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Extreme heat is a leading cause of weather-related human mortality throughout much of the world, posing a
significantly heavy burden on the development of healthy and sustainable cities. To effectively reduce heat
health risk, a better understanding of where and what risk factors should be targeted for intervention is
necessary. However, little research has examined how different risk factors for heat-related mortality operate at
varying spatial scales. Here, we present a novel application of the multiscale geographically weighted regression
(GWR) approach to explore the scale of effect of each underlying risk factor using Hong Kong as a case study. We
find that a hybrid of global and local processes via multiscale GWR yields a better fit of heat-related mortality risk
than models using GWR and ordinary least squares (OLS) approaches. Predictor variables are categorized by the
scale of effect into global variables (i.e., age and education attainment, socioeconomic status), intermediate
variables (i.e., work place, birth place and language), and local variables (i.e., thermal environment, low in-
come). These findings enrich our understanding of the spatial scale-dependent risk factors for heat-related
mortality and shed light on the importance of hierarchical policy-making and site-specific planning processes

in effective heat hazard mitigation and climate adaptation strategies.

1. Introduction

Climate change mitigation and adaptation are essential to attaining
sustainable development (United Nations, 2016). In fact, sustainability
is increasingly threatened by climate change-induced extreme weather
events, such as severe typhoons, intense flooding, droughts, and heat
waves (The Emergency Event Database (EM-DAT) 2020; The United
Nations Office for Disaster Risk Reduction (UNDRR 2015)). As a leading
cause of weather-related loss and damage as the climate warms, extreme
heat events pose huge societal, economic and ecological burdens on
global cities (Benmarhnia, Kihal-Talantikite, Ragettli & Deguen, 2017;
Gasparrini et al.,, 2015; McMichael, Montgomery & Costello, 2012;
Wilhelmi & Hayden, 2010), including devastating heat waves, such as
the 2003 European heat wave, which caused 70,000 deaths (Robine
et al., 2008), and the 2010 Russian heat wave, which killed an estimated
55,000 people (Dole et al., 2011). Aside from the heat wave events that
occurred in temperate regions, these abnormal weather patterns and
their associated excess deaths are increasingly becoming more severe
and frequent in the tropics (Borzino, Chng, Mughal & Schubert, 2020;
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Zhao et al., 2019) and subtropics (Ingole et al., 2017; Ng et al., 2016;
Yilmaz, Toy, Demircioglu Yildiz & Yilmaz, 2009), especially in densely
populated cities where heat stress is further aggravated by the local hot
and humid climate and the urban heat island effect, such as Hong Kong,
the focus of the present case study (Hua, Zhang & Ren, 2020; Song,
Huang, Kim, Wen & Li, 2020; Hong Kong Observatory (HKO) 2020). In
addition, extreme heat events are projected to increase in frequency,
duration, and intensity (Qing & Wang, 2021; Intergovernmental Panel
on Climate Change (IPCC 2018)), which are likely to exacerbate their
heat-related impacts in most of the world (Gasparrini et al., 2015;
McMichael et al., 2012; Muthers, Laschewski & Matzarakis, 2017; Wil-
helmi & Hayden, 2010).

Extreme heat has a range of impacts on ecosystems and human so-
ciety, including crop failures (Wegren, 2011), wildfires (Shaposhnikov
etal., 2014), and infrastructure damage and disruption (Garcia-Herrera,
Diaz, Trigo, Luterbacher & Fischer, 2010). More importantly, extreme
heat has significantly increased population health risk and mortality
(Guo et al., 2016). A multicountry observational study demonstrated
that 4.2 out of every 1000 deaths were attributable to hot temperatures
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(Gasparrini et al., 2015), and all selected countries would experience a
sharp surge in heat-related excess mortality under the high CO, emission
scenario (Gasparrini et al., 2017). As such, the health effects of extreme
heat should be an urgent issue to address. To minimize the worldwide
health burden imposed by such extreme weather events, scientists have
called for adaptation strategies for reducing heat health risks and
enhancing heat resilience, thus prompting wide interest in heat health
risk research (Bakhsh, Rauf & Zulfigar, 2018; Benmarhnia et al., 2017;
Keramitsoglou et al., 2017; McGregor, Bessemoulin, Ebi, & Menne,
2015). Currently, time-series studies on the day-to-day associations
between temperature and human health risk are already at the “mature
stage” and have facilitated the development of early heat warning sys-
tems (Gasparrini et al., 2015; Guo, Barnett & Tong, 2012; Hajat et al.,
2010; (Hajat et al., 2006)). However, geographical studies of socio-
environmental influences on human health are still being investigated
(Wong, Ho & Tse, 2020), and far less attention has been given to
differentiating their scales of effect.

This paper presents a case study in Hong Kong, the world’s fourth
most densely populated city, which is under increasing threat of extreme
heat events owing to the combined effects of the urban heat island effect
and global warming (Hua et al., 2020; Liu et al., 2020). By presenting the
case of Hong Kong, we aim to build on the existing literature in three
ways. First, this study includes both social and environmental factors in
the analysis and thus provides a more comprehensive understanding of
underlying risk factors associated with heat-related mortality risk. Sec-
ond, this study extends the existing heat health research by identifying
at which specific spatial scales those risk factors present the most sig-
nificant associations with heat-related mortality and how those re-
lationships vary over space. Third, along with the top—down heat hazard
mitigation interventions outlined in the Hong Kong Climate Action Plan
2030+, this study provides an evidence basis for joint geographically
targeted strategies and action plans to mitigate climate change-induced
health risks and impacts locally and globally.

To present this study, this paper begins with a review of past
geographical studies on heat health risk. Then, a description of the data
used and the measures and methods adopted is provided. The subse-
quent sections present the major findings of this study and the practical
implications for health interventions, heat hazard mitigation and
climate adaptation strategies. The paper concludes with a discussion on
the limitations of this study and recommendations for future work.

2. Review of past geographical studies on heat health risks

A comprehensive assessment is required to identify areas of high risk
and thus prioritize interventions in heat action plans (Ho, Knudby,
Walker & Henderson, 2017; (Wolf et al., 2015); (Hondula et al., 2015);
(O’Neill & Ebi, 2009)). To delineate the spatial variability of heat health
risk, scientists have devised a number of heat vulnerability and risk
indices ((Zhang et al., 2019a); (Chen et al., 2018); Di Napoli, Pappen-
berger & Cloke, 2018; (Aubrecht and Ozceylan, 2013)Buscail, Upegui &
Viel, 2012; Wolf & Mcgregor, 2013). Some of these indices are further
validated against heat-related morbidity and mortality data at both the
city and subcity levels (Harlan, Declet-Barreto, Stefanov & Petitti, 2013;
Hu, Yang, Zhong, Fei & Qi, 2017; Wolf, Mcgregor & Analitis, 2014;
Zhang et al., 2019; (Reid et al., 2012)). These studies are particularly
important because they can help local policy makers identify areas at
higher risk of mortality during heat wave events (Conlon et al., 2020;
Ho, Knudby & Huang, 2015; Janicke et al., 2019). However, most of
these indices have not had a substantial influence on policymaking or
prevention action, probably because some useful information may be
buried in aggregates based on an equal-weighting scheme (Mallen,
Stone & Lanza, 2019; Wolf, Chuang & Mcgregor, 2015). Although areas
at high risk can be highlighted in maps of these composite indices, the
underlying causes of the risk remain unknown. Without this crucial in-
formation, public health authorities often have trouble recognizing
appropriate measures and developing cost-effective plans (U.S.
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Environmental Protection Agency (U.S. EPA 2018); (American Planning
Association 2021)).

