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Inverse analysis of vibratory system is an important subject in fault identification, model
updating, and robust design and control. It is challenging subject because 1) the problem is
oftentimes underdetermined while the measurements are limited and/or incomplete; 2) many
combinations of parameters may yield results that are similar with respect to actual response
measurements; and 3) uncertainties inevitably exist. The aim of this research is to leverage upon
computational intelligence through statistical inference to facilitate an enhanced, probabilistic
framework using incomplete modal response measurement. This new framework is built upon
efficient inverse identification through optimization, whereas Bayesian inference is employed to
account for the effect of uncertainties. To overcome the computational cost barrier, we adopt
Markov chain Monte Carlo (MCMC) to characterize the target function/distribution. Instead of
using single Markov chain in conventional Bayesian approach, we develop a new sampling theory
with multiple parallel, interactive and adaptive Markov chains and incorporate it into Bayesian
inference. This can harness the collective power of these Markov chains to realize the concurrent
search of multiple local optima. The number of required Markov chains and their respective
initial model parameters are automatically determined via Monte Carlo simulation-based sample
pre-screening followed by K-means clustering analysis. These enhancements can effectively
address the aforementioned challenges in finite element inverse analysis. The validity of this
framework is systematically demonstrated through case studies.

1. Introduction

Finite element (FE) method nowadays is pervasive in the design, monitoring and control of mechanical structures [1-4]. Finite
element inverse analysis is an important subject in which the root cause of the discrepancy between the FE-based response prediction
and the actual measurement or desired/target response is elucidated. Typically, in an inverse analysis, certain modeling parameters
are identified/updated to facilitate model updating, design optimization, or fault identification [2-4]. In dynamic systems, FE inverse
analysis generally is conducted by employing the responses in either time or frequency domain [5-7]. As one type of inherent
characteristics of a structure, mode shapes and their curvatures have been employed owing to their capability of reflecting local
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structural property variation [8-10]. Most previous research efforts in this regard, however, have been conducted toward the
deterministic case, i.e., the FE model is deterministic whereas all the information involved including measurements is also deter-
ministic. In reality, the baseline finite element model to be updated is subject to numerical modeling error, and many parameters
involved in the model are intrinsically uncertain due to manufacturing tolerance and measurement noise/error. An inverse analysis
procedure that is deterministic cannot effectively address such uncertainties.

As can be seen, inverse analysis should be conducted in the probabilistic sense, i.e., treating model parameters to be updated as
random variables with mean and variance. This can reveal the underlying properties of structures under uncertainties and variations.
There have been some probabilistic approaches developed to investigate the parametric estimation in the presence of uncertainties.
For example, Moaveni et al. [11] implemented sensitivity-based approach for damage identification, in which the uncertainty level
that affects the identification result is quantified through analysis-of-variance (ANOVA) and meta-modeling. Khodaparast et al. [12]
used kriging predictor to conduct interval model updating where irreducible uncertainty was considered. Bayesian inference naturally
appears to be one of the most popular approaches, in which a probabilistic model is established to correct the prior beliefs based on the
evidence [13]. It starts from characterizing the concerned model parameters in the form of probability density function (PDF) based
upon the prior knowledge. This specific PDF is referred to as prior PDF or hypothesis in Bayes’ rule. The actual response measurement
is treated as evidence, and can be incorporated to update the prior PDF into the so called posterior PDF, based upon which the best
model parameters can be identified. Bayesian inference not only can avoid the direct inversion for parameter estimation required in
some sensitivity-based methods that may introduce some numerical issues, but also can directly incorporate various sources of un-
certainties into model updating procedure [14]. Owing to its intrinsic advantages, there have been considerable successes in utilizing
Bayesian inference to solve a variety of engineering problems [15-19]. Additionally, as the training scheme of meta-models, which are
essentially implicit statistical regression models, is generally established upon Bayesian inference, exploring the potential closed-form
of optimization objective function under Bayesian framework may benefit meta-model training efficiency [20].

It is worth noting that, while Bayesian inference can enable probabilistic FE inverse analysis under uncertainties, currently its
application to complex structures is subject to certain limitations. One significant limitation lies in the huge computational cost of
brute force Monte Carlo simulations of repeated finite element analyses. The computational cost will become intractable especially
when the number of model parameters to be identified increases. Indeed, as the number of parameters to be identified increases, the
search space dimension increases which requires a very large number of FE simulation runs in order to identify the updating result. The
usual treatment to alleviate the computational cost is either to develop first principle-based order-reduction model [21] or resort to
data-based surrogate model [22] to replace the original, large-scale finite element model. The first category of methods is inevitably
subject to model truncation error due to order-reduction. Such error may become considerable when compared with the discrepancy
between the actual measurement and finite element model prediction. In the second category of methods, it is difficult to rigorously
determine the size of dataset needed. In certain cases, it is even difficult to decide how to select dataset from FE simulations to
train/establish a surrogate model to accurately approximate the original FE model. On the other hand, improved sampling techniques,
which may reduce the computational cost through reducing the number of FE simulation runs, have been extensively investigated. One
popular approach is the Markov chain Monte Carlo (MCMC) method, which can be seamlessly integrated into Bayesian inference-based
optimization [23-26]. It comprises a class of algorithms e.g., Metropolis-Hastings (MH) [27], Gibbs sampling (GS) [28] and impor-
tance sampling [29] to enable efficient sampling from an unknown target distribution/function. The constructed Markov chain hence
is deemed as an equilibrium distribution of target distribution/function [30]. The number of samples in Markov chain is considerably
smaller. Among these algorithms, MH-based MCMC is the most common method used in the application of FE model updating [27,31].
When MH-based MCMC method is applied, a proposal distribution is formulated to guide the sample generation over the entire
parametric space. Generally, the variance of the proposal distribution is set as constant in the course of chain evolution.

The underlying idea of MCMC can lead to an accelerated approximation of target distribution. Here the target distribution
essentially represents the actual objective surface in model updating. In this research, the actual objective surface is defined as the error
surface between the FE prediction and the measurement with respect to the model parameter samples. It is worth noting that, in almost
all practical situations, the number of sensors is limited and much smaller than the number of degrees of freedom (DOFs) in the
structural model, and generally only the dynamic responses within the lower-order frequency range can be realistically measured.
Therefore, the measurement acquired is incomplete. In many cases the inverse analysis-based model updating problem is under-
determined. Consequently, the objective surface may become very complex, exhibiting many local optima. In practice, a local opti-
mum is a solution that is optimal (either maximal or minimal) within a neighboring set of candidate solutions. In this context, the
optimum may appear as a local peak (or valley) as long as it is greater (or smaller) than the neighboring objective values. Moreover,
different local optima should be well-separated over the entire parametric space. Conventional Bayesian model updating is performed
with single MCMC, which is only capable of converging to one optimum. This optimum may very well be a local one. Therefore, it is
critically important to find as many (local) optima as possible in actual scenarios, which allow one to further integrate additional
information (e.g., additional measurements for validation) or empirical knowledge for the eventual decision making. This offers the
flexibility in model parameter updating. Intuitively, through running single MCMC multiple times, we may collect their respective
solutions as multiple local optima due to the random-walk nature of MCMC [32]. However, it cannot be guaranteed that the solution of
each emulation run converges to a different local optimum. In other words, some solutions may be identical, which at least is not
computationally effective. Additionally, the proposal distribution in MCMC usually has fixed variance which may further increase the
chance of being trapped in local optimum. Several approaches have been attempted to address the issue of proposal distribution. For
example, Liang et al. [33] proposed a Markov chain Monte Carlo method with adaptive proposal distribution for performance
enhancement. Ji and Schmidler [34] formulated a mixture proposal distribution which can adapt to samples from multimodal target
distribution, and demonstrated improved approximation. Recently, Lam et al. [35] developed a multiple parallel MCMC-based
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Bayesian model updating approach to ensure the accuracy of updating results.

