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Abstract

Competitive equilibrium with equal income (CEEI) is considered one of the best mechanisms to allocate a set of items
among agents fairly and efficiently. In this paper, we study the computation of CEEI when items are chores that are disliked
(negatively valued) by agents, under 1-homogeneous and concave utility functions which includes linear functions as a
subcase. It is well-known that, even with linear utilities, the set of CEEI may be non-convex and disconnected, and the
problem is PPAD-hard in the more general exchange model. In contrast to these negative results, we design a FPTAS: A
polynomial-time algorithm to compute ε-approximate CEEI where the running-time depends polynomially on 1

ε
.

Our algorithm relies on the recent characterization due to Bogomolnaia et al. (2017) of the CEEI set as exactly the KKT
points of a non-convex minimization problem that have all coordinates non-zero. Due to this non-zero constraint, naı̈ve
gradient-based methods fail to find the desired local minima as they are attracted towards zero. We develop an exterior-point
method that alternates between guessing non-zero KKT points and maximizing the objective along supporting hyperplanes
at these points. We show that this procedure must converge quickly to an approximate KKT point which then can be mapped
to an approximate CEEI; this exterior point method may be of independent interest.

When utility functions are linear, we give explicit procedures for finding the exact iterates, and as a result show that a
stronger form of approximate CEEI can be found in polynomial time. Finally, we note that our algorithm extends to the
setting of un-equal incomes (CE), and to mixed manna with linear utilities where each agent may like (positively value)
some items and dislike (negatively value) others.
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1 Introduction
Allocating a set of items among agents in a non-wasteful (efficient) and agreeable (fair) manner is an age old problem
extensively explored within economics, social choice, and computer science. An allocation based on competitive
equilibria (CE) has emerged as one of the best mechanisms for this problem due its remarkable fairness and efficiency
guarantees [AD54, Var74, BMSY17]. The existence and computation of competitive equilibria has seen much work when
all the items are goods, i.e. liked (positively valued) by agents. However, when items are chores, i.e. disliked (negatively
valued) by agents, the problem is relatively less explored even though it is as relevant in every day life; for example dividing
teaching load among faculty, job shifts among workers, and daily household chores among tenants.

In this paper, we study the problem of computing competitive equilibria with equal income (CEEI) [Var74, BMSY17]
for chore division, where a set of m divisible chores has to be allocated among a set of agents. Agents receive payments
for doing chores, and are required to earn a minimum amount, and under equal income, these amounts are the same.1

A competitive equilibrium (CE) for chores consists of a payment per-unit for each chore, and an allocation of chores to
agents such that every agent gets her optimal bundle, i.e., the disutility-minimizing bundle subject to fulfilling her earning
requirement. Typically, agent preferences are represented by a monotone and concave utility function [AD54, BMSY17],
that is negative and decreasing in case of chores. Equivalently, we consider disutility functions, namely Di : Rm+ → R+

for agent i, that is monotone increasing and convex. We assume disutility functions to be 1-homogeneous as otherwise
the problem is known to be intractable [CT09, CGMM20]. We note that 1-homogeneous functions form a rich class that
includes the well-studied linear and CES functions as special cases.

The computational complexity of CE is well-understood when items are goods, e.g., [DPSV08, CDDT09, CPY17,
VY11, CDG+17, Rub18] (see Section 4 for a detailed discussion): for 1-homogeneous utilities, the famous Eisenberg-
Gale [EG59] convex programming formulation and its dual are known to give equilibrium allocation and prices respectively.
As a consequence the set of CE is convex, and the ellipsoid and/or interior point methods would find an approximate CE
in polynomial-time, assuming utility functions are well-behaved. When utility functions are further restricted to be linear,
there are many (strongly) polynomial time combinatorial algorithms known [DPSV08, Orl10], even for the more general
exchange model where agents want to exchange items they own to optimize their utilities [DM15, DGM16, GV19].

Although goods and chores problems seem similar, results for chores are surprisingly contrasting: Even in the restricted
case of linear disutilities, the set of CEEI can be non-convex and disconnected [BMSY17, BMSY19], and in the exchange
model computing a CE is PPAD-hard [CGMM20]. No polynomial time algorithms are known to find CEEI with chores,
except for when number of agents or number of chores is a constant [BS19, GM20].2 We note that the combinatorial
approaches known for the goods case [DPSV08, Orl10, Vég12] seem to fail due to disconnectedness of the CEEI set (see
Remark 3.1 for further explanation). In light of these results, computing exact CEEI may turn out to be hard even with linear
disutilities, but what about an approximate CEEI?

We resolve the above question by designing an FPTAS for the more general class of 1-homogeneous disutilities.
Specifically, we design an algorithm to find ε-approximate CEEI in time polynomial in 1

ε and bit-size of the input instance
parameters. We remark that many of the above bottlenecks exist even when we focus on approximate CEEI. In particular,
the set of approximate CEEI can be non-convex and disconnected. And the fundamental bottleneck in generalizing the
combinatorial algorithm explained in Remark 3.1 still persists. Despite these challenges, we are able to design an FPTAS to
find an approximate CEEI, and extend it to more general valuations than linear which includes CES valuation functions.

Our algorithm crucially builds on the characterization of Bogomolnaia et al. [BMSY17], which states that the set of
CEEI is exactly the strictly positive local-minima (KKT points) of a non-convex formulation, namely minimize the product
of disutilities (equivalently

∑
i log di) over the space of feasible disutility vectors. The set of feasible disutility vectors may

not be convex, but they can be made convex by allowing overallocation. Unfortunately, standard interior-point methods for
finding local optimum, such as gradient descent, will fail at ensuring the strict positivity constraint, since the gradient of the
objective is attracted towards the minimum disutility coordinate. This difficulty is not alleviated by barrier function methods
either. A possible fix is to introduce additional constraints to avoid zeros, but then we loose the CEEI characterization.

The above issues would not arise if we maximize
∑
i log di instead of minimizing it. Motivated from this observation,

we design an exterior-point method that tries to maximize the objective outside of the feasible region, starting from an
outside point that is below the lower-hull. However, we are faced with two crucial difficulties: (i) now the outside region is

1The earning requirement of an agent can also be thought of as her importance/weight compared to others, and thereby under equal income all agents
have the same weight.

2These algorithms are based on enumeration from a cleverly designed set of candidates. Similar approaches are known for goods manna when the
number of items or agents is a constant [DK08, GMSV15], while the general case is PPAD-hard even to approximate [CT09, Rub18]
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truly non-convex, and (ii) we must ensure that we do find a desired local minimum from the inside.
Our exterior-point method handles the above issues by repeatedly guessing candidate solutions, and checking if they are

local minima for the problem inside the feasible region by verifying if the gradient is parallel to some supporting hyperplane.
If not, it goes on to try another such candidate, while ensuring it is always increasing along the objective function. Thus,
the objective acts as a potential function, and we can bound convergence rates by the size of objective improvement at
each step. This method may be of independent interest. We terminate search when the supporting hyperplane direction is
approximately equal to the gradient, in a multiplicative sense, and argue that such an approximate KKT point suffices to
guarantee an approximate CEEI.

The crucial step in each iteration of this procedure is to find the nearest feasible point in the disutility space, which
allows us to find a boundary point along with a supporting hyperplane at it. When disutility functions are linear, we argue
that both distance minimization and supporting hyperplane computation can be solved exactly, leading to a stronger form of
approximate CEEI.

For the case of general 1-homogeneous and convex disutility functions, the nearest feasible point must be found
by interior point methods. We assume black-box access to the disutility functions’ value and partial derivatives. This
approximate nearest-point computation introduces errors in the local optimum and the supporting hyperplane both, that are
tricky to handle. We show how to handle these extra errors by modifying the algorithm, and argue that a slight weakening of
approximately competitive equilibria can still be guaranteed. As expected, these guarantees, including successful application
of the interior point method, rely on the disutility functions being “well-behaved”, and the running time of the algorithm
depends logarithmically on continuity parameters of the disutility functions, namely, the Lipschitz constants for lower-
bounding and upper-bounding the partial derivatives.

Extensions. Finally, we argue how our algorithm easily extends to the setting of un-equal income (CE) when max to min
income/weight ratios is polynomially bounded. Another natural extension we consider is to mixed manna, where each agent
may like some items and dislike others. Again, using the characterization of [BMSY17], every instance can be put into one
of the three categories, namely positive, negative, and null. We argue that the instance in the positive category can be solved
using the Eisenberg-Gale convex program [EG59], and those in null have a trivial solution. For instances in the negative
category, we discuss how our algorithm can be extended with simple modifications.

