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A B S T R A C T   

Extreme heat is a leading cause of weather-related human mortality throughout much of the world, posing a 
significantly heavy burden on the development of healthy and sustainable cities. To effectively reduce heat 
health risk, a better understanding of where and what risk factors should be targeted for intervention is 
necessary. However, little research has examined how different risk factors for heat-related mortality operate at 
varying spatial scales. Here, we present a novel application of the multiscale geographically weighted regression 
(GWR) approach to explore the scale of effect of each underlying risk factor using Hong Kong as a case study. We 
find that a hybrid of global and local processes via multiscale GWR yields a better fit of heat-related mortality risk 
than models using GWR and ordinary least squares (OLS) approaches. Predictor variables are categorized by the 
scale of effect into global variables (i.e., age and education attainment, socioeconomic status), intermediate 
variables (i.e., work place, birth place and language), and local variables (i.e., thermal environment, low in
come). These findings enrich our understanding of the spatial scale-dependent risk factors for heat-related 
mortality and shed light on the importance of hierarchical policy-making and site-specific planning processes 
in effective heat hazard mitigation and climate adaptation strategies.   

1. Introduction 

Climate change mitigation and adaptation are essential to attaining 
sustainable development (United Nations, 2016). In fact, sustainability 
is increasingly threatened by climate change-induced extreme weather 
events, such as severe typhoons, intense flooding, droughts, and heat 
waves (The Emergency Event Database (EM-DAT) 2020; The United 
Nations Office for Disaster Risk Reduction (UNDRR 2015)). As a leading 
cause of weather-related loss and damage as the climate warms, extreme 
heat events pose huge societal, economic and ecological burdens on 
global cities (Benmarhnia, Kihal-Talantikite, Ragettli & Deguen, 2017; 
Gasparrini et al., 2015; McMichael, Montgomery & Costello, 2012; 
Wilhelmi & Hayden, 2010), including devastating heat waves, such as 
the 2003 European heat wave, which caused 70,000 deaths (Robine 
et al., 2008), and the 2010 Russian heat wave, which killed an estimated 
55,000 people (Dole et al., 2011). Aside from the heat wave events that 
occurred in temperate regions, these abnormal weather patterns and 
their associated excess deaths are increasingly becoming more severe 
and frequent in the tropics (Borzino, Chng, Mughal & Schubert, 2020; 

Zhao et al., 2019) and subtropics (Ingole et al., 2017; Ng et al., 2016; 
Yilmaz, Toy, Demircioglu Yildiz & Yilmaz, 2009), especially in densely 
populated cities where heat stress is further aggravated by the local hot 
and humid climate and the urban heat island effect, such as Hong Kong, 
the focus of the present case study (Hua, Zhang & Ren, 2020; Song, 
Huang, Kim, Wen & Li, 2020; Hong Kong Observatory (HKO) 2020). In 
addition, extreme heat events are projected to increase in frequency, 
duration, and intensity (Qing & Wang, 2021; Intergovernmental Panel 
on Climate Change (IPCC 2018)), which are likely to exacerbate their 
heat-related impacts in most of the world (Gasparrini et al., 2015; 
McMichael et al., 2012; Muthers, Laschewski & Matzarakis, 2017; Wil
helmi & Hayden, 2010). 

Extreme heat has a range of impacts on ecosystems and human so
ciety, including crop failures (Wegren, 2011), wildfires (Shaposhnikov 
et al., 2014), and infrastructure damage and disruption (García-Herrera, 
Díaz, Trigo, Luterbacher & Fischer, 2010). More importantly, extreme 
heat has significantly increased population health risk and mortality 
(Guo et al., 2016). A multicountry observational study demonstrated 
that 4.2 out of every 1000 deaths were attributable to hot temperatures 
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(Gasparrini et al., 2015), and all selected countries would experience a 
sharp surge in heat-related excess mortality under the high CO2 emission 
scenario (Gasparrini et al., 2017). As such, the health effects of extreme 
heat should be an urgent issue to address. To minimize the worldwide 
health burden imposed by such extreme weather events, scientists have 
called for adaptation strategies for reducing heat health risks and 
enhancing heat resilience, thus prompting wide interest in heat health 
risk research (Bakhsh, Rauf & Zulfiqar, 2018; Benmarhnia et al., 2017; 
Keramitsoglou et al., 2017; McGregor, Bessemoulin, Ebi, & Menne, 
2015). Currently, time-series studies on the day-to-day associations 
between temperature and human health risk are already at the “mature 
stage” and have facilitated the development of early heat warning sys
tems (Gasparrini et al., 2015; Guo, Barnett & Tong, 2012; Hajat et al., 
2010; (Hajat et al., 2006)). However, geographical studies of socio
environmental influences on human health are still being investigated 
(Wong, Ho & Tse, 2020), and far less attention has been given to 
differentiating their scales of effect. 

This paper presents a case study in Hong Kong, the world’s fourth 
most densely populated city, which is under increasing threat of extreme 
heat events owing to the combined effects of the urban heat island effect 
and global warming (Hua et al., 2020; Liu et al., 2020). By presenting the 
case of Hong Kong, we aim to build on the existing literature in three 
ways. First, this study includes both social and environmental factors in 
the analysis and thus provides a more comprehensive understanding of 
underlying risk factors associated with heat-related mortality risk. Sec
ond, this study extends the existing heat health research by identifying 
at which specific spatial scales those risk factors present the most sig
nificant associations with heat-related mortality and how those re
lationships vary over space. Third, along with the top–down heat hazard 
mitigation interventions outlined in the Hong Kong Climate Action Plan 
2030+, this study provides an evidence basis for joint geographically 
targeted strategies and action plans to mitigate climate change-induced 
health risks and impacts locally and globally. 

To present this study, this paper begins with a review of past 
geographical studies on heat health risk. Then, a description of the data 
used and the measures and methods adopted is provided. The subse
quent sections present the major findings of this study and the practical 
implications for health interventions, heat hazard mitigation and 
climate adaptation strategies. The paper concludes with a discussion on 
the limitations of this study and recommendations for future work. 

2. Review of past geographical studies on heat health risks 

A comprehensive assessment is required to identify areas of high risk 
and thus prioritize interventions in heat action plans (Ho, Knudby, 
Walker & Henderson, 2017; (Wolf et al., 2015); (Hondula et al., 2015); 
(O’Neill & Ebi, 2009)). To delineate the spatial variability of heat health 
risk, scientists have devised a number of heat vulnerability and risk 
indices ((Zhang et al., 2019a); (Chen et al., 2018); Di Napoli, Pappen
berger & Cloke, 2018; (Aubrecht and Özceylan, 2013)Buscail, Upegui & 
Viel, 2012; Wolf & Mcgregor, 2013). Some of these indices are further 
validated against heat-related morbidity and mortality data at both the 
city and subcity levels (Harlan, Declet-Barreto, Stefanov & Petitti, 2013; 
Hu, Yang, Zhong, Fei & Qi, 2017; Wolf, Mcgregor & Analitis, 2014; 
Zhang et al., 2019; (Reid et al., 2012)). These studies are particularly 
important because they can help local policy makers identify areas at 
higher risk of mortality during heat wave events (Conlon et al., 2020; 
Ho, Knudby & Huang, 2015; Jänicke et al., 2019). However, most of 
these indices have not had a substantial influence on policymaking or 
prevention action, probably because some useful information may be 
buried in aggregates based on an equal-weighting scheme (Mallen, 
Stone & Lanza, 2019; Wolf, Chuang & Mcgregor, 2015). Although areas 
at high risk can be highlighted in maps of these composite indices, the 
underlying causes of the risk remain unknown. Without this crucial in
formation, public health authorities often have trouble recognizing 
appropriate measures and developing cost-effective plans (U.S. 

Environmental Protection Agency (U.S. EPA 2018); (American Planning 
Association 2021)). 

Previous studies have highlighted various underlying factors that can 
be targeted for interventions to reduce heat health risks. Chen, Huang 
and Zhou (2015) emphasized the fair distribution of heat vulnerability 
factors in terms of the disparity in heat health risks between urban and 
rural areas. Eisenman et al. (2016) argued that socioeconomic factors 
have a closer relationship with heat-related illness than built environ
ments, especially during extremely hot days. He et al. (2019) explored 
the spatial variability of mortality risks due to extreme heat in Shanghai 
and argued that adaptation factors are relatively more important than 
heat exposure and sensitivity factors. However, previous studies have 
demonstrated that relationships between heat-related mortality risks 
and certain influencing factors have local variations. Specifically, 
heat-related mortality risks in urban areas are influenced by drivers that 
have little importance in rural areas (Hattis, Ogneva-Himmelberger & 
Ratick, 2012; Hu et al., 2019b; Kovach, Konrad II & Fuhrmann, 2015; 
Rey et al., 2009). Such spatial disparity in factors associated with 
heat-related death is further evidenced in six cities in Japan (Ng et al., 
2014) and seven U.S. cities (Hondula, Davis, Saha, Wegner & Veazey, 
2015) using city-specific models. Chien, Guo and Zhang (2016) found 
that the effects of heat and heat waves on elderly individuals in Texas, 
USA, vary across affected areas, and these effects are relatively more 
severe in Northwest Texas and parts of West Texas. In view of these 
pieces of evidence, a universal policy or action plan may be unsuitable to 
address the heterogeneity of local risks and impacts (Wilhelmi & Hay
den, 2010). To be able to respond appropriately to localized heat 
burden, scientists, policy makers, and urban planners must understand 
where these targeted interventions are needed and how to appropriately 
prioritize heat management strategies to achieve effective policy 
implementation (Heaton et al., 2014; (Price, Perron, & King, 2013)). 

