
Efficient Check Node Processing for Min-Max
NB-LDPC Decoding over Lower-Order Finite Fields

Xinmiao Zhang
The Ohio State University

Abstract—Low-density parity-check (LDPC) codes defined
over non-binary (NB) finite field GF (2q) (q > 1) achieve better
error-correcting performance than binary LDPC codes when the
codeword length is moderate. The decoder complexity increases
very fast with the order of the field, 2q , although the error-
correcting performance also improves. To reduce the complexity
for practical applications, NB-LDPC codes over lower-order finite
fields are of great interest. Previous designs have been focusing on
decoders over either the smallest NB field GF (4) or much larger
fields, such as GF (32) or higher. Prior optimization techniques
are either not applicable or do not lead to efficient designs for
codes over GF (8) or other lower-order fields. In this paper, an
efficient architecture is developed for the check node processing,
which is the most complicated step in NB-LDPC decoding, for
the Min-max algorithm over lower-order fields. By utilizing the
properties of finite field elements, the max/min comparison results
are shared and the number of comparators needed is reduced
significantly. Compared to the best prior design, the proposed
check node processing has 18.5% smaller area and shorter
critical path for an example code over GF (8).

I. INTRODUCTION

When the codeword length is moderate, non-binary low-
density parity-check (NB-LDPC) codes over GF (2q) (q > 1)
achieve better error-correcting performance than their binary
counterparts. However, the decoder complexity increases very
fast with q. Hence the codes over lower-order fields, such as
GF (8), are preferred for practical systems. The simplest NB-
LDPC decoding algorithm is the Min-max algorithm [1]. It
replaces the complicated computations in the check node unit
(CNU) by ’min’ and ’max’ comparisons and only leads to
small performance loss compared to belief propagation.

For the first time, trellis representation of the CNU input
vectors is introduced in [2]. CNU output messages are mapped
to paths in the trellis. This mapping enables parallel processing
and elimination of redundant computations. It was found in [3]
that a path for output message computation can include more
than one node from the same column in the trellis without
bringing noticeable performance loss. The CNU complexity is
further reduced in [4] by constructing a basis, from which all
the messages in the corresponding output vector are generated
using a combinational logic network. Redundancy among
the computations of different output vectors is reduced by
adding an extra column in the trellis to represent intrinsic
messages that include the contributions of the nodes from
every column [5]. Then the contributions from the nodes in

This material is based upon work supported by the National Science
Foundation under Award No. 2052641

column n are excluded to derive the n-th output vector. Further
improvements of this scheme have been proposed in [6]–[10].
Particularly, the L-trellis Min-max algorithm (L-TMMA) [8]
computes the L<q most reliable intrinsic messages and uses
them to compute or approximate the output messages. The
basic-set (BS-)TMMA [9] applies basis construction [4] to in-
trinsic message computation. The optimized (O-)TMMA [10]
eliminates unnecessary sorting and simplifies the generation
of the output vector from the most reliable intrinsic messages.

Despite the available simplification techniques, the com-
plexity of NB CNUs is still much higher than that of binary
CNUs. Besides, the storage requirement increases linearly with
2q . Hence, NB-LDPC codes over lower-order finite fields,
such as GF (8), are preferred for practical applications. The
most efficient prior designs [8]–[10] utilize a small number
of intrinsic messages as compressed messages. However, the
required sorting and decompression lead to large area. As
a result, these designs are not efficient when 2q is smaller.
Utilizing the property that GF (4) only has three nonzero field
elements, only one intrinsic message needs to be computed
[11]. However, this design is not extendable to other fields.

In this paper, an efficient CNU architecture is proposed
for NB-LDPC codes over lower-order finite fields. From the
properties of finite fields, the pairs of messages to compare in
the computation of different intrinsic messages share common
entries. By analyzing the possible comparison results, the
number of comparators needed is greatly reduced. Besides, an
optimized procedure is provided to divide the comparison pairs
into groups sharing common entries to minimize the number
of comparators needed. The proposed CNU does not require
expensive sorting for the intrinsic message computation and
recovers the output vector by simple multiplexers. For an
example code over GF (8), the proposed CNU architecture
requires at least 18.5% smaller area than prior designs utilizing
compressed messages and has shorter critical path.