The objective of this research is to fundamentally address the challenges in computational inference using FE inverse analysis, i.e.,
underdetermined problem with complex objective surface. Specifically, we enhance the Bayesian inference-based inverse analysis
framework with the integration of multiple parallel, interactive and adaptive Markov chains. We not only maintain the parallel scheme
of Markov chains [35], but also enable all Markov chains to evolve in an interactive manner. The redundant Markov chains that yield
the same local optima with others will be suspended in order to alleviate the computational cost. Meanwhile, an automatic analysis
procedure is employed to adaptively determine the number of Markov chains and related initial parameters to be executed. As will be
demonstrated in this research, these strategies can take full advantage of the characteristics of dynamic responses utilized in FE inverse
analysis such as incomplete modal response information to unleash the potential of physics informed statistical inference. The rest of
this paper is organized as follows. In Section 2, the general formulation of finite element (FE) inverse analysis using incomplete modal
response information is outlined first, followed by an overview of traditional Bayesian inference-based inverse analysis integrated with
single Markov Chain which serves as the baseline. Subsequently, the enhanced framework built upon multiple parallel, interactive and
adaptive Markov chains is then presented. Section 3 provides implementation details and systematic case studies on a benchmark
structure to demonstrate the proposed methodology and illustrate the performance improvement. Section 4 gives the concluding
remarks.

2. FE inverse analysis with enhanced bayesian framework: algorithm development

This section presents the formulation of FE inverse analysis with enhanced Bayesian framework. We start from the problem
formulation of FE inverse analysis using (incomplete) modal response information. It is followed by the outline of conventional
Bayesian updating. The new framework is then established where the enhancement through incorporating multiple Markov chains is
highlighted.

2.1. Problem formulation of FE inverse analysis using incomplete modal response information

Finite element (FE) inverse analysis is a widely used procedure to identify model parameters or their updates based on mea-
surement or desired/target outcome. In structural fault identification, the input is the response of structure being monitored, and the
output is the damage index vector (i.e., location and severity of local property change). In design optimization, the input is the desired/
target response, and the output is the modification of design parameters. And in model updating to ensure the modeling validity, the
input is the measurement of actual structural response under controlled excitation, and the output is the FE model parameters. In
sampling based inverse analysis, the response prediction from a baseline FE model under given sampled parameters is compared with
the measurement or target to facilitate the identification. The FE-based dynamic equation of motion can be expressed as

Mx+Cx+Kx=F 1

where M, C, and K are the mass, damping, and stiffness matrices, respectively. We assume the structure has N DOFs. All the system
matrices are of dimension N x N. x is the N-dimensional displacement vector. Let the structure be subject to light and proportional
damping. The damping matrix thus is dependent on the mass and stiffness matrices. Without loss of generality, in what follows we are
only concerned about the inverse analysis of stiffness matrix. The inverse analysis of both the mass and stiffness matrices can be
formulated similarly.

In practice, owing to the high dimensionality of FE model, it is impossible to identify all elemental stiffness and mass matrices.
Commonly, we assume that variations of model parameters (i.e., parameters to be identified) only occur at n (n < N) elements or
segments in the FE model. Let K; denote the nominal stiffness matrix of the i th segment in the original, baseline FE model. The global
stiffness matrix that is subject to variation thus can be expressed as [36]

IA(:;K,-(l—a,») @

where ¢; indicates the stiffness variation coefficient of the i th segment. The summation shown in Eq. (2) represents the usual direct
sum in FE modeling. In this research, we let ¢; fall into [0, 1]. The coefficient vector, @ = [a1,az...;...a], represents the unknown
stiffness variations to be identified. The aforementioned formulation can be directly applied to fault identification, design optimiza-
tion, and model updating. In those applications, @ = a1, @...;...a,] represent, respectively, the unknown stiffness reductions caused
by fault, the stiffness changes necessary to facilitate target response; or the stiffness parameters to be updated to match the experi-
mental measurement for model updating.

The stochastic FE model of the actual structure, that is perturbed by the unknown parameters to be identified, thus becomes

Mx + C(a)x + K(a)x =F 3)

Here M = M which remains invariant, and the stiffness and damping matrices are affected by @. The modal information of this
system is governed by the following eigenvalue problem,

K@)~ (220.) @) 7, = 0 )
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The i th natural frequency and the corresponding mode shape are denoted as, @; and i, respectively. They are both functions of a.

In inverse analysis practice, usually the first ¢ (¢ < N) lower-order natural frequencies and mode shapes can be acquired or
experimentally extracted. For example, in fault identification and model updating, in actual data acquisition, only a small number of s
(s < N) sensors can be employed at the corresponding DOFs for measurement [10]. The modal information acquired thus is incomplete
and limited. For notation convenience, we let (@1 g, 7 denote the measurement information consisting of first g natural frequencies
and an s x ¢ matrix of the collection of corresponding mode shape vectors. Hereafter the subscripts of these variables indicate their
dimensions. In each mode shape vector, only the modal amplitudes at s DOFs are measured. Similarly, we let (@1xq,;,) denote the
information simulated/predicted from the FE model (Eq. (4)). Our goal is to identify the set of uncertain parameters, @, such that the
difference between (@1xq,¥sq) and (@1xq,¥;,4) is minimized. To properly quantify such difference, the direct matching of the nu-
merical and experimental modes is required. In actual practice, certain modes predicted in the numerical simulation may not appear in
experimental measurement. The mode veering may also occur due to the varying model parameters especially when the associated
natural frequencies are very close [37]. The direct mode matching using the mode order hence becomes ineffective. The potential
methods to address this challenge include the Modal Assurance Criteria (MAC) and model reduction [38,39]. MAC is a metric to
correlate the modes through comparing their mode shape patterns. Owing to its conceptual simplicity and implementation conve-
nience, we adopt the MAC-based mode matching procedure in this study. While the mathematical details will be provided subse-
quently, here we generically express the differences of natural frequencies and mode shapes as x(@1xq, @1xq(@)) and (W, o, ¥ (@),
respectively, which are to be minimized. As mentioned, in this research the methodology to be developed will incorporate various
uncertainties and measurement noise. Therefore, k(@1xq, ®1xq(a)) and v(Ws,q, ¥sxq(@)) are no longer deterministic. They are instead
probabilistic. The model parameters « will be identified in a probabilistic manner accordingly.

2.2. Conventional Bayesian inverse analysis with MCMC

2.2.1. Bayesian inference

The objective of this research is to develop a new framework to identify or update, probabilistically, the FE model based on
measurement or target information. In the model updating practice, the underlying idea of Bayesian inference is to update the
probability of hypothesis as more measurements become available, which fits the research objective. It is well known that Bayesian
inference is established upon the Bayes’ rule which is fully represented as [13]

p(£216)p(9)
[p(210)p(6)do
In the context of FE inverse analysis, the hypothesis fis interpreted as the vector of model parameters (i.e.,@in Eq. (2)) to be

updated. The measurement data, £, is the modal information difference (between model prediction and actual measurement or target
information), i.e., k(@1xq, ®1xq()) and v(W,,,, ¥, (@)). Hereafter to simplify the notations we refer to the differences of natural fre-

p(012) = (5)

quencies and mode shapes as «(a) and v(a). We thus re-write the above equation as

p(x(a), v(a)|a)p(e)
Plae(@). v(@)) = 7t ), via)apla)da ©

The prior PDF p(e) is an arbitrary distribution of e initially created based on prior knowledge. Without explicit understanding of the
target problem, this term can be simply defined as a standard statistical distribution, such as normal or uniform distribution. The
likelihood PDF p(k(«),v(e)|) aims at probabilistically assessing the agreement between the measurement/target and the corre-
sponding modal information prediction from the model. The posterior PDF p(a|x(@),v(e)) is the resultant distribution of aconditioned
on the prior PDF and the measurement. Since the marginal likelihood in the denominator essentially is a normalization constant, the
posterior PDF is proportional to the numerator, i.e., p(a|x(a),v(@)) cop(x(e),v(a)|e)p(a). It is worth noting that the posterior PDF here is
considered as the optimization objective to guide the model updating/optimization process, in which the best parametric combination,
a, can be identified with the highest p(a|«(a),v(a)).