Previous studies have highlighted various underlying factors that can
be targeted for interventions to reduce heat health risks. Chen, Huang
and Zhou (2015) emphasized the fair distribution of heat vulnerability
factors in terms of the disparity in heat health risks between urban and
rural areas. Fisenman et al. (2016) argued that socioeconomic factors
have a closer relationship with heat-related illness than built environ-
ments, especially during extremely hot days. He et al. (2019) explored
the spatial variability of mortality risks due to extreme heat in Shanghai
and argued that adaptation factors are relatively more important than
heat exposure and sensitivity factors. However, previous studies have
demonstrated that relationships between heat-related mortality risks
and certain influencing factors have local variations. Specifically,
heat-related mortality risks in urban areas are influenced by drivers that
have little importance in rural areas (Hattis, Ogneva-Himmelberger &
Ratick, 2012; Hu et al., 2019b; Kovach, Konrad II & Fuhrmann, 2015;
Rey et al., 2009). Such spatial disparity in factors associated with
heat-related death is further evidenced in six cities in Japan (Ng et al.,
2014) and seven U.S. cities (Hondula, Davis, Saha, Wegner & Veazey,
2015) using city-specific models. Chien, Guo and Zhang (2016) found
that the effects of heat and heat waves on elderly individuals in Texas,
USA, vary across affected areas, and these effects are relatively more
severe in Northwest Texas and parts of West Texas. In view of these
pieces of evidence, a universal policy or action plan may be unsuitable to
address the heterogeneity of local risks and impacts (Wilhelmi & Hay-
den, 2010). To be able to respond appropriately to localized heat
burden, scientists, policy makers, and urban planners must understand
where these targeted interventions are needed and how to appropriately
prioritize heat management strategies to achieve effective policy
implementation (Heaton et al., 2014; (Price, Perron, & King, 2013)).

The need to develop local-specific action plans has prompted wide-
spread interest in incorporating spatial context into the analyses and
modeling of heat-related mortality risks (Declet-Barreto, Knowlton,
Jenerette & Buyantuev, 2016; Lehnert, Wilt, Flanagan & Hallisey, 2020;
Pramanik, Punia, & Chakraborty, 2020; Wang, Fan, Zhao & Myint,
2020). In particular, geographically weighted regression (GWR) is a
well-established spatial regression technique to model spatially varying
relationships in heat risk studies. Via GWR, Kovach, Fuhrmann, Konrad
II and Harrison (2012) found that heat-related hospital admissions in
communities in North Carolina have spatially varying relationships with
factors of land use and housing conditions. Sun, Yun, & Ling, 2019
estimated the spatially varying weights of environmental, demographic,
and health-related risk factors in contributing to spatial heat health
vulnerability in Western Austria. (Cao et al., 2020) revealed that spatial
clusters of heat health risks in a district of Guangzhou City in China are
strongly associated with social activity locations and time periods.

Given that heat-related health outcomes are treated as a complex
interplay of sociodemographic conditions and the physical environment
(O’Neill & Ebi, 2009), the underlying factors of heat health risks in
various domains may differ in their scales of effect. Yang and Jensen
(2017) discovered that the association between mortality and social
condition is spatially stationary, whereas that between mortality and
climatic conditions is not. These findings raise the concern that a uni-
versal model, such as GWR, which assumes all processes operate at the
same spatial scale ((Fotheringham, Brunsdon, & Charlton, 2003)), may
not be appropriate in predicting heat-related mortality risks. In contrast,
the recently developed multiscale geographically weighted regression
(MGWR) allows the effects of various predictor variables, each of which
varies at a specific spatial scale, to be modeled simultaneously
((Fotheringham et al., 2017)). For MGWR, its mathematical details are
provided in the work of Fotheringhan et al. (2017), its Python imple-
mentation in Oshan, Li, Kang, Wolf and Fotheringham (2019) and the
inference in Yu et al. (2020). Thus far, this method has been applied in
research on air pollution ((Fotheringham, Yue, & Li, 2019)), obesity
(Oshan, Smith & Fotheringham, 2020), and road fatalities ((Iyanda &
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Osayomi, 2020)), but its applicability in heat health research should be
further demonstrated in empirical studies.

Against the background presented above, the goal of this paper is to
explore multiscale processes associated with heat-related mortality and
the scale of effect of each underlying risk factor in a specific domain via
MGWR. In relation to this overarching aim, we address the following
specific questions.

(1) For risk factors in different domains, do their associations with
heat-related mortality vary over space?

(2) Do different risk factors associate with heat-related mortality at
varying spatial scales?

(3) How do the associations between different risk factors, each
operating at a specific spatial scale, and heat-related mortality
vary over space?

3. Data, measures and methodology
3.1. Measures of heat-related mortality risk

Heat-related mortality refers to deaths associated with dehydration
or volume depletion (the International Classification of Disease Tenth
Revision (ICD-10), E86), cardiovascular diseases (ICD-10, 100-199),
respiratory diseases (ICD-10, J00-J99), hyperpyrexia (ICD-10, R50.9),
effects of heat and light (ICD-10, T67), heat stroke (ICD-10, X30) and
exposure to sunlight (ICD-10, X32) during the summer season (Hu et al.,
2019a; (Hu et al., 2019b); Eisenman et al., 2016). Daily mortality data in
Hong Kong during the summer season (May to October) from 2015 to
2017 are provided by the Hong Kong Census and Statistics Department
(HKSCD). The daily deaths of residents are tabulated for each tertiary
planning unit (TPU) according to the place of residence (in 3-digit TPU
code). The TPU is a geographic reference system demarcated by the
Planning Department of the Territory of Hong Kong; TPUs with small
populations are merged with adjacent ones to form small TPUs—the
smallest census units with publicly available and accessible data of the
2016 Hong Kong Census Statistics. To match the scale units of the census
statistics, the TPU-level mortality data are recounted for each small TPU.
Given the incoherent boundaries of some small TPUs before and after
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2016, we merge units sharing changed boundaries for a new one and
then recount mortality for each newly merged unit. Finally, a total of
209 small TPUs with complete data are included in this study for anal-
ysis. Regarding the small numbers associated with a rare event, we
calculated the odds ratio of heat-related death and included the popu-
lation size to control for the number of people at risk in each small TPU
(Burkart et al., 2016; Harlan et al., 2013; Nordio, Zanobetti, Colicino,
Kloog & Schwartz, 2015).