Linear Disutilities with Infinities. We note that, [CGMM20] that shows PPAD-hardness for the linear exchange model
allows an agent to have infinite disutility for some chores indicating they do not have skills to do the chore in a reasonable
amount of time. Our algorithm extends to this model as well, since their sufficiency conditions to ensure existence of
equilibrium dictates that every component of the bipartite graph between agents and chores with finite disutility edges
should be a complete bipartite graph. They show that even CEEI may not exist without this condition, and checking if it
exists is NP-hard. Under this condition, it suffices to find CEEI for each of the connected component separately where there
are no agent-chore pairs with infinite disutility.

In order to convey the main ideas cleanly we mainly focus on CEEI with chores in what follows, and refer the reader to
the full version of the paper [BCM21] for the extensions.

2 Model and Our Results
In the chore division problem, a set of m divisible chores [m] := {1, . . . , m} is to be allocated to a set of n agents
[n] := {1, . . . , n}. It is without loss of generality to assume that exactly one unit of each chore needs to be allocated.
Agent i’s preferences (over chores) is represented by a non-negative, non-decreasing, and convex disutility function
Di : Rm≥0 → R≥0.3 We denote by xij the fraction of item j that is allocated to agent i, and we denote xi := (xi1, . . . , xim).
We assume that Di’s are 1-homogeneous, i.e.

(2.1) Di(a · xi) = a ·Di(xi) for all xi, and all a ≥ 0.

If Di(·) is linear, then it is represented by Di(xi) =
∑
j∈[m]Dij · xij where Dij ∈ (0,∞) is the disutility of agent i

per unit of chore j.4 Equivalently, we write Di(xi) = 〈Di,xi〉 where Di = (Di1, Di2, . . . , Dim). We also use
−→
D(x) to

denote the disutility vector (D1(x1), D2(x2), . . . , Dn(xn)).

3Typically, agents’ preferences for chores are represented by non-positive, non-increasing, and concave utility functions since agents dislike chores
[BMSY17]. By taking the negation of these utility functions we get non-negative, non-decreasing, convex disutility functions that agents want to minimize.

4If for some (i, j) pair Dij = 0 then chore j can be freely allocated to agent i, and can be removed. Infinite disutilities can be handled as discussed in
the introduction.
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Competitive equilibrium with equal income (CEEI) At a CE with chores, payments are linear, and the j-th chore
pays pj per unit of the chore assigned. Let p = (p1, . . . , pm) denote the vector of payments, and then the payment to
agent i is 〈p,xi〉. Each agent seeks to minimize their disutility subject to being paid at least 1 unit. We note that, under
equal income, the exact value being paid is immaterial so long as all agents get paid the same amount. Prices p and
allocation x = (x1,x2, . . . ,xn) are said to be at CEEI if all the chores are fully allocated when every agent consumes her
least-disliked bundle with payment at least 1, i.e., an optimal bundle. Formally [Var74, BMSY17]

(E1) (equal payments) for all agents i and i′ we have 〈xi,p〉 = 〈xi′ ,p〉, and

(E2) (optimal bundle) for all i ∈ [n], we have Di(xi) ≤ Di(yi) for all y s.t. 〈yi,p〉 ≥ 〈xi,p〉, and

(E3) (feasible allocation) for all j ∈ [m], we have
∑
i∈[n] xij = 1.

It is known that the set of CEEI may be nonconvex, or even disconnected [BMSY17]. In light of this fact, and the PPAD-
hardness of CE in the linear-exchange model [CGMM20], we turn our attention to approximately competitive equilibria.
We formalize the notion of ε-CEEI as follows:

DEFINITION 2.1. Prices p and allocation x are termed a ε-CEEI for an ε ≥ 0, if and only if

(1) for all agents i and i′, we have (1− ε) · 〈xi,p〉 ≤ 〈xi′ ,p〉, and

(2) for all i ∈ [n], we have and (1− ε) · di(xi) ≤ di(yi) for all y such that 〈yi,p〉 ≥ 〈xi,p〉, and

(3) for all j ∈ [m], we have 1− ε ≤∑i∈[n] xij ≤ 1 + ε.

It is well known that CEEI satisfy well-sought-after fairness and efficiency notions of envy-freeness and Pareto-
optimality respectively. An allocation x is said to be envy-free (EF) if every agent prefers their own bundle over that
of any other agent. And it is said to be Pareto-optimal (PO) if no other allocation Pareto-dominates it, i.e., there is no
feasible allocation y such that Di(yi) ≤ Di(xi) for all i, and for some agent k, Di(yi) < Di(xi). In the full version of the
paper [BCM21], we show that an ε-CEEI allocation approximately guarantees these properties.

Our main contribution in this paper is an FPTAS – a polynomial time algorithm to find an ε-CEEI when the disutility
functions of the agents are L-well-behaved; We say that the disutility functionDi is L-well-behaved if (i) for all j ∈ [m], we
have |Di(x+δ·ej)−Di(x)| ≥ δ/L and (ii) for all i ∈ [n] and all x,y ∈ D+Rn≥0, we have |Di(x)−Di(y)| ≤ L·||x−y||2.

THEOREM 2.1. Given black-box access to 1-homogeneous and convex disutilities D1, . . . , Dn that are L-well-behaved,
and also to their partial derivatives, there is an algorithm that finds an ε-CEEI in time polynomial in n, m, 1/ε, and log(L).

However, in this paper, we only explain how our result holds in the simpler setting when agents have linear disutility
functions. The proof of Theorem 2.1 can be found in the full version of the paper [BCM21]. We also remark that for linear
disutilities, we are able to prove the following stronger guarantee in Section 6.

THEOREM 2.1. Given an instance I with linear disutility functions represented by D11, . . . , Dnm > 0, and an ε > 0,
a stronger ε-CEEI can be computed in time poly

(
n,m, log

(
maxij Dij

minij Dij

)
, 1ε

)
where no error is incurred in the last two

conditions, i.e., (x,p) that satisfies (1), (E2), and (E3).

More importantly, our algorithm is an exterior point method that builds on tools from continuous optimization to find an
approximate KKT point, which may be of independent interest. Next we give an overview of this method and it’s analysis.

3 Overview of the Algorithm and Analysis
Our algorithm builds on the following characterization of CEEI due to Bogomolnaia et al. [BMSY17]: Analogous to the
convex program of Eisenberg and Gale [EG59], the CEEI in the case of bads are characterized as local minima to the product
of disutilities. However, this optimization program is over disutility space, rather than allocation space.

Formally, we let F denote the set of feasible allocations, namely

(3.2a) F := {x ∈ Rnm |∑i xij = 1 ∀ j, xij ≥ 0 ∀ i, j} .
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0.5 1 1.5
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∗
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Figure 1: A representation of both the exterior point method (in blue), and the pitfalls of
gradient descent (in red) in minimizing the objective inside the feasible region. The light gray
lines denote the level sets of the objective, orthogonal to the gradient. Blue: For the exterior
point method, we start outside the region, find a nearest point and supporting hyperplane,
jump to a new exterior point, and repeat until we find one of the two on-face local optima
(green). Red: For the gradient descent, we start inside the region and quickly accelerate
towards the d2 ≥ 0 boundary, which we wish to avoid.

The disutility space D will be the set of all disutility profiles which can be attained over F , or

(3.2b) D := {d = (d1, . . . , dn) ∈ Rn | ∃x = (x1, . . . , xn) ∈ F : Di(xi) = di ∀ i} .

In all that follows, we will distinguish between disutilities as functions and as variables by the upper- and lower-case symbols
respectively. When disutility functions are linear, D is a polytope. However, for more general convex disutility functions, D
may not be a convex set. We will remedy this by working instead with the extended feasible regionD+Rn≥0, the Minkowski
sum, which is convex (Claim 5.1). This is the set of all disutility profiles which are at least as bad as some feasible profile,
i.e., disutility profiles attainable at over-allocations of the chores.

The characterization of Bogomolnaia et al. [BMSY17] states that any disutility profile d which is a local minimum
(KKT point) to the following non-convex minimization program is the disutility profile of some CEEI, and the prices and
allocation of this CEEI can be found by understanding d in allocation-space.

min
d∈D

∏n
i=1 di s.t. di > 0 ∀ i .

Note that minimizing over the set D is equivalent to minimizing over the extended set D + Rn≥0. And the KKT points to
this program are equivalent to the KKT points for the minimization of the logarithm of objective, L(d) :=

∑n
i=0 log(di).

Hence the above program can equivalently stated as,

(3.3) min
d∈D+Rn

≥0

L(d) =
∑n
i=0 log(di) s.t. di > 0 ∀ i .

Primary difficulty. The open constraints di > 0 are both fundamental to the above characterization, and the source of
the main difficulty of the problem. Any disutility profile d with a zero coordinate are trivial optima to these minimization
problems, but are economically meaningless since no fairness or efficiency properties can be guaranteed. Furthermore, any
naı̈ve interior-point attempt at finding local minima are attracted by these constraints: the gradient of the objective L at
d is inversely proportional to d componentwise, since ∂

∂di
L = 1/di. This has the effect of accelerating gradient descent

towards the di ≥ 0 constraint for the smallest di value. See Figure 1 (red) for an illustration. This effect is robust to barrier
methods at the boundaries, and thus gradient-following methods are not helpful in this task. The same problem afflicts
attempts at strengthening the constraint to di > η for some small η, as the dual variables for these constraint break the CEEI
characterization. We circumvent this issue by designing an iterative exterior-point method that always increases the log-sum
L.

