ﬂ)(ﬂ+U*1(S+f D—4,)+ (6)

(=Pl (5= 1) = 4]
4y, + max Pl (u+ Ul s+ =1)=Ul (s— 1) + U, (s = 1)
Now, let x* be the optimizer of this right hand side over R (where the value would attain

uf(s,£)), and fi be u* rounded down to the nearest multiple of 5. Then, since pf (+) is
nonincreasing,

LA+ Ul s+ -1 =U, (s— 1)+ U’ (s— 1)
2P (W) (W =+ U s+ =1 = Ul (s= D)+ U}, (s = 1) @
=u(s,) —n-pl (")
Thus combining equations (6) and (7), we get

uin(s,f) < ui(s,0) < u;‘;’(s,f)+;1+4\t+l

From which we conclude, by taking the expectation over # and using the inductive assump-
tion, that A, < (T — 1), as desired. a

Corollary 1 Let U*(-) and U, () be defined as above, but for the infinite horizon dis-
counted, then |U*(s) — U* (s)| <n/(1—y)Vs.

Proof As shown in the previous section, it suffices to perform the analysis in the finite hori-
zon, while taking the discount factor into account, then take the limit as 7 — oo. The same
calculations as above gives

ufﬂ(s, 7)
> —A.; + max Pl (u+rUr (s+¢ = 1) —yUs (s = 1) +yUs (s = D]
t+l(s f) ﬂ_yAHl

Summing the A’s and taking T — oo, we get uzo’n(s, £) > u*(s,) —n/(l —y) as desired.
O

3.5 Monotonicity of the optimal pricing policies

Recall that the solution of the more efficient MDP formulation is only correct if we show
that it is always monotone without considering the strategic behaviour of agents, ensuring
incentive compatibility of the optimum.

An optimal monotone strategy cannot be obtained for all distributions on L, V, and
D. As an example, for any distribution where a job’s value is a deterministic function
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of their length, the optimal policy is to price discriminate by length. If this function
is not monotone, the optimum won’t be either. To this end, we introduce the following
assumption, which we will discuss below, and which will imply monotonicity of the
pricing policy.

PV’ .D2s|L=(] -

Assumption 1 The quantity PIVasDaslimt] 1° monotone non-decreasing as £ grows, for any

state s and 0 < pu <y’ fixed.

This is not a natural, or immediately intuitive assumption. However, we will show
that it is satisfied if the valuation of jobs follows a log-concave distribution which is
parametrized by the job’s length, and where the valuation is (informally) positively cor-
related with this length. Log-concave distributions are also commonly referred to as dis-
tributions possessing a monotone hazard rate, and it is common practice in economic
settings to require this property of the agent valuations.

Lemma 4 Let, V; denote the marginal r.v. V conditioned on L =¢ and D > s. Let Z be a
continuously-supported random variable, and p| < p; < -+ € R. If V3 is distributed like
p‘; -Z, [p‘; . ZJ, Z+ p‘;, or [Z + p‘;J, then Assumption 1 is satisfied if Z is log-concave, or if
the p’s are independent of €.

A discussion of log-concave random variables and a proof of this fact is given in
“Appendix”. Many standard (discrete) distributions are (discrete) log-concave random
variables, including uniform, Gaussian, logistic, exponential, Poisson, binomial, etc.
These can be proved to be log-concave from the discussion in “Appendix”. In the above,
the p terms represent a notion of spread or shifting, parametrized by the length, indicat-
ing some amount of positive correlation.

It remains to show the price monotonicity under the above assumption. First, we
begin with the following, which holds for arbitrary distributions.

Lemma 5 Let U7 (s) be the expected future revenue earned starting at time t in state s, for
the optimal policy computed by Algorithm 2. Then the function s — Uj(s) is monotone
non-increasing in s for any t fixed.