The need to develop local-specific action plans has prompted wide
spread interest in incorporating spatial context into the analyses and 
modeling of heat-related mortality risks (Declet-Barreto, Knowlton, 
Jenerette & Buyantuev, 2016; Lehnert, Wilt, Flanagan & Hallisey, 2020; 
Pramanik, Punia, & Chakraborty, 2020; Wang, Fan, Zhao & Myint, 
2020). In particular, geographically weighted regression (GWR) is a 
well-established spatial regression technique to model spatially varying 
relationships in heat risk studies. Via GWR, Kovach, Fuhrmann, Konrad 
II and Harrison (2012) found that heat-related hospital admissions in 
communities in North Carolina have spatially varying relationships with 
factors of land use and housing conditions. Sun, Yun, & Ling, 2019 
estimated the spatially varying weights of environmental, demographic, 
and health-related risk factors in contributing to spatial heat health 
vulnerability in Western Austria. (Cao et al., 2020) revealed that spatial 
clusters of heat health risks in a district of Guangzhou City in China are 
strongly associated with social activity locations and time periods. 

Given that heat-related health outcomes are treated as a complex 
interplay of sociodemographic conditions and the physical environment 
(O’Neill & Ebi, 2009), the underlying factors of heat health risks in 
various domains may differ in their scales of effect. Yang and Jensen 
(2017) discovered that the association between mortality and social 
condition is spatially stationary, whereas that between mortality and 
climatic conditions is not. These findings raise the concern that a uni
versal model, such as GWR, which assumes all processes operate at the 
same spatial scale ((Fotheringham, Brunsdon, & Charlton, 2003)), may 
not be appropriate in predicting heat-related mortality risks. In contrast, 
the recently developed multiscale geographically weighted regression 
(MGWR) allows the effects of various predictor variables, each of which 
varies at a specific spatial scale, to be modeled simultaneously 
((Fotheringham et al., 2017)). For MGWR, its mathematical details are 
provided in the work of Fotheringhan et al. (2017), its Python imple
mentation in Oshan, Li, Kang, Wolf and Fotheringham (2019) and the 
inference in Yu et al. (2020). Thus far, this method has been applied in 
research on air pollution ((Fotheringham, Yue, & Li, 2019)), obesity 
(Oshan, Smith & Fotheringham, 2020), and road fatalities ((Iyanda & 
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Osayomi, 2020)), but its applicability in heat health research should be 
further demonstrated in empirical studies. 

Against the background presented above, the goal of this paper is to 
explore multiscale processes associated with heat-related mortality and 
the scale of effect of each underlying risk factor in a specific domain via 
MGWR. In relation to this overarching aim, we address the following 
specific questions.  

(1) For risk factors in different domains, do their associations with 
heat-related mortality vary over space?  

(2) Do different risk factors associate with heat-related mortality at 
varying spatial scales?  

(3) How do the associations between different risk factors, each 
operating at a specific spatial scale, and heat-related mortality 
vary over space? 

3. Data, measures and methodology 

3.1. Measures of heat-related mortality risk 

Heat-related mortality refers to deaths associated with dehydration 
or volume depletion (the International Classification of Disease Tenth 
Revision (ICD-10), E86), cardiovascular diseases (ICD-10, I00-I99), 
respiratory diseases (ICD-10, J00-J99), hyperpyrexia (ICD-10, R50.9), 
effects of heat and light (ICD-10, T67), heat stroke (ICD-10, X30) and 
exposure to sunlight (ICD-10, X32) during the summer season (Hu et al., 
2019a; (Hu et al., 2019b); Eisenman et al., 2016). Daily mortality data in 
Hong Kong during the summer season (May to October) from 2015 to 
2017 are provided by the Hong Kong Census and Statistics Department 
(HKSCD). The daily deaths of residents are tabulated for each tertiary 
planning unit (TPU) according to the place of residence (in 3-digit TPU 
code). The TPU is a geographic reference system demarcated by the 
Planning Department of the Territory of Hong Kong; TPUs with small 
populations are merged with adjacent ones to form small TPUs—the 
smallest census units with publicly available and accessible data of the 
2016 Hong Kong Census Statistics. To match the scale units of the census 
statistics, the TPU-level mortality data are recounted for each small TPU. 
Given the incoherent boundaries of some small TPUs before and after 

2016, we merge units sharing changed boundaries for a new one and 
then recount mortality for each newly merged unit. Finally, a total of 
209 small TPUs with complete data are included in this study for anal
ysis. Regarding the small numbers associated with a rare event, we 
calculated the odds ratio of heat-related death and included the popu
lation size to control for the number of people at risk in each small TPU 
(Burkart et al., 2016; Harlan et al., 2013; Nordio, Zanobetti, Colicino, 
Kloog & Schwartz, 2015). 

The calculated heat-related mortality risk is visualized as shown in 
Fig. 1. The highest risk units are found to be clustered within the 
Kowloon Peninsula (i.e., Sham Shui Po, Kowloon City, Wong Tai Sin), 
whereas the low-risk clusters are within the New Territories (i.e., Yuen 
Long, Tai Po, etc.) (see Figure A1 in Appendix A). The heat-related 
mortality risk therefore depends greatly upon the location, allowing us 
to further explore its spatial variance. 

3.2. Demographic and socioeconomic variables 

Predictor variables in this domain include age, education, income, 
place of birth, language, occupation and place of work. Age is consid
ered a risk factor for heat-related mortality because the elderly are 
usually the first to be influenced, probably due to their weak thermo
regulatory mechanisms and existing medical conditions (Fuhrmann, 
Sugg, Konrad & Waller, 2016). In a population-based analysis of heat 
risk in Houston, a 1% increase in the elderly percentage within a block 
group led to a 5.66% increase in the relative risk of nonaccidental 
mortality within that block (Heaton et al., 2014). The age variable is also 
found to be a significant predicator of heat-related deaths of census 
block groups in Phoenix, Arizona (Uejio et al., 2011). 

A lower education level was found to be at higher heat risk in the U.S. 
at the ZIP code level (Gronlund, Berrocal, White-Newsome, Conlon & 
O’Neill, 2015; Hondula et al., 2015) and at the census tract level 
(Mallen et al., 2019) and in China at the county level (Chen et al., 2016). 
A probable explanation for this might be that a well-educated popula
tion tends to have more chances to learn knowledge and skills to adapt to 
heat stress. Therefore, communities with larger proportions of highly 
educated populations are expected to be less heat vulnerable. 

Lower income was associated with elevated heat risk across many 

Fig. 1. Map of Heat-related Mortality Risk.  
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populations and regions, such as Seoul in Korea (Jänicke et al., 2019; 
(Kim & Joh, 2006)), Boston in the U.S. (Hondula et al., 2015), and six 
cities in Japan (Ng et al., 2014). Poor response to warnings (Kalkstein & 
Sheridan, 2007), lack of ready access to cooler locations (Sampson et al., 
2013) and medical care (Zhang, Nitschke & Bi, 2013) might explain the 
association of low income with high vulnerability in the face of extreme 
heat events. 

Birth place has been associated with heat-related mortality at both 
the community level (Eisenman et al., 2016) and the neighborhood level 
(Kovach et al., 2015). We gather data on the place of birth at the small 
TPU level and use the variable to capture the potentially vulnerable 
populations in Hong Kong, such as immigrants who lived in a distinct 
climate before (i.e., temperate climate) and thus cannot adapt well to the 
local hot and humid climate or immigrants who are experiencing social 
and cultural isolation (Sampson et al., 2013; Yardley, Sigal & Kenny, 
2011). 

The effects of language barriers are not consistent among studies of 
different geographical regions. In the U.S., most emergency alerts are 
issued in English, placing limited English-proficient populations at an 
increased vulnerability (Nayak et al., 2018). In contrast, in most inter
national metropolises, such as Hong Kong, where multilingual emer
gency alerts and official documents are often provided, language 
barriers are reduced for foreigners; native speakers who can only 
communicate in Cantonese are instead more vulnerable since they are 
more likely to be less educated and have a shortage of risk awareness 
and risk reduction capability (Song et al., 2020). 

The heat-related mortality risk also exhibits a disparity by occupa
tion. While the population employed in administrative and managerial 
positions often represents a socially affluent population group and has a 
higher adaptive capacity to heat risk (Yang & Jensen, 2017), mutual 
workers such as service, sales, craft and related workers tend to have low 
income and low educational attainment and could be more susceptible 
to heat health risk (Gubernot, Anderson & Hunting, 2014; Wong, Peng, 
Zou, Shi & Wilson, 2016). 