REMARK 3.1. A natural question is if the combinatorial methods known for computing CE in linear Fisher (exchange)
model with goods, e.g., [DPSV08, Orl10], extend to chores with linear disutilities? Unfortunately, they do not. In particular,
the non-convexity and disconnectedness of the CEEI set is a primary difficulty in extending any algorithm from the goods
setting to the chores setting. For example, these methods rely on the fact that CE allocation and prices changes continuously
with the the (money) endowments of the agents [MV07], which is not true with chores. A chore division instance may have
multiple disconnected equilibria some of which may disappear as we change these parameters, and as a result the said
methods may get stuck. This fundamental bottleneck persists even if we restrict ourselves to approximate-CEEI.

In the rest of this section, we will outline our approach first for linear disutility functions, and then afterwards in the
general case. In the linear setting, many sub-routines can be solved exactly. Thus, it requires less technical detail to present,
and serves as a good intuition for the more involved general case that we address later.
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3.1 Linear Disutilities: Relating Approximate KKT to Approximate CEEI The main insights of our result are that (1)
approximate KKT points allow for approximately competitive equilibria to be constructed, and (2) approximate KKT points
can be found, despite the difficulty described above about ensuring strict positivity constraints. We begin here by formally
defining the approximate KKT conditions.

Recall, KKT points are local optima where the cone of normal vectors of the tight constraints contains the function’s
gradient. Equivalently, there exists a supporting hyperplane at the local optimum whose normal vector is parallel to the
function’s gradient. Formally, d is a KKT point for the problem mind∈D L(d) if there exists a normal vector a such that:
〈a,y〉 = 〈a,d〉} is a supporting hyperplane for D + Rn≥0, and there exists some c > 0 such that a = c · ∇L(d), i.e.
ai = c/di for all i.

Since our procedure is iterative, it will converge in the limit to a KKT point, but only approximately after finitely many
iterations. We show that after a polynomial number of iterations, it finds an approximate KKT point, defined below, with
inverse-polynomial error.

DEFINITION 3.1. (γ-APPROXIMATE KKT) For γ ≥ 1, we say a point d along with the normal direction a is a γ-KKT
point for problem (3.3) if

(1) d ∈ D + Rn≥0, (2) γ−1i ≤ ai · di ≤ γi for all i, and (3) D + Rn≥0 ⊆ {y ∈ Rn|〈a,y〉 ≥ 〈a,d〉}.

Informally, each entry of a is a γ-approximation of 1/d, the gradient of L, and a is normal to a supporting hyperplane
for D + Rn≥0 at d. Furthermore, we say d is a γ-KKT point if there exists a vector a such that (d,a) satisfy the above
conditions.

Recall, when disutilities are linear, D is a linear polytope and is therefore convex. Hence, the above definition need not
be defined over D + Rn≥0, but we introduce it as it will be necessary later.

We outline here the first insight of our result, that approximate local minima give approximate equilibria. In the
original analysis of the Eisenberg-Gale program [EG59] for goods, and more notably in the proof of [BMSY17] for chores,
the relationship between competitive equilibria and local maxima hinges on the gradient being inversely proportional to
the marginal (dis)utility-per-dollar incurred. Intuitively, the KKT conditions enforce that the payment to each agent (in the
chores setting) is perfectly balanced by their disutility incurred, and their payment is equal to that of any other player. It can
be shown that if some player is paid more, then the KKT conditions are violated. Thus, we can conclude condition (1) of
Definition 2.1, with ε = 0. Condition (2) is argued using the fact that an agent is only allocated her minimum disutility-per-
dollar chores, and (3) is true by definition since the allocation lies in F .

To extend this argument to the approximate setting, it suffices to observe that when multiplicative error is introduced
in the gradient direction, then this argument suffers only multiplicatively. A γ-sized error bound in the gradient direction
allows for some player to be paid γ less than the unit, and another γ more, which allows us to show that γ-KKT points
satisfy condition (1) of Definition 2.1 with ε = (1 − γ2). As above, condition (2) is argued similarly with the same ε, and
condition (3) holds with ε = 0, again by feasibility. Formally, by extending the argument of Bogomolnaia et al. [BMSY17],
we show the following.

THEOREM 3.1. Let (d,a) be a (1 + ε)-KKT point for the problem of minimizing L(d) subject to d ∈ D, and L(d) > −∞.
Let x ∈ F be any allocation that realizes d, i.e. Di(xi) = di for all i. Then there exists payments p = (p1, . . . , pm) such
that (x,p) form a stronger 2ε-CEEI, where no error is incurred in the last two conditions, i.e., (x,p) satisfies (1), (E2),
and (E3).

Furthermore, when disutilities are linear, the allocation x and payments p can be computed exactly in polynomial time
from the disutility profile d and normal vector a.

This theorem is proven in Section 6.1, Theorem 6.1, and the first part of it does not require that the disutilities be linear.
However, as we will see below, γ-KKT points can only be guaranteed when disutilities are linear, and the definitions will
need to be modified for the general case. The allocation and prices can be efficiently computed when disutilities are linear
because they are the solutions to linear feasibility problems. With this theorem in hand, it remains therefore to compute
(1 + ε)-KKT points, discussed next.

3.2 Linear Disutilities: Exterior Point Methods for Approximate KKT Points. Here we discuss our approach to find
approximate-KKT point in polynomial time; formal details are presented in Section 6.2. As discussed above, it is tempting
to hope that interior-point methods will find local minima efficiently, but they will not work in this setting. Instead, we will
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rely on the geometry of the feasible space and objective function to allow us to repeatedly make guesses at KKT points,
all the while increasing along the objective L(d) =

∑
i log(di), which we treat as a potential function. This potential

will ensure that if we do not find approximate KKT points, then we make significant progress, dependent on the degree of
precision γ needed. By bounding the values that the potential can take, this will suffice to show that the procedure is an
FPTAS. Refer to Figure 1 (blue) for a pictorial representation of the algorithm.

Our “guesses” at KKT points are made by starting with an exterior, infeasible point d, and finding the nearest feasible
point d∗ to it. Formally, d∗ is the solution to miny∈D ‖y − d‖22. Using the fact that it is the nearest point to d in the `2
sense, we show that a = d∗ − d is normal to a supporting hyperplane for D at d∗ (Lemma 6.1). Notice that, so long as
d∗ ≥ d componentwise, then this all still holds when replacing D with D + Rn≥0. Furthermore, this will ensure that we are
increasing along the potential L.

It remains to find the start of the next iterate, while ensuring that we are increasing in the L direction. Note that we have
that the hyperplane {y ∈ Rn|〈a,y〉 = 〈a,d∗〉} is supporting for D, and therefore none of the points on this hyperplane are
in the interior of D. Thus, we can choose our next starting point to be the L-maximizing point on this hyperplane. Since
d∗ is also feasible, this will ensure that we are increasing in the L direction, and that we are starting from a new exterior,
infeasible point. This L-maximizer on the hyperplane can be found efficiently, since we have a closed form for it: the
maximizer on the hyperplane will be the point at which ∇L is proportional to a, and we show that it is exactly a rescaling
of (1/a1, . . . , 1/an) (Claim 6.5).

Thus, the algorithm is iterative, and each round k ≥ 0 proceeds as follows:

0. dk is the infeasible point “lying below” D starting the round. d0 is any infeasible point.

1. Set dk∗ to be the nearest feasible point to dk, i.e. the solution to mind∈D+Rn
≥0
‖d− dk‖22.

2. Set ak ∝ dk∗ − dk, rescaled so that 〈ak,dk∗〉 = n.

3. Define dk+1 to be (1/a1, . . . , 1/an), the maximizer of L(d) subject to 〈ak,d〉 = n.

4. Stop if dk+1 is “close enough” to dk∗ , otherwise repeat.

We initialize the procedure at any infeasible point “lying below” the feasible region. When disutilities are linear,
this can be found by noticing that we can lower-bound the disutilities over the feasible region, and picking an allocation
which assigns half of the lower bound to each agent (Claim 6.4). The normalization in Step 2 ensures that if ak is
approximately parallel to the gradient ∇L(dk∗), then it is also of the right magnitude. The notion of “close enough” in
Step 4 is multiplicative, as it measures increase in the potential function

∑n
i=1 log(di).