To implement the Bayesian inference, we will need to build the probabilistic relationship between the measurement/target and the
corresponding modal information prediction in the presence of uncertainties. In this research, measurement/target and modeling
errors are considered as Gaussian noise. The likelihood PDF that takes into account the effect of these errors thus is subject to a
multivariate normal distribution. The specific formulation of likelihood PDF is dependent on the explicit forms of k(&) and v(«), which
will be discussed later.

2.2.2. Integration of MCMC for expedited optimization

In order to identify the model parameters, Bayesian inference-based optimization will be conducted which requires Monte Carlo
simulation with repeated FE analyses. For a practical structure, each FE analysis run will take certain computational cost. A brute force
Monte Carlo simulation would be computationally prohibitive, as a very large number of parametric combinations need to be
substituted into this procedure to construct a credible posterior PDF. The computational issue will be further compounded when high-
dimensional parametric set, i.e., large n in Eq. (2), is involved. A common solution is to adopt Markov chain Monte Carlo (MCMC) to
replace the conventional Monte Carlo to facilitate efficient model updating analysis under uncertainties.

The fundamental idea of MCMC is that it can generate a stationary chain with a significantly reduced number of model parameter
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samples that are used to approximate the target distribution [24,30,40]. The approximated distribution is capable of interpreting the
best parametric combination to be identified in a probabilistic sense. There are several classes of algorithms that can be utilized to
execute MCMG, in which the Metropolis-Hastings (MH) and Gibbs samplings are two representative ones. Gibbs sampling or a Gibbs
sampler can allow the identification of multiple sets of parameters. Specifically, the conditional posterior PDFs of the parameters of
interest can be updated iteratively [28,41]. Generally, Gibbs and MH sampling algorithms have different strengths. In some cases,
Gibbs sampling may require MH algorithm when dealing with complex conditional targets, while MH proposals may be built to
approximate the full conditionals (Gibbs). Leveraging the combination of both Gibbs and MH samplings, the model updating per-
formance may indeed be improved [32]. Since the specific emphasis of this research lies in the computational enhancement, i.e.,
integrating multiple parallel and interactive Markov chains, we adopt the standard architecture of MH MCMC for demonstration. The
pseudo code of the MH MCMC is shown below.
Pesudo code of Metropolis-Hastings (MH) MCMC

With a; at time t, the aim is to generate the next chain value &} ;.
1. Proposal step: Sample “Candidate” z from the proposal distribution Z ~ q(z|a;‘). Proposal distribution usually is selected as a symmetrical distribution, e.g.,
normal distribution.

plog x(ay), v(e;))q(Zar;)

2. Acceptance step: With probability f(Z,a;) = min (1,
v A(2,m) PZIK(Z).0(Z))qlat |2)

). Due to the symmetry of proposal distribution, q(Z\a;) = q(o \Z).

Generate ¢ from a uniform (0, 1) distribution:
if p(Z,a;) > pu, we set & ; = Z(i.e., acceptance)
else a, , = a; (i.e., rejection).

Note: q(z|a;)is the proposal distribution of z depending on the deterministic parameter «; .

In MH MCMC, ‘Metropolis criterion’ is strictly followed to determine whether the newly generated sample is retained or discarded.
Through executing the analysis of MCMC, we can obtain the Markov chain containing all accepted model parameter samples and their
posterior probability values. The reduced number of samples in MCMC leads to significant reduction of computational cost. The
accepted model parameter samples in Markov chain can be further used to estimate/approximate the posterior PDF for probabilistic
parameter updating. The conventional single MCMC-based Bayesian inverse analysis framework introduced in this Section is shown in
Fig. 1.

2.3. Enhanced Bayesian inverse analysis framework with integration of multiple parallel, interactive and adaptive Markov chains

In inverse analysis using vibration response, generally only the lower-order modal information is used (e.g., realistically measured
in fault identification and model updating). Moreover, as the number of sensors is limited, the mode shape information is incomplete.
When the number of model parameters to be updated is large, the inverse problem is oftentimes underdetermined. Moreover, the
objective surface in inverse identification oriented optimization is very complex, exhibiting many local optima. Conventional Bayesian
inverse analysis performed with single MCMC which is outlined in the Section 2.2 is only capable of converging to one optimum which
may not likely be the best result. To tackle this challenge, in what follows we develop the key component in the enhanced inverse
analysis framework, i.e., the parallel, interactive and adaptive Markov chains, which aims at adequately approximating the target
distribution over the entire space of model parameters to be identified/updated.

We first want to ensure capturing as many local optima as possible, and thus adopt a parallel scheme of Markov chains, similar to
what’s suggested in literature [35]. Generally, to increase updating accuracy, the number of Markov chains, i.e., m, is suggested to be
large especially for cases with complicated objective surface to be characterized. The m resulting Markov chains can be utilized to
identify the probabilistic solutions. Building upon this, we include an adaptive scheme for varying proposal distribution width in order
to improve the performance of MCMC [33]. Specifically, we assign a small width y for proposal distribution in the beginning, since

St‘art

. ¥
Calculate p(Ap(o,)|a,) -———{ Generate i-th sample ¢, H MH MCMC }—-,—-v Chain information

Calculate p(a,)

Response measurement ‘

i<=t =i+

I Calculate p(o, | Ay(a, ) ‘\; T

Fig. 1. Conventional Bayesian inverse analysis.
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different Markov chains are designated to search parameters at respective local areas. It is noted that the width here is controlled by the
distribution standard deviation defined. A small width thus benefits the dense search process. During the MCMC evolution, the dis-
tribution width is adaptively tuned with respect to the chain status in order to avoid the trapping by local optima. The pseudo code of
such adaptive width variation rule is given below.

Pesudo code of adaptive proposal distribution width variation

Set a small width for the proposal PDF y
MCMC evolution iteration:

Counting the consecutive rejection steps

If the number of the consecutive rejection steps fall in the range [q1,q>]
Set a larger width of proposal PDF y;

If the number of the consecutive rejection steps fall in the range [q2,qs]
Set a larger with of proposal PDF y,

If the current sample is accepted,

The original small width of proposal PDF yis restored.

Note: y <y; <7z < ..7p, and g1 < g2 < ...gpt1

There are, however, remaining issues. The first issue is that the selection of m Markov chains. In earlier investigations, m is
manually selected according to the configuration of computational platform, such as the number of processors [35]. In particular, the
initial parameters of m chains are either randomly generated based upon a pre-specified statistical distribution or grid-discretized to
uniformly cover the entire parametric space. These procedures may not yield optimal initial parameters, which thus slows down the
convergence of Markov chains. The second issue is that, while these m Markov chains evolve independently in parallel, it is not
guaranteed that all of them will finally converge to m different, well-separated local optima. Additionally, if some Markov chains
already converge to the same local optima and still are allowed for continuous evolution, computational resource will be occupied
unnecessarily. In this research we aim at developing a new Bayesian inverse analysis framework using incomplete modal information.
While the mathematical details will be presented in the next section, the treatments to address the aforementioned issues are intro-
duced as follows.