Poor working conditions could lead to higher occupational heat 
exposure and thus increase the heat risk of the working population 
(Spector, Masuda, Wolff, Calkins & Seixas, 2019). Communities are 
assumed to suffer higher heat risk if there is a higher proportion of 
people who work in areas with crowded buildings using higher albedo 
materials (i.e., reflecting materials) and have longer communing dis
tances to their workplaces (Hoffmann, Fischereit, Heitmann, Schlünzen 
& Gasser, 2018; Schrijvers, Jonker, De Roode & Kenjereš, 2016). 

Information on age, education, low income, place of birth, language, 
occupation and place of work are extracted from the 2016 Hong Kong 
Census Data published by HKSCD at the small TPU level (214 small TPUs 
in 2016). To match the scale units of mortality data (209 small TPUs 
including the newly merged units), we recalculated the data and cor
responding variables for each merged unit. 

3.3. Variables of heat hazard and built environment 

Land surface temperature (LST) during extreme heat events is used as 
a proxy for heat hazards. We collected LST data from two widely used 
satellite image products, the Moderate Resolution Imaging Spectror
adiometer (MODIS), MOD11A1 (daytime) and MYD11A1 (nighttime), 
which have been used as alternative data sources for heat risk studies 
(Estoque et al., 2020; Zhang et al., 2019). The heat hazard is thereby 
captured by the LSTs during very hot days (maximum temperature ≥ 33 
◦C) and hot nights (minimum temperature ≥ 28 ◦C) recorded from 2015 
to 2017 by the Hong Kong Observatory (HKO). As LSTs within built-up 
areas are highly associated with residents’ heat health risk (Song et al., 
2020), we then extracted daytime and nighttime LSTs only within 
built-up regions and calculated the mean value of LSTs at each pixel 
using the cell statistics tool in ArcGIS 10.5. To match the scale units of 
demographic and socioeconomic variables from census data, we 
aggregated pixel values for maps at the small TPU level using the zonal 

statics tool in ArcGIS 10.5. 
The built environment can impact microclimatic thermal conditions 

and the risk of heat-related mortality (Eisenman et al., 2016; Yardley 
et al., 2011). In this study, variables of built-up land, transport land and 
building density are included as proxies of the built environment. 
Built-up areas tend to have a long-lasting effect of heat stress due to the 
large amounts of concrete and asphalt (Madrigano, Ito, Johnson, Kinney 
& Matte, 2015a) and have reduced evapotranspiration due to a lack of 
vegetation and surface moisture (Hart & Sailor, 2009). This can 
contribute to the urban heat island (UHI) effect, which further exacer
bates heat waves (Reid et al., 2009) and increases the urban-rural 
disparity of heat-related health risks (Chen et al., 2016; Hu et al., 
2019a). The heavy traffic flows in areas used for transport emit large 
amounts of anthropogenic heat and air pollutants, in which the former 
has a direct negative influence on thermal comfort (Hart & Sailor, 2009) 
while the latter can deteriorate the thermal environment as a 
confounder of the UHI (Madrigano, Jack, Anderson, Bell & Kinney, 
2015b). Therefore, a high percentage of traffic land is assumed to 
contribute to adverse heat health outcomes. Building density was linked 
to heat health risk in earlier studies (Uejio et al., 2011) and could be a 
key factor in crowded cities such as Hong Kong. We calculate the 
building density using the kernel density tool first and then aggregate 
the pixel-based values for each small TPU in ArcGIS 10.5. 

Data on land use are drawn from the Hong Kong Land Use (HKLU) 
database at a spatial resolution of 30 m2s in 2016 and are aggregated to 
calculate the percentages of various land use types at a small TPU level. 
In the end, we include thirteen variables that may explain the heat- 
related mortality risk of 209 small TPUs. Information on the selected 
variables is summarized in Table 1. 

3.4. Multivariable predictive model 

Data preprocessing. To detect influencing factors of heat-related 
mortality risk, this study screens selected variables exhibiting signifi
cant associations with heat-related mortality risk for inclusion in the 
multivariate analyses (Uejio et al., 2011). The variables included are 
treated as potential contributors to heat-related mortality risk. Spear
man’s correlation coefficients are then calculated, by which high cor
relations are detected between some of those included variables. To 
reduce the duplicate messages and potential multicollinearity that might 
affect the final estimation results, we adopt principal component anal
ysis (PCA) to eliminate redundant information and create independent 
factors for inclusion in further regression analysis (Song et al., 2020). A 
varimax rotation is used to minimize the number of original variables 
that load highly on any one factor and increase the variation among 
factors (Mallen et al., 2019). We retain factors based on a combination of 
standard criteria: the proportion of each variable’s variance (i.e., com
munality) and that of the total variance that can be explained by the 
factors (say above 0.8 for each). Factor scores were computed using 
estimated factor score coefficients in the factor analysis tool in IBM SPSS 
Statistics 23 software. The resulting factor scores are normalized to have 
a mean of 0 and a standard deviation of 1. 

Multiscale geographically weighted regression model. Unlike 
global regressions, local regressions can detect spatial heterogeneity in a 
process (i.e., GWR) (Fotheringham, Brunsdon, & Charlton, 2003); 
varying-scale methods can further take into account different spatial 
scales of predictor variables, such as those following the most recently 
developed MGWR (Fotheringham, Yang & Kang, 2017; Yu et al., 2020). 
This study thereby predicts heat-related mortality risk through MGWR, 
which adopts the function expressed below (Eq. (1)). 

yi =
∑k

j=1
βbwj(μi, υi)xij + εi (1)  

where yi indicates the heat-related mortality risk at unit i, xij is the jth 
predictor variable of unit i, and βbwj(μi, υi) denotes the coefficient of unit 
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i for location (μi,υi), in which bwj represents the ith optimal bandwidth. 
MGWR is calibrated using a back-fitting algorithm under a general

ized additive model (GAM) framework. In the MGWR algorithm, every 
additive term in each step is fitted using a GWR estimator, and local 
parameter estimates are location-specific and are realized by specifying 
spatial weight matrices that allow neighborhoods closer to unit i to have 
stronger impacts on local parameter estimations at location (μi, υi) (Eq. 
(2)). 

β̂bwj(μi, υi) =
(
Xj

′ Wbwj(μi, υi)Xj
)− 1Xj

′Wbwj(μi, υi)y (2)  

where β̂bwj(μi, υi) denotes the vector of local estimates, Xj denotes the yth 

predictor variable, y denotes the observation of the dependent variable, 
and Wbwj(μi, υi) denotes the jth spatial weights matrix at unit i. 

Each spatial weights matrix is characterized by a kernel function and 
a bandwidth designed to control the weighting intensity or data- 
borrowing (i.e., spatial scale). Instead of the fixed Gaussian kernel 
function, the adaptive bi-square kernel function is particularly used in 
this study. There are two reasons for selecting such a data-borrowing 
scheme. First, the Gaussian kernel function assumes that all observa
tions have nonzero weights regardless of how far they are from the 
target location; however, in most cases, this is not in line with reality. 
Instead, the bi-square kernel function estimates each local regression 
based on data of the nearest neighborhoods but regardless of the in
fluences of other observations. This makes it possible to detect the 
optimal bandwidth that could serve as a proxy of spatial scale and thus is 
selected ((Iyanda & Osayomi, 2020); Oshan et al., 2019). Second, in 
comparison with the Euclidean distance–based measure of proximity, 
the nearest-neighbors measure used in the adaptive kernel function is 
more robust to irregular spatial sampling (Fotheringham et al., 2017). 
The bandwidth is thereby used to predefine the number of nearest 
neighbors that influence the local parameter estimation and is thus 
involved in estimating the coefficient of each variable at each location. 
In MGWR models, each bandwidth represents a unique spatial scale for 
parameter estimation and can be used to explain the rate of change of 
coefficients in space, which indicates the scale of spatial heterogeneity. 
The larger the bandwidth is, the more stable the influence of the variable 
in space, and vice versa. A corrected Akaike information criterion (AICc) 
is used to detect the optimal bandwidth, where the smallest value of 
AICc signals the optimal bandwidth. 

All local parameter estimates and optimal bandwidths in MGWR are 

evaluated based on the GAM through a back-fitting algorithm that al
lows for estimating the globally consistent effects and spatially varying 
effects of predictor variables simultaneously (Fotheringham et al., 2017; 
Yu et al., 2020). For calibrations of the MGWR model, the parameter 
estimates of the GWR model are used to initiate the GAM and for a quick 
convergence; the convergence of the model calibration is diagnosed by 
the score of change (SOC) in the GWR smooth functions between 
consecutive back-fitting iterations (i.e., terminate if SOC-f<10− 5) (Yu 
et al., 2020; Iyanda et al. 2020). We used MGWR software (v2.2, 2020, 
Spatial Analysis Research Center, Tempe, the U.S.) to derive all the re
sults in this study (https://sgsup.asu.edu/sparc/mgwr). 