The Potential Function, and Convergence Rates. As discussed above, we wish to use L(d) =
∑n
i=1 log(di) as a

potential function to measure the progress of the algorithm. For each iteration k ≥ 0, we will have L(dk) ≤ L(dk∗) ≤
L(dk+1) (Claim 6.5). This first inequality is due to the observation that the nearest feasible point to dk Pareto dominates
it, and L is monotone increasing in each coordinate. The second inequality is by construction, as dk+1 maximizes L on a
hyperplane that contains dk∗ .

It remains then to argue that progress alongL is rapid, relative to its range. We noted above that the stopping condition in
Step 4 is multiplicative. Formally, we stop when the `1 norm of the logarithmic difference, i.e.

∑n
i=1

∣∣log
(
(dk∗)i/(d

k+1)i
)∣∣

is at most ε. When this log-distance is more than ε, we show that the objective L increases by at least Ω(ε2/n2) (Lemma
6.3).

Conversely, when this log-distance is upper-bounded by ε, we will show that (dk∗,a
k) form a (1 + ε)-KKT point

(Lemma 6.2). Thus, since log(Di(xi)) is bounded over the feasible region, we will be able to bound the maximum number
of iterations as a polynomial in 1/ε, n, and −L(d0). This allows us to argue that an approximate equilibrium may be found
in polynomially many iterations.

Implementing Iterations in Polynomial Time. We have argued above that an approximate KKT point, and therefore
an approximate equilibrium, can be found in polynomially many iterates of the exterior point method. However, it remains
to show that each step can be solved efficiently.

With the exception of Step 1 above, the rest of the algorithm is arithmetic, which can be easily performed. The
minimization problem in Step 1 may pose a problem in general, if we expect an exact minimum. This is the source of the
extra care needed in the general case. However, in the case of linear disutilities, we show that the minimization problem is
actually a quadratic program with a semidefinite bi-linear form over F space (Lemma 6.5), and methods for finding exact
solutions to such programs have long been known [KTK80].
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Finally, we note that although each step in our algorithm generates polynomial sized rational numbers wrt it’s
parameters, one needs to be careful about how their bit-sizes grow. This can be taken care of by rounding down the dk

to a nearest rational vector with polynomial bit-size at the end of each iteration. Note that this step will ensure that dk lies
belowD and we also argue why the bound on the iterations still hold: Since at every iteration k of our algorithm, the value of
each dki can be lower bounded using the value of the potential at dk and the upper bound on the maximum disutility values
in dk,5 such a rounding is possible without hitting the di ≥ 0 boundary, and while ensuring at least Ω(ε2/n2) increase in
the potential L(·). However, to convey the main important technical ideas, in Section 6 we focus on bounding number of
arithmetic operations.

Putting all the above together, we get an FPTAS to compute stronger approximate CEEI where the last two conditions
of ε-CEEI are satisfied with ε = 0 (Theorem 6.2).

3.3 General 1-Homogeneous Disutilities In general, the disutility functions are 1-homogeneous and convex, and are
given as a value oracle black-box, along with a value oracle for their partial derivatives. In this section we outline the new
issues that arise in extending our algorithm, and their resolutions.

At a high-level the issues are as follows: First, to find the nearest points we need to employ interior point methods
which returns approximate solutions, and in turn we incur error in the hyperplane as well as the gradient. Secondly, in order
to use the interior point method, we will have to work in the allocation space and can not work with the disutility space
directly. This causes problems as convex constraints in disutility space need not be convex in allocation space. We elaborate
these two issues and also highlight how we overcome them. Finally, we give an overview of the entire algorithm by putting
everything together.

Finding Approximate Nearest Point. Recall, we have defined
−→
D(x) := (D1(x1), . . . , Dn(xn)). The natural

program to find the nearest point in D + Rn≥0 to a point d below D (or equivalently outside D + Rn≥0) requires finding

a x ∈ F ′ that minimizes ||−→D(x) − d||22, where F ′ := {y ∈ Rnm≥0 |
∑
i∈[n](y)ij ≥ 1 for all j ∈ [m]}. Unfortunately the

objective function is not necessarily convex6. One way to ensure it’s convexity is to put additional constraints of the form
Di(xi) ≥ di for all i ∈ [n]. But again, since the disutility functions Di(·) are convex, these constraints create non-convex
feasible region.

We come up with an alternative formulation for finding the approximate nearest point which is convex. The crucial
observation is the fact that given any point d outside D + Rn≥0 there exists no point d′ ∈ D + Rn≥0, such that d Pareto-
dominates(coordinate-wise larger or equal) d′, i.e., d′ does not belong in the negative orthant centered at d. Therefore, a
point d ∈ Rn≥0 can Pareto-dominate any point d′ ∈ D + Rn≥0 if and only if d ∈ D + Rn≥0 . We now show how to use this
fact to come up with a convex program to find the nearest point in D+Rn≥0. Our goal is to find a vector β ∈ Rn of smallest
magnitude and a point d′ ∈ D + Rn≥0 such that the point d + β Pareto-dominates d′: Note that this is only possible when
d+ β ∈ D + Rn≥0. Since ||β||22 is minimum, d+ β is the nearest point in D + Rn≥0 to d. Formally,

minimize
∑
i∈[n]

((β)i)
2

subject to
∑
i∈[n]

zij ≥ 1, ∀j ∈ [m]

zij ≥ 0, ∀i ∈ [n], ∀j ∈ [m]
Di(zi)− (d)i − (β)i ≤ 0, ∀i ∈ [n],

It is easy to verify that the above program minimizes a convex function over a convex domain. The above convex
program returns point z ∈ F ′ such that

−→
D(z) is the nearest point in D + Rn≥0 to d. Unfortunately, this program cannot

be solved exactly in polynomial time and therefore we need to argue about how to extract an approximate-CEEI given an
approximate nearest neighbour.

5Note that we start with a d0 where each agent has a non-negligible disutility, and at any point in time, the disutilities of the agents in dk are upper-
bounded (as the disutility vector lies below D), implying that there cannot be a significant increase in the disutility of any agent throughout the algorithm.
Also, since the sum of logs of the disutilities L(·) is increasing throughout the algorithm, we can conclude that there cannot be a significant decrease in
the disutility of any agent throughout the algorithm, implying that the disutilities in dk are also lower bounded.

6The natural sufficient condition for composition of two convex functions to be convex is if the outer function is monotone in the variables. We do not
have this with our current objective function.
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Approximate Supporting Hyperplane and (λ, γ, δ)-KKT Points. In polynomial time, we can only find an approxi-
mate nearest neighbour of a point d inD+Rn≥0. Therefore, our supporting hyperplanes will also be approximate, and there-

fore we need to redefine the approximate KKT points that we can compute. Let
−→
D(z∗) be the nearest point inD+Rn≥0 to d.

Then,
−→
D(z∗)−d is normal to a supporting hyperplane ofD+Rn≥0 at

−→
D(z∗), i.e., 〈−→D(z∗)−d,y〉 = 〈−→D(z∗)−d,−→D(z∗)〉

is a supporting hyperplane of D + Rn≥0 at
−→
D(z∗). Since we have access only to an approximate nearest neighbour of

d, say
−→
D(z′), we wish to have 〈−→D(z′) − d,y〉 = 〈−→D(z′) − d,−→D(z′)〉 as an approximate supporting hyperplane, i.e.

〈−→D(z′)− d,y〉 ≥ 〈−→D(z′)− d,−→D(z′)〉 − δ for all y ∈ D + Rn≥0 for a sufficiently small δ.
With this, we introduce the notion of (λ, γ, δ)-KKT points.

DEFINITION 3.2. ((λ, γ, δ)-APPROXIMATE KKT) We say (a,d,x), i.e., a point d along with the normal direction a and
a pre-image x is a (λ, γ, δ)-KKT point with λ ≥ 1, γ ≥ 1, and δ > 0, for the minimization problem on D + Rn≥0 if

1. xij ≥ 0 for all i ∈ [n] and j ∈ [m], and λ−1 ≤∑i∈[n] xij ≤ λ for all j ∈ [m],

2. d =
−→
D(x) and γ−1i ≤ ai · di ≤ γi for all i ∈ [n], and

3. and D + Rn≥0 ⊆ {y ∈ Rn|〈a,y〉 ≥ 〈a,d〉 − δ = n− δ}.
Informally, all chores are almost fully allocated, each entry of a is a γ-approximation of 1/d, the gradient of L, and a

is a δ-approximately-supporting hyperplane for D + Rn≥0.

In the full version of the paper [BCM21], we show that a (λ, γ, δ)-KKT point with where λ = 1+ε/2poly(n,m), γ = 1+ε
and δ = ε/2poly(n,m) can be mapped to a ε1/6-CEEI. The proof emulates the proof in [BMSY17], and consequently matches
the proof in the linear case.