Proof The proof is by induction on decreasing time. At time ¢ = T, there is no future rev-
enue and U3(s) = 0, so the inductive claim follows trivially. Suppose now that the induc-
tive claim holds at time 7 + 1. It suffices to show that this holds for each ] (s, £), since Ui (s)
is simply their expectation. Let «;" be the optimal pricing policy computed for the time ¢ by
the Algorithm 2. Since the function u — P[V > u and &], for any event &, is left-continu-
ous in the variable y, we may define, for everyZ € Land s € S,

uoi=max{u PV uD>sIL=¢] > PV2a(s+1,6),D>s+1|L=7¢]}

We must have ﬂ’Zﬂf(s+1,f), as u=m(s+1,7) is in the set. Now, letting
p:=PlV2zni(s+1,0),D>s+ 1|L = ¢], we have
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W+ 1,0 =p -z’ (s+1,0)+p- U, (s+ &)+ (1 =-pU;, (s)
<pris+1,0)+p Ul s+ -+ -pU;, (s—1) (by induction)
<p (FGHLO+UL+E = D= U= D) + U, 6=1)
+
<PV>u,D>s]- (,4; U (s+E - D)= U, (s — 1)) U (s 1)
: +

<ul(s, ) (subopt. price),
where (x), := max{x,0}. The first inequality holds by the induction hypothesis, the sec-
ond is by definition of (-),, the third by the definition of ;4; , and in the last, from the fact
that ;4; is a (possibly) suboptimal pricing policy for the state s at time ¢. Note that this last

inequality requires that the 0 value be feasible in the max, which it is, by setting ' arbitrar-
ily large. O

This lemma ensures that overselling time on the server can only hurt the mechanism.
This allows us to conclude.

Lemma 6 If the distribution on job parameters satisfies Assumption 1, then for all ¢, s,t,
we have rf (s, ) < m}(s, £ + 1).

Proof Let pf(ﬂ) :=P[V > u,D>s|L="7],fixs,t,and 7, and let u, be equal to the opti-
mal price 7} (s, £). Observe that y, maximizes the expression

Prw(u+Ul, s+ -1)=U\ (s= D)+ U (s—1)
For simplicity, let 4, := U}, (s + ¢ — 1) = U7, (s — 1), and so for any u # p,

0 <pl(up)(Ho+4,) =Pl () (1 + 4,)

= (P i) = 2L ) (ko + A7) +2{ G0 (g — 1)

Note that, as discussed in the proof of the previous lemma, u, + 4, > 0, as otherwise it
would be beneficial to set z}(s,Z) « oo. The above inequality is then equivalent to

Pl () = p% (ug) P Il AN J 4] S1_ HoH
pL(w) Ho + A, L () Ho + 4,

We wish to show that, if 4 < y, then as ¢ increases, the above inequality still holds. This
would imply that the price yy =: 75(s, ¢) gives better return than u for jobs of length £ + 1,
implying that the optimal price must be at least 7} (s, £), which is our desired goal.

Now, by assumption 1, the left-hand side is non-decreasing in £, so it remains to show
that the right-hand-side is non-increasing in #. The only changing term is 4,, which by
Lemma 5, is non-increasing in #. Since it is in the denominator of a subtracted, non-nega-
tive term, we have our desired result. O

So, putting together Lemma 6 with the work done in the previous sections, we have
the following theorem.

Theorem 1 The online server pricing problem admits an optimal monotone pricing strat-
egy when the variables L, V, and D satisfy Assumption 1. In addition,
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1. In the finite horizon setting, when V is finitely supported, an exact optimum can be
computed in time O(TIK?).

2. In the infinite horizon setting, when 'V is finitely supported, for all € > 0, an e-additive-
approximate policy can be computed in time

3 e(1-y) K3 \Y
O<K log’( v >> SO(I_—rln(su—y)))

3. In the finite horizon setting, when V is continuously supported, for all n > 0, an nT
-additive-approximate policy can be computed in time O(TK?V /).