Model comparison and visualization. To further explore which 
model could favorably fit the data, we compare the ordinary least 
squares (OLS), GWR and MGWR models based on a combination of 
standard criteria: the goodness of fit (R-squared), AICc, and the residual 
sum of squares (RSS) (Oshan et al., 2020; (Fotheringham, Yue, & Li, 
2019)). A higher value of R-squared indicates a larger amount of random 
variance that could be explained and thus signals a preferred model. For 
AIC, the rule of thumb is that when the difference between two AICs is 
greater than 10, the optimal model is the one with the smaller AIC 
(Burnham & Anderson, 2004). The study refers to the rule of thumb for 
AIC and applies it to AICc. For the RSS, it measures the amount of 
variance in the dependent variable that is not explained by a regression 
model; a model with a smaller value of RSS represents the model that fits 
the empirical data better. We further compared the GWR and MGWR, as 
suggested in prior research, by mapping the local condition number of 
each model (Oshan et al., 2020; (da Silva & Fotheringham, 2016)). The 
map is used to show the pattern of local multicollinearity in each model. 
To visualize the spatial heterogeneity detected by the optimal model, we 
visualized each variable’s parameter estimates that were statistically 
nonzero and displayed them in color using a choropleth map. 

4. Results 

According to the results of PCA with a varimax rotation, six factors 
were created as potential predictor variables of heat-related mortality 
risk (Table 2). The derived factors explain more than 80% of the vari
ance of each original variable and over 90% of the total variance of all 
variables. 

The thermal environment measure consists of four variables in the 
heat hazard and built environment domains, collectively indicating that 

Table 1 
Data summary of the selected variables.  

Category Data Source Characteristics Variables Mean (Std. 
Dev) 

Demographic and 
socioeconomic variables 

HK census (2016) Age % population >= 65 years of age 16.15 (4.50)   

Education % population >= 15 years of age with educational attainment only at 
primary and below 

18.33 (8.25)   

Low income % working population with monthly income from main employment 
below 10,000 Hong Kong Dollars. 

28.42 (7.75)   

Place of birth % population who are born in Hong Kong 60.49 (8.77)   
Language % population >= 5 years of age, whose usual spoken language is 

Cantonese 
83.51 (13.38)   

Occupation a % managers and administrators of the working population 12.56 (7.16)    
% service, sales, craft and related workers of the working population 19.90 (8.99)   

Place of work a % working population who work on Hong Kong Island 24.09 (15.85)    
% working population who work in the New Territory 22.89 (15.42) 

Heat hazard and build 
environment 

HKLU (2016) Building density Kernel density of buildings 21.58 (14.24)   

Transportation % roads and traffic facilities (i.e., roads, railways, etc.) 12.81 (9.21)   
Built-up land % built-up area 53.47 (34.82)  

MODIS 
(2015–2017) 

Land surface temperature 
(LST) a 

Average nighttime LST within built-up area during hot nights at the 
small TPU level 

26.03 (0.80)  

a Some categories of variables of occupation, place of work, and LST are not listed because those categories were found to have no significant associations (p > 0.05) 
with heat-related mortality risk, including unlisted categories of occupation (i.e., professionals, associate professionals, etc.), place of work (i.e.,% working population 
who work in Kowloon), and LST (i.e., average daytime LST within built-up area during very hot days at a small TPU scale level). 
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higher densities of buildings, traffic land and built-up land, and higher 
land surface temperatures during hot nights are associated with greater 
health risks to heat stress. Variables loading on the factor of socioeco
nomic status suggest that service, sales, craft and related work positions 
are more likely to be occupied by less educated individuals, while 
managerial and administrative work positions are more likely to be 
occupied by highly educated individuals. Thus, socioeconomic status is 
expected to contribute positively to heat-related mortality risk. The 
factor of workplace involves variables of percent population work on 
Hong Kong Island and the New Territories, capturing the increased risk 
caused by poor thermal environment in the workplace and long 
commuting distance. Variables of birth place and language have highly 
loaded on the same factor, whose effects are mixed in terms of past 
research and should be investigated further. The dominant variables of 
age and education factor indicate that the elderly and the less educated 
are closely associated with each other and collectively represent a group 
of people who are vulnerable to heat stress. The low-income factor is 
extracted with a single heavy-loaded variable and thus represents the 
corresponding effect modification independently. 

The derived factors are involved as predictor variables in regression 
models against the calculated heat-related mortality risk based on death 
records. A total of three models are estimated: OLS (global estimates), 
GWR (local estimates with the same bandwidth for all parameters) and 
MGWR (local estimates with a specified bandwidth for each parameter). 
The results of the estimations in the global model (OLS) are first sum
marized to provide a context for those of the GWR and MGWR models. 
Then, the model fits metrics for all three models and the map for 
comparing the results of GWR and MGWR. As the MGWR favorably 
predicts the heat-related mortality risk over OLS and GWR, we focus on 
the estimation results of MGWR. Since the dependent variable is trans
formed by the natural log, estimates of independent variables that are in 
the form of a natural log can be interpreted as elasticity. 

The OLS serves as the baseline, whereas the GWR and MGWR models 
serve as comparisons acknowledging the possibility of the spatial vari
ability of parameter estimates. The goodness of fit of OLS shows mod
erate to low explanatory power (R2 = 0.29). Accordingly, almost all 

factors except for birth place and language have a t-value over the 
threshold of 1.96 and thus are statically nonzero (Table 3). Due to data 
standardization of variables, as expected, the intercept is not significant. 
The parameter estimates of the global model illustrate that factors of 
socioeconomic status and thermal environment have the highest in
fluences on heat-related mortality risk, followed by factors of low in
come, age and education attainment. The factor of workplace is the only 
factor with a significant negative estimated coefficient, implying that 
residents in the New Territories working in their residence would have 
lower heat health risk than those working on Hong Kong Island. 

Different from the global model, which assumes that all processes are 
spatially stationary across the analysis units, the GWR and MGWR 
models allow spatial variability in parameter estimates. In comparison 
with the fit metrics of OLS (Table 4), the R-squared is increased in GWR 
(0.46) and is almost doubled in MGWR (0.51); the AICc is reduced by 
over 20 in GWR and is reduced even more (by almost 35) in MGWR; the 
RSS is also decreased in GWR (113.51) and is even smaller in MGWR 
(102.85). In a comparison of GWR and MGWR, the maps of the local 
condition number in the two models show that MGWR has much lower 
condition number values than GWR over space and thus is less prone to 
multicollinearity (Fig. 2). All model indices and maps show that models 
incorporating spatial variability outperform the global model, and 
MGWR fits the empirical data even better than GWR. The results indi
cate that the relationships between predictor variables and heat-related 
mortality risk are always spatially constant, and some of them could 

Table 2 
List of predictor variables and derived factors after principal component analysis.  

Derived Factors\Potential predictor 
variables 

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Explained variance 
of each variable  

Thermal 
Environment 

Socioeconomic 
status 

Work- 
place 

Birth place 
and language 

Age and 
education 
attainment 

Low 
income  

% of the total variance explained 33.46 26.96 13.01 8.45 5.63 4.52 – 
Kernel density of buildings 0.91 − 0.06 − 0.13 − 0.01 0.07 0.16 0.89 
% roads and traffic facilities (i.e., roads, 

railways, etc.) 
0.86 0.05 − 0.25 − 0.24 − 0.06 − 0.15 0.88 

% built-up area 0.94 0.05 − 0.16 − 0.05 − 0.03 − 0.04 0.91 
Average nighttime LST within built-up 

area during hot nights at the small TPU 
level 

0.85 0.12 0.30 0.02 0.01 − 0.04 0.82 

% population >= 65 years of age 0.02 0.31 − 0.01 0.02 0.94 0.02 0.99 
% population >= 15 years of age with 

educational attainment at primary and 
below 

− 0.09 0.74 0.25 0.16 0.54 − 0.04 0.93 

% population who are born in Hong Kong − 0.25 0.00 0.16 0.91 0.00 − 0.19 0.96 
% population >= 5 years of age, whose 

usual spoken language is Cantonese 
0.14 0.53 0.21 0.70 0.12 − 0.25 0.91 

% managers and administrators of the 
working population 

0.00 ¡0.95 − 0.08 − 0.14 − 0.17 0.01 0.95 

% service, sales, craft and related workers 
of the working population 

0.16 0.95 0.13 − 0.04 0.09 − 0.08 0.95 

% working population who work on Hong 
Kong Island 

0.03 − 0.12 ¡0.96 − 0.10 0.02 0.00 0.95 

% working population who work in the 
New Territory 

− 0.28 0.29 0.74 0.27 0.11 − 0.23 0.85 

% working population with monthly 
income from main employment below 
10,000 HKD. 

− 0.03 − 0.08 − 0.10 − 0.26 0.02 0.95 0.98  

Table 3 
Parameter estimates of the global model.  