However, some subtle problems arise when generalizing the algorithm from the linear case to determine a (λ, γ, δ)-KKT
point. Firstly, the convergence of the entire algorithm relies crucially on the fact that the potential L(d) never decreases at
any point. For this, we require that we have

−→
D(z′) Pareto-dominate d. We can ensure this by first computing an arbitrary

approximate nearest point z′′ and then increase the consumption of certain chores in z′′ to get z′ such that
−→
D(z′) Pareto-

dominates d. Since we know that
−→
D(z∗) Pareto-dominates d, and ||−→D(z′′)−−→D(z∗)||2 is small, the increase in consumption

of the chores will also be small.
Secondly, the hyperplane 〈−→D(z′) − d,y〉 = 〈−→D(z′) − d,−→D(z′)〉 can be a good approximation of the hyperplane

〈−→D(z∗) − d,y〉 = 〈−→D(z∗) − d,−→D(z∗)〉 (or equivalently δ is inverse-exponentially small) only if ||d − −→D(z∗)||2 is
significantly larger than ||−→D(z∗)−−→D(z′)||2. Therefore, if at any point in our algorithm, we have ||d−−→D(z′)||2 ≤Mε for
a sufficiently large M , where ε ≥ ||−→D(z′)−−→D(z∗)||2, then we stop and return a pre-image of d (note that as the disutility
functions are 1-homogeneous, this can be done by appropriately scaling the consumption of chores for each agent).

Finally, and most importantly, we need to ensure that the approximate supporting hyperplanes do not introduce
point with excessive over-allocation. Let 〈a∗,y〉 = n and 〈a′,y〉 = n represent the hyperplanes 〈−→D(z∗) − d,y〉 =

〈−→D(z∗) − d,−→D(z∗)〉 and 〈−→D(z′) − d,y〉 = 〈−→D(z′) − d,−→D(z′)〉 respectively after appropriate scaling, i.e., a` =(
n/〈−→D(z`)−d,−→D(z`)〉

)
· (−→D(z`)−d) for ` ∈ {∗,′ }. Since we are dealing with approximate supporting hyperplane7, the

point maximizing L, say d′ on 〈a′,y〉 = n, maybe contained in the strict interior of D + Rn≥0. Also note that in this case,
the nearest point in D + Rn≥0 to d′ is d′ itself, and therefore the distance between d′ and its approximate nearest point in
D + Rn≥0 is significantly smaller than Mε and our algorithm will return the point d′, the normal to the hyperplane a′ and
its pre-image, say x′ in the very next iteration. Now note that while conditions (2) and (3) in Definition 3.2 are satisfied,
condition (1) may not be satisfied. In particular, there could be chores that are significantly over-allocated! At first this
may seem to be counter-intuitive as the hyperplane 〈a′,y〉 = n is a good approximation of the exact supporting hyperplane
〈a∗,y〉 = n, and, the point d∗ that maximizes L on 〈a∗,y〉 = n lies outside D + Rn≥0 and as a result no chores are over
allocated in a pre-image of d∗. However, we show that the disutility profiles of the point d∗ maximizing L on the hyperplane
〈a∗,y〉 = n and the point d′ maximizing L on the hyperplane 〈a′,y〉 = n can be very far apart even if ||a′−a∗||2 is small8.
This is primarily due to the fact that d′ =

(
1
a′1
, 1
a′2
, . . . , 1

a′n

)
and d∗ =

(
1
a∗1
, 1
a∗2
, . . . , 1

a∗n

)
, and even though |a′i − a∗i | ≤ ε for

7〈a′,y〉 ≥ n− δ′ for all y ∈ D + Rn≥0, where δ′ = δ〈
−→
D(z

′
)−d,

−→
D(z

′
)〉

n
.

8In fact ||a′ − a∗||2 will be small as ||d′ − d∗||2 is significantly small.
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all i ∈ [n], 1/a′i and 1/a∗i can be very far apart. We circumvent this issue by showing that if there are some chores that are
significantly over-allocated in x′, then we can find an allocation x′′ from x′ by reducing consumption of the over-allocated
chores and re-allocating some of the not-over-allocated chores such that

−→
D(x′′) ∈ D + Rn≥0 and 〈a,−→D(x′′)〉 < n − δ′,

which is a contradiction to the fact that 〈a,y〉 = n is an approximate supporting hyperplane to D+ Rn≥0. This is where the
bulk of the error analysis is required.

We now outline the entire procedure.
Putting it Together. Similar to the case with linear disutilities, the algorithm is iterative. In each iteration k ≥ 0,

0. dk is the infeasible point “lying below” D at the start of round k. d0 is any infeasible point.

1. Find xk+ such that
−→
D(xk+) is an ε-approximate nearest feasible point to dk in D + Rn≥0, s.t. (dk+)i ≥ (dk)i for all

i ∈ [n] and then round up dk+ to the nearest rational point with polynomial bit size.

2. If ||dk+ − dk||2 ≤ M · ε, then return (ak−1,dk,xk) where xk is a pre-image of dk obtained by rescaling xk+
appropriately, i.e., (xk)i ← (xk+)i · (d

k)i
(dk

+)i
for all i ∈ [n].

3. Set ak ∝ dk+ − dk, rescaled so that 〈ak,dk+〉 = n.

4. Define dk+1 to be (1/a1, . . . , 1/an), the maximizer of L(d) subject to 〈ak,d〉 = n.

5. Return (ak,dk+,x
k
+) if dk+1 is “close enough” to dk∗ , otherwise repeat.

The algorithm has polynomially many iterations, since similar to the case when agents have linear disutilities, if it does
not terminate in iteration k, then the potential L increases by at least Ω(ε2/n2). And L is upper bounded. By arguing that
every iteration can be done in polynomial time, we get an FPTAS.

3.4 Organization We give a brief road map of the rest of the paper. In what follows, we first discuss some related work
on CE in Section 4 and state some fundamental results from [BMSY17] that we use crucially for our algorithm design in
Section 5 . Thereafter, we present the FPTAS when agents have linear disutilities in Section 6 so that the reader gets a good
idea of the meta-level algorithm.

In the full version of the paper [BCM21], (i) we elaborate the FPTAS when agents have general 1-homogeneous
disutilities and (ii) also discuss the extensions of our results to the setting when the items to be divided contain both goods
and bads (mixed manna) with linear valuations, and when agents have unequal income needs (CE in Fisher model).

4 Related Work
Competitive equilibrium (CE) has been a fundamental concept in several economic models since the time of Léon
Walras [Wal74] in the 19th century. In this paper, we primarily focus on CEEI, which is a special case of CE in Fisher
markets, which again is a special case of CE in exchange markets (also referred to as Arrow-Debreu markets). The existence
of CE under some mild assumption was proved in the exchange setting by Arrow and Debreu [AD54] and independently
by Mackenzie [McK54, McK59]. However, the proofs of existence used fixed point theorems and were non-constructive.
In the last few decades, there has been substantial contribution from the computer science community in coming up with
constructive algorithms to determine a CE. As mentioned in the introduction, there has been a long line of convex programs,
interior point and combinatorial polynomial time algorithms for determining CE with goods in both Fisher and the exchange
setting [CDG+17, DGV16, NP83, DPSV08, Orl10, Vég12, DM15, DGM16, GV19, CCD13]. There are also hardness
results known when agents have more general utility functions [CPY17, CDDT09, CT09, Rub18]. The existence and
computational complexity of CE and its relaxations have been studied in discrete settings (with indivisible objects) as
well [FGL16].

The study of CE with chores/ bads has not received similar extensive investigation. One plausible reason could be that
this does not capture a natural market and such a setting is interesting only from a fair division perspective. Nevertheless, the
CE with bads exhibits far less structure than the CE with goods as explained in the introduction. There are polynomial time
enumerative algorithms known only when there are constant number of agents or chores [BS19, GM20]. Quite recently,
[CGMM21] gave an LCP formulation for determining CEEI with mixed manna (goods and bads) when the utility functions
are separable piecewise-linear and concave (SPLC) which includes linear.
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5 Preliminaries
Recall the chore division problem formalized in Section 2 above: We seek to dividem divisible chores among n agents with
convex, 1-homogeneous disutility functions D1, . . . , Dn, through the mechanism of competitive equilibrium with equal
income (CEEI). In this section we state a characterization of CEEI and certain properties of the disutility space that are
crucial for our results.