II. MIN-MAX NB-LDPC CHECK NODE PROCESSING

An LDPC code is defined by a sparse parity check matrix
H . A codeword, c, satisfies cHT = 0. H is also represented
by a Tanner graph, in which the check and variable nodes
are associated with the rows and columns of H , respectively.
A nonzero entry in H indicates that the corresponding check
and variable nodes are connected by an edge. In the Min-
max decoding algorithm for NB-LDPC codes over GF (2q),
a message vector consists of 2q log-likelihood ratios (LLRs)

0

25

10

30

0

5

12

22

0

35

25

40

0

40

30

21

0

8

50

40

Q vectors Intrinsic vector

0

5

10

10

=0

=1

=

=
2

m1

m2

Fig. 1. Example trellis for codes over GF (4)

defined as log(P (α̂)/P (α)), where α ∈ GF (2q) and α̂ is
the most likely field element. Such vectors are iteratively
passed among the connected check and variable nodes to find a
codeword. Denote the LLR vector from check (variable) node
m (n) to variable (check) node n (m) by Rm,n (Qm,n). In
each decoding iteration, the check node processing computes

Rm,n(α) = min
(aj)∈L(m|an=α)

(max
j∈Sv(m)\n

Qm,j(aj)),

where Sv(m) is the set of variable nodes connected to check
node m and L(m|an = α) is called the configuration set. Each
configuration is a sequence of finite field elements (aj) (j ∈
Sv(m)\n) such that

∑
j∈Sv(m)\n aj = α if the multiplications

by the entries of H are handled by separate units. The variable
node processing adds the LLRs of the same finite field element
from the connected check nodes.

For a code of row weight dc, the dc Q vectors sent to a CNU
can be represented by a dc-column trellis [2]. Fig. 1 shows an
example trellis for a code over GF (4) with dc = 5. Utilizing
the transformation Qm,n(α) ⇐ Qm,n(α + α̂) [3], Qm,n(0)
becomes 0. L(m|an = α) can be simplified to L(1,2)(m|an =
α) that only considers the node with minimum LLR in each
row of the trellis and includes up to 2 such nodes in each
configuration [5]. The none-zero LLR nodes in a configuration
are called deviation nodes. To reduce the redundancy among
the computations of different R vectors, an extra column is
added to the trellis for the intrinsic messages [5]

Im(α) = min
(aj)∈T(1,2)(m|α)

(max
j∈Sv(m)

Qm,j(aj)). (1)

The paths shown by the dashed lines in Fig. 1 are the
configurations leading to Im(α) and the values in the nodes
are LLRs. T (m|α) includes the contributions of the nodes
in every column. Then the R vector to variable node n can
be computed by excluding the contributions of the nodes in
column n from Im(α) as

Rm,n(α) =


Im(α), if (n 6= col(α′))&(n 6= col(α′′))

m2(α), if (n = col(α′) = col(α′′))

m1(α), otherwise
(2)

In (2), m1(α) and m2(α) are the minimum and second
minimum among all Qm,j(α) for 0 ≤ j < dc and col(α)
is the column index of the m1(α) node. The configuration
leading to Im(α) is represented as (α′, α′′). In other words,
α′ + α′′ = α and max(m1(α′),m1(α′′)) is not larger than
the maximum LLR of any other configuration in T(1,2)(m|α).
α′ = α′′ means that there is only one deviation node.

Max Max Max

Min Min

Min

m1(1) m1(
3
)m1() m1(

2
) m1(

6
) m1(

4
) m1(

5
)

0 0 0

00

0 1

1 1

111

I(1)

col(1) col() col(
2
) col(

4
)

col(’)

col(1) col(
6
)col(

3
) col(

5
)

(a) (b)

col(’’)

Fig. 2. Architectures for computing (a) I(1); (b) indices of the corresponding
deviation nodes for codes over GF (8)

To simplify the notations, the subscript ’m’ is dropped when
no ambiguity occurs. To further reduce the complexity, the L-
TMMA design in [8] sorts out the L < 2q smallest m1(α) in
parallel and only computes the L smallest I(α) as compressed
messages. Approximations are used for the other un-computed
I(α) and an E vector is used to pre-select between m1(α),
m2(α) and the approximated I(α). Then a large multiplexer
network recovers the R messages. In the BS-TMMA [9], a
basis of I is derived. Then every element in I can be easily
computed from the basis. However, the same expensive L-
parallel sorter as in [8] is used and the calculation of the basis
itself has high complexity. The O-TMMA [10] has a more
efficient L-parallel sorter. Nevertheless, the derivation of the I
and E vectors from the compressed messages is still complex.