Predictor variable Coefficient t-value 

Intercept − 0.00 − 0.00 
Thermal environment 0.29 4.83 
Socioeconomic status 0.30 5.05 
Workplace − 0.23 − 3.96 
Birth place and language 0.03 0.45 
Age and education attainment 0.12 1.96 
Low income 0.23 3.93  
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vary across different spatial scales. 
Such variation in the scale of the effect can be reflected by the 

optimal bandwidth detected by MGWR for each individual predictor 
variable (Table 5). In comparison with the single bandwidth of 139 
nearest neighbors in GWR, the bandwidths for predictor variables in 
MGWR can be categorized into three groups: global variables with large 
bandwidths (age and education attainment, socioeconomic status) 
indicating almost all analysis units are included for parameter estima
tion; variables yielding relatively small bandwidths (workplace, birth 
place and language); and local variables with small bandwidths (thermal 
environment, low income) implying processes operating at local spatial 
scales. Different from the global model, the intercept in MGWR effec
tively shows a global effect on the heat-related mortality risk with a 
bandwidth of 208. 

To exhibit the estimation results of the optimal model, the spatial 
heterogeneity for each group in MGWR is further visualized in Fig. 3. 
Colored areas represent units with significant local parameter estimates, 
where positive estimates are in red and negative estimates are in blue. 
Estimates in gray units are not significantly different from zero. In terms 
of the estimate surfaces, the effects of global variables (i.e., age and 
education attainment, socioeconomic status) are significantly positive 
across the entire study area but with little to no spatial variations 
(Fig. 3a & b). The resulting visualization patterns are in concordance 
with the results of the global model and further illustrate the global 
nature of those processes. 

The surfaces of variables with relatively smaller bandwidths 
demonstrate a moderate number of significant estimates, and both 
display spatial variations (Figs. 3c & 2d). For the variable of workplace, 
the estimated surface has a single cluster in the north New Territories. 
The birth place and language variables manifest in two clusters: a 
negative one in the northwest corner of the New Territories and a pos
itive one in Kowloon and its surrounding areas. This is interesting 
because the birth place and language variables are not significantly 
different from zero in the global model, and the direction of their effect 
is not uniform across the study area. Further investigation of this result is 
needed to determine the possible reasons behind this result. 

The estimated surfaces of the two local variables exhibit distinct 
spatial patterns (Fig. 3e & f). The effects of thermal environment con
ditions are significant across almost all units within the New Territories 
and Islands and have obvious spatial heterogeneity, including a hot spot 
in the center of the north New Territories. The surface of low income 
only has a small number of statistically nonzero estimates, which are 
clustered in the southeast corner. 

Different from the global model, the intercept estimates are found to 

be significant across the entire study area (Fig. 3g). However, spatial 
variations are rarely detected at the surface except for the slightly higher 
estimates in the western regions of Hong Kong Island. The intercept here 
could represent the effects of undetected variables accounting for re
sidual spatial variance after controlling for existing predictor variables 
in the model. 

5. Discussion 

5.1. Results analysis and key findings 

To our knowledge, little research has simultaneously involved both 
demographic and socioeconomic variables and variables of heat hazards 
and the built environment in the examination of spatial variations in 
heat-related mortality risk. Even less research has employed MGWR to 
explore at which specific spatial scales those risk factors present the 
most significant associations with heat mortality risk and how those 
relationships vary over space. This may mislead the formulation of 
effective policy interventions and climate action plans. This paper aims 
to advance existing research in those aspects. 

The findings can answer three research questions posed at the outset. 
This study proposes questions on whether the associations between 
heat-related mortality and risk factors in different domains vary over 
space and vary at different spatial scales. As both GWR and MGWR 
exhibit a better fit to the empirical data than OLS, the spatial context 
should be incorporated in the exploration of dominant factors of heat- 
related death risk. The even better fit of MGWR over GWR further il
lustrates that the associations differ in spatial scale. The findings are 
consistent with those in a U.S. case (Yang & Jensen, 2017). In addition to 
the global nature of social conditions detected in that case, our study 
extends the previous findings by identifying the geographically unstable 
effects of workplace, birth place and language at relatively smaller scales 
and those of thermal environment and low income at even local scales. 

Our third question is about how those predictor variables, each 
associated with heat death at a specific spatial scale, contribute to or 
mitigate the risk of heat-related mortality. A set of interesting findings is 
detected in the estimated surfaces. Variables of age and education 
attainment and socioeconomic status are found to be associated with 
heat-related death risk to similar degrees over the entire area, which is in 
concordance with existing research (Cupido, Fotheringham & Jevtic, 

Table 4 
The model fit metrics for OLS, GWR and MGWR.  

Model Index OLS GWR MGWR 

Goodness of fit (R-squared) 0.29 0.46 0.51 
Corrected Akaike information criterion (AICc) 537.24 516.40 503.27 
Residual sum of squares (RSS) 147.67 113.51 102.85  

Fig. 2. Maps of the local condition numbers (CNs) in a) GWR and b) MGWR.  

Table 5 
Bandwidths for predictor variables in GWR and MGWR.  

Model\Predictor Variable GWR MGWR 

Intercept 139 208 
Thermal environment 139 81 
Socioeconomic status 139 185 
Workplace 139 160 
Birth place and language 139 104 
Age and education attainment 139 208 
Low income 139 87  
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2021; Regidor et al., 2015; (Borrell et al., 2014) Martikainen, Kauppinen 
& Valkonen, 2003). The thermal environment conditions are found to 
play a dominant role in almost all regions of the New Territories and the 
Islands (Fig. 3e). This fact could be partially explained by the different 
occupation compositions in the four main regions. The percentage of 
people working in their residence in each of the main regions is shown in 
Table A1 (see Appendix A), which could represent the “net” heat 
exposure in each region since part of the heat exposure of the population 
with a separation of work and residence is eliminated. Accordingly, as 

managers and administrators often work in air-conditioned indoor of
fices (Yang & Jensen, 2017) while manual workers often work in 
comparatively poor thermal conditions and suffer higher heat exposure 
(Gubernot et al., 2014), the prevalence of manual workers in the Islands, 
New Territories and Kowloon regions should exacerbate local heat 
vulnerability in comparison with Hong Kong Island. However, some 
areas in the New Territories and almost the whole Kowloon area are 
found to be exceptions where the effects of the thermal environment are 
not significant. For the exceptions in the New Territories, the reason 

Fig. 3. Surfaces of significant local parameter estimates for predictor variables of heat-related mortality risk.  
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might be due to other variables in the model accounting for the local 
variations (Oshan et al., 2020); for example, in some areas (i.e., the 
small TPUs in red in Fig. 3d), the variables of birth place and language 
are found to be the dominant predicator variables, whereas in other 
areas (i.e., the small TPUs in color in Fig. 3f), the low-income variable is 
found to be most significant. For the exceptions in the Kowloon area, this 
trend may be due to the small variations in the thermal environment (see 
Figure A2 in Appendix A). As such, the local heat-related mortality risk 
in those areas is more likely to depend on the social context of the sur
rounding area (i.e., the prevalence of less educated native speakers who 
tend to have language barriers and have fewer chances to educate 
themselves on heat risk reduction), as discussed in a recent study (Song 
et al., 2020). 

Another interesting finding is that the positive effects of birth place 
and language do not remain consistent over space and even flip in di
rection in the northwest New Territories. The negative effects of birth 
place and language indicate that the prevalence of Hong Kong residents 
in these areas is associated with reduced heat health risk, justifying the 
proposed immigrant vulnerability in past research (Kovach et al., 2015). 
However, this study further targeted this process to certain clusters in 
the study area (Fig. 3d). Moreover, according to a past study, immigrant 
vulnerability is attributable to language barriers and cultural isolation 
(Hondula et al., 2012; Nayak et al., 2018); in contrast, immigrant 
vulnerability here is more likely due to the lower adaptive capacity of 
foreigners to local weather and climate in regards to the significant ef
fect of the thermal environment in the same area (Fig. 3e). 

The estimated surface also illustrates that where people work is the 
underlying factor of their heat-related mortality risk. This fact has been 
discussed in recent studies (Hoffmann et al., 2018; Schrijvers et al., 
2016). However, this research provides preliminary evidence that such a 
relationship might be less prevalent. This finding arouses particular 
concerns in some specific areas, such as the three districts of Tuen Mun, 
Yuen Long and North in the northern New Territories. Several reasons 
could explain the resulting pattern. First, for residents in the New Ter
ritories, as the overall environment is better than those in Kowloon and 
Hong Kong Island (see Figure A2 in Appendix A), working in the regions 
of their residences might lead to less heat hazard that the working 
population may experience during their working time; in contrast, 
working on Hong Kong Island should require even longer commuting 
distances than in Kowloon and other regions, leading to extra heat 
exposure; things may get even worse if the workers’ residences are 
located in the three northernmost districts, which are a substantial 
distance from Hong Kong Island. Second, in comparison with other 
districts in the New Territories, the Tuen Mun, Yuen Long and North 
districts have larger proportions of residents working on Hong Kong 
Island engaged in vulnerable occupations (i.e., service, sales, craft and 
related workers) but employ fewer in managerial and administrative 
positions (see Figure A3 in Appendix A). As people working in vulner
able occupations are more sensitive to outdoor thermal environments, 
the comparatively poor thermal environment on Hong Kong Island 
should be less friendly to those people and probably strengthens the 
impact of health stress on them. 