We establish a sequential procedure for the m parallel Markov chains (Fig. 2). We construct a uniform distribution covering the
entire parametric space, based on which we randomly generate w model parameter samples. Without prior knowledge, we perform the
Monte Carlo simulation to calculate the objective values (i.e., posterior probability values) of these parameter samples following Eq.
(6). We then sort the objective values and find the r best model parameter samples with higher objective values. Following this, we
utilize the K-means clustering analysis to take advantage of the sorted samples. The K-means clustering analysis can partition data into
different clusters with the nearest mean [42]. The clustering process is implemented by iteratively updating the means of obtained
clusters until the convergence criterion is met. The distance between two model parameter samples is represented by the Euclidean
distance of the associated spatial coordinates [43]. We will implement K-means clustering analysis based on w model parameter
samples. The K-means clustering analysis is an important element of this proposed approach as it can automatically identify the

C pre-screening + K-means clusterin|

4
| Input 1_1 H Input 1_2 F’ ﬂ| Input 1_t “ Posterior PDF 1 of Probabilistic
‘ —| accepted steps identification result 1
MCMC 2 ‘
| Input 2_1 H Input
...... c |
MCMC m ; ‘
’ Input m_1 H Input m_2 f’ _’| Input m_t |‘ Posterior PDF m of Probabilistic
; b v — | accepted steps identification result m
i Chainm_1 : Chainm_2 i Chainm_t !
| o ST R . -
! Comparison flow Evolution continues  Evolution suspends at  Evolution merges to others at
i for next time step current time step current time step
I

Fig. 2. Schematic illustration of integration of parallel, interactive and adaptive Markov chains.
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optimal locations to start the MCMC evolution. As a result, the model updating performance, i.e., analysis convergence and diversity (i.
e., multiple local optima detection capability), can be significantly improved. It is worth noting that the number of clusters or the
number of initial chains is a hyperparameter of the K-means clustering analysis, which is to be optimally determined. To balance the
trade-off between the solution search efficiency and on-demand computational resources, we set a proper range, i.e., [5, 20] for the
cluster number. The number of clusters starts to increase from the lower bound, i.e., 5, with a distance constraint that the distance
between any two clusters should exceed the minimal distance specified. The maximum number of clusters m (m < rand m € [5, 20])
can be determined once the distance constraint is marginally satisfied. Because such distance constraint essentially is related to the
Silhouette coefficient that is a typical clustering performance metric [44], we can simply use it to direct the automatic selection of
cluster number for K-means clustering analysis. We further consider m centers of m generated clusters as initial model parameters to
execute the m parallel Markov chain evolutions.

To address the second issue in the parallel Markov chains, we integrate a procedure for the merge check of Markov chains during
evolutions. At each time step, currently accepted model parameter sample of one certain MCMC will be compared with all accepted
model parameter samples archived in other Markov chains. When it occurs that the Euclidean distance of two compared model
parameter samples is smaller than a threshold, one MCMC is suspended and will not continue to evolve in the next time step. This
allows the interaction of all Markov chains. The final number of the resulting Markov chains is z, where z < m. Correspondingly, z
solutions, i.e., z unique local optima, will be identified through the chain information obtained. There indeed have been multiple
criteria suggested for terminating the MCMC evolution. One popular criterion is dependent on the convergence examination, in which
the auto-correlation degree of Markov chain is iteratively assessed as the evolution proceeds [45]. A threshold of auto-correlation
degree will be prescribed to decide whether the evolution can be terminated. Another criterion is to directly assign a maximum
iteration number for MCMC evolution [10]. In this research, for the sake of illustration we adopt the latter one. When a pre-specified
iteration number, i.e., t of Markov chain, is reached, the whole process will be terminated. The earlier termination also allows to ensure
the computational efficiency when the specified number of consecutive rejected steps, i.e., u is reached. The eventually survived
Markov chains can offer the information to extract the probabilistic updating results.

This enhanced framework is schematically illustrated in Fig. 2. To maintain the stationary property of MCMC, first a few accepted
samples in the transition phase, the so-called burn-in period, need to be scrapped [46]. Hence, the burn-in length ratio xshould be
defined in the analysis.

3. New framework implementation details and case demonstrations

This section presents the mathematical details of the enhanced Bayesian inverse analysis framework through implementing case
investigations. In order to validate the effectiveness and generality of the new approach, we practice the algorithmic implementation to
two different, representative scenarios, i.e., identifying boundary conditions of a dome structure and updating material properties of a
plate structure with high FE mesh density. In both cases, limited and incomplete modal information will be used to facilitate inverse
analysis. In this research we use simulated data in lieu of experimental data to facilitate inverse analysis for algorithm investigation.
This allows interested readers to reproduce the results for examination. Moreover, since the ‘ground truth’ is known in the simulated
cases, the effectiveness and accuracy of the new framework can be thoroughly investigated, especially in the presence of many local
optima in Bayesian inference based optimization.

3.1. Implementation scenario 1: boundary condition updating of a dome structure

3.1.1. Inverse analysis problem setup

We choose the parametric identification of a dome-type structure as the first implementation scenario, as it is representative of
many civil infrastructures. The configuration and geometric parameters are shown in Fig. 3. It is made of homogeneous material with
Young’s modulus 2.06 x 10''Pa, mass density 7.85 x 10%kg /m®, and Poisson’s ratio 0.3. The finite element model of this structure is
built with the beam element, containing a total 108 of nodes (each node with 3 translational DOFs). The cross section of beam element
is rectangular with area 0.0168m? (cross section length and width: 0.21 m and 0.08 m, respectively). In this dome structure, 18 nodes at

Fig. 3. The geometry of the dome structure. Outer radius: 6 m; inner radius: 1.2 m; height: 2.45 m.
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the bottom layer are imposed with boundary conditions, i.e., being fixed to ground. We assume in this case 14 out of 18 nodes are
indeed completely fixed (i.e., no displacement at all 3 directions). And we assume the other 4 nodes are not fixed ideally, with stiffness
parameters to be identified based on simulated measurement information. To a large extent, updating boundary conditions essentially
is to calibrate the stiffness at boundary DOFs. To facilitate such analysis, we employ 3 spring elements that are aligned with 3 principal
directions of each node and connected with the ground to emulate the boundary conditions (Fig. 4). If a boundary DOF is completely
fixed, the corresponding spring stiffness is theoretically infinity. On the other hand, if a boundary DOF is not completely fixed, a finite
spring stiffness value will need to be identified.

Without loss of generality, the stiffness values of 3 springs connected to the same node are assumed to be the same. Therefore, in
this case analysis we have 4 spring stiffness values to be updated, i.e., the total number of unknowns to be updated is 4. Before
conducting the model updating analysis, we first estimate the order of magnitude of such spring elements. It is found that once we
increase the boundary stiffness values of the aforementioned 4 nodes to 1 x 102N /m, the natural frequencies of the dome structure
approach those of the dome with all 18 nodes fixed. Therefore, we can consider 1 x 102N /m being the stiffness value corresponding to
the fixed boundary condition. As such, we define the entire search interval as [0, 1 x 102*]N/m. This can ensure the detection of the
response with respect to the boundary condition change. For this particular case, we treat the upper bound of stiffness (i.e., 1 x
102N /m) as the nominal value, and assume the actual spring stiffness reductions due to non-ideal boundary conditions at these 4
nodes are given as AK = [0.7 x 10%%,0.6 x 10%4,0.1 x 10%*,0.9 x 10%*]N /m. Therefore, the actual stiffness reduction coefficients to be
identified are @ = [0.7,0.6,0.1,0.9]. We define the prior PDF of model parameters, i.e., 4 spring stiffness reduction coefficients, as a
multivariate uniform distribution with range [0, 1]. In what follows we use simulated data in lieu of experimental data to conduct the
model updating practice. Since the ‘ground truth’, i.e., the true boundary condition, is known in this case study, we will be able to fully
demonstrate the algorithmic improvement.