3.6 Concentration bounds on revenue for online scheduling

In this section, we show that the revenue of arbitrary policies concentrates around their
mean. In particular it holds true for the optimal or approximately optimal strategies
described above. This will also allow us to argue later that, if we have an estimate Q of
0, then execute Algorithm 2 given the distribution 0, then the output policy will perform
well with respect to Q, both in expectation, and with high probability. To show this concen-
tration, we consider the Doob or exposure martingale of the cumulative revenue function
introduced in Sect. 2. Define

R := E [CmlRevy(z, X)X, ..., X)] (8)

where the A’s are jobs in the sequence X" and the expected value is taken with respect to
X1, ... X7 Thus, Rg is the expected cumulative revenue, and R’; is the random cumu-
lative revenue. To formally describe this martingale sequence, we introduce and formal-
ize some previous notations. Recall that &, &,, ... is a sequence of jobs sampled i.i.d.
from an underlying distribution Q. Fix a pricing policy z : [T] X Sx £ — R. Note that
the state at time ¢ is a random variable depending on both the (deterministic) pricing pol-
icy and the (random) X, ..., X,_;. We denote it S,(x, X), or S, for short. Formally, sup-
pose X, =(V,,L,D,), then S, (7, X) =S, (x,X) — 1 if either V, < z,(S,,L,) or D, < S,,
and otherwise S, (7, X) = S,(x, X) + L, — 1. Furthermore, let Rev,(z, X) be equal to 0 in
the first case above (the #-th job is not scheduled), and z,(S,, L,) otherwise. Thus, S,(x, X)
and Rev,(rz, &) are functions of the random values X, ..., X, for x fixed. Note that Rev,
implicitly depends on S,. Let X,; 1= (X, 1, X5, ...) and X 1= (A, ... X}). Recalling that
CmiRev, (X, z) = Z,TZI Rev, (X, ), we have

R = Y Rev,(m. X)+ E [zf:m Rev, (7, ) | Sy, (., XS,-)] (9a)
t=0

= (ZLO Rev,(r, Xsr>> + Ui,irl (Si1 (7, X)) (9b)

We wish to show that CmiIRev(X, z) concentrates around its mean. Since Rj is the expected

revenue due to x, and R7. is the (random) revenue observed, it suffices to show |Rj — R7|
is small, which we will do by applying Azuma-Hoeffding inequality (as in, e.g., Theo-
rem 13.4 of [27]) after showing the bounded-differences property.
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Theorem 2 Let X be a finite sequence of T jobs sampled i.i.d. from Q, and let & be any
monotone policy. Then, with probability 1 — 6,

|CmIRevT(X, 7)— E » [CmIRevT(X,zr)H <V.1/2log (%)T

in the finite horizon, while in the infinite horizon discounted,

|CmIRev0°(X, z)— Ey [CmIRevw(X, 7:)]‘ <V- \/2 log (%)/(1 —y2).

In particular, these results hold true for the (approximately) optimal pricing strategies of
Theorem 1.

Proof For the finite horizon, we apply Azuma-Hoeffding inequality to the martingale
RT. We begin by showing the bounded differences property. Note that we do not require
truthful behaviour from the jobs, since taking strategic behaviour into account for a non-
monotone policy is equivalent to modifying the distribution over the jobs and making the
distribution state-dependent, by increasing the length of those jobs who would rather buy a
longer interval. Thus,

Rﬂ-'

t+1

_R;f

= | S Rev,(m 0+ E [ZLM Rev, (7, X) | S, (7. XS,H)]
_ Z;zo Rev, (z, X) — E X, [ZTT:HI Rev,(x, X) | S, (. Xg)“

= (Revm(n, ) —Ey [Rev,, (1, )|S,, (7, XDl <V

where the equalities follow by definition and the properties of conditional expectations,
while the inequality on the bound on the values. With this property, we can apply Azuma-
Hoeffding inequality and get

|CmIRevT(X, 7) = Ey [Cm|RevT(X,n)]| < \/2 log (%)(T + V2,

For the infinite-horizon-discounted, we observe that Eq. (9a) and (9b) becomes

i

RE=Y y'Rev,(m. X)+ E | [Z,T=,‘+] y'Rev,(, X) | S0, (. Xsi)]
=0

and thus we get that |[RF — R” || < y'V. Therefore, with probability 1 — 4,

IR - RZ| < /2108(2/6) T, (0/VP = V- \/21082/8) T2

Thus, taking the limit as 7 — oo, we get that with probability 1 — 6,

CmiRev (X, 7) — E v [CmIRevT(X’, n)]‘ <V- \/2 log (%)/(1 —y2).
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4 Robustness of pricing to approximate distributional knowledge