III. MIN-MAX CNU FOR LOWER-ORDER FINITE FIELDS

When q is large, compressing or using a basis of the intrinsic
messages leads to significant CNU simplification. However,
the required parallel message sorting or basis computation
itself brings large overhead. Besides, complicated selection
networks are needed to derive the CNU output vectors from
the compressed messages or basis. As a result, prior designs
targeting for codes over large finite fields are not efficient for
codes over lower-order fields, such as GF (8), which are more
suitable for practical applications for complexity reason. A
simplified CNU for codes over GF (4) is developed in [11].
Since there are only 3 nonzero elements in GF (4), a single
instead of 4−1 = 3 intrinsic messages needs to be computed.
However, such simplification is not applicable to codes over
other fields.

This section develops an efficient CNU architecture for
codes over lower-order finite fields. Through utilizing the
properties of finite field elements, the configurations for com-
puting different intrinsic messages are divided into groups that
share common entries. As a result, the max/min comparison
results can be shared and the number of comparators needed to
derive I is substantially reduced. Once I is available, simple
selection according to (2) generates the CNU output vectors.
The proposed scheme does not require complex compression
or decompression selection and leads to CNU of much lower
complexity for codes over smaller fields.

The proposed idea is explained by using GF (8) as an exam-
ple, while it is extendable to other fields. Assume that GF (8)
is constructed by using irreducible polynomial x3+x+1, and

TABLE I
CONFIGURATION SETS FOR INTRINSIC MESSAGE COMPUTATION FOR

NB-LDPC CODES OVER GF (8)

configuration set
I(1) (1, 0) (β, β3) (β2, β6) (β4, β5)
I(β) (β, 0) (1, β3) (β2, β4) (β5, β6)
I(β2) (β2, 0) (1, β6) (β, β4) (β3, β5)
I(β3) (β3, 0) (1, β) (β2, β5) (β4, β6)
I(β4) (β4, 0) (1, β5) (β, β2) (β3, β6)
I(β5) (β5, 0) (1, β4) (β, β6) (β2, β3)
I(β6) (β6, 0) (1, β2) (β, β5) (β3, β4)

TABLE II
PARTIAL ORDER DECIDED FROM THE MIN-MAX COMPUTATION OF

(a, b), (c, d) AND THE MIN-MAX RESULT OF (a, d), (b, c)

f0f1f2 order of a, b, c, d min(max(a, d),max(b, c))

110 a < b < d; c < d max(b, c)
111 c < d < b; a < b max(a, d)
100 a < b < c; d < c max(a, d)
101 d < c < b; a < b max(a, d)
010 b < a < d; c < d max(b, c)
011 c < d < a; b < a max(b, c)
000 b < a < c; d < c max(a, d)
001 d < c < a; b < a max(b, c)

one of its root is β. Then 1=β+β3=β2+β6=β4+β5. To simplify
the notations, assume that more than one node in the same
column of the trellis are allowed to be in a configuration. Such
relaxation only brings negligible performance loss [2], [3], [9],
[11]. In this case, I(1)=min(m1(1),max(m1(β),m1(β3)),
max(m1(β2),m1(β6)), max(m1(β4),m1(β5))), and it can
be implemented by the architecture in Fig. 2(a). It requires 6
max/min comparators and 6 multiplexers. Besides, using the
comparison results, the column indices of the deviations nodes,
col(α′) and col(α′′), can be derived as shown in Fig. 2(b). To
compute another message in I , different pairs of m1 values
according to the configurations listed in Table I are sent to the
max comparators in Fig. 2 (a) and the inputs to the architecture
in Fig. 2(b) are adjusted accordingly. In total, q−1 = 7 copies
of such architectures are needed to compute I in parallel.