The calculated heat-related mortality risk is visualized as shown in
Fig. 1. The highest risk units are found to be clustered within the
Kowloon Peninsula (i.e., Sham Shui Po, Kowloon City, Wong Tai Sin),
whereas the low-risk clusters are within the New Territories (i.e., Yuen
Long, Tai Po, etc.) (see Figure Al in Appendix A). The heat-related
mortality risk therefore depends greatly upon the location, allowing us
to further explore its spatial variance.

3.2. Demographic and socioeconomic variables

Predictor variables in this domain include age, education, income,
place of birth, language, occupation and place of work. Age is consid-
ered a risk factor for heat-related mortality because the elderly are
usually the first to be influenced, probably due to their weak thermo-
regulatory mechanisms and existing medical conditions (Fuhrmann,
Sugg, Konrad & Waller, 2016). In a population-based analysis of heat
risk in Houston, a 1% increase in the elderly percentage within a block
group led to a 5.66% increase in the relative risk of nonaccidental
mortality within that block (Heaton et al., 2014). The age variable is also
found to be a significant predicator of heat-related deaths of census
block groups in Phoenix, Arizona (Uejio et al., 2011).

A lower education level was found to be at higher heat risk in the U.S.
at the ZIP code level (Gronlund, Berrocal, White-Newsome, Conlon &
O’Neill, 2015; Hondula et al., 2015) and at the census tract level
(Mallen et al., 2019) and in China at the county level (Chen et al., 2016).
A probable explanation for this might be that a well-educated popula-
tion tends to have more chances to learn knowledge and skills to adapt to
heat stress. Therefore, communities with larger proportions of highly
educated populations are expected to be less heat vulnerable.

Lower income was associated with elevated heat risk across many
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Fig. 1. Map of Heat-related Mortality Risk.
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populations and regions, such as Seoul in Korea (Janicke et al., 2019;
(Kim & Joh, 2006)), Boston in the U.S. (Hondula et al., 2015), and six
cities in Japan (Ng et al., 2014). Poor response to warnings (Kalkstein &
Sheridan, 2007), lack of ready access to cooler locations (Sampson et al.,
2013) and medical care (Zhang, Nitschke & Bi, 2013) might explain the
association of low income with high vulnerability in the face of extreme
heat events.

Birth place has been associated with heat-related mortality at both
the community level (Eisenman et al., 2016) and the neighborhood level
(Kovach et al., 2015). We gather data on the place of birth at the small
TPU level and use the variable to capture the potentially vulnerable
populations in Hong Kong, such as immigrants who lived in a distinct
climate before (i.e., temperate climate) and thus cannot adapt well to the
local hot and humid climate or immigrants who are experiencing social
and cultural isolation (Sampson et al., 2013; Yardley, Sigal & Kenny,
2011).

The effects of language barriers are not consistent among studies of
different geographical regions. In the U.S., most emergency alerts are
issued in English, placing limited English-proficient populations at an
increased vulnerability (Nayak et al., 2018). In contrast, in most inter-
national metropolises, such as Hong Kong, where multilingual emer-
gency alerts and official documents are often provided, language
barriers are reduced for foreigners; native speakers who can only
communicate in Cantonese are instead more vulnerable since they are
more likely to be less educated and have a shortage of risk awareness
and risk reduction capability (Song et al., 2020).

The heat-related mortality risk also exhibits a disparity by occupa-
tion. While the population employed in administrative and managerial
positions often represents a socially affluent population group and has a
higher adaptive capacity to heat risk (Yang & Jensen, 2017), mutual
workers such as service, sales, craft and related workers tend to have low
income and low educational attainment and could be more susceptible
to heat health risk (Gubernot, Anderson & Hunting, 2014; Wong, Peng,
Zou, Shi & Wilson, 2016).

Poor working conditions could lead to higher occupational heat
exposure and thus increase the heat risk of the working population
(Spector, Masuda, Wolff, Calkins & Seixas, 2019). Communities are
assumed to suffer higher heat risk if there is a higher proportion of
people who work in areas with crowded buildings using higher albedo
materials (i.e., reflecting materials) and have longer communing dis-
tances to their workplaces (Hoffmann, Fischereit, Heitmann, Schliinzen
& Gasser, 2018; Schrijvers, Jonker, De Roode & Kenjeres, 2016).

Information on age, education, low income, place of birth, language,
occupation and place of work are extracted from the 2016 Hong Kong
Census Data published by HKSCD at the small TPU level (214 small TPUs
in 2016). To match the scale units of mortality data (209 small TPUs
including the newly merged units), we recalculated the data and cor-
responding variables for each merged unit.

3.3. Variables of heat hazard and built environment

Land surface temperature (LST) during extreme heat events is used as
a proxy for heat hazards. We collected LST data from two widely used
satellite image products, the Moderate Resolution Imaging Spectror-
adiometer (MODIS), MOD11A1 (daytime) and MYD11A1 (nighttime),
which have been used as alternative data sources for heat risk studies
(Estoque et al., 2020; Zhang et al., 2019). The heat hazard is thereby
captured by the LSTs during very hot days (maximum temperature > 33
°C) and hot nights (minimum temperature > 28 °C) recorded from 2015
to 2017 by the Hong Kong Observatory (HKO). As LSTs within built-up
areas are highly associated with residents’ heat health risk (Song et al.,
2020), we then extracted daytime and nighttime LSTs only within
built-up regions and calculated the mean value of LSTs at each pixel
using the cell statistics tool in ArcGIS 10.5. To match the scale units of
demographic and socioeconomic variables from census data, we
aggregated pixel values for maps at the small TPU level using the zonal
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statics tool in ArcGIS 10.5.

The built environment can impact microclimatic thermal conditions
and the risk of heat-related mortality (Fisenman et al., 2016; Yardley
et al., 2011). In this study, variables of built-up land, transport land and
building density are included as proxies of the built environment.
Built-up areas tend to have a long-lasting effect of heat stress due to the
large amounts of concrete and asphalt (Madrigano, Ito, Johnson, Kinney
& Matte, 2015a) and have reduced evapotranspiration due to a lack of
vegetation and surface moisture (Hart & Sailor, 2009). This can
contribute to the urban heat island (UHI) effect, which further exacer-
bates heat waves (Reid et al., 2009) and increases the urban-rural
disparity of heat-related health risks (Chen et al., 2016; Hu et al.,
2019a). The heavy traffic flows in areas used for transport emit large
amounts of anthropogenic heat and air pollutants, in which the former
has a direct negative influence on thermal comfort (Hart & Sailor, 2009)
while the latter can deteriorate the thermal environment as a
confounder of the UHI (Madrigano, Jack, Anderson, Bell & Kinney,
2015b). Therefore, a high percentage of traffic land is assumed to
contribute to adverse heat health outcomes. Building density was linked
to heat health risk in earlier studies (Uejio et al., 2011) and could be a
key factor in crowded cities such as Hong Kong. We calculate the
building density using the kernel density tool first and then aggregate
the pixel-based values for each small TPU in ArcGIS 10.5.