5.2. Practical implications 

This paper also provides important practical implications for hier
archical policy-making and site-specific planning in health in
terventions, heat hazard mitigation and climate adaptation strategies. 

Hierarchical Policy-making. Heat-related mortality is spatially 
heterogeneous, and the associated factors vary at the global, regional 
and local scales, thereby requiring scalable interventions (Table 6). At 
the global scale, this study finds that areas with higher proportions of 
elderly individuals, less-educated individuals and those engaged in 
vulnerable occupations are at higher risk of heat-related mortality. This 
finding aids efforts to protect the population groups most at risk for heat- 
related death and supports corresponding strategies proposed in city- 

level climate action plans (i.e., Hong Kong’s Climate Change Strategy 
and Action Agenda, Hong Kong’s Climate Action Plans 2030+). In 
addition to these plans, the local government can consider broadening 
conventional adaptive strategies to include targeted interventions, such 
as additional healthcare institutions and medical personnel for the 
elderly (Benmarhnia et al., 2017; Yardley et al., 2011), regular work
shops, and public talks on the knowledge of heat risk reduction for 
less-educated individuals ((Frumkin and McMichael, 2008); (McGregor, 
Bessemoulin, Ebi, & Menne, 2015)), as well as protective actions for 
those engaged in vulnerable occupations (i.e., adjustment of working 
hours, high temperature allowance, etc.) (International Labor Organi
zation (ILO), 2019). At the regional scale, the findings shed light on the 
disparities in the health benefits of city cooling practices among the 
main regions. This result is important, as it demonstrates the necessity of 
targeted physical heat management strategies (Vargo, Stone, Habeeb, 
Liu & Russell, 2016). Some large cities (i.e., Los Angeles and Philadel
phia in the USA and Athens in Greece) demonstrate the effectiveness of 
large-scale enhanced vegetation cover and surface reflectance in 
reducing ambient temperatures (Stone et al., 2014; Synnefa, Dandou, 
Santamouris, Tombrou & Soulakellis, 2008). Green and cooling strate
gies can be implemented in other cities, such as Hong Kong, and are 
likely to be most effective in specific regions (i.e., the New Territories 
and the Islands in Hong Kong). At the district level, the associations 
between working location and mortality risk clearly vary across districts 
even within the same region (Fig. 4). The precise mechanisms of the 
underlying processes require further exploration. However, this finding 
is important, as it reveals the fact that in some districts, working in
dividuals with residences separate from their workplaces also belong to 
populations most at risk, thereby calling for district-based protective 
efforts. Increasing connectivity and accessibility is an applicable prac
tice because it could shorten the commuting distance and thus reduce 
the heat exposure of workers on the way to and from their workplaces. 
This research also extends the mortality-income associations detected in 
a past study in Hong Kong (Chan, Goggins, Kim & Griffiths, 2012) by 
determining the local nature of such a relationship that exists only at a 
small number of subdistrict units (Fig. 4). This preliminary finding 
highlights the importance of these subdistricts of community-oriented 
adaptation programs, which have often been viewed as an economical 
alternative to government programs and have been led by local stake
holders (Wilhelmi & Hayden, 2010; Yardley et al., 2011). Extra outreach 
visits to such vulnerable populations and their evacuation (in extreme 
cases) are suggested, where community centers, health agencies, 
volunteer groups, etc. could initially implement the practices ((Kovats 
and Kristie, 2006)). 

Site-specific Action Plans. This study also provides valuable guid
ance to existing climate action plans by introducing more targeted 
health interventions to respond to local determinant factors and to 
support the most vulnerable populations. In terms of the resulting 

Table 6 
Effective scale of predictor variables of heat-related mortality risk.  

Predictor variables Effective scale a Targeted administrative level b 

Age and education attainment Global Whole city 
Socioeconomic status Global Whole city 
Thermal environment Local Main region c 

Work place Local District 
Birth place and language Local Subdistrict d 

Low income Local Subdistrict d  

a Effective scale presents the extent to which the corresponding variable 
significantly affects heat-related mortality risk. 

b Targeted administrative level indicates at which administrative level the 
strategies and action plans could be conducted in the most effective way. 

c Main region indicates the level at which the four main regions are located, 
including the New Territories, Kowloon, Hong Kong Island and the Islands. 

d Subdistrict indicates the administrative level below district and specifically 
refers to the small TPU level here. 
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estimate surfaces, we find that the city of Hong Kong can be divided into 
10 areas (Fig. 5) differing in prior concerns for heat health risk reduc
tion. This finding helps illustrate, for specific areas, the action plans that 
could maximally benefit population health when under extreme heat 
stress. In Fig. 5, the 10 areas have been labeled 1 to 10 in the center map, 
and each corresponds to a small figure (labeled A1 to A10) showing the 
site-specific predictor variables sorted by priority. Where the thermal 
environment plays a leading role, such as in A2, A5, A8, A9 and, to a 
lesser extent, A6, physical heat management strategies designed to 
improve the thermal environment are expected to produce greater 
population health benefits than other strategies. Specific strategies 
focused on enhanced vegetation and surface reflectance (i.e., green 
walls, sidewalk greenways, reduced-albedo sidewalks and street trees), 
as demonstrated by previous work with great cooling effects (Park, Lee 
& Hyun, 2019; Zhang et al., 2019), can be the primary interventions in 
these hot spots. While most adaptive plans often emphasize protective 
strategies for people most at risk of heat-related death, our work sheds 
light on the spatially varying effectiveness of these plans for particular 
populations. The local government should extend the conventional 
people-based action plans that focus on heat-associated impacts on 
different groups of people to consider people- and place-based adaptive 
strategies (Wilhelmi & Hayden, 2010). Analyses such as this one, which 
are based on more accurate and robust results using MGWR, help 
delineate the vulnerable “hot spots” of different population groups. As a 
result of this pattern (Fig. 5), the working individuals with a residence 
separate from their workplace are probably more sensitive to extreme 
heat in A3, A5 and A9 than the other vulnerable population groups (i.e., 
the elderly, less-educated people, etc.). Thus, protective strategies for 
particular groups of workers, such as high temperature allowance and 
adjustment of working hours in hot seasons (Xiang, Bi, Pisaniello, & 
Hansen, 2013), may be most effective in reducing the local heat-related 
death risk. While past studies have demonstrated the importance of 
reducing immigrant vulnerability to heat stress (Hondula et al., 2012; 
Nayak et al., 2018), the present study illustrates that protective strate
gies for immigrants are likely to function only at specific sites (i.e., A9). 
Areas in A4, A6 and, to a lesser extent, A10 provide a strong counter
point to A9, with prior concerns on the dialect speakers instead. This fact 
sheds light on site-specific protective actions for people suffering 

language barriers in response to heat stress, including more complete 
heat warning systems and interventions (i.e., multilingual early warn
ings using different methods such as online videos, booklets and warning 
signs) (Nastos & Matzarakis, 2012; (Reid et al., 2009); Sheridan, 2007). 
For low-income people, the most vulnerable groups in A7 and A8, more 
public spaces and free facilities such as indoor open spaces with air 
conditioners (i.e., libraries, community lounges) could be an adaptive 
option to improve their thermal comfort ((Zografos, Anguelovski, & 
Grigorova, 2016); Song et al., 2020). To respond to the combined effects 
of the thermal environment and heat vulnerability of the prevalent 
low-income people in A8, the local population’s health could be maxi
mally benefited by increasing the vegetative cover and albedo, which 
has been found to be most protective of low-income populations in past 
research (Vargo et al., 2016). 

6. Conclusion 

This study presents a novel application of MGWR to characterize the 
spatial context of multidimensional risk factors for heat-related mor
tality using the city of Hong Kong as a case study. The results show that 
MGWR, which considers both spatial heterogeneity and scale differences 
of determinant risk factors, presents a best fit of heat-related death in 
comparison with both GWR and OLS. While the relationships between 
some risk factors and heat-related mortality are invariant to location, 
others may vary at more regional scales, and some may vary at very local 
scales. These findings could help with hierarchical policy-making and 
site-specific planning for more targeted health interventions, heat haz
ard mitigation and climate adaptation strategies. 

Several limitations should be acknowledged in this study. First, some 
variables that are treated as important factors in previous studies of 
other geographic regions are not included. For example, air conditioning 
is not included since no data are available in Hong Kong. However, due 
to the prevalence of air conditioners in Hong Kong, there is no signifi
cant spatial variance in air conditioning use across communities. 
Therefore, the corresponding variables may have limited predictive 
power for the spatial variance of heat-related mortality. Similar findings 
have been evident in some cities in Japan where air conditioner prev
alence exhibits no effect modification in daily heat-related mortality (i. 