The computations of different intrinsic messages do not
have to be independent since their configurations share com-
mon entries. For example, from Table I, (β, β3) and (β2, β6)
are configurations for I(1) computation. The same four ele-
ments in these configurations also appear in the two configura-
tions, (β, β6) and (β2, β3), for calculating I(β5) although they
are in different combinations. Due to the shared entries, the
number of comparisons needed to derive the min-max of the
LLRs corresponding to these configurations can be reduced.
Consider in general that the min-max of (a, b), (c, d) and
(a, d), (b, c) need to be computed. The min-max of (a, b),
(c, d) can be calculated using the three comparators on the
left side of Fig. 3. Each max (min) comparator generates a
flag that equals to ’0’ when the left input is larger (smaller)
than the right input. Denote the three flags by f0, f1, f2 as
shown in Fig. 3. They tell partial orders of a, b, c, d as listed
in Table II. From the partial orders, it can be derived that
the min-max of (a, d), (b, c) equals to max(a, d) or max(b, c)
when f̄2f1 + f2f̄0=’0’ and ’1’, respectively. Hence, it can be

Max Max

Min

a b c

0 0

0 1

11

d

f0 f1

f2

Max Max

a d b

0 0

0 1

11

c

f2f1+f2f0

min(max(a,b),max(c,d))

min(max(a,d),max(b,c)) min(max(a,c),max(b,d))

Max Max

a c b

0 0

0 1

11

d

f2f1+f2f0

Fig. 3. Min-max computation architecture for configuration pairs with
common entries.

calculated by the middle part of the architecture in Fig. 3,
which saved one comparator compared to carrying out the
two groups of min-max computations separately. Similarly, if
the min-max of (a, c), (b, d) needs to be calculated, the last
min comparator can be also eliminated as shown in Fig. 3.

Now the question is how to divide the configurations into as
many as possible pairs that share common entries. Basically,
each configuration for I(α) computation consists of two field
elements whose sum is α. The configuration with single ele-
ment α can be considered as the configuration (0, α). Pick two
configurations (γ, γ′) and (δ, δ′) for calculating I(α). Note
that γ, γ′, δ, δ ∈ GF (2q) are distinct and α = γ+γ′ = δ+ δ′.
Accordingly, γ + δ = γ′ + δ′ and γ + δ′ = δ + γ′. Let
α1 = γ + δ and α2 = γ + δ′. Then the same four elements
can be also found in two configurations for computing I(α1)
and I(α2). Pick another element σ ∈ GF (2q)\γ, γ′, δ, δ′. Let
η = σ+α1, σ′ = α+σ, η′ = α+η. Then (σ, σ′) and (η, η′) are
configurations for computing I(α), and (σ, η) and (σ′, η′) are
configurations for I(α1) calculation. Note that α = α1 + α2.
Hence σ+η′ = σ+α+η = α+α1 = α2. Accordingly, (σ, η′)
and (σ′, η) are configurations for I(α2) calculation. As a re-
sult, another three pairs of configurations for computing I(α),
I(α1), and I(α2) share the same elements. This process can be
repeated to divide all the configurations for I(α), I(α1), and
I(α2) calculation into 2q−2 groups of 3-pairs. Accordingly,
2× 2q−2 comparators can be saved in the corresponding min-
max computations using the proposed scheme.

To divide the configurations for computing other intrinsic
messages into pairs sharing common entries, first pick a
configuration, say (ξ, ξ′) used in calculating I(ξ+ ξ′) = I(φ)
(φ 6= α, α1, α2). Then look for another configuration (µ, µ′)
for I(φ) calculation such that neither φ1 = ξ + µ nor
φ2 = ξ + µ′ equal any field elements of the previously
considered intrinsic messages, i.e., α, α1, α2. Then groups of
3-pair configurations with common elements can be found
similarly for calculating I(φ), I(φ1), I(φ2). There are 2q − 1
intrinsic messages to compute. Repeating this process, if
(2q−1)|3, all the intrinsic messages can be divided into tuples
of three and all the configurations for each tuple can be divided
into groups of 3-pairs. The remainder of (2q−1)/3 can not be
2 but may also be 1. In this case, the intrinsic messages can be
divided into (2q−5)/3 tuples of 3 and 2 tuples of 2. Similarly,
the configurations can be divided into groups of 3-pair and
2-pair, respectively, sharing common entries. Following this
procedure, the configurations that share common entries for
intrinsic message computation over GF (8) can be identified