Data on land use are drawn from the Hong Kong Land Use (HKLU)
database at a spatial resolution of 30 m?s in 2016 and are aggregated to
calculate the percentages of various land use types at a small TPU level.
In the end, we include thirteen variables that may explain the heat-
related mortality risk of 209 small TPUs. Information on the selected
variables is summarized in Table 1.

3.4. Multivariable predictive model

Data preprocessing. To detect influencing factors of heat-related
mortality risk, this study screens selected variables exhibiting signifi-
cant associations with heat-related mortality risk for inclusion in the
multivariate analyses (Uejio et al., 2011). The variables included are
treated as potential contributors to heat-related mortality risk. Spear-
man’s correlation coefficients are then calculated, by which high cor-
relations are detected between some of those included variables. To
reduce the duplicate messages and potential multicollinearity that might
affect the final estimation results, we adopt principal component anal-
ysis (PCA) to eliminate redundant information and create independent
factors for inclusion in further regression analysis (Song et al., 2020). A
varimax rotation is used to minimize the number of original variables
that load highly on any one factor and increase the variation among
factors (Mallen et al., 2019). We retain factors based on a combination of
standard criteria: the proportion of each variable’s variance (i.e., com-
munality) and that of the total variance that can be explained by the
factors (say above 0.8 for each). Factor scores were computed using
estimated factor score coefficients in the factor analysis tool in IBM SPSS
Statistics 23 software. The resulting factor scores are normalized to have
a mean of 0 and a standard deviation of 1.

Multiscale geographically weighted regression model. Unlike
global regressions, local regressions can detect spatial heterogeneity in a
process (i.e., GWR) (Fotheringham, Brunsdon, & Charlton, 2003);
varying-scale methods can further take into account different spatial
scales of predictor variables, such as those following the most recently
developed MGWR (Fotheringham, Yang & Kang, 2017; Yu et al., 2020).
This study thereby predicts heat-related mortality risk through MGWR,
which adopts the function expressed below (Eq. (1)).

k
Yi = Z/),bw;/'(:uiv V)X + & €y
1

where y; indicates the heat-related mortality risk at unit i, x; is the jth
predictor variable of unit i, and S, (#;, vi) denotes the coefficient of unit
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Table 1
Data summary of the selected variables.
Category Data Source Characteristics Variables Mean (Std.
Dev)
Demographic and HK census (2016)  Age % population >= 65 years of age 16.15  (4.50)
socioeconomic variables
Education % population >= 15 years of age with educational attainment only at  18.33  (8.25)
primary and below
Low income % working population with monthly income from main employment 28.42  (7.75)
below 10,000 Hong Kong Dollars.
Place of birth % population who are born in Hong Kong 60.49  (8.77)
Language % population >= 5 years of age, whose usual spoken language is 83.51  (13.38)
Cantonese
Occupation * % managers and administrators of the working population 12.56  (7.16)
% service, sales, craft and related workers of the working population ~ 19.90  (8.99)
Place of work a % working population who work on Hong Kong Island 24.09 (15.85)
% working population who work in the New Territory 22.89 (15.42)
Heat hazard and build HKLU (2016) Building density Kernel density of buildings 21.58 (14.24)
environment
Transportation % roads and traffic facilities (i.e., roads, railways, etc.) 12.81 (9.21)
Built-up land % built-up area 53.47 (34.82)
MODIS Land surface temperature Average nighttime LST within built-up area during hot nights at the 26.03  (0.80)

(2015-2017) (LsT! *

small TPU level

@ Some categories of variables of occupation, place of work, and LST are not listed because those categories were found to have no significant associations (p > 0.05)
with heat-related mortality risk, including unlisted categories of occupation (i.e., professionals, associate professionals, etc.), place of work (i.e.,% working population
who work in Kowloon), and LST (i.e., average daytime LST within built-up area during very hot days at a small TPU scale level).

i for location (y;,v;), in which bwj represents the ith optimal bandwidth.

MGWR is calibrated using a back-fitting algorithm under a general-
ized additive model (GAM) framework. In the MGWR algorithm, every
additive term in each step is fitted using a GWR estimator, and local
parameter estimates are location-specific and are realized by specifying
spatial weight matrices that allow neighborhoods closer to unit i to have
stronger impacts on local parameter estimations at location (y;, v;) (Eq.

(2)).

~ , 1
ﬂbw(ﬂ;:”i) = (X/ Wb"f(:uhui)‘xj) X' Wi (i, 0i)y (2)

where ﬁbwj (u;,v;) denotes the vector of local estimates, X; denotes the yh
predictor variable, y denotes the observation of the dependent variable,
and Wy, (4;, v;) denotes the j spatial weights matrix at unit i.

Each spatial weights matrix is characterized by a kernel function and
a bandwidth designed to control the weighting intensity or data-
borrowing (i.e., spatial scale). Instead of the fixed Gaussian kernel
function, the adaptive bi-square kernel function is particularly used in
this study. There are two reasons for selecting such a data-borrowing
scheme. First, the Gaussian kernel function assumes that all observa-
tions have nonzero weights regardless of how far they are from the
target location; however, in most cases, this is not in line with reality.
Instead, the bi-square kernel function estimates each local regression
based on data of the nearest neighborhoods but regardless of the in-
fluences of other observations. This makes it possible to detect the
optimal bandwidth that could serve as a proxy of spatial scale and thus is
selected ((Iyanda & Osayomi, 2020); Oshan et al., 2019). Second, in
comparison with the Euclidean distance-based measure of proximity,
the nearest-neighbors measure used in the adaptive kernel function is
more robust to irregular spatial sampling (Fotheringham et al., 2017).
The bandwidth is thereby used to predefine the number of nearest
neighbors that influence the local parameter estimation and is thus
involved in estimating the coefficient of each variable at each location.
In MGWR models, each bandwidth represents a unique spatial scale for
parameter estimation and can be used to explain the rate of change of
coefficients in space, which indicates the scale of spatial heterogeneity.
The larger the bandwidth is, the more stable the influence of the variable
in space, and vice versa. A corrected Akaike information criterion (AICc)
is used to detect the optimal bandwidth, where the smallest value of
AlCc signals the optimal bandwidth.