Since we are subject to incomplete modal information measurement, we assume only the first two natural frequencies and the
associated mode shapes are available for model updating. Moreover, we assume only 4 sensors (uniaxial accelerometers) installed
along the z-direction at 4 nodes indicated in Fig. 5 are employed. Therefore, only the amplitudes of the mode shapes at these DOFs are
measurable. For demonstration, the 1st z-bending mode shape of the dome structure is also shown in Fig. 5. Throughout model
updating, the measurement information will be compared with model prediction iteratively/continuously. Here we utilize the mode
assurance criterion (MAC) to assess the difference between the mode shape prediction and the measurement [47]. Given two mode
shapes for comparison, MAC directly converts the vector difference into a scalar. As a result, the influence of mode shape and natural
frequencies can be equivalently incorporated into the formulation of the posterior PDF.

Recall that in Section 2.1 the differences of natural frequencies and mode shapes are generically expressed as x(«) and v(a) where a
is the vector of model parameters to be updated. We now let

q ‘(/[), — ;
— LI 7

k() Z]j 5 (7a)

q
via)==> (1-7) (7b)

i=1

~T_ 2
where y; is MAC that is defined as y; = % [47]. Hereafter the hat notation indicates variable obtained through model prediction,
Vi)l v

and the bar notation indicates variable obtained from measurement. As simulated data are used in lieu of actual measurement, @; and
; are obtained numerically from the baseline model with @ = [0.7,0.6,0.1,0.9].
We further derive the likelihood PDFs of both «(et) and v(a)with the normal distribution given as
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q
px(a)|a) = [ [ exp ; (8a)
i=1

L

SRS GV

Springs at 3 directions

SA S

Fig. 4. Boudary condtions (i.e., 4 spring stiffness values) of the dome structure to be updated.



K. Zhou and J. Tang Journal of Sound and Vibration 511 (2021) 116331

6 5 ANSYS
NODAL SOLUTION B o e 2019 R2
STEP=1 ¢ ) N ACADEMIC
SUB =1
FREQ=39.9943
vz (avG)
RSYS=0
DMX =.012969 ok
SMN =-.001753 N\
MX =.01292 A
SMX =.012927 7406 405 L. N
398 408 403 Joz\ /
: 05080 ¥ /
R0, S0
309 409508 502 402 347 | :

/ 509 | 1501
o> 2
1\0 a>p, kX By 40 1
310 “\511 517 318 Y
220 ) 418 - e
7512, 51816 18
s 112 »».5.%5 N {5\ \
S ¢ 413 416 ~211
414 415

9 -004772 .008034 .01129¢
-.1228-03 -003141 .006403 .009665

.012927
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A very important aspect of such model updating problem is the measurement noise, as actual measurement is always subject to
noise effect. It is worth emphasizing that the above likelihood PDFs take into account the measurement noise through incorporating the
variability level, i.e., ;. The values of #; are generally decided based on the noise level of experimental measurements. Previous
literature has reported that the values of #; can be estimated from the convergence of the statistics of the measured data, i.e., identified
modal parameters. To allow unbiased estimation, usually a large number of repetitive measurements collected in the structure are
needed [48]. These values indeed are case specific, depending on the structure investigated, data acquisition equipment resolution,
sensor locations, ambient noise and mode order/frequency range of interest. In literature, the variability of measured natural fre-
quencies generally falls into the range [0.5%, 3%] [27,48-50]. It should be noted that modeling error could be more significant than
measurement noise in practical scenarios [25]. To adequately take into account all the uncertainties for the posterior PDF charac-
terization, relatively large values of y; are suggested. Therefore, in this research #; are chosen as 0.08 (i.e., 8%) for both the natural
frequencies and MACs to take into account the noise/uncertainties. As mentioned, 5; indeed can be updated in the form of conditional
posterior PDF via the Gibbs sampling. Since the specific emphasis of this research lies in the computational inference algorithm
development, for illustration purpose we decide to utilize the standard MH MCMC, in which #,is appropriately selected as a constant

Python IDE

ANSYS Environment

MCMC

APDL-driven FE analysis ‘

i=i+l

dl i-th model parameter sample ‘

i-th posterior probability

reject

accept

Add the sample into
Markov chain

Fig. 6. Analysis flowchart that enables the interaction between ANSYS and Python.
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based upon the literature [25,27,48-50]. We assume the PDFs of natural frequencies and mode shapes are statistically independent.
The final likelihood thus can be written as

p(k(@),v(a)|e) = HeXp

(o2

)2 + —(1- 7:‘)2

2(’/i)2

2 (”imi ) ’

Substituting Eq. (9) into Eq. (6) yields the closed-form of the posterior PDF.

In this research, we establish the probabilistic updating framework using Python. We leverage the efficient solver of ANSYS [51] for
finite element simulations, and incorporate it into the framework. APDL script is employed to direct the ANSYS analysis in the
backstage. The interface between python IDE and ANSYS environment is built to facilitate the updating process. The framework
developed is completely automated, and the entire Markov chain will be eventually produced through FE analysis iterations. For
illustration, Fig. 6 shows the architecture of conventional Bayesian inverse analysis, indicating how the interaction between Python
IDE and ANSYS environment takes place. This analysis architecture can be further extended to suit the enhanced updating framework
with multiple Markov chains. The APDL pseudo code for finite element analysis under certain model parameter sample is given in
Appendix for interested readers to reproduce the analysis result. In the current algorithm setup, aiming at identifying as many local
optima as possible, we apply different chains, which will to certain extent increase the computational cost. Intuitively, parallel
computing appears to be promising. However, generally it is applicable only when all the Markov chains evolve independently. In our
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Fig. 7. Initial model parameter samples using K-means clustering analysis based upon pre-screened ranked model parameter samples from Monte
Carlo simulation. (Circles denote the centers of clusters; other shapes denote the clusters.).
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study, another important feature of the proposed approach is the frequent and simultaneous interaction of different chains over entire
evolution, which poses a challenge for direct implementation of parallel computing. The fundamental reason is that the current
approach resorts to the in-memory computation. The memory allocated at different python IDE environments is independent, which
limits its parallel execution. Nevertheless, the proposed approach has the potential to accommodate parallel computing scheme. A
feasible idea is to write the chain information from the memory into the intermediate files that can be shared and assessed by all chains
during evolution. This can facilitate the parallel computing, and is subject to future research.

3.1.2. Inverse analysis practice using incomplete modal information

3.1.2.1. Direct parametric estimation with MCMC evolution. Following the procedures outlined in the Section 2.3, we first formulate a
multivariate uniform distribution with bound [0, 1] to facilitate the Latin hypercube sampling [46] of 1000 (i.e., w = 1000) model
parameter samples. The posterior probability values of these samples can be directly calculated using Monte Carlo simulation. We then
screen 50 out of these 1000 samples (i.e., r = 50) with higher posterior probability values. With a pre-specified distance threshold, i.e.,
ec = 0.23, K-means clustering analysis is carried out to partition 50 pre-screened samples into 14 clusters. Each cluster is fully
differentiated by its center information. The spatial coordinates of these centers are considered as the initial model parameters of
respective 14 Markov chains to be executed.