In this section, we show that results analogous to Theorems 1 and 2 may be obtained even in
the case in which we do not have full knowledge of the distribution Q, but only an estimate Q.
We then show how to obtain a valid Q from samples.

4.1 Robustness of the pricing strategy

Let’s suppose that instead of knowing the exact distribution Q = (D, L, V) of the jobs, we
have only access to some estimate Q = (D, L, V) with the following property, for some £ > 0:
Vs €S, € L and v € Vit holds that

PN

PL=¢,V> >5)—PL=¢V2v,D>s)|<¢ (10)

For the sake of brevity, we abuse notation and denote the condition in (10) as |Q — Ol <e.
Later, we will need to estimate the value P[L = #,~(V > v,D > s)], given Q that is the
probability that the job has length #, but either cannot afford price v, or cannot be sched-
uled s slots in the future. This is equal to P[L =] - P[L =7,V >v,D > s].

The left-hand term is equal to P[L = #,V > 0,D > 0], and so we have access to both terms.
The estimation error is additive, so the deviation is at most 2¢.

Denote piY :=P[V > x'(s,£),D > s|L =¢], and recall that UT(s) is defined as the
expected revenue from time f onwards, conditioning on S, = s, in formula

Y PIL=£1(pL(m(s. O+ Uy + £ = D) + A =p)UZ, = D). (1)
el
Let U”( ) be the same as U7 (-), but where the variables are distributed as Q As before, let

MO be U7 (-) for = = 7™, the Bayes optimal policy returned by Algorithm 2, and U*( )
deﬁned 51m11ar1y but with respect to 0. We show now that / *(-)is a good estimate for U, *( )

Lemma7 Ler Q, and O such that|Q — Q] < e.

1. In the finite horizon,|U;(s) — U*(s)l <2e(T—1) -Vl forallt,s;
2. In the infinite horizon,|U*(s) — U*(s)l <2e-LV/( —y)forall s, where U* is the opti-
mal time independent strategy.

Proof Let T be the policy computed by Algorithm 2 with access to Q. As in Sect. 3, we
denote p = [F"[V > ﬂ*(s £),D > s|L=7¢],and P(f) = P4[L = £]. In an abuse of nota-
tion, denote p and P(¢) the estimated values of p and P(?), respectively. We cannot
estimate pf dlrectly with good error bounds, but we w111 only need the values P(¢# )p and
P(f )1 - ) Now, substituting these estimates into (11), we get:
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|U7(s) = U ()]

=f;£P(f)(pis7r;‘(s,f)+p” Un(s+¢ = D)+ (1= pl)U7, (s - 1)> )

= X PO (B . O+ BT 5+ £ = D+ (L= pL)T (5 - 1))'
el

To simplify this expression, we begin by showing a simple claim: let x, y, X, § € R, and let
A,A€1[0,1], such that |[x —%| < 8, |y — $| < 6, and |A — 4| < €. Then, using repeatedly the
triangular inequality and the properties of the absolute value, we get
[(Ax+(1 = A)y) = (A% + (1 = D)|
<|(Ax+ A= 2)y) = (Ax+ (1= dy) |+

[(Ax+ (1= Dy) — (A2 + 1 = D3)| (13)
A=Al =yl + Ax =&+ 1 = D]y -3
<elx—yl+6

Replacing (repeatedly, for each ¢) x and y in Eq. (13) with (”t* 5,0+ U
U7, (s — 1), respectively, and replacing A with P(¢ )pf ,» we have