All local parameter estimates and optimal bandwidths in MGWR are

evaluated based on the GAM through a back-fitting algorithm that al-
lows for estimating the globally consistent effects and spatially varying
effects of predictor variables simultaneously (Fotheringham et al., 2017;
Yu et al., 2020). For calibrations of the MGWR model, the parameter
estimates of the GWR model are used to initiate the GAM and for a quick
convergence; the convergence of the model calibration is diagnosed by
the score of change (SOC) in the GWR smooth functions between
consecutive back-fitting iterations (i.e., terminate if SOC-f<10’5) (Yu
et al., 2020; Iyanda et al. 2020). We used MGWR software (v2.2, 2020,
Spatial Analysis Research Center, Tempe, the U.S.) to derive all the re-
sults in this study (https://sgsup.asu.edu/sparc/mgwr).

Model comparison and visualization. To further explore which
model could favorably fit the data, we compare the ordinary least
squares (OLS), GWR and MGWR models based on a combination of
standard criteria: the goodness of fit (R-squared), AICc, and the residual
sum of squares (RSS) (Oshan et al., 2020; (Fotheringham, Yue, & Li,
2019)). A higher value of R-squared indicates a larger amount of random
variance that could be explained and thus signals a preferred model. For
AIC, the rule of thumb is that when the difference between two AICs is
greater than 10, the optimal model is the one with the smaller AIC
(Burnham & Anderson, 2004). The study refers to the rule of thumb for
AIC and applies it to AICc. For the RSS, it measures the amount of
variance in the dependent variable that is not explained by a regression
model; a model with a smaller value of RSS represents the model that fits
the empirical data better. We further compared the GWR and MGWR, as
suggested in prior research, by mapping the local condition number of
each model (Oshan et al., 2020; (da Silva & Fotheringham, 2016)). The
map is used to show the pattern of local multicollinearity in each model.
To visualize the spatial heterogeneity detected by the optimal model, we
visualized each variable’s parameter estimates that were statistically
nonzero and displayed them in color using a choropleth map.

4. Results

According to the results of PCA with a varimax rotation, six factors
were created as potential predictor variables of heat-related mortality
risk (Table 2). The derived factors explain more than 80% of the vari-
ance of each original variable and over 90% of the total variance of all
variables.

The thermal environment measure consists of four variables in the
heat hazard and built environment domains, collectively indicating that



J. Song et al.

Table 2
List of predictor variables and derived factors after principal component analysis.
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Derived Factors\Potential predictor Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Explained variance
variables of each variable
Thermal Socioeconomic Work- Birth place Age and Low
Environment status place and language education income
attainment

% of the total variance explained 33.46 26.96 13.01 8.45 5.63 4.52 -

Kernel density of buildings 0.91 —0.06 —0.13 —0.01 0.07 0.16 0.89

% roads and traffic facilities (i.e., roads, 0.86 0.05 -0.25 -0.24 -0.06 -0.15 0.88
railways, etc.)

% built-up area 0.94 0.05 —-0.16 —-0.05 —-0.03 —-0.04 0.91

Average nighttime LST within built-up 0.85 0.12 0.30 0.02 0.01 —0.04 0.82
area during hot nights at the small TPU
level

% population >= 65 years of age 0.02 0.31 —0.01 0.02 0.94 0.02 0.99

% population >= 15 years of age with —0.09 0.74 0.25 0.16 0.54 —0.04 0.93
educational attainment at primary and
below

% population who are born in Hong Kong ~ —0.25 0.00 0.16 0.91 0.00 —0.19 0.96

% population >= 5 years of age, whose 0.14 0.53 0.21 0.70 0.12 —0.25 0.91
usual spoken language is Cantonese

% managers and administrators of the 0.00 —0.95 —0.08 —0.14 -0.17 0.01 0.95
working population

% service, sales, craft and related workers 0.16 0.95 0.13 —0.04 0.09 —0.08 0.95
of the working population

% working population who work on Hong ~ 0.03 —0.12 —0.96 —0.10 0.02 0.00 0.95
Kong Island

% working population who work in the -0.28 0.29 0.74 0.27 0.11 -0.23 0.85
New Territory

% working population with monthly —0.03 —0.08 —0.10 —0.26 0.02 0.95 0.98

income from main employment below
10,000 HKD.

higher densities of buildings, traffic land and built-up land, and higher
land surface temperatures during hot nights are associated with greater
health risks to heat stress. Variables loading on the factor of socioeco-
nomic status suggest that service, sales, craft and related work positions
are more likely to be occupied by less educated individuals, while
managerial and administrative work positions are more likely to be
occupied by highly educated individuals. Thus, socioeconomic status is
expected to contribute positively to heat-related mortality risk. The
factor of workplace involves variables of percent population work on
Hong Kong Island and the New Territories, capturing the increased risk
caused by poor thermal environment in the workplace and long
commuting distance. Variables of birth place and language have highly
loaded on the same factor, whose effects are mixed in terms of past
research and should be investigated further. The dominant variables of
age and education factor indicate that the elderly and the less educated
are closely associated with each other and collectively represent a group
of people who are vulnerable to heat stress. The low-income factor is
extracted with a single heavy-loaded variable and thus represents the
corresponding effect modification independently.

The derived factors are involved as predictor variables in regression
models against the calculated heat-related mortality risk based on death
records. A total of three models are estimated: OLS (global estimates),
GWR (local estimates with the same bandwidth for all parameters) and
MGWR (local estimates with a specified bandwidth for each parameter).
The results of the estimations in the global model (OLS) are first sum-
marized to provide a context for those of the GWR and MGWR models.
Then, the model fits metrics for all three models and the map for
comparing the results of GWR and MGWR. As the MGWR favorably
predicts the heat-related mortality risk over OLS and GWR, we focus on
the estimation results of MGWR. Since the dependent variable is trans-
formed by the natural log, estimates of independent variables that are in
the form of a natural log can be interpreted as elasticity.