TABLE III
COMPARISONS OF CNU ARCHITECTURES WITH 5-BIT LLRS FOR CODES WITH dc = 32 OVER GF (8)

m1&m2 sorter I comp. Register R comp. Total Crit. path
(# of XORs) (# of XORs) I etc. store (# of XORs) (# of XORs) (# of gates)

L-min sorter compress I/ basis comp. E&I comp.
L-TMMA [8] 595 723 57 969 107 121 2786 15

BS-TMMA [9] 595 723 302 716 74 116 2674 16
O-TMMA [10] 595 524 57 562 167 126 2365 15

proposed 595 760 140 152 1927 12

TABLE IV
NUMBER OF COMPARATORS AND MULTIPLEXERS NEEDED FOR

COMPUTING THE INTRINSIC MESSAGE VECTOR

GF (8) GF (16)
comparator multiplexer comparator multiplexer

original 42 42 210 210
proposed 34 42 170 210

as color-coded in Table I.

IV. HARDWARE COMPLEXITY COMPARISONS

This section first analyzes the reduction achieved by the
proposed design on the number of comparators needed for
computing the intrinsic messages. Then the complexity of the
overall CNU using the proposed design is compared with prior
work for an example NB-LDPC code over GF (8).

As shown in Fig. 2(a), 2q − 1 min/max comparators and
multiplexers are needed originally to compute each intrinsic
message over GF (2q). From Fig. 3, for two and three config-
uration pairs with the same entries, one and two, respectively,
comparators are saved using the proposed scheme. From
the analysis in the previous section, if (2q − 1)|3, then all
the configurations can be divided into 2q−2 × (2q − 1)/3
groups of 3-pairs sharing the same entries. In this case,
2 × 2q−2 × (2q − 1)/3 comparators are saved. Otherwise,
all the configurations are divided into 2q−2 × (2q − 5)/3
groups of 3-pairs and 2q−2×2 groups of 2-pairs. Accordingly,
2 × 2q−2 × (2q − 5)/3 + 2q−2 × 2 comparators are saved.
Table IV lists the numbers of comparators and multiplexers
needed to compute the I vector for codes over GF (8) and
GF (16). The proposed scheme requires around 20% fewer
comparators and this percentage remains about the same for
different finite fields. When each LLR is represented by
5 bits, a comparator requires around twice the area of a
multiplexer. Accordingly, the proposed design achieves around
13% complexity reduction on I vector calculation.

For an example code over GF (8) with dc = 32, the overall
CNU complexity using the proposed architecture with 5-bit
LLRs is estimated from architectural level and compared with
those of previous designs in Table III. From synthesis results
using TSMC 65nm library, a 1-bit multiplexer and a register
require around the same and three times, respectively, the
area of an XOR gate. Also a 5-bit comparator requires the
area of around 10 XOR gates. These assumptions are used
in our estimation. Although synthesis tool is able to further
combine logic gates, the relative complexities of different
designs generated by architectural estimations is very close to

those from synthesis reports as proved in our previous work
[13].

Parallel check node processing can be achieved by pro-
cessing either all message vectors sent to one check node
or one vector sent to each check node simultaneously. The
latter has shorter pipelining latency and is assumed in our
design. Similarly, each CNU generates one Rm,n vector at
a time. The architecture for serial m1 and m2 sorting is
available in [12]. The designs in [8], [10] have extra units
used to avoid including more than one node from the same
column of the trellis in a configuration. To compare with the
proposed architecture shown in Fig. 3, the extra units are
removed. Besides, the number of units in the architectures of
[8]–[10] are adjusted to generate one output vector at a time.
From Table III, it can be observed that the computation of the
compressed intrinsic vector or its basis and the corresponding
recovery of the intrinsic message vector from the compressed
format or basis in [8]–[10] require large area and contribute to
a significant portion of the CNU complexity when the code is
over a lower-order finite field. Compared to prior designs, the
proposed architecture achieves at least (1-1927/2365)=18.5%
smaller area for the example code. The proposed design also
has shorter critical path. Nevertheless, longer critical paths can
be shortened by pipelining with one additional clock cycle in
the latency.