In the case of dividing goods, the seminal work of Eisenberg and Gale [EG59] shows that any allocation that maximizes
the Nash welfare — or equivalently the geometric mean of the utilities — is at a CEEI. Since the Nash welfare maximization
is a convex program, an approximate CEEI can be determined by an ellipsoid algorithm. Unfortunately, in the case of
dividing bads, the set of equilibria could be non-convex and therefore one cannot hope for convex program formulation that
captures equilibria [BMSY17]. However, a recent result by Bogomolnaia et al. [BMSY17] show a similar, but non-convex
formulation for an exact CEEI (Definition 2.1, with ε = 0) with chores. In particular, [BMSY17] show that the conditions
of an exact CE hold if and only if the disutility profile is a critical point for the Nash welfare on the boundary of the feasible
region. Formally:

THEOREM 5.1. ([BMSY17]) Let F and D be the feasible space of allocations and disutility profiles as defined in (3.2).
For some d ∈ Rn, denote the Nash social welfare as NSW(d) :=

∏n
i=1 di. Then d can be achieved by a CEEI if and only

if the following conditions all hold: a) d ∈ D, b) NSW(d) > 0, and c) d satisfies the KKT conditions for the problem of
minimizing NSW on D. Equivalently, d is on the lower-boundary of D, but not on the boundary of Rn≥0, and the gradient
∇NSW(d) is parallel to some supporting hyperplane normal for D at the point d.

Note that when dis-utilities are linear functions, D is a linear polytope. When dis-utilities are general, 1-homogeneous,
convex functions, the set D need not be convex. However, D+Rn≥0 is convex (Minkowski sum of two convex sets), and we
will therefore use it as our feasible region in the analysis.

CLAIM 5.1. D + Rn≥0 is convex, when the disutility functions D1, . . . , Dn are convex.

In the following sections, we extend Theorem 5.1 to map approximate KKT points to approximate CEEI (Definition
2.1), and then design an algorithm to find an approximate KKT point.

6 Polynomial-Time Algorithm for ε-CEEI under Linear Disutilities
In this section we present an algorithm to find an ε-CEEI in time polynomial in 1

ε and the size of the input instance, when
agents have linear disutility functions. Recall that, the linear function of agent i is represented by Di(xi) =

∑m
j=1Dijxij ,

or equivalently Di(xi) = 〈Di,xi〉 whereDi = (Di1, Di2, . . . , Dim).
Our algorithm will ensure a stronger notion of approximation where all the chores are exactly allocated, i.e., condition

3 in Definition 2.1 is satisfied exactly. For this, the algorithm finds a γ-KKT point as defined in Definition 3.1. Let us first
discuss how such a KKT point gives a stronger approximate CEEI in the next section, thereby extending Theorem 5.1.

6.1 Approximate KKT Suffices to get Approximate CEEI We begin with some notation: as we often use element-wise
inverse of a vector, for any two n-dimensional vectors x = (x1, . . . , xn) and y = (y1, . . . , yn), we denote

x/y := (x1/y1, . . . , xn/yn) .

Recall that we are interested in finding local minima for the logarithm of the Nash social welfare

(6.4) L(d) := log(NSW(d)) =
n∑
i=1

log(di) .

Observe that ∇L(d) = 1/d. From Definition 3.1, recall the γ-KKT point, γ ≥ 1, for minimizing L on D: point d on
the boundary of (D + Rn≥0), such that it has {y | a> · y ≥ n} as a supporting hyperplane for D + Rn≥0, where a ∈ Rn

approximates∇L(d) coordinate-wise, i.e., ∀i, γ−1 ≤ ai
1/di
≤ γ.

We emulate here the proof of Bogomolnaia et al. [BMSY17] to show that approximate KKT points give approximate
CEEI. As stated in the overview, we wish to show the following.

THEOREM 6.1. Let (d,a) be a (1 + ε)-KKT point for the problem of minimizing L(d) subject to d ∈ D, and L(d) > −∞.
Let x ∈ F be any allocation that realizes d, i.e. Di(xi) = di for all i. Then there exists payments p = (p1, . . . , pm) such
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that (x,p) form a stronger 2ε-CEEI, where no error is incurred in the last two conditions, i.e., (x,p) satisfies (1), (E2),
and (E3).

Furthermore, when disutilities are linear, the allocation x and payments p can be computed exactly in polynomial time
from the disutility profile d and normal vector a.

Proof. Let γ = (1 + ε), then it suffices to show that γ-KKT gives (1− γ−2)-CEEI since 2ε > (1− γ−2) for ε > 0. Recall
we have defined

−→
D(x) := (D1(x1), . . . , Dn(xn)), and sets F and D are as in (3.2), namely, the set of feasible allocations

and the set of feasible disutility profiles, in general.
Defining and Computing the Allocation and Prices. Let d be the disutility profile of the approximate KKT point.

Since D + Rn≥0 ⊆ {y | a>y ≥ 〈a,d〉} and the entries of a are positive, then d ∈ D, by minimality. Now, consider any

allocation z in F , such that
−→
D(z) = d.

For the second part of the statement of the theorem, we must show that z can be computed, as this will be the allocation
of the approximate CEEI. In fact, it suffices to find an allocation vector x which simultaneously satisfies the non-negativity
constraints of F , and the linear equality constraints of F along with

−→
D(x) = d. This can be solved by linear programming

techniques in polynomial time.
We wish now to compute the prices at the allocation, for which we will need separating hyperplanes. To this end, define

the set Sλ := {x ∈ Rnm | 〈a,−→D(x)〉 ≤ λ}. As the disutility functions are convex and continuous, we can conclude that
set Sλ is closed, convex, and non-empty for all λ > 0, since Sλ 3 0. When disutilities are linear, Sλ is in fact a closed
half-space, since

〈a,−→D(x)〉 ≤ n ⇐⇒ ∑n
i=1 ai

∑m
j=1Dijxij ≤ n .

Now, because 〈a,y〉 ≥ 〈a,−→D(z)〉 for all y ∈ D, we can conclude that Sλ does not intersect F for any λ < 〈a,−→D(z)〉.
Denote S∗ := S〈a,−→D(z)〉. The set S∗ must be tangent to F , since the Di’s are continuous, but z ∈ F ∩ S∗. See Figure 2
for an illustration. Thus, there exists a half-space Hc := {x | 〈c,x〉 ≥ b} which separates the two sets, i.e. F ⊆ Hc, and
S∗ ⊆ cl(H{

c ). Also, note that we must have 〈c, z〉 = b. Note that when disutilities are linear, we have cij = aiDij , and
b = n as the hyperplane separating F and S∗ is 〈a,−→D(x)〉 = n.

Finally, we can define the prices at the allocation. Let pj := mini cij , and let p := (p1, . . . , pm). See Figure 2 for an
illustration of the supporting hyperplanes 〈a,y〉 = 〈a,−→D(z)〉 in D and 〈c,x〉 = 〈c, z〉 in F .

It remains then to show that the allocation z and the price vector p satisfy the conditions in Definition 2.1 where the
last two are satisfied without any error, since we have argued already that they can be computed efficiently.

Satisfying Condition (1) in Definition 2.1. We want to show that for all agents i and i′, we have γ−2·〈zi,p〉 ≤ 〈zi′ ,p〉.
But first we make some simple but crucial observations about the price vector p.

CLAIM 6.1. We have
∑
j∈[m] pj = 〈c, z〉 = b.

Proof. 〈c,x〉 ≥ 〈c, z〉 = b for all x ∈ F by definition. Also, since z ∈ F , we can claim that b = minx∈F 〈c,x〉. Observe
that minx∈F 〈c,x〉 is obtained by assigning each chore fully to the agent that has the smallest cij value for it. Therefore, we
have that minx∈F 〈c,x〉 =

∑
j∈[m] mini∈[n] cij =

∑
j∈[m] pj (by the definition of pj).

Now, consider the half-space Hp = {x ∈ Rnm≥0 |
∑
i∈[n],j∈[m] pj · xij ≥ b}. We first observe that this half-space is

entirely contained in Hc.

CLAIM 6.2. We have Hp ⊆ Hc.

Proof. Consider any point x ∈ Hp. We have b ≤ ∑i∈[n]
∑
j∈[m] xij · pj . Since pj ≤ cij for all i ∈ [n], we have that∑

i∈[n]
∑
j∈[m] xijpj ≤

∑
i∈[n]

∑
j∈[m] xij · cij , implying that

∑
i∈[n]

∑
j∈[m] xij · cij ≥ b, i.e., 〈c,x〉 ≥ b. Therefore

x ∈ Hc.

Finally, note that every point x ∈ F is also contained in Hp.

CLAIM 6.3. Consider any x ∈ F . Then x ∈ Hp.
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D
〈a
,y〉=〈a

, −→D
(z)〉

F

S∗ = S〈a,−→D(z)〉

〈a
, −→D

(x
)〉=
〈a
, −→D

(z
)〉

〈c,x〉=〈c,z〉

−→
D(z)

z

Figure 2: Illustration of the supporting hyperplanes: z ∈ F is a point such that (
−→
D(z),a) satisfies the approximate KKT conditions in

Definition 3.2. Thus, we have a supporting hyperplane 〈a,y〉 = 〈a,
−→
D(z)〉 = n ofD such that γ−1 ≤ ai ·Di(zi) ≤ γ (left). The figure

on the right describes the set S∗ = S〈a,−→D(z)〉 and the hyperplane 〈c,x〉 = 〈c, z〉 that separates F from S∗. Note that z ∈ F ∩ S∗ and

the curve 〈a,
−→
D(x)〉 = 〈a,

−→
D(z)〉 coincides with the hyperplane 〈c,x〉 = 〈c, z〉 when the disutility functions are linear.