The OLS serves as the baseline, whereas the GWR and MGWR models
serve as comparisons acknowledging the possibility of the spatial vari-
ability of parameter estimates. The goodness of fit of OLS shows mod-
erate to low explanatory power (R? = 0.29). Accordingly, almost all

factors except for birth place and language have a t-value over the
threshold of 1.96 and thus are statically nonzero (Table 3). Due to data
standardization of variables, as expected, the intercept is not significant.
The parameter estimates of the global model illustrate that factors of
socioeconomic status and thermal environment have the highest in-
fluences on heat-related mortality risk, followed by factors of low in-
come, age and education attainment. The factor of workplace is the only
factor with a significant negative estimated coefficient, implying that
residents in the New Territories working in their residence would have
lower heat health risk than those working on Hong Kong Island.
Different from the global model, which assumes that all processes are
spatially stationary across the analysis units, the GWR and MGWR
models allow spatial variability in parameter estimates. In comparison
with the fit metrics of OLS (Table 4), the R-squared is increased in GWR
(0.46) and is almost doubled in MGWR (0.51); the AICc is reduced by
over 20 in GWR and is reduced even more (by almost 35) in MGWR; the
RSS is also decreased in GWR (113.51) and is even smaller in MGWR
(102.85). In a comparison of GWR and MGWR, the maps of the local
condition number in the two models show that MGWR has much lower
condition number values than GWR over space and thus is less prone to
multicollinearity (Fig. 2). All model indices and maps show that models
incorporating spatial variability outperform the global model, and
MGWR fits the empirical data even better than GWR. The results indi-
cate that the relationships between predictor variables and heat-related
mortality risk are always spatially constant, and some of them could

Table 3

Parameter estimates of the global model.
Predictor variable Coefficient t-value
Intercept —0.00 —0.00
Thermal environment 0.29 4.83
Socioeconomic status 0.30 5.05
Workplace -0.23 —3.96
Birth place and language 0.03 0.45
Age and education attainment 0.12 1.96
Low income 0.23 3.93
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Table 4

The model fit metrics for OLS, GWR and MGWR.
Model Index OLS GWR MGWR
Goodness of fit (R-squared) 0.29 0.46 0.51
Corrected Akaike information criterion (AICc) 537.24 516.40 503.27
Residual sum of squares (RSS) 147.67 113.51 102.85

vary across different spatial scales.

Such variation in the scale of the effect can be reflected by the
optimal bandwidth detected by MGWR for each individual predictor
variable (Table 5). In comparison with the single bandwidth of 139
nearest neighbors in GWR, the bandwidths for predictor variables in
MGWR can be categorized into three groups: global variables with large
bandwidths (age and education attainment, socioeconomic status)
indicating almost all analysis units are included for parameter estima-
tion; variables yielding relatively small bandwidths (workplace, birth
place and language); and local variables with small bandwidths (thermal
environment, low income) implying processes operating at local spatial
scales. Different from the global model, the intercept in MGWR effec-
tively shows a global effect on the heat-related mortality risk with a
bandwidth of 208.

To exhibit the estimation results of the optimal model, the spatial
heterogeneity for each group in MGWR is further visualized in Fig. 3.
Colored areas represent units with significant local parameter estimates,
where positive estimates are in red and negative estimates are in blue.
Estimates in gray units are not significantly different from zero. In terms
of the estimate surfaces, the effects of global variables (i.e., age and
education attainment, socioeconomic status) are significantly positive
across the entire study area but with little to no spatial variations
(Fig. 3a & b). The resulting visualization patterns are in concordance
with the results of the global model and further illustrate the global
nature of those processes.

The surfaces of variables with relatively smaller bandwidths
demonstrate a moderate number of significant estimates, and both
display spatial variations (Figs. 3¢ & 2d). For the variable of workplace,
the estimated surface has a single cluster in the north New Territories.
The birth place and language variables manifest in two clusters: a
negative one in the northwest corner of the New Territories and a pos-
itive one in Kowloon and its surrounding areas. This is interesting
because the birth place and language variables are not significantly
different from zero in the global model, and the direction of their effect
is not uniform across the study area. Further investigation of this result is
needed to determine the possible reasons behind this result.

The estimated surfaces of the two local variables exhibit distinct
spatial patterns (Fig. 3e & f). The effects of thermal environment con-
ditions are significant across almost all units within the New Territories
and Islands and have obvious spatial heterogeneity, including a hot spot
in the center of the north New Territories. The surface of low income
only has a small number of statistically nonzero estimates, which are
clustered in the southeast corner.

Different from the global model, the intercept estimates are found to
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be significant across the entire study area (Fig. 3g). However, spatial
variations are rarely detected at the surface except for the slightly higher
estimates in the western regions of Hong Kong Island. The intercept here
could represent the effects of undetected variables accounting for re-
sidual spatial variance after controlling for existing predictor variables
in the model.

5. Discussion
5.1. Results analysis and key findings

To our knowledge, little research has simultaneously involved both
demographic and socioeconomic variables and variables of heat hazards
and the built environment in the examination of spatial variations in
heat-related mortality risk. Even less research has employed MGWR to
explore at which specific spatial scales those risk factors present the
most significant associations with heat mortality risk and how those
relationships vary over space. This may mislead the formulation of
effective policy interventions and climate action plans. This paper aims
to advance existing research in those aspects.

The findings can answer three research questions posed at the outset.
This study proposes questions on whether the associations between
heat-related mortality and risk factors in different domains vary over
space and vary at different spatial scales. As both GWR and MGWR
exhibit a better fit to the empirical data than OLS, the spatial context
should be incorporated in the exploration of dominant factors of heat-
related death risk. The even better fit of MGWR over GWR further il-
lustrates that the associations differ in spatial scale. The findings are
consistent with those in a U.S. case (Yang & Jensen, 2017). In addition to
the global nature of social conditions detected in that case, our study
extends the previous findings by identifying the geographically unstable
effects of workplace, birth place and language at relatively smaller scales
and those of thermal environment and low income at even local scales.

Our third question is about how those predictor variables, each
associated with heat death at a specific spatial scale, contribute to or
mitigate the risk of heat-related mortality. A set of interesting findings is
detected in the estimated surfaces. Variables of age and education
attainment and socioeconomic status are found to be associated with
heat-related death risk to similar degrees over the entire area, which is in
concordance with existing research (Cupido, Fotheringham & Jevtic,

Table 5

Bandwidths for predictor variables in GWR and MGWR.
Model\Predictor Variable GWR MGWR
Intercept 139 208
Thermal environment 139 81
Socioeconomic status 139 185
Workplace 139 160
Birth place and language 139 104
Age and education attainment 139 208
Low income 139 87
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Fig. 3. Surfaces of significant local parameter estimates for predictor variables of heat-related mortality risk.

2021; Regidor et al., 2015; (Borrell et al., 2014) Martikainen, Kauppinen managers and administrators often work in air-conditioned indoor of-
& Valkonen, 2003). The thermal environment conditions are found to fices (Yang & Jensen, 2017) while manual workers often work in
play a dominant role in almost all regions of the New Territories and the comparatively poor thermal conditions and suffer higher heat exposure
Islands (Fig. 3e). This fact could be partially explained by the different (Gubernot et al., 2014), the prevalence of manual workers in the Islands,
occupation compositions in the four main regions. The percentage of New Territories and Kowloon regions should exacerbate local heat
people working in their residence in each of the main regions is shown in vulnerability in comparison with Hong Kong Island. However, some
Table Al (see Appendix A), which could represent the “net” heat areas in the New Territories and almost the whole Kowloon area are
exposure in each region since part of the heat exposure of the population found to be exceptions where the effects of the thermal environment are
with a separation of work and residence is eliminated. Accordingly, as not significant. For the exceptions in the New Territories, the reason
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might be due to other variables in the model accounting for the local
variations (Oshan et al., 2020); for example, in some areas (i.e., the
small TPUs in red in Fig. 3d), the variables of birth place and language
are found to be the dominant predicator variables, whereas in other
areas (i.e., the small TPUs in color in Fig. 3f), the low-income variable is
found to be most significant. For the exceptions in the Kowloon area, this
trend may be due to the small variations in the thermal environment (see
Figure A2 in Appendix A). As such, the local heat-related mortality risk
in those areas is more likely to depend on the social context of the sur-
rounding area (i.e., the prevalence of less educated native speakers who
tend to have language barriers and have fewer chances to educate
themselves on heat risk reduction), as discussed in a recent study (Song
et al., 2020).