Fig. 4. Boundaries of the estimated surfaces and administrative units at different levels.  
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e., cardiovascular, respiratory) (Ng et al., 2014). In addition, this study 
does not consider the effect of humidity due to the sparse distribution of 
monitoring stations. However, some investigations in Hong Kong have 
found that the effect of relative humidity was not as significant as ex
pected (Goggins, Chan, Ng, Ren, & Chen, 2012). Air quality is another 
variable that was omitted from the analysis but needs further investi
gation in the future. Air pollutants are found to be positively associated 
with nonaccidental mortality. The combined effects of air pollutants and 
heat are also evident in past empirical research (Hu et al., 2018; 
Knowlton et al., 2008). However, the air pollutant monitors in Hong 
Kong are sparse, within which some are far away from residential areas 
and some are near traffic roads. The local pollutant level is unlikely to be 
characterized by sparsely distributed monitors in an accurate way 
(Heaton et al., 2014); therefore, we opted to omit pollutants from this 
analysis but will investigate their impacts in our future studies. As this 
research aims to determine the influencing factors of heat-related mor
tality risk and their spatial context rather than construct a perfect pre
dictive model, omitting certain variables is not a huge issue. Second, it 
leaves opportunities to improve the MGWR model. Specifically, 
covariate-specific bandwidths and bandwidth uncertainty could be 
introduced to further investigate the multiscale spatial processes asso
ciated with heat-related mortality risk (Oshan et al., 2019). Third, as this 

study is the first attempt to apply the recent MGWR model in exploring 
the influencing factors of heat-related mortality risk, more empirical 
case studies are needed to validate and generalize the conclusions ach
ieved here. These avenues of future work could advance our knowledge 
of the spatial context of heat-related mortality risk and help policy 
makers and urban planners build up and optimize climate action plans to 
address climate change-induced health risks and construct sustainable 
and healthy cities. 
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Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. 
Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield 
(eds.)]. Available at: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/ 
SR15_Full_Report_High_Res.pdf. (accessed 31 Mar. 2021). 

Iyanda, A. E., & Osayomi, T. (2020). Is there a relationship between economic indicators 
and road fatalities in Texas? A multiscale geographically weighted regression 
analysis. GeoJournal, 1–21. 

Jänicke, B., Holtmann, A., Kim, K. R., Kang, M., Fehrenbach, U., & Scherer, D. (2019). 
Quantification and evaluation of intra-urban heat-stress variability in Seoul. Korea. 
International Journal of Biometeorology, 63(1), 1–12. https://doi.org/10.1007/ 
s00484-018-1631-2 

Kalkstein, A. J., & Sheridan, S. C. (2007). The social impacts of the heat–health watch/ 
warning system in Phoenix, Arizona: Assessing the perceived risk and response of the 
public. International Journal of Biometeorology, 52(1), 43–55. https://doi.org/ 
10.1007/s00484-006-0073-4 

Keramitsoglou, I., Sismanidis, P., Analitis, A., Butler, T., Founda, D., Giannakopoulos, C., 
et al. (2017). Urban thermal risk reduction: Developing and implementing spatially 
explicit services for resilient cities. Sustainable Cities and Society, 34, 56–68. https:// 
doi.org/10.1016/j.scs.2017.06.006 

Kim, Y., & Joh, S. (2006). A vulnerability study of the low-income elderly in the context 
of high temperature and mortality in Seoul, Korea. Science of the total environment, 
371(1–3), 82–88. 

Knowlton, K., Hogrefe, C., Lynn, B., Rosenzweig, C., Rosenthal, J., & Kinney, P. L. (2008). 
Impacts of heat and ozone on mortality risk in the New York City metropolitan 
region under a changing climate. Seasonal forecasts, climatic change and human health 
(pp. 143–160). Dordrecht: Springer. Available at: https://link.springer.com/chapte 
r/10.1007/978-1-4020-6877-5_9 (accessed 31 Mar. 2021). 

Kovach, M. M., Konrad II, C. E., & Fuhrmann, C. M. (2015). Area-level risk factors for 
heat-related illness in rural and urban locations across North Carolina. USA. Applied 
Geography, 60, 175–183. https://doi.org/10.1016/j.apgeog.2015.03.012 

Kovach, M. M., Fuhrmann, C. M., Konrad II, C. E., & Harrison, C. (2012). In Community 
level indicators of heat related morbidity in North Carolina. presented at the annual 
meeting of the. New Orleans, LA: American Meteorological Society. January 2012. 

Kovats, R. S., & Kristie, L. E. (2006). Heatwaves and public health in Europe. European 
Journal of Public Health, 16(6), 592–599. https://doi.org/10.1093/eurpub/ckl049 

Lehnert, E. A., Wilt, G., Flanagan, B., & Hallisey, E. (2020). Spatial exploration of the 
CDC’s Social Vulnerability Index and heat-related health outcomes in Georgia. 
International Journal of Disaster Risk Reduction, 46, Article 101517. https://doi.org/ 
10.1016/j.ijdrr.2020.101517 

Liu, J., Hansen, A., Varghese, B., Liu, Z., Tong, M., & Qiu, H. (2020). Cause-specific 
mortality attributable to cold and hot ambient temperatures in Hong Kong: A time- 
series study, 2006–2016. Sustainable Cities and Society, 57, Article 102131. https:// 
doi.org/10.1016/j.scs.2020.102131 

Madrigano, J., Ito, K., Johnson, S., Kinney, P. L., & Matte, T. (2015a). A case-only study 
of vulnerability to heat wave–related mortality in New York City (2000–2011). 

Environmental Health Perspectives, 123(7), 672–678. https://doi.org/10.1289/ 
ehp.1408178 

Madrigano, J., Jack, D., Anderson, G. B., Bell, M. L., & Kinney, P. L. (2015b). 
Temperature, ozone, and mortality in urban and non-urban counties in the 
northeastern United States. Environmental Health, 14(1), 3. https://doi.org/10.1186/ 
1476-069X-14-3 

Mallen, E., Stone, B., & Lanza, K. (2019). A methodological assessment of extreme heat 
mortality modeling and heat vulnerability mapping in Dallas, Texas. Urban Climate, 
30, Article 100528. https://doi.org/10.1016/j.uclim.2019.100528 

Martikainen, P., Kauppinen, T. M., & Valkonen, T. (2003). Effects of the 
characteristics0of neighbourhoods and the characteristics of people on cause specific 
mortality: A register based follow up study of 252 000 men. Journal of Epidemiology 
& Community Health, 57(3), 210–217. https://doi.org/10.1136/jech.57.3.210 

McGregor, G., Bessemoulin, P., Ebi, K., & Menne, B. (2015). Heat waves and health: 
Guidance on warning system development. Geneva, Switzerland: Report of the World 
Meteorological Organization and World Health Organization. Available at: https:// 
www.who.int/globalchange/publications/heatwaves-health-guidance/en/ 
(accessed 20 Mar. 2021). 

McMichael, T., Montgomery, H., & Costello, A. (2012). Health risks, present and future, 
from global climate change. BMJ (Clinical research ed.), 344, e1359. https://doi.org/ 
10.1136/bmj.e1359 

Muthers, S., Laschewski, G., & Matzarakis, A. (2017). The summers 2003 and 2015 in 
south-west Germany: Heat waves and heat-related mortality in the context of climate 
change. Atmosphere, 8(11), 224. https://doi.org/10.3390/atmos8110224 

Nastos, P. T., & Matzarakis, A. (2012). The effect of air temperature and human thermal 
indices on mortality in Athens. Greece. Theoretical and Applied Climatology, 108, 
91–599. https://doi.org/10.1007/s00704-011-0555-0. volume. 

Nayak, S. G., Shrestha, S., Kinney, P. L., Ross, Z., Sheridan, S. C., Pantea, C. I., et al. 
(2018). Development of a heat vulnerability index for New York State. Public health, 
161, 127–137. https://doi.org/10.1016/j.puhe.2017.09.006 

Ng, C. F. S., Boeckmann, M., Ueda, K., Zeeb, H., Nitta, H., Watanabe, C., et al. (2016). 
Heat-related mortality: Effect modification and adaptation in Japan from 1972 to 
2010. Global Environmental Change, 39, 234–243. https://doi.org/10.1016/j. 
gloenvcha.2016.05.006 

Ng, C. F. S., Ueda, K., Takeuchi, A., Nitta, H., Konishi, S., Bagrowicz, R., et al. (2014). 
Sociogeographic variation in the effects of heat and cold on daily mortality in Japan. 
Journal of Epidemiology, 24(1), 15–24. https://doi.org/10.2188/jea.JE20130051 

Nordio, F., Zanobetti, A., Colicino, E., Kloog, I., & Schwartz, J. (2015). Changing patterns 
of the temperature–mortality association by time and location in the US, and 
implications for climate change. Environment International, 81, 80–86. https://doi. 
org/10.1016/j.envint.2015.04.009 

Oshan, T. M., Smith, J. P., & Fotheringham, A. S. (2020). Targeting the spatial context of 
obesity determinants via multiscale geographically weighted regression. 
International Journal of Health Geographics, 19, 1–17. https://doi.org/10.1186/ 
s12942-020-00204-6 

O’Neill, M. S., & Ebi, K. L. (2009). Temperature extremes and health: impacts of climate 
variability and change in the United States. Journal of Occupational and 
Environmental Medicine, 51(1), 13–25. 