Fig. 7 gives the 2-D cluster information yielded by K-means clustering analysis. The details of the operating variables can be found
in Table 1. 14 Markov chains progressively evolve upon the initial parameters. Eventually, 6 Markov chains among them survive, and
the rest of 8 merge to others. From the aspect of computational efficiency, we summarize the status of Markov chains as shown in Fig. 8.
In each iteration, the major computational cost is spent in FE analysis, which takes around 2-3 s on a desktop computer with Intel CPU
E5-2640 @2.40 GHz (2 processors). The overall computational cost therefore can be estimated in terms of the numbers of iterations for
both merged and survived Markov chains (Fig. 8).

Recall the pseudo code of MH MCMC shown in Section 2.2.2. An important procedure, i.e., sample acceptance in MCMC, collects
the ‘useful’ samples to approximate the target distribution in a statistical manner. The complete sample acceptance history can be
represented by the resulting Markov chain. The trends of posterior probability values in survived Markov chains are presented in Fig. 9.
It is worth noting here one Markov time step in the horizontal axis denotes one accepted sample. For notation convenience, each
survived Markov chain can be deemed as one solution. One may notice that the index of Markov time step does not start from 1 because
of the removal of ‘burn-in’ period as mentioned before. The maximum iteration number of MCMC is specified as 2000 (Table 1). The
numbers of accepted time steps vary with respect to the Markov chain, which may be due to the different input-output relations around
different local optima. Unlike general optimization methods, the objective value in this framework does not monotonically increase as
process proceeds. This observation is directly due to the Metropolis criterion which takes place in the acceptance step (please refer to
the MH MCMC pseudo code in Section 2.2.2). The random number generated for comparison will oscillate the objective values of
accepted samples, which to certain extent can alleviate the trap of local optima. The maximum objective value is 1 as the posterior PDF
is normalized. It is observed that the highest objective values of all solutions are relatively large. The values in Solutions 3, 4 and 5 even
approach 1. The result illustrates the good performance of parameter search upon the MCMC evolution.

We now select the solutions with the highest objective values that are greater than 0.9 (i.e., Solutions 1-5), and compare their
respective best model parameters as shown in Fig. 10. Apparently, model parameter values have noticeable discrepancies, which
indicates the existence of multiple local optima in the objective surface. The new framework developed is indeed capable of capturing
the underlying information of these local optima.

3.1.2.2. Target function approximation and further parameter identification. While the best model parameters identified directly from
the abovementioned solutions indeed result in extremely high objective value, such as Solutions 4 (0.9937) and 5 (0.9991), they
cannot be considered as final updating result. The reason is that a small number of data points, i.e., accepted samples and their
objective values, cannot well characterize the true posterior PDF (Eq. (6)) especially when the parametric space is high-dimensional.
To further enhance the accuracy of updating result, previous research [10] established a meta-model based on the scarce posterior PDF
data points from MCMC, and then employed it to enrich the posterior PDF. The parameter estimation can then be conducted upon this
enriched posterior PDF. It is worth pointing out that the underlying idea of MCMC actually allows an alternative for parameter
optimization. Specifically, MCMC aims at constructing Markov chain that has desired distribution with respect to the target func-
tion/distribution [46]. The information of Markov chain in fact is fully represented by the accepted model parameter samples without

Table 1

MCMC parameters (Case 1).
w: number of samples for Monte Carlo 1000
r: number of best model parameter samples obtained through MC 50
t: pre-specified maximum number of iteration runs for each MCMC 2000
et distance threshold for determining initial parameter samples 0.23
ey distance threshold for merge check of Markov chains 0.15
y: default proposal distribution width 0.01
u: number of consecutive rejected steps for earlier termination 250
k: burn-in length ratio 0.1

11
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Fig. 8. MCMC evolution progresses.

the respective objective values. Therefore, the approximated distribution essentially is a histogram, representing the frequency of
occurrence of the model parameter combinations.
A direct way to convert Markov chain into a histogram is briefly introduced as follows. For example, consider the i th solution/

survived Markov chain with recorded information @;l’)x o> where his the length of the chain, and g is the number of model parameters to

be updated, i.e., g = 4 in this current case. One can slice (9;:1 < into g column vectors, which then can be presented with histograms. In
statistics, each histogram in the i th solution is used to represent the marginal PDF of certain model parameter, e.g., a marginal PDF
denoted as p(a;), where @; is the j-th model parameter. In this case, we partition the entire range of @}, i.e., [0, 1] into 20 uniform small
bins, upon which the marginal PDFs of all model parameters are generated. While the statistical properties of such PDFs indeed
indicate the probabilistic identification result, they cannot be directly utilized for identifying the best model parameters. The reason is
that they are characterized based upon the assumption that all model parameters are independent. However, different model pa-
rameters essentially are coupled when characterizing the posterior PDF. The lack of coupling causes the inconsistency of frequency of
occurrence at the same solution. To clarify this, we take Solution 1 as an example (Fig. 11). Obviously, the highest frequencies of
occurrence of different model parameters are not identical.

Theoretically, the joint PDF is a quantity that can truly reflect the probability of model parameter combination to be the actual one.
We thus use the joint PDF instead of the marginal PDF to conduct the subsequent probabilistic parameter identification. The math-
ematical relation between joint and marginal PDFs can be characterized as

p(w) = / / /p(ah...,a,-...a,,)dal..dak..dan (10)

vay Ve (k£j)  Van

wherep(ay, ..., a;...at;) is the joint PDF. According to the above equation, the marginal PDF of the j-th model parameter is calculated as a
multiple integral of joint PDF over the entire high-dimensional parametric space without the j-th dimension. For the sake of
computation, we oftentimes approximate such integral using a discrete form, expressed as

p(a) :Z.. Z ..Zp(al,...,aj‘..an)Aal..Aak..Aa,, an

Vay  Vay(k#j) Ve,

While the histogram is intuitive and convenient to characterize the joint PDF (Eq. (11)), it indeed has the weakness in representing
the underlying data distribution because of its dependence with respect to the number of bins specified. Using too many bins can make
analysis computationally costly especially for the multidimensional problem, while too few bins will overlook the important distri-
bution feature, resulting in inaccurate data representation. Kernel density, as a non-parametric method, has demonstrated its capa-
bility to enable the efficient and smooth distribution estimation of multidimensional/multivariate data [52,53], and can address the
issue of the histogram. The kernel function generally is symmetric, bounded and continuous, and its exact profile is determined by the
so-called bandwidth that is to be optimized through the data training/fitting. Among various kernels, Gaussian kernel is most
commonly used because it can produce very smooth data distribution [54]. In this case study, we employ the Gaussian kernel esti-
mation to construct the joint posterior PDFs of the Markov chain information. According to the chain evolution (Fig. 9), Solution 6

12



K. Zhou and J. Tang

MCMC Envolution (Solution 1)

Journal of Sound and Vibration 511 (2021) 116331

MCMC Envolution (Solution 2)

Highest Probability (0.9097) Highest Probability (0.9379)
1.0 1.0
0.8 0.8
2z )
506 506
© [1+]
o) Qo
£0.4 204
a a
0.2 0.2
0.0 T T = T T 0.0 T T T T -
250 500 750 1000 1250 1500 100 200 300 400 500
Accepted Steps Accepted Steps
MCMC Envolution (Solution 3) MCMC Envolution (Solution 4)
Highest Probability (0.9574) Highest Probability (0.9937)
1.0 1.0
0.8 0.8
Z 2
506 3506
[1+] [i+]
o) o)
£0.4 204
a a
0.2 0.2
0.0 T T T T T T 0.0 T T T T T T T
200 400 600 800 1000 1200 250 500 750 1000 1250 1500 1750
Accepted Steps Accepted Steps
MCMC Envolution (Solution 5) MCMC Envolution (Solution 6)
Highest Probability (0.9991) Highest Probability (0.3641)
1.0 1.0
0.8 0.8
Z Zz
306 3506
o (1]
o) o)
204 204
a a
0.2 0.2
0.0 T T T T T T 0.0 T T T r f
100 200 300 400 500 600 200 400 600 800 1000 1200
Accepted Steps Accepted Steps
Fig. 9. MCMC evolution and optimization.
1.0

0.8

0.6

0.4

0.2

Stiffness Reduction Coefficient

0.0
Model Parameter 1

- Actual value

Model Parameter 2

Solution 1
Solution 2
Solution 3
Solution 4
Solution 5

Model Parameter 4

Model Parameter 3

Fig. 10. Directly identified model parameters from the best 5 solutions through MCMC evolution.

certainly is not a potential local optimum due to the low probability yielded (i.e., 0.3641). As such, we only produce the joint PDFs of
the other 5 Markov chains (probability higher than 0.9), as shown in Figs. 12-16. The multidimensional joint PDFs are converted to
different univariate projections for the sake of visualization. This set of results not only provides a rational mean for parameter
identification, but also probabilistically interprets the finding by taking into account the measurement and modeling uncertainties. For
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Fig. 12. Joint PDF constructed using kernel density estimation (Solution 1).

example, the confidence level of updating result is given.