Another interesting finding is that the positive effects of birth place
and language do not remain consistent over space and even flip in di-
rection in the northwest New Territories. The negative effects of birth
place and language indicate that the prevalence of Hong Kong residents
in these areas is associated with reduced heat health risk, justifying the
proposed immigrant vulnerability in past research (Kovach et al., 2015).
However, this study further targeted this process to certain clusters in
the study area (Fig. 3d). Moreover, according to a past study, immigrant
vulnerability is attributable to language barriers and cultural isolation
(Hondula et al., 2012; Nayak et al., 2018); in contrast, immigrant
vulnerability here is more likely due to the lower adaptive capacity of
foreigners to local weather and climate in regards to the significant ef-
fect of the thermal environment in the same area (Fig. 3e).

The estimated surface also illustrates that where people work is the
underlying factor of their heat-related mortality risk. This fact has been
discussed in recent studies (Hoffmann et al., 2018; Schrijvers et al.,
2016). However, this research provides preliminary evidence that such a
relationship might be less prevalent. This finding arouses particular
concerns in some specific areas, such as the three districts of Tuen Mun,
Yuen Long and North in the northern New Territories. Several reasons
could explain the resulting pattern. First, for residents in the New Ter-
ritories, as the overall environment is better than those in Kowloon and
Hong Kong Island (see Figure A2 in Appendix A), working in the regions
of their residences might lead to less heat hazard that the working
population may experience during their working time; in contrast,
working on Hong Kong Island should require even longer commuting
distances than in Kowloon and other regions, leading to extra heat
exposure; things may get even worse if the workers’ residences are
located in the three northernmost districts, which are a substantial
distance from Hong Kong Island. Second, in comparison with other
districts in the New Territories, the Tuen Mun, Yuen Long and North
districts have larger proportions of residents working on Hong Kong
Island engaged in vulnerable occupations (i.e., service, sales, craft and
related workers) but employ fewer in managerial and administrative
positions (see Figure A3 in Appendix A). As people working in vulner-
able occupations are more sensitive to outdoor thermal environments,
the comparatively poor thermal environment on Hong Kong Island
should be less friendly to those people and probably strengthens the
impact of health stress on them.

5.2. Practical implications

This paper also provides important practical implications for hier-
archical policy-making and site-specific planning in health in-
terventions, heat hazard mitigation and climate adaptation strategies.

Hierarchical Policy-making. Heat-related mortality is spatially
heterogeneous, and the associated factors vary at the global, regional
and local scales, thereby requiring scalable interventions (Table 6). At
the global scale, this study finds that areas with higher proportions of
elderly individuals, less-educated individuals and those engaged in
vulnerable occupations are at higher risk of heat-related mortality. This
finding aids efforts to protect the population groups most at risk for heat-
related death and supports corresponding strategies proposed in city-
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Table 6
Effective scale of predictor variables of heat-related mortality risk.

Predictor variables Effective scale ©  Targeted administrative level

Age and education attainment ~ Global Whole city
Socioeconomic status Global Whole city
Thermal environment Local Main region ©
Work place Local District

Birth place and language Local Subdistrict ¢
Low income Local Subdistrict ¢

@ Effective scale presents the extent to which the corresponding variable
significantly affects heat-related mortality risk.

b Targeted administrative level indicates at which administrative level the
strategies and action plans could be conducted in the most effective way.

¢ Main region indicates the level at which the four main regions are located,
including the New Territories, Kowloon, Hong Kong Island and the Islands.

4 Subdistrict indicates the administrative level below district and specifically
refers to the small TPU level here.

level climate action plans (i.e., Hong Kong’s Climate Change Strategy
and Action Agenda, Hong Kong’s Climate Action Plans 2030+). In
addition to these plans, the local government can consider broadening
conventional adaptive strategies to include targeted interventions, such
as additional healthcare institutions and medical personnel for the
elderly (Benmarhnia et al., 2017; Yardley et al., 2011), regular work-
shops, and public talks on the knowledge of heat risk reduction for
less-educated individuals ((Frumkin and McMichael, 2008); (McGregor,
Bessemoulin, Ebi, & Menne, 2015)), as well as protective actions for
those engaged in vulnerable occupations (i.e., adjustment of working
hours, high temperature allowance, etc.) (International Labor Organi-
zation (ILO), 2019). At the regional scale, the findings shed light on the
disparities in the health benefits of city cooling practices among the
main regions. This result is important, as it demonstrates the necessity of
targeted physical heat management strategies (Vargo, Stone, Habeeb,
Liu & Russell, 2016). Some large cities (i.e., Los Angeles and Philadel-
phia in the USA and Athens in Greece) demonstrate the effectiveness of
large-scale enhanced vegetation cover and surface reflectance in
reducing ambient temperatures (Stone et al., 2014; Synnefa, Dandou,
Santamouris, Tombrou & Soulakellis, 2008). Green and cooling strate-
gies can be implemented in other cities, such as Hong Kong, and are
likely to be most effective in specific regions (i.e., the New Territories
and the Islands in Hong Kong). At the district level, the associations
between working location and mortality risk clearly vary across districts
even within the same region (Fig. 4). The precise mechanisms of the
underlying processes require further exploration. However, this finding
is important, as it reveals the fact that in some districts, working in-
dividuals with residences separate from their workplaces also belong to
populations most at risk, thereby calling for district-based protective
efforts. Increasing connectivity and accessibility is an applicable prac-
tice because it could shorten the commuting distance and thus reduce
the heat exposure of workers on the way to and from their workplaces.
This research also extends the mortality-income associations detected in
a past study in Hong Kong (Chan, Goggins, Kim & Griffiths, 2012) by
determining the local nature of such a relationship that exists only at a
small number of subdistrict units (Fig. 4). This preliminary finding
highlights the importance of these subdistricts of community-oriented
adaptation programs, which have often been viewed as an economical
alternative to government programs and have been led by local stake-
holders (Wilhelmi & Hayden, 2010; Yardley et al., 2011). Extra outreach
visits to such vulnerable populations and their evacuation (in extreme
cases) are suggested, where community centers, health agencies,
volunteer groups, etc. could initially implement the practices ((Kovats
and Kristie, 2006)).

