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Abstract—There is uncertainty around the effect of aging of
children on biometric characteristics impacting applications rely-
ing on biometric recognition, particularly as the time between
enrollment and query increases. Though there have been stud-
ies of such effects for iris recognition in adults, there have been
few studies evaluating impact in children. This article presents
longitudinal analysis from 209 subjects aged 4 to 11 years at
enrollment and six additional sessions over a period of 3 years.
The influence of time, dilation and enrollment age on iris recog-
nition have been analyzed and their statistical importance has
been evaluated. A minor aging effect is noted which is statisti-
cally significant, but practically insignificant and is comparatively
less important than other variability factors. Practical biometric
applications of iris recognition in children are feasible for a time
frame of at least 3 years between samples, for ages 4 to 11 years,
even in presence of aging, though we note practical difficulties
in enrolling young children with cameras not designed for the
purpose. To the best of our knowledge, the database used in
this study is the only dataset of longitudinal iris images from
children for this age group and time period that is available for
research.

Index Terms—Biometrics, iris, children, linear mixed effects
modelling, longitudinal, aging.

I. INTRODUCTION

IGITAL identity and the need for convenient secure
authentication have contributed to the proliferation of
automated biometric recognition in the government and con-
sumer space from the late 1990s until today. Applications
include government sector (border security, criminal inves-
tigation, national security, citizenship registration, benefit
distribution, human trafficking) and commercial sector (secu-
rity, banking, personal identification, healthcare). ‘Persistence’
(permanence) and ‘distinctiveness, (individuality) [1] inherent
to individuals are core characteristics of biometric recognition.
The possible individuality and permanence of the iris led
the ophthalmologist Adler in 1965 to consider it for biometric
recognition - “The markings on the iris are so distinctive that
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it has been proposed to use photographs of iris as a means
of identification instead of fingerprints” [2]. It is a general
assumption that the iris is ‘highly stable’ [3], [4], [5], [6], [7]
throughout a person’s lifetime. However, datasets supporting
this hypothesis are limited, challenging to obtain and largely
limited to adults. As children grow and mature, one might con-
jecture that biometric traits, including the iris, might change.
Hence, results for adults may not apply to children. If we
wish to use iris biometric recognition in applications involv-
ing children (e.g., keeping vaccination records in developing
countries, investigation of human trafficking), it is important
to determine how well iris recognition works for children.

The present pressing questions from a technical and practi-

cal viewpoint are-

o Does aging change the iris structure to a point that
it impacts the use of iris for biometric recognition in
children?

o If growth in children impacts iris recognition
performance, is there an age at which these impacts are
no longer seen?

This article works towards answering issues related to iris
aging in children through analyzing the iris of the same chil-
dren collected every 6 months, for over 3 years from 209
children in the age group of 4 to 11 years at enrollment.

International Organization for Standardization (ISO) defines

biometric ‘reference aging’ as “change in error rates with
respect to fixed reference caused by time-related changes in
the biometric characteristics” [8]. The National Institute of
Standard and Technology (NIST) defines iris aging as “irre-
versible changes to the anatomy, primarily the iris texture” [9].
In this work we investigate whether iris recognition accuracy
decreases with the time lapsed between collection of initial
enrollment and subsequent recognition images in children.
Our analysis includes investigating the match scores for false
match and false non-match errors, identifying the causes of
the errors, and investigating the factors contributing to match
score variation like enrollment age, dilation, and dilation con-
stancy in addition to aging. A linear mixed effects model has
been designed and used to understand the effect of different
factors on match score variability.

A. State of Art

Though the idea that the iris could be used to recognize
people goes back to at least Bertillon and McClaughry [10],
modern automated, iris recognition began in 1987 with a patent
by Flom and Safir [11], followed by Daugman’s development
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of the algorithm of iris pattern coding for automated visual
recognition [4], [5]. Most research has concentrated on the
technical development and improvement of iris recognition
systems. The effect of aging on iris for biometric recogni-
tion has been a minimally studied area with most researchers
initially echoing the assumption of high temporal stability of
iris with little evidence to support this claim. Studies began
emerging from 2008.

Between 2008 and 2014 multiple research groups inves-
tigated the temporal stability of iris as a factor of
aging [12], [13], [14], [15], [16], [17], [18] and noted increased
False Non-Match Rates (FNMR), increased Hamming distance
between images or decay in genuine match scores (MS) in lon-
gitudinal scenario. Researches in [17] and [18] drew notice
to the importance of quality factors in iris recognition and
found a lack of evidence to conclude aging of iris texture as
pupil dilation, iris diameter and occlusion of iris can impact
performance.