U(s) — U*(s)) <y <

el

(s+¢—1))and

H—l

7 (0. )+ Ul 0+ = 1) = U (0= 1)

/ >
However, the argument of the supremum in left-hand terms in the summand must be at
most V, since if U* e+ -1)<U [H(s 1), it is best to set x; (o) = oo, which makes

)4 is = 0, putting all the weight on U7, (s — 1). Furthermore, we have shown in Lemma 5
that U* (s+2-1)<U; L= D). Thus, we get

t+1

+P(¢) - sup |U,*+l(a’) -

U; () = U )] < sup,,

t+1(6’) t+l(o- )| + ZKEE

Inductively applying this gives |U;"(s) - [tft*(s)| < 2&(T —1t) - VL as desired.

Let us focus now on point 2. As in the proof of Lemma 2, if T is sufficiently large, we
may analyze the first 7 time steps as a finite horizon problem, and the remaining revenue
will be negligibly small. Now, the calculation above can be reproduced with discount terms
to show

U5 () = U7 5)] < sup,.

rU;, (o) = t+l(‘7 )| + Yrer2e

We can apply recursively the above formula and, letting T tend to infinity, we have
|Us(s) = Us(9)l < 2e-LV/(1 —y). a
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4.2 Learning the underlying distribution from samples

As discussed above, we show here how to compute a Q from samples of Q, such that
|Q — 0] is small with high probability. In particular, we present a sampling procedure
which respects the rules of the pricing server mechanism. When a job arrives, we only
learn its length, and only if it agrees to be scheduled. Thus, we are not given full sam-
ples of Q, complicating the learning procedure. Thanks to the previous section, we
know that a policy which is optimal with respect to @ will be close-to-optimal with
respect to Q.

We remark, however, that the power of the results of the previous section is not
exhausted by this application: one may apply directly the robustness results to specific
problems in which the Q is subject to (small) noise or an approximate distribution is
already known from other sources.

Let X={(L,,V,,D)), ..., (L,,V,,D,), } be an i.i.d. sample of n jobs from the under-
lying distribution Q. Note that the expectation of an indicator is the probability of the
indicated event. Fix any length #, state s, and value v, using Hoeffding bound, with
probability 1 — &, we have that

1 log %
|ZZZ=1 I][Lk=£’VkZVaDkZS]_P[L=faVZV’DZS]| <y # (14)

Sampling procedure We wish to estimate the value of P[L =7,V >v,D > 5] for all
choices of 7, v, and s, by simply posting price menus and observing the output. Fixing v
and s, we repeatedly post prices ,(s,£) = v and declare that the earliest available time is
s, then record (1) which job accepts to be scheduled, and (2) the length of each scheduled
job. Let £ > 0 and n > log(2/8)/(2€2), then by (14), the sample-average of each value have
error at most € with probability 1 — &, for any one choice of (Z, v, s).

Repeating this process for all < K? choices of v €V and s € S gives us estimates for
each. Now, if we want to have the estimate hold over all choices of Z, v, s, it suffices to
take the union bound over all < K values (incl. #), and scaling accordingly. If we take
n > 3log(2K/5)/(2€?) samples for each of the < IK? choices of v and s, then simultane-
ously for all Z, v, and s, the quantity in (14) is at most €. Therefore, we have obtained
the “|Q — Q| < &” condition. It should be noted that, for this sampling procedure, if a job
of length ¢ is scheduled, we must possibly wait at most # times units before taking the
next sample to clear the buffer. This blows up the sampling time by a factor of O(L). From
Lemma 7 and Hoeffding bound (as in Theorem 4.12 of [27]) we get the following result.

Lemma 8 In the finite horizon, for all € >0, if n> 6TK*log(2K/8)/e?, we have
that with probability 1 -8, |U}(s) — ﬁf(s)| <€ for all t, s. In the infinite horizon, if

n > 6K*10g(2K/8)/((1 — y)e?), we have that with probability 1 — &, |U*(s) — ﬁ*(s)l <e
forall s.