The proposed design can be also adjusted to avoid including
more than one node from the same column of the trellis in
each configuration by adding equality testers and multiplexers
to the architectures in Fig. 3. The number of comparators
needed to compute each intrinsic message is linear to 2q

despite the proposed simplifications. Therefore, the proposed
design becomes less efficient than the architectures utilizing
compressed intrinsic messages or basis when q is larger.

V. CONCLUSIONS

This paper develops an efficient Min-max CNU architecture
for NB-LDPC decoding over lower-order finite fields. Utilizing
the properties of finite fields, it is discovered that the pairs of
messages to compare share common entries. As a result, the
total number of comparators needed for the min-max compu-
tation can be reduced. Procedures have also been provided to
divide message pairs into groups that share common entries to
the maximal extent. For codes over lower-order finite fields,
the proposed design leads to significant complexity reduction
compared to prior designs that first compute a compressed
version of the intrinsic messages and then recover every
message from the compressed information.

REFERENCES

[1] V. Savin,“Min-Max decoding for non binary LDPC codes,” Proc. IEEE
Intl. Symp. on Info. Theory, pp. 960-964, Toronto, Canada, Jul. 2008.

[2] X. Zhang and F. Cai, “Reduced-complexity decoder architecture for non-
binary LDPC codes,” IEEE Trans. on VLSI Syst., vol. 17, no. 7, pp.
1229-1238, Jul 2011.

[3] X. Chen and C. Wang, “High-throughput efficient non-binary LDPC
decoder based on the simplified min-sum algorithm,” IEEE Trans. on
Circuits and Syst.-I, vol. 59, no. 11, pp. 2784-2794, Nov. 2012.

[4] F. Cai and X. Zhang, “Relaxed Min-max decoder architectures for
nonbinary low-density parity-check codes,” IEEE Trans. on VLSI Syst..
vol. 21, no. 11, pp. 1229-1238, Nov. 2013.

[5] E. Li, D. Declercq, and K. Gunnam, “Trellis-based extended min-sum
algorithm for non-binary LDPC codes and its hardware structure,” IEEE
Trans. on Commun., vol. 61, no. 7, pp. 2600-2611, Jul. 2013.

[6] J. O. Lacruz, F. Garcia-Herrero, J. Valls, and D. Declercq “One minimum
only trellis decoder for non-binary low-density parity-check codes,” IEEE
Trans. on Circuits and Syst.-I, vol. 62, no. 1, pp. 177-184, Jan. 2015.

[7] J. O. Lacruz, F. Garcia-Herrero, M. J. Canet, and J. Valls, “High-
performance NB-LDPC decoder with reduction on message exchange,”
IEEE Trans. on VLSI Syst., vol. 24, no. 5, pp. 1950-1961, May 2016.

[8] J. O. Lacruz, F. Garcia-Herrero, M. J. Canet, and J. Valls, “Reduced-
complexity nonbinary LDPC decoder for high-order Galois fields based
on trellis Min-max algorithm,” IEEE Trans. on VLSI Syst., vol. 24, no.
8, pp. 2643-2653, Aug. 2016.

[9] H. P. Thi and H. Lee, “Basic-set trellis Min-max decoder architecture for
nonbinary LDPC codes with high-order Galois fields,” IEEE Trans. on
VLSI Syst., vol. 26, no. 3, pp. 496-507, Mar. 2018.

[10] J. Tian, S. Song, J. Lin, and Z. Wang, “Optimized trellis-based Min-max
decoder for NB-LDPC codes,” IEEE Trans. on Circuits and Syst.-II, vol.
67, no. 1, pp. 57-61, Jan. 2020.

[11] X. Zhang, “Low-complexity modified trellis-based Min-max non-binary
LDPC decoders,” Journ. of Commun., vol. 10, no. 11, pp. 836-842, Nov.
2015.

[12] X. Zhang, VLSI Architectures for Modern Error-Correcting Codes, CRC
press, 2015.

[13] Z. Xie and X. Zhang, “Fast nested key equation solvers for generalized
integrated interleaved decoder,” IEEE Trans. on Circuits and Systems-I,
vol. 68, no. 1, pp. 483-495, Jan. 2021.