Proof. Consider any x ∈ F . We have

∑
i∈[n],j∈[m]

xij · pj =
∑
j∈[m]

pj ·
∑
i∈[n]

xij

=
∑
j∈[m]

pj (
∑
i∈[n]

xij = 1 as x ∈ F)

= b (by Claim 6.1)

Therefore x ∈ Hp.

Now, we are ready to show that γ−2 · 〈zi,p〉 ≤ 〈zi′ ,p〉. Assume otherwise and say we have γ−2 · 〈zi,p〉 > 〈zi′ ,p〉. Then
we could replace the allocation as follows: Construct ẑ by setting ẑi′ = 1

2zi′ , and ẑi =
(

1 + 〈zi′ ,p〉
2〈zi,p〉

)
zi. Since z ∈ F , we

have
∑
i∈[n],j∈[m] pjzij = b. Also note that

b =
∑
i∈[n],j∈[m] pjzij =

∑
i∈[n],j∈[m] pj ẑij ,

since the payment subtracted from agent i′ is equal to the payment added to agent i and so ẑ ∈ Hp.
By Claim 6.2, we have that ẑ ∈ Hc. Recall that Hc is a separating half-space between S∗ and F , i.e., F ⊆ Hc

and S∗ ⊆ cl(H{
c ), implying that for every point x ∈ Hc we have 〈a,−→D(x)〉 ≥ 〈a,−→D(z)〉. Since ẑ ∈ Hc, we have
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〈a,−→D(ẑ)〉 ≥ 〈a,−→D(z)〉. However,

〈a,−→D(ẑ)〉 − 〈a,−→D(z)〉 = −1

2
ai′Di′(zi′) +

〈zi′ ,p〉
2〈zi,p〉

aiDi(zi)

≤ −1

2
γ−1 +

〈zi′ ,p〉
2〈zi,p〉

· γ

< − 1
2γ
−1 + 1

2γ
−1 = 0 , (as 〈zi′ ,p〉/〈zi,p〉 < γ−2)

which is a contradiction. The first inequality is due to the definition of γ-approximate KKT, which dictates that γ−1 ≤
a` ·D`(z`) ≤ γ for all ` ∈ [n].

Satisfying Condition (2) in Definition 2.1 Exactly (i.e., Condition 2). We want to show that for all i ∈ [n], we have
Di(zi) ≤ Di(y) for all y such that 〈y,p〉 ≥ 〈zi,p〉. Let us assume that there exists a y such that Di(zi) > Di(y) and
〈y,p〉 ≥ 〈zi,p〉. We define a new allocation z′ = (z1, z2, . . . , zi−1,y, zi+1, . . . , zn). First note that

∑
i∈[n],j∈[m] z

′
ij ·pj ≥∑

i∈[n],j∈[m] zij · pj = b as 〈y,p〉 ≥ 〈zi,p〉. Therefore z′ ∈ Hp. By Claim 6.2, we have that z′ ∈ Hc. Recall that Hc

is a separating half-space between S∗ and F , i.e., F ⊆ Hc and S∗ ⊆ cl(H{
c ), implying that for every point x ∈ Hc we

have 〈a,−→D(x)〉 ≥ 〈a,−→D(z)〉. Since z′ ∈ Hc, we have 〈a,−→D(z′)〉 ≥ 〈a,−→D(z)〉. However, since Di(y) < Di(zi) and
ai ≥ γ−1/Di(zi) > 0 (by the definition of approximate KKT point), we have that 〈a,−→D(z′)〉 < 〈a,−→D(z)〉, which is a
contradiction.

Satisfying Condition (3) in Definition 2.1 Exactly (i.e., Condition 2). Since z ∈ F , we have that
∑
i∈[n] zij = 1 for

all i ∈ [n].

This concludes the proof that an approximate-CEEI can be determined from approximate-KKT points in polynomial
time. In the next subsection, we outline a polynomial time algorithm that determines an approximate-KKT point.

6.2 Algorithm, and Convergence Guarantees We show that approximate-KKT points can be found in polynomial time.
We begin with an overview of the procedure, and later show how the steps are implemented. The idea is to perform
an exterior-point procedure outside of the feasible region, which produces a sequence of guesses for approximate KKT
points, while increasing along the objective. Due to the nature of the objective function, we alternate between finding
supporting hyperplanes, and finding NSW-maximizing points on these hyperplanes, until we find a point whose gradient is
approximately in line with the supporting hyperplane.

To be precise, our algorithm starts from a point d0 very close to 0. Note that this point lies below D. Then, we find
the nearest point d0∗ in D + Rn≥0 to d0. We will address how to find this nearest point, and explain how to robustly handle
approximation errors in finding this nearest point. In doing so, it will be helpful to find nearest points in the convex region
D + Rn≥0, but keeping in mind that the true optimum d0∗ lies in D: to see this, note that d0∗ has to lie on the lower envelope
of D, and since it is the closest point in D to d0, it follows that (d0∗ − d0) is normal to a supporting hyperplane of D at d0∗.
Furthermore, we show that d0∗ Pareto-dominates d0, thereby implying that the Nash welfare at d0∗ is larger than the Nash
welfare at d0∗.

Let 〈a,y〉 = n be the supporting hyperplane of D at d0∗, where a ∝ (d0∗ − d0). Let d1 be a point on this hyperplane
with maximum Nash welfare. Observe that at d1, we should have ∇L proportional to a, i.e., a = 1/d1, implying that
d1 = 1/a. Since 〈a,y〉 = n is a supporting hyperplane of D at d0∗ (a point on the lower envelope of D), we have that d1

also lies below the lower envelop ofD. We prove that if the distance between d0∗ and d1 is small, then d0∗ is our approximate
KKT-point, otherwise we have a new point d1 below D, which has significantly higher Nash welfare than d0. We run the
exact same steps from d1. We argue that such a procedure should eventually give us an approximate KKT point as there
is significant increase in Nash welfare with every iteration of the algorithm whenever no approximate KKT point is found.
The full description of the algorithm is given in Algorithm 1.

In what follows, define RelDist(x,y) :=
∑
i |log(xi/yi)|. Notice that if RelDist(x,y) ≤ ε, then (1+ε)−1 ≤ xi/yi ≤

(1 + ε) for all i, since log(1 + a) ≤ a for all a > −1. We will find a point which is a (1 + ε)-approximate KKT point
following Algorithm 1.

Correctness. We begin by proving here that the algorithm truly returns an approximate KKT point and we will later
show that (i) it will terminate in polynomially many iterations, (ii) each iteration can be implemented in polynomial time.
To this end, we will need the following technical results, about the steps of the algorithm.

LEMMA 6.1. Regardless of the geometry of D, so long as D + Rn≥0 is convex, we have that for each iteration k ≥ 0 of
Algorithm 1:

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited2298

D
ow

nl
oa

de
d 

03
/1

6/
22

 to
 6

7.
17

3.
98

.0
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



Algorithm 1 Finding Approximate KKT

1: Let d0 be any infeasible, strictly positive, disutility profile, near 0
2: while true do
3: Set dk∗ to be the nearest dominating point in D to dk, i.e.

arg min
{
‖y − dk‖22

∣∣ y ∈ D + Rn≥0, y ≥ dk
}

4: Set ak ← (dk∗ − dk), the direction from dk to D
5: Rescale ak so that 〈ak,dk∗〉 = n
6: Set dk+1 ← 1/ak

7: if RelDist(dk+1,dk∗) < ε then
8: Return (dk∗,a

k)

1. The hyperplane defined as {y ∈ Rn|〈ak,y〉 ≥ 〈ak,dk∗〉} is supporting for D + Rn≥0, at dk∗ .

2. If dk has strictly positive entries and does not lie in D + Rn≥0, then dk∗ , a
k, and dk+1 have strictly positive entries,

and dk∗ ∈ D.

We skip the formal proof of this lemma as it is mostly technical and refer the reader to the full version of the paper [BCM21].
Informally, these hold due to the geometry of the feasible region, and ensure that each iterate is well-defined, and
economically meaningful. To complete the proof of correctness, we show that we can efficiently find a starting point
d0 which is strictly positive in every entry, and is infeasible. Thus, Lemma 6.1 will inductively show that every point is
positive and well-defined.

CLAIM 6.4. The point d0 = mδ
2n 1 where δ = minij Dij is a strictly positive infeasible disutility profile.

Proof. Since Dij ≥ δ for all i and j, any feasible dis-utility profile must assign disutility at least mδ/n to some agent.
Therefore, it is impossible for every agent to have disutility 1

2mδ/n at a feasible point.