4.3 Performance of the computed policy

We use here the result of the previous sections to analyze the performance of the policy
output by Algorithm 2 after the learning procedure. By the estimation of revenue, the
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best policy in estimated-expectation is near-optimal in expectation. Since revenues from
arbitrary policies concentrate, we get near-optimal revenue in hindsight.

Formally, for € > 0, Lemma 8 gives us that if the sample-distribution Q is com-
puted on n > 6TK*log(2IK/8)/e2 samples, then with probability 1 — § over the samples,
|UF(s) — f/;"(s)l < e. Note that Uy (s = 0) is exactly the expected cumulative revenue of
the optimal policy. For clarity of notation, denote

ECRev,(7]|Q) := E 4., [CmiRev (X, 7)] (15)

We have shown that for sufficient samples, |ECRev,(z*|Q) — ECRevT(n*lQ)l < g, with
probability 1 — 6. This observation allows us to conclude

Theorem 3 (Finite Horizon) For any precision € > 0, consider n > 24TK* 1og(8K/5)/&>.
Then in time O(TK3 + nlL), we can compute a policy # which is monotone in length, and
therefore incentive compatible, such that for any policy n, with probability (1 — §),

CmiRev, (X, #) > CmiRev, (X, 7) — 2V4 /2 log (§>(T +)—¢

Furthermore, if the distribution over values V is continuous rather than discrete, we may
compute in time O(TK*V /i + nlL) a monotone policy % such that for any policy x, with
probability 1 — 6,

CmiRev, (X, 7) > CmiRev,(X, ) — 2V /2 log (%)(T +1)—e—nT

Proof We have chosen n > 6TK*1og(2K/(8/4))/(€/2)% Let * be
the optimal policy for the true distribution Q. By Theorem 2, we have

|CmIRev,(X, ) — ECRev, (7 |Q)| < V4/210g(8/6)(T + 1) with probability 1—6/4 for
both # and #. Furthermore, by Lemma 8, |ECRev,(x|Q) — ECRevT(n|Q)| < g/2 with
probability 1 — §/4, for both 7 = # and #*. This is because from the point of view of #, O
is the true distribution, and Q is the estimate. Taking the union bound over all four events
above, and recalling that # maximizes ECRevT(ir|Q), and 7* maximizes ECRev,(7|Q), we
get the following with probability 1 — §:

CmlRev, (X, 7) > ECRev,(#|Q) — V4/210g(8/6)(T + 1) (concentration)
> ECRevT(JﬂQ) —V4/210g(8/6)T + 1) —e/2  (sample error)
> ECRev,(7*|Q) — V/210g(8/8)(T + 1) —e/2  (optimality)
> ECRev,(7*|Q) — V4/210g(8/8)(T + 1) — ¢ (sample error)
> ECRev,(7|Q) — V4/210g(8/6)(T + 1) — ¢ (optimality)
> CmiRev (X, 7) — 2V4/210g(8/6)(T + 1) — & (concentration)

as desired.
When V is continuously distributed, choose prices which are multiples of # between 0
and V, as is outlined in Sect. 3.4. O

For what concerns the y-discounted infinite horizon case, we have the following
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Theorem 4 (Infinite Horizon, Discounted) For any (Jrecision e >0, consider

3
n> 24K4%. Then we can compute a policy 7 in time O 1”% In (E(l\/_y) ) + nl].), which

is monotone, and thus incentive compatible, such that for any policy x, with probability
(1 -9,

CmiRev, (X, #) > CmiRev_. (X, 7) — 2\/\/2 log (%)/(1 ) -2

Furthermore, if the distribution over values V is continuous rather than discrete, we may
K2V/n v
I-y e(1-y)

compute in time 0( ) + n[L) a monotone policy % such that for any n, with

probability 1 — 6,

CmlRev,, (X, 7) > CmiRev, (X, 7) — 2\/\/2 log (%)/(1 ) —2e—n/(d—7)

As above, this policy 7 is computed by learning Q from n samples as in Section 4.2, then
running the modified Algorithm 2 for the estimated distribution as in Sect. 3.3. In case V'is
continuously distributed, we restrict ourselves to prices which are multiples of # between 0
and V. We recall that all these results need the distribution assumption from Sect. 3.5.