Site-specific Action Plans. This study also provides valuable guid-
ance to existing climate action plans by introducing more targeted
health interventions to respond to local determinant factors and to
support the most vulnerable populations. In terms of the resulting
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estimate surfaces, we find that the city of Hong Kong can be divided into
10 areas (Fig. 5) differing in prior concerns for heat health risk reduc-
tion. This finding helps illustrate, for specific areas, the action plans that
could maximally benefit population health when under extreme heat
stress. In Fig. 5, the 10 areas have been labeled 1 to 10 in the center map,
and each corresponds to a small figure (labeled Al to A10) showing the
site-specific predictor variables sorted by priority. Where the thermal
environment plays a leading role, such as in A2, A5, A8, A9 and, to a
lesser extent, A6, physical heat management strategies designed to
improve the thermal environment are expected to produce greater
population health benefits than other strategies. Specific strategies
focused on enhanced vegetation and surface reflectance (i.e., green
walls, sidewalk greenways, reduced-albedo sidewalks and street trees),
as demonstrated by previous work with great cooling effects (Park, Lee
& Hyun, 2019; Zhang et al., 2019), can be the primary interventions in
these hot spots. While most adaptive plans often emphasize protective
strategies for people most at risk of heat-related death, our work sheds
light on the spatially varying effectiveness of these plans for particular
populations. The local government should extend the conventional
people-based action plans that focus on heat-associated impacts on
different groups of people to consider people- and place-based adaptive
strategies (Wilhelmi & Hayden, 2010). Analyses such as this one, which
are based on more accurate and robust results using MGWR, help
delineate the vulnerable “hot spots” of different population groups. As a
result of this pattern (Fig. 5), the working individuals with a residence
separate from their workplace are probably more sensitive to extreme
heat in A3, A5 and A9 than the other vulnerable population groups (i.e.,
the elderly, less-educated people, etc.). Thus, protective strategies for
particular groups of workers, such as high temperature allowance and
adjustment of working hours in hot seasons (Xiang, Bi, Pisaniello, &
Hansen, 2013), may be most effective in reducing the local heat-related
death risk. While past studies have demonstrated the importance of
reducing immigrant vulnerability to heat stress (Hondula et al., 2012;
Nayak et al., 2018), the present study illustrates that protective strate-
gies for immigrants are likely to function only at specific sites (i.e., A9).
Areas in A4, A6 and, to a lesser extent, A10 provide a strong counter-
point to A9, with prior concerns on the dialect speakers instead. This fact
sheds light on site-specific protective actions for people suffering
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language barriers in response to heat stress, including more complete
heat warning systems and interventions (i.e., multilingual early warn-
ings using different methods such as online videos, booklets and warning
signs) (Nastos & Matzarakis, 2012; (Reid et al., 2009); Sheridan, 2007).
For low-income people, the most vulnerable groups in A7 and A8, more
public spaces and free facilities such as indoor open spaces with air
conditioners (i.e., libraries, community lounges) could be an adaptive
option to improve their thermal comfort ((Zografos, Anguelovski, &
Grigorova, 2016); Song et al., 2020). To respond to the combined effects
of the thermal environment and heat vulnerability of the prevalent
low-income people in A8, the local population’s health could be maxi-
mally benefited by increasing the vegetative cover and albedo, which
has been found to be most protective of low-income populations in past
research (Vargo et al., 2016).

6. Conclusion

This study presents a novel application of MGWR to characterize the
spatial context of multidimensional risk factors for heat-related mor-
tality using the city of Hong Kong as a case study. The results show that
MGWR, which considers both spatial heterogeneity and scale differences
of determinant risk factors, presents a best fit of heat-related death in
comparison with both GWR and OLS. While the relationships between
some risk factors and heat-related mortality are invariant to location,
others may vary at more regional scales, and some may vary at very local
scales. These findings could help with hierarchical policy-making and
site-specific planning for more targeted health interventions, heat haz-
ard mitigation and climate adaptation strategies.

Several limitations should be acknowledged in this study. First, some
variables that are treated as important factors in previous studies of
other geographic regions are not included. For example, air conditioning
is not included since no data are available in Hong Kong. However, due
to the prevalence of air conditioners in Hong Kong, there is no signifi-
cant spatial variance in air conditioning use across communities.
Therefore, the corresponding variables may have limited predictive
power for the spatial variance of heat-related mortality. Similar findings
have been evident in some cities in Japan where air conditioner prev-
alence exhibits no effect modification in daily heat-related mortality (i.
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Fig. 5. Site-specific predictor variables sorted by priority: the city of Hong Kong is divided into 10 areas labeled 1 to 10 in the center map, and each corresponds to a
small figure labeled Al to A10, showing the site-specific predicator variables sorted by priority. In Al to A10, the coefficient estimates are aggregated for the average
of each area; negative coefficients are transferred to positive ones for easier comparisons of strength with the others.

e., cardiovascular, respiratory) (Ng et al., 2014). In addition, this study
does not consider the effect of humidity due to the sparse distribution of
monitoring stations. However, some investigations in Hong Kong have
found that the effect of relative humidity was not as significant as ex-
pected (Goggins, Chan, Ng, Ren, & Chen, 2012). Air quality is another
variable that was omitted from the analysis but needs further investi-
gation in the future. Air pollutants are found to be positively associated
with nonaccidental mortality. The combined effects of air pollutants and
heat are also evident in past empirical research (Hu et al., 2018;
Knowlton et al., 2008). However, the air pollutant monitors in Hong
Kong are sparse, within which some are far away from residential areas
and some are near traffic roads. The local pollutant level is unlikely to be
characterized by sparsely distributed monitors in an accurate way
(Heaton et al., 2014); therefore, we opted to omit pollutants from this
analysis but will investigate their impacts in our future studies. As this
research aims to determine the influencing factors of heat-related mor-
tality risk and their spatial context rather than construct a perfect pre-
dictive model, omitting certain variables is not a huge issue. Second, it
leaves opportunities to improve the MGWR model. Specifically,
covariate-specific bandwidths and bandwidth uncertainty could be
introduced to further investigate the multiscale spatial processes asso-
ciated with heat-related mortality risk (Oshan et al., 2019). Third, as this
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study is the first attempt to apply the recent MGWR model in exploring
the influencing factors of heat-related mortality risk, more empirical
case studies are needed to validate and generalize the conclusions ach-
ieved here. These avenues of future work could advance our knowledge
of the spatial context of heat-related mortality risk and help policy
makers and urban planners build up and optimize climate action plans to
address climate change-induced health risks and construct sustainable
and healthy cities.
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