We adopt the maximum a posteriori (MAP) estimation in Bayesian statistics [27,55,56] to identify the crisp model parameters of
different solutions, shown in Figs. 12-16 and 17(a). The normalized Euclidean distance (NED) is formulated to evaluate the closeness
between the identified and actual model parameters, given as

la-a|
Ej=—F7-— 12
d 7 (12)
where || . ||denotes the Euclidean norm, also known as the 2-norm. n is the number of model parameters or model parameter

dimension, which is 4 in this case. Esgenerally falls into [0,1]. The values in the legend of Fig. 17a indicates NED of identified model
parameters of different solutions. The actual model parameters (i.e., ‘ground truth’) represented by the horizontal dash lines are used
as baseline. Compared with other solutions, the parameters identified in Solution 5 are closer to the actual model parameters because
of the smaller NED (indicated in the legend of Fig. 17a). Specifically, the identified model parameters 1, 2, 3 exactly match the
respective actual model parameters. Only the identified model parameter 4 has certain discrepancy with respect to the actual value.
From physical perspective, the model parameter 4 may be less sensitive to the selected modal responses. Overall, the result indicates
the feasibility of the proposed framework.

To further illustrate the capacity of the framework for multiple local optima detection, we look into the modal responses of the
identified model parameters in different solutions shown in Fig. 17(b). The ratio between the numerical and measured natural
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frequencies, and MAC are specifically utilized as the metrics for evaluating the response discrepancy. The closer the metric value to 1,
the smaller the response discrepancy is. The result shows good match of almost all solutions except for Solution 2 where certain
deviation exists. We then examine the spatial distances of the identified model parameters among different solutions (Fig. 17c), where
the NED defined in Eq. (12) is also adopted. The contour plot (Fig. 17c) is symmetric, and the values on its diagonal line are all zero
because of the same solution involved for comparison. As can be observed, the spatial distance between any two solutions generally is
large, showing that the solutions are well-separated. Combining the observations of Fig. 17(b) and (c) again reflects that multiple local
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Fig. 14. Joint PDF constructed using kernel density estimation (Solution 3).
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Fig. 16. Joint PDF constructed using kernel density estimation (Solution 5).

optima likely exist in this model updating problem, thereby providing the validation of the enhanced performance of this new

framework.

3.1.2.3. Investigation of the effect of K-means clustering on model updating performance. As mentioned, the K-means clustering analysis
plays a vital role in ensuring the good capability of the proposed approach for multiple local optima identification. To highlight this,
here we carry out an additional case simulation without the clustering analysis and compare its result with the one shown above. To
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Fig. 17. Model updating results (a) identified model parameters of different solutions (The numerical value associated with the solution number
indicates its normalized Euclidean distance with respect to actual parameters.); (b) absolute errors of natural frequencies and MACs of different
solutions; (c) normalized Euclidean distances among the identified parameters of different solutions.

ensure the direct comparison, we choose the same number of initial positions of Markov chains, i.e., 14 for this new case, which are the
top-ranking parameter samples sorted from the original Monte Carlo simulation result. With the same operating parameters defined in
Table 1, the model updating is performed, which yields the result shown in Fig. 18. As compared with Fig. 17a, the number of solutions
identified is reduced to 2. This implies that, without the clustering analysis the proposed approach fails to capture other possible local
optima. The fundamental reason may be due to the closely distributed initial parameters for different Markov chains, some of which
will easily converge to the same local optima. The clustering analysis that automatically generates the spatially well-separated initial
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Fig. 18. Identified model parameters of different solutions without K-means clustering analysis (The numerical value associated with the solution
number indicates its normalized Euclidean distance with respect to actual parameters.).
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parameters over entire solution space can alleviate this issue. Additionally, the best solution, i.e., Solution 1, is found with the smallest
NED yielded (indicated in the legend of Fig. 18). While the model parameters identified in Solution 1 tend to point to the respective
actual parameters, the identifiability is worse than that using the clustering analysis.

Since the MH MCMC naturally incorporates the randomness into the model updating process, we execute 5 emulation runs with and
without clustering analyses, respectively, for performance robustness assessment. The result is summarized in Table 2, which provides
the consistent observation. Besides, the other local optimum, instead of the ‘ground truth’, much likely will be identified as the best
solution if the clustering analysis is not employed. The results indicate the necessity of integrating the K-means clustering analysis for
unleashing the power of the multiple Markov chains.

Overall, a series of results presented in this section clearly illustrate the capability of this framework to probabilistically identify
multiple local optima. This in fact is advantageous in inverse analysis practice, in which the actual stiffness values at boundaries are
unknown. The multiple solution options acquired can allow us to approach the ‘ground truth’ from various angles. One way of
finalizing the solution option is to employ empirical knowledge and experience. For example, if we are only interested in response
within certain frequency range, the best solution would be the one that yields the minimum difference between measurement and
model prediction within that frequency range. In certain situations, we may gather additional information (e.g., additional modal
information or additional sensors) to assist decision making.

3.2. Implementation scenario 2: stiffness reduction identification in plate structure

We then analyze the second implementation scenario, i.e., identification of stiffness reduction in a plate structure with large
number of DOFs. As shown in Fig. 19(a), a plate structure with dimensions 0.4 x 0.4 x 0.005(m)is investigated. It is clamped at two
edges along the x-axis. The material constants are: Young’s modulus 2.06 x 10! Pa, mass density 7.85 x 10%kg /m?, and Poisson’s ratio
0.3. The plate is meshed with 8-node solid element within ANSYS. The total number of DOFs is 10,086.

We divide the plate into 8 uniform segments along the x-axis, and our goal is to identify the change/reduction of stiffness in these
segments, possibly caused by damage or material property non-uniformity. Therefore, this second implementation scenario applies to
structural fault detection or model calibration with material property updating. We assign one stiffness reduction coefficient to each
segment, so altogether we have 8 parameters to update, i.e., n = 8 in Eq. (2). In this simulated case, we assume the actual stiffness
reduction coefficients, i.e., the ‘ground truth’, are known as @ = [0.2,0.5,0.6,0.1,0.6,0.3,0.2,0.7]. We assume only the information of
the first two z-direction bending mode shapes is available. Moreover, we assume only 4 sensors are employed, so for the first two
modes, only the amplitudes at 4 DOFs are measured. This leads to a model updating problem with severely limited and incomplete
measurement. This scenario is considerably different from the first scenario as the number of DOFs in the baseline model is very large.
Coupled with the incomplete measurement, the objective surface in Bayesian inference based model updating is very complicated.
Fig. 19(b) illustrates the first z-direction bending mode shape of the structure, and shows 4 sensors that are uniformly distributed along
the x-axis.