5 Conclusions and future work

In this paper we studied the problem of pricing computing time on a single server when
ii.d. jobs arrive online with private types. The type of a job specifies its length, willing-
ness to pay in order to get allocated and a hard deadline to get completed. We showed how
the problem can be cast in the Markov Decision Process framework and how a non-trivial
transformation of the state space makes the underlying problem computationally tractable
while retaining incentive compatibility. Finally, we started the investigation of the learn-
ability of the pricing problem, showing that polynomially many samples are enough to
achieve a good approximation of the optimal pricing strategy.

Our model is simple but rich enough to capture many interesting features: strategic
behaviour (e.g., the jobs might misreport their type), congestion (e.g., there is a carry-over
effect in the server given by the queue of allocated jobs), and partial feedback (e.g., only
partial information about the type is revealed to the mechanism). While the applicability
of the model per se might appear limited, we believe that these features, as well as the
techniques used, will foster future research on the subject. To conclude, we present some
possible directions and their challenges.

Multiple servers or jobs The first natural extension to our model consists in considering
multiple servers and multiple jobs arriving at each time step. The main challenge given
by this problem is the high dimensionality of the state space (at least a number for each
server describing its availability) and, possibly, of the action space (different price menus
for each server). A possible way to overcome these difficulties might be to consider some
heuristic to match supply with demand and then evaluate its approximation with respect to
the optimal pricing scheme. Notice, moreover, the extra layer of complexity given by how
to maintain truthfulness also in the job-server matching.

Different congestion models In our model we consider only greedy allocation; i.e., a
job arrives and has to be immediately scheduled starting from the first available slot. This
enforces the desirable property for the job to know immediately whether it gets allocated
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or not and when. This is important also in the application: often it is crucial to receive a
quick, precise and definitive answer. A possible direction of research is to study different,
more complex, allocation rules as, for example, in [1], where the job is not told immedi-
ately if it is accepted but only until a certain distance from the deadline. From a technical
point of view, the main difficulty inherent in this approach is the increasing complexity of
the MDP state space. Finally, we mention that a further generalization of our model, with
interesting applications, might be to also include the waiting time suffered by the job in the
pricing decision, and not only its deadline.

Online learning The bounds on the sample complexity contained in Sects. 4.2 and
4.3, although polynomial in the input, are impractical for real-life application. As already
mentioned, this is mainly due to the specific structure of the feedback received by the
mechanism, that is strictly weaker than the classical full feedback [7, 26]: the mechanism
observes only the price (if any) chosen by the job in the proposed price menu, not the
actual type of the job. An interesting direction of research is the investigation of the explo-
ration-exploitation trade-offs of the problem in the regret minimization framework, where
a natural benchmark to compare with is the best fixed price menu. Apart from the difficulty
given by the feedback model, other challenges are offered by the combinatorial complexity
of optimizing price menus (instead of single prices as in [7, 26]) and the carry-over effect
given by the queue of allocated jobs (e.g., [3, 17]).

Appendix: Log-concave distributions

In Sect. 3.5, we sought to show that if the value of a random job has a log-concave dis-
tribution, then the optimal policy will be monotone. We present here a discussion of log-
concavity, both for continuous and discrete random variables, and give the proof of the
monotonicity of the prices.

Formally, a function f: R — R is log-concave if for any x and y, and for
any 0<06<1, lgf(@x+ (1 -0)y) > 0lgf(x)+ (1 —0)Igf (). Equivalently,
fOx+ (1 —0)y) > f(x)°f(y)!~0. For a discretely supported f : Z — R, we replace this
condition with f(x)> > f(x — 1)f(x + 1), emulating the continuous definition with § = %
We further require that the support of f'be “connected”.