We now show that in the stopping condition, Algorithm 1 returns an approximate KKT point. Intuitively, this holds
because the RelDist function in the stopping condition is designed to correctly captures the multiplicative error needed in
the definition of approximate KKT.

LEMMA 6.2. Algorithm 1 returns a (1 + ε)-KKT point for minimizing L on D.

Proof. Suppose the algorithm terminates and returns (dk∗,a
k) on line 8. Note that we have dk+1 = 1/ak and

RelDist(dk+1,dk∗) < ε, implying that RelDist(1/ak,dk∗) < ε. Then, we have (1 + ε)−1 ≤ aki · (dk∗)i ≤ 1 + ε for
all i. Also by Lemma 6.1, we have that 〈ak,y〉 = n is a supporting hyperplane of D passing through dk∗ . Therefore, the
point dk∗ is a (1 + ε)-KKT point as in Definition 3.1.

In the rest of this section, we will argue that the number of iterations must be polynomial, and that each iteration can be
solved in polynomial time, which will allow us to conclude the correctness and efficiency of the algorithm.

Polynomially Many Iterations. We show that in polynomially many iterations the algorithm finds an approximate
KKT point. In particular, we show that (a) the log-NSW L is always increasing throughout Algorithm 1, and (b) it increases
additively by poly(n, 1/ε) every time RelDist(dk+1,dk∗) ≥ ε. Bounding the range of L over the course of the iteration will
then give our desired bound.

CLAIM 6.5. Steps 3. and 6. always increase L, the log-product of disutilities. Formally, L(dk+1) ≥ L(dk∗) ≥ L(dk) for
all k ≥ 0.

Proof. By Lemma 6.1, dk∗ ≥ dk, coordinate-wise. Thus, since L is monotone increasing in each coordinate direction,
L(dk∗) ≥ L(dk).

We prove that Step 6 is an improvement by showing that dk+1 is the maximizing point on the hyperplane 〈ak,y〉 = n,
and therefore L(dk+1) ≥ L(dk∗).

Since L is a concave function, it is maximized on this hyperplane when ∇L is proportional to ak, i.e. when aki = c/di
for some c > 0, for all i. Since we need 〈ak,d〉 = n, it suffices to set c = 1. Thus, dk+1 is the L-maximizing point on the
supporting hyperplane which contains dk∗ , and so this move is an L-improvement.
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Using the above claims, next we show that L increases significantly in each iteration of our algorithm.

LEMMA 6.3. If Algorithm 1 does not return at step 8, then the logarithm of the Nash social welfare increases by at least
1
16 (ε/n)2, i.e., L(dk+1)− L(dk) ≥ 1

16 (ε/n)2.

Proof. Since L(dk∗) > L(dk) by Claim 6.5, it suffices to show that if RelDist(dk+1,dk∗) > ε, then L(dk+1) − L(dk∗) is
large. Let A = diag(ak), and note that 〈1, Ad〉 = 〈ak,d〉, and furthermore, Adk+1 = 1. Let ∆ = Adk∗ − 1, and notice
that

〈1,∆〉 = 〈1, A(dk∗ − dk+1)〉 = 0

Note that dk∗ = (1 + ∆)/ak, where we take the quotient componentwise as is defined at the start of Section 6.1. With
dk+1 = 1/ak, this gives RelDist(dk∗,d

k+1) = RelDist((1 + ∆),1). Therefore, we know that
∑n
i=1 |log(1 + ∆i)| > ε.

We also get

L(dk+1)− L(dk∗) =
n∑
i=1

log(1/aki )− log((1 + ∆i)/a
k
i ) = −

n∑
i=1

log(1 + ∆i)

Define:

F (z) :=


1
4z

2 if − 1 < z ≤ 1
1
2z − 1

4 if z ≥ 1

+∞ otherwise

At z = 0, we have that −z + F (z) = 0 = log(1 + z) and d
dz (−z + F (z)) = −1 = d

dz (− log(1 + z)). By comparing
derivatives for the other values of z > −1, we can show that − log(1 + z) ≥ −z + F (z) for all z. Thus,

L(dk+1)− L(dk∗) = −
n∑
i=1

log(1 + ∆i) ≥
n∑
i=1

−∆i +
n∑
i=1

F (∆i) =
n∑
i=1

F (∆i)

Now, since we have
∑n
i=1 |log(1 + ∆i)| > ε, there must be some i such that | log(1 + ∆i)| > ε/n. If ∆i > 0, then

∆i ≥ log(1 + ∆i) ≥ ε/n. Conversely, if ∆i < 0, we being by noting that for |z| < 0.5, we have − log(1 + z) ≤ −z + z2

for reasons similar to the above. Thus, we get

ε/n < − log(1 + ∆i) ≤ −∆i + ∆2
i

We must have ∆i > −1, since the argument can’t be negative, so we have 2|∆i| > ∆2
i − ∆i > ε/n, or ∆i < − 1

2ε/n.
Noting that F (z) ≥ 0 for all z, we can then conclude

L(dk+1)− L(dk∗) ≥
∑
i F (∆i) ≥ maxi F (∆i) ≥ 1

16ε
2/n2

as desired.

Finally, to bound the number of iterations Algorithm 1 would take we need to bound the log-NSW value at the starting
point, namely L(d0), where d0 := 1 · m2n mini,j Dij , as in Claim 6.4. We show the following.

LEMMA 6.4. Starting at d0 := 1 · m2n mini,j Dij , Algorithm 1 finds a (1 + ε)-KKT point in

O

(
n3

ε2
· log

(
n ·maxi,j Dij

mini,j Dij

))
many iterations.

Proof. If we can bound the range of the log-NSW objective, then the proof follows using Lemmas 6.2 and 6.3. Let M be
such that Di(xi) ≤M for every agent i, at every feasible x ∈ F . Note that M ≤ m ·maxi,j Dij .

Then we have that for any feasible x, L(d(x)) ≤ n logM . Since each round of the above algorithm that doesn’t
terminate increases the log-NSW by at least 1

16 (ε/n)2, then the total number of rounds possible is at most

16 · n
2

ε2
· (n log(M)− L(d0)) ≤ 16n3

ε2
·
(

log(m ·max
i,j

Dij)− log( m2n min
i,j

Dij)

)
,

which gives the desired bound.

Now that we have shown there are polynomially many iterations in our algorithm, it suffices to show that each iteration
can be implemented in polynomial time to establish that Algorithm 1 is indeed polynomial time.

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited2300

D
ow

nl
oa

de
d 

03
/1

6/
22

 to
 6

7.
17

3.
98

.0
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



Implementing Each Iteration in Polynomial Time. To show that each iteration can be implemented in polynomial
time, it suffices to show that the nearest neighbour search (step 3 in Algoritm 1) can be implemented in polynomial time.

LEMMA 6.5. Each iteration of Algorithm 1 can be computed exactly in time polynomial in n, m, and the description
complexity of the Dij’s.

Proof. Let
−→
D(x) := (D1(x1), . . . , Dn(xn)) as defined previously. Recall that disutility functions are linear, with

Di(xi) :=
∑m
j=1Dijxij .

Let D̂ be the n× nm block-diagonal matrix such that D̂x =
−→
D(x). To find the nearest-feasible disutility profiles, we

will find the allocation x which minimizes the following convex quadratic program:

min
x∈F

∥∥∥−→D(x)− dk
∥∥∥2
2

= min
x∈F

x>
(
D̂>D̂

)
x− 2(dk)>D̂x+ (dk)>dk .

It was shown by Khachiyan et al. [KTK80] that this program can be solved exactly, with running time polynomial in
the description complexity of the system. Thus, so long as D̂ and dk have rational entries with polynomial description
complexity (polynomial-sized numerators and denominators), the problem can be solved exactly in polynomial time, and
the solution will have small description complexity.

The matrix D̂ consists of the Dij’s and our running time is assumed to depend on their description complexity.

Final Result. We now have all the ingredients to conclude that an approximate CEEI (Definition 2.1) can be computed
in polynomial time. Lemma 6.4 bounds the number of iterations as a polynomial in n, 1/ε, and the description complexity
of the instance, Claim 6.4 shows how to find a good starting point, Lemma 6.5 shows that each iteration can be computed
in polynomial time, with the same arguments, and Theorem 6.1 shows how to compute a ε-CEEI in polynomial time given
the output of Algorithm 1. Thus, we conclude that Algorithm 1 is an FPTAS for finding 3ε-CEEI.

THEOREM 6.2. Given linear disutility values D11, . . . , Dnm, Algorithm 1, along with 6.1, finds an ε-CEEI in time
polynomial in n, m, 1/ε, log(

maxDij

minDij
), and the description complexity of the Dij’s.
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[BMSY17] Anna Bogomolnaia, Hervé Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Competitive division of a mixed manna.
Econometrica, 85(6):1847–1871, 2017.
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