Oshan, T., Li, Z., Kang, W., Wolf, L., & Fotheringham, A. (2019). mgwr: A Python 
Implementation of Multiscale Geographically Weighted Regression for Investigating 
Process Spatial Heterogeneity and Scale. ISPRS International Journal of Geo- 
Information, 8(6), 269. https://doi.org/10.3390/ijgi8060269 

Park, C. Y., Lee, D. K., & Hyun, J. H. (2019). The effects of extreme heat adaptation 
strategies under different climate change mitigation scenarios in Seoul. Korea. 
Sustainability, 11(14), 3801. https://doi.org/10.3390/su11143801 

Pramanik, S., Punia, M., & Chakraborty, S. (2020). Does Urban Landscape Composition 
and Configuration Regulate Heat-Related Health Risk? A Spatial Regression-Based 
Study in World’s Dense City Delhi, India. Preprints, 2020, 2020110046. 

Price, K., Perron, S., & King, N. (2013). Implementation of the Montreal heat response 
plan during the 2010 heat wave. Canadian Journal of Public Health, 104(2), 
e96–e100. 

Qing, Y., & Wang, S. (2021). Multi-decadal convection-permitting climate projections for 
China’s Greater Bay Area and surroundings. Climate Dynamics, 1–20. https://doi. 
org/10.1007/s00382-021-05716-w 

Regidor, E., Vallejo, F., Reques, L., Cea, L., Miqueleiz, E., & Barrio, G. (2015). Area-level 
socioeconomic context, total mortality and cause-specific mortality in Spain: 
Heterogeneous findings depending on the level of geographic aggregation. Social 
Science & Medicine, 141, 142–150. https://doi.org/10.1016/j. 
socscimed.2015.07.030 

Reid, C. E., Mann, J. K., Alfasso, R., English, P. B., King, G. C., Lincoln, R. A., & 
Balmes, J. R. (2012). Evaluation of a heat vulnerability index on abnormally hot 
days: an environmental public health tracking study. Environmental health 
perspectives, 120(5), 715–720. 

Reid, C. E., O’neill, M. S., Gronlund, C. J., Brines, S. J., Brown, D. G., Diez-Roux, A. V., & 
Schwartz, J. (2009). Mapping community determinants of heat vulnerability. 
Environmental health perspectives, 117(11), 1730–1736. 

Rey, G., Fouillet, A., Bessemoulin, P., Frayssinet, P., Dufour, A., Jougla, E., et al. (2009). 
Heat exposure and socio-economic vulnerability as synergistic factors in heat-wave- 
related mortality. European Journal of Epidemiology, 24(9), 495–502. https://doi.org/ 
10.1007/s10654-009-9374-3 

Robine, J. M., Cheung, S. L. K., Le Roy, S., Van Oyen, H., Griffiths, C., Michel, J. P., et al. 
(2008). Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes 
Rendus Biologies, 331(2), 171–178. https://doi.org/10.1016/j.crvi.2007.12.001 

Sampson, N. R., Gronlund, C. J., Buxton, M. A., Catalano, L., White-Newsome, J. L., 
Conlon, K. C., et al. (2013). Staying cool in a changing climate: Reaching vulnerable 

J. Song et al.                                                                                                                                                                                                                                     

https://doi.org/10.1186/1476-069X-11-16
https://doi.org/10.1016/j.envres.2015.02.033
https://www.hko.gov.hk/en/cis/statistic.htm
https://www.hko.gov.hk/en/cis/statistic.htm
https://doi.org/10.1289/EHP3556
https://doi.org/10.1289/EHP3556
https://doi.org/10.1016/j.envint.2018.09.033
https://doi.org/10.1016/j.scitotenv.2018.08.095
https://doi.org/10.1021/acs.est.6b04355
https://doi.org/10.1016/j.scs.2020.102507
https://doi.org/10.1007/s00484-017-1363-8
https://www.ilo.org/wcmsp5/groups/public/-dgreports/-dcomm/-publ/documents/publication/wcms_711919.pdf
https://www.ilo.org/wcmsp5/groups/public/-dgreports/-dcomm/-publ/documents/publication/wcms_711919.pdf
https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf
https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf
http://refhub.elsevier.com/S2210-6707(21)00441-8/optgf1GDM419c
http://refhub.elsevier.com/S2210-6707(21)00441-8/optgf1GDM419c
http://refhub.elsevier.com/S2210-6707(21)00441-8/optgf1GDM419c
https://doi.org/10.1007/s00484-018-1631-2
https://doi.org/10.1007/s00484-018-1631-2
https://doi.org/10.1007/s00484-006-0073-4
https://doi.org/10.1007/s00484-006-0073-4
https://doi.org/10.1016/j.scs.2017.06.006
https://doi.org/10.1016/j.scs.2017.06.006
http://refhub.elsevier.com/S2210-6707(21)00441-8/optt2VuzdGqpy
http://refhub.elsevier.com/S2210-6707(21)00441-8/optt2VuzdGqpy
http://refhub.elsevier.com/S2210-6707(21)00441-8/optt2VuzdGqpy
https://link.springer.com/chapter/10.1007/978-1-4020-6877-5_9
https://link.springer.com/chapter/10.1007/978-1-4020-6877-5_9
https://doi.org/10.1016/j.apgeog.2015.03.012
http://refhub.elsevier.com/S2210-6707(21)00441-8/sbref0062
http://refhub.elsevier.com/S2210-6707(21)00441-8/sbref0062
http://refhub.elsevier.com/S2210-6707(21)00441-8/sbref0062
https://doi.org/10.1093/eurpub/ckl049
https://doi.org/10.1016/j.ijdrr.2020.101517
https://doi.org/10.1016/j.ijdrr.2020.101517
https://doi.org/10.1016/j.scs.2020.102131
https://doi.org/10.1016/j.scs.2020.102131
https://doi.org/10.1289/ehp.1408178
https://doi.org/10.1289/ehp.1408178
https://doi.org/10.1186/1476-069X-14-3
https://doi.org/10.1186/1476-069X-14-3
https://doi.org/10.1016/j.uclim.2019.100528
https://doi.org/10.1136/jech.57.3.210
https://www.who.int/globalchange/publications/heatwaves-health-guidance/en/
https://www.who.int/globalchange/publications/heatwaves-health-guidance/en/
https://doi.org/10.1136/bmj.e1359
https://doi.org/10.1136/bmj.e1359
https://doi.org/10.3390/atmos8110224
https://doi.org/10.1007/s00704-011-0555-0
https://doi.org/10.1016/j.puhe.2017.09.006
https://doi.org/10.1016/j.gloenvcha.2016.05.006
https://doi.org/10.1016/j.gloenvcha.2016.05.006
https://doi.org/10.2188/jea.JE20130051
https://doi.org/10.1016/j.envint.2015.04.009
https://doi.org/10.1016/j.envint.2015.04.009
https://doi.org/10.1186/s12942-020-00204-6
https://doi.org/10.1186/s12942-020-00204-6
http://refhub.elsevier.com/S2210-6707(21)00441-8/opteYsphJzPzy
http://refhub.elsevier.com/S2210-6707(21)00441-8/opteYsphJzPzy
http://refhub.elsevier.com/S2210-6707(21)00441-8/opteYsphJzPzy
https://doi.org/10.3390/ijgi8060269
https://doi.org/10.3390/su11143801
http://refhub.elsevier.com/S2210-6707(21)00441-8/sbref0082
http://refhub.elsevier.com/S2210-6707(21)00441-8/sbref0082
http://refhub.elsevier.com/S2210-6707(21)00441-8/sbref0082
http://refhub.elsevier.com/S2210-6707(21)00441-8/optLC2cNHPKf7
http://refhub.elsevier.com/S2210-6707(21)00441-8/optLC2cNHPKf7
http://refhub.elsevier.com/S2210-6707(21)00441-8/optLC2cNHPKf7
https://doi.org/10.1007/s00382-021-05716-w
https://doi.org/10.1007/s00382-021-05716-w
https://doi.org/10.1016/j.socscimed.2015.07.030
https://doi.org/10.1016/j.socscimed.2015.07.030
http://refhub.elsevier.com/S2210-6707(21)00441-8/optmZ8wKyiWLA
http://refhub.elsevier.com/S2210-6707(21)00441-8/optmZ8wKyiWLA
http://refhub.elsevier.com/S2210-6707(21)00441-8/optmZ8wKyiWLA
http://refhub.elsevier.com/S2210-6707(21)00441-8/optmZ8wKyiWLA
http://refhub.elsevier.com/S2210-6707(21)00441-8/optuXhuuMCDGZ
http://refhub.elsevier.com/S2210-6707(21)00441-8/optuXhuuMCDGZ
http://refhub.elsevier.com/S2210-6707(21)00441-8/optuXhuuMCDGZ
https://doi.org/10.1007/s10654-009-9374-3
https://doi.org/10.1007/s10654-009-9374-3
https://doi.org/10.1016/j.crvi.2007.12.001


Sustainable Cities and Society 74 (2021) 103159

14

populations during heat events. Global Environmental Change, 23(2), 475–484. 
https://doi.org/10.1016/j.gloenvcha.2012.12.011 

Schrijvers, P. J. C., Jonker, H. J. J., De Roode, S. R., & Kenjereš, S. (2016). The effect of 
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