Definition 1 A continuous random variable X with density function f is said to be log-
concave if fis log-concave. A discrete random variable Y with probability mass function p
is said to be log-concave if p is discretely log-concave.

A well-known fact is that log-concave random variables also have log-concave cumula-
tive density/mass functions. We present here a quick proof of this fact, for completeness.

Claim 1 If X is a log-concave continuous r.v., then P[X < x], and P[X > x] are log-con-
cave functions of x. If Y is a log-concave discrete r.v. supported on N, then P[Y < y] and
P[Y > y] are discretely log-concave functions of y.

Proof The continuous case is well-documented in the literature. See, for example [4]. For

the discrete case, observe first that since the mass function is non-negative, and we have
assumed contiguous support, the function must be single-peaked, i.e., quasi-concave, as
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any local minimum would contradict the definition. Furthermore, the definition of log-con-
cavity is equivalent to = >~ l‘)“ Repeatedly applying this and rearranging, we get

Py-1

DyPyrk 2 Py—1Pysk+1 Vv, ke Z,k>0.

It remains to show that P(y) := Y « P 18 log-concave. We have

Yy
POPG) = P(y— DPG) + Y. pyp,

-0

> P(y— DPO)+ 3, piiPyss = PO — DPO+ 1)

—0o0

as desired. The same technique applies for the upper sum. a

This will allow us to then conclude: (Lemma 4, p. 4) Let V; denote the marginal r.v.
V conditioned on L=¢ and D > 5. Let Zbe a continuously supported random variable,
and p} < pj < -~ € R.If V7 is distributed like p}, - Z [p/ ZJ Z+p}, or [Z + p/J then
Assumption 1 is satisfied 1f Z is log-concave, or if the p’s are independent of £.

Proof First, observe that
PV>2u,D2s|IL=¢]1=P[V>2ulD>s,L=7¢]-P[D>s|L="7].

and since we are taking ratios for s fixed, we can replace the joint cumulatives on V and D
in the assumption, with the marginals on just V.

Now, if the p’s are independent of ¢, then the ratio remains unchanged as ¢ changes,
satisfying assumption 1. Otherwise, we begin by analyzing the distributions given by p3, - Z
and Z + p; Let F(x) := P[Z > x], noting that I]3’[V‘/v >ul= F(y/p/) and F(u — pf) for
the two cases, respectively. Note that we wish to show P[V7 > u'l/P[ V5 > p]is increas-
ing, which is equivalent to log([P’[V;; >u'l)— log(P[V3 = /4]) increasmg.

For V3, ~ Z + p;,, observe that for x' > x and p’ > p, we have

log F(x — p) — log F(x' — p) > log F(x — p') = log F(x' — p')
since log F' is a nonincreasing and concave function, by assumption. Also
log F(x/p) = log F(X' /p) > log F(x/p") = log F(x/p" + (x' —x)/p)
> log F(x/p") —log F(x' /p')

where the first inequality is the same as the previous equation, as the second is by monoto-
nicity. Thus we have done the continuous case.

For V3 ~ [Z + p;J, we note that |Z+ p| >x if Z+ p > [x]. So the probability is
F([x] = p). Similarly, for V5 ~ | p%, - Z|, P|pZ| > x is F([x]/p). Thus, if we assume that x
and x’ are integers, the calculations above go through, as desired. O

We present a final fact that justifies the use of | Z|-type random variables:

Lemma 9 If Y is a discrete log-concave random variable, then there exists a continuous
log-concave Z such thatY ~ |Z|.
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Proof Let P : Z — [0, 1] be the right-hand cumulative mass function for Y. Then, it suf-
fices to have P[Z > n] = P(n) for all integers n. Let ¢ : R — R be the piecewise-linear
function such that ¢(—o0) — 0, ¢p(c0) —» —o0, and ¢(n) = log(P(n)) for all n. Since log(P)
is a discretely concave and non-increasing function, ¢ must be concave and nonincreasing.
We can then set Z to be the random variable whose density is given by —% exp(p(x)).
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