Similar to implementation scenario 1, in this second case a uniform distribution within the entire parametric space, i.e., [0, 1], is
specified to characterize the prior PDF. Since in this second case we intend to utilize solely two incomplete bending mode shapes for
model updating, we therefore only involve mode shape difference v(@) in the posterior PDF derivation following Eq. (6). It is worth
noting that there indeed exist various ways of describing the difference between model prediction and measurement. In this second
case, we adopt a new expression of mode shape difference, i.e., point-to point mode shape amplitude differences. The reason is that this
can fully take advantage of the limited measurement information.

121.1 ’El,z ‘El.q ?1.1 ?1.2 ?1,4 Ay, Ay, ... Ay,
v(a) = Var Vo - Wag| _ (Va2 Vo o Wy | _ Ay, Ay, o Ay, (13)
Vo W - W 5q Ve W o Wy Ay, Ay, .. Ay,

where q is the number of mode shapes and s is the number of measurement locations. To take into account the effect of measurement
noise and modeling error, in this case the individual likelihood PDF for each mode shape amplitude is formulated as a normal dis-
tribution, given as

- (A‘/’/.k)z
p(Ay;|a) = exp| ——25 a4
2 (’/Ij.ij.k
Table 2
Identification results produced with and without clustering analyses.
Run 1 Run 2 Run 3 Run 4 Run 5
With clustering Potential solution number 5 4 4 5 5
Best solution with smallest E4 0.090 0.086 0.188 0.085 0.128
Without clustering Potential solution number 2 3 3 3 3
Best solution with smallest E4 0.122 0.203 0.172 0.4182 0.113
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Fig. 19. Inverse analysis setup (a) FE model; (b) 1st z-direction bending mode shape contour plot of structure with 8-segment stiffness variations
and 4 selected measurement locations (denoted by square).

where 7; is the variance, indicating the uncertainty degree of the actual mode shape measurement ;. Here we set ;. as 0.1 in this
case. As discussed in Section 3.1.1, this value can adequately account for all the uncertainties and measurement noise. This likelihood
PDF can ensure the higher probability of a to be the actual model parameters when a smaller Ay;,is observed. Since all elements in
v(a) have similar effect, we can write a final likelihood PDF in a multiplication form as

s q
po(@)a) = [T [ p(av;la) {19
j=1 k=1

Following the procedure outlined in Section 2, we can obtain the posterior PDF.

Once again, we specify the MCMC parameters and carry out the computation. Here it is worth nothing that we select a larger
threshold value, i.e., ¢ = 0.35 than that of case 1 for clustering analysis because the dimension of parametric space in this case be-
comes higher. As a result, the spatial distance of different clusters generally will increase. In addition, a larger maximum number of
iteration runs of MCMG, i.e., t = 3,000is adopted to enable the chain evolution convergence because of higher dimensional FE model
and higher dimensional parametric space in this updating problem. Other parameters are kept the same as shown in Table 1.

By checking the Markov chain evolution history without the ‘burn-in’ period, all survived chains are supposed to point to the
different local optima because the associated highest probability values are greater or around 0.9. By employing the kernel density
estimation, we can obtain the joint posterior PDFs of different Markov chains, upon which the MAP is applied to identify the best model
parameters. The result is tabulated in Table 3. The values in solution highlighted in bold font are very close to the actual values. Only
the identified model parameter 5 has certain deviation with respect to the actual value. Moreover, while Solution 1 outperforms
Solution 6 in terms of the highest objective value (i.e., probability) comparison, it appears to point to another local optimum where the
measurement noise may play a role. Overall, the result indicates the consistent good updating performance of this new method. Once
again, multiple solution options here allow us to carry out decision making possibly using additional information, e.g., non-destructive
evaluation (NDE) in structural fault identification, to pinpoint the root cause.

4. Conclusions

This paper presents a new finite element (FE) inverse analysis framework using incomplete modal information in the presence of
uncertainties. The framework is established upon the Bayesian inference through conducting parameter updating in terms of the
posterior PDF. With limited measurement/target information, multiple local optima likely exist in the parametric space. To tackle the
issue, we synthesize an enhanced Bayesian approach by incorporating multiple parallel, interactive and adaptive Markov chains. The

Table 3
Identified stiffness coefficients (MAP) from joint posterior PDFs using Gaussian kernel density estimation (Case 2).
Para. 1 Para. 2 Para. 3 Para. 4 Para. 5 Para. 6 Para. 7 Para. 8 Highest probability
Solu. 1 0.268 0.724 0.635 0.392 0.497 0.267 0.481 0.249 0.9809
Solu. 2 0.332 0.476 0.135 0.685 0.482 0.221 0.540 0.144 0.9111
Solu. 3 0.021 0.323 0.215 0.443 0.867 0.047 0.582 0.672 0.9554
Solu. 4 0.126 0.125 0.556 0.373 0.0118 0.561 0.149 0.638 0.8733
Solu. 5 0.397 0.147 0.439 0.077 0.201 0.139 0.464 0.085 0.9024
Solu. 6 0.156 0.510 0.623 0.135 0.321 0.326 0.106 0.731 0.9688
Actual 0.2 0.5 0.6 0.1 0.6 0.3 0.2 0.7
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joint posterior PDFs constructed by the final survived Markov chains can be used to interpret the probabilistic updating results. We
carry out the systematic case investigations through formulating different inverse analysis problems, i.e., boundary and material
property updating of a dome and a plate structures, respectively. The results indicate that multiple optima can indeed be identified in
terms of the joint posterior PDF computed via this numerical framework, and the ‘ground truth’ is included in the solution set with high
probability. The statistical features of posterior PDF also indicate the confidence level of parameter estimation in the presence of
uncertainties. This approach can be applied to a variety of inverse analysis problems such as fault identification, design optimization,
and model updating.
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Appendix. : pesudo code of ANSYS APDL

The APDL pseudo code for FE analysis under certain model parameter sample is given as follows.

Resume the baseline model (constructed beforehand)

RESUME,’dome_modal’,’db’,’D:\........... ’, 0,0

Read model parameter sample from intermediate file generated by external optimization code

*DIM,unSamp,1,n_inputs

*VREAD,UnSamp(1,1),input_data, txt,JIK,8,1

(8F8.4)

Modify model via changing stiffness values of springs at the boundaries in terms of new model parameter
sample

/PREP7

*DO0,JJ,1, n_inputs

R,JJ+1,(1-Unsamp(1,JJ))*10e24,0,0,0,

*ENDDO

Solve the analysis

NSEL, ALL

FINISH

/SOL

SOLVE

FINISH

Extract modal responses from defined measurement locations and write into intermediate file for optimization
code

*DIM,NODEIDT,ARRAY,1,n_locations

*DIM MODE,ARRAY,n_modes,n_locations

*DIM MO,ARRAY,n_modes,1

*DIM,FREQ,ARRAY,1, n_modes

/POST1

*DO,I1,1, n_modes
*GET,FREQ(1,I1),MODE,SELORD(I1),FREQ
*ENDDO
*MWRITE,FREQ,output_Freq,TXT,JIK,n_modes,1
(2F9.5)

*DO,1,1,n_modes

SET,MO(I)

*DO,I1,1,n_locations

*GET, MODE(LI1),NODE,NODEIDT(I1,1),U,Z
*ENDDO

*ENDDO

(continued on next page)
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(continued)

*MWRITE,MODE,output_Mode, TXT,JIK,n_locations,n_modes
(4F13.5)

Note: The geometry, mesh and fixed boundaries etc., have been set up in the baseline model. Therefore, in the model updating

APDL script, there is no need to re-define those properties/variables.
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