In the wake of these studies, in 2013 NIST re-evaluated the
stdies by Baker et al. [13] and [14] and published their report
- IREX VI, [9] which concluded that the increased FNMR
in [13], [14] was the result of variation in dilation over the col-
lection period. The report also analyzed and modelled a large
match score log from a border crossing application (NEXUS)
and concluded minimal ageing over a 10 year time-span, much
smaller than typical day to day variations. These results were
primarily from adults. NIST was unaware of a small portion
of the children population enrolled in NEXUS [19] and did
not take into account in their analysis [20]. Change in dila-
tion is excluded from consideration by their definition of aging
as dilation varies stochastically on a “timescale ranging from
below one second up to several decades”, impacted by factors
including environmental factors or disease and it can be miti-
gated by external illumination and other hardware or software
solutions. This motivated discussion about the very definition
of ‘iris aging’, approaches for statistical regression modelling
characterizing relationship between variables [21], [22] and
impact of retrospective dataset structure on modelling.
The NEXUS dataset was influenced by ‘truncation’ and
‘censoring’ [23] which might impact the modelled estimate
of aging. The difficulties around usage of retrospective large
operational datasets for studying age related impacts on bio-
metric recognition, specifically iris, was explored and analyzed
in [24]. Research results may be impacted due to heterogeneity
in the datasets because of data collected in multiple locations,
different times, uncontrolled environment, seasonal impact and
impacted by variability in lighting. With the exception noted,
the prior works described above were specific to adults. Our
own research attempts to perform similar analyses on children.
Prior work related to children is described later in this section.

Various research has found that pupil size/dilation varies as
a function of age [2], [25], [26], [27], [28] where pupil size
is small for newborns until the first year of life, reaching its
maximum size in childhood and adolescence and then gradu-
ally becoming smaller with advancing age [2] and the decay
is linear (age: 17 and above) with increasing age at different
luminance levels [26]. A measurable degradation in MS due to
dilation differences at different ages has been noted in adults

with a corresponding increased FNMR [27] by applying a lin-
ear regression model. In the statistical analysis for our paper,
we consider the effect of dilation on performance and factors
including age and environment.

Research on aging effects on biometric iris recognition
performance in children has been limited primarily due to the
scarcity of longitudinal iris data on children. Three factors
that contribute to this scarcity are - (1) the recent introduc-
tion of iris recognition for scenarios including children; (2) the
Institutional Review Board (IRB) regulations for children [29];
and (3) the lack of iris capture systems specifically designed
for children. In 2017 Basak et al. [30] created the first public
multimodal dataset [31], including iris modality, from approx-
imately 100 children aged between 18 months and four years,
and evaluated the feasibility of data collection from toddlers
and pre-school children with the equipment available in the
market. The study concluded (i) though iris data capture is
challenging in younger children, it yields best performance
—99.82% single iris accuracy (98.95 left) for iris verification
and (ii) 100% recognition accuracy with multiple iris images.
In 2019 Nelufule et al. worked on iris quality assessment algo-
rithm, using a proprietary dataset of 103 subjects in the age
group of six weeks to five years [32], to identify and eliminate
noise data like occluded iris, light variation, off angle, pupil
dilation. No information is provided on the availability of the
database. The assessment concluded that child data produces
similar quality distribution as that of an adult if the unusable
images are removed from the child dataset.

In real-world applications, the Aadhaar program in India,
which creates a unique ID using fingerprint and iris for its
population, limited enrollment age at Syrs with re-enrollment
at the age of 15yrs, and updating the biometric data every
10yrs [33]. No supporting reason has been offered by UIDAI
for the age limits. Report on the Nexus program by the
Canadian Defence Research Organization [34], which uses iris
biometric recognition with no age limit, mentions a child was
enrolled at an age of 8 months and verified successfully at
the age of 9 months, 12 months and 14 months. Based on
a study of the transaction logs, the report pronounced - (1)
the size of the iris changes for children is not stable until 6
yrs to 8yrs of age; (2) enrollment of both eyes is much more
difficult for children under 14. The subjects below 14 had a
higher percentage of enrollment with only one eye’; (3) suc-
cessful enrollment in the younger age group (under 14 years)
are substantially low compared to the middle age group, which
can be attributed to less frequent younger age travellers using
the system. However, no information is provided for unsuc-
cessful enrollments in any age group. The report concludes
that iris recognition is less reliable but still useful for younger
age groups.

In 2018, our group issued a preliminary report focused on
iris recognition in children [35] with three collections spaced
by 6 months over one year - a subset of the dataset that we use
in this article. The article reported on inter-session match score
variation and age group analysis and concluded biometric char-
acteristic stability over a period of one year from 123 children
aged four and above. As a continuation of this work [35], we
extended the analysis of the same data, now seven collections

Authorized licensed use limited to: CLARKSON UNIVERSITY LIBRARY. Downloaded on March 16,2022 at 19:02:48 UTC from IEEE Xplore. Restrictions apply.



140 IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE, VOL. 3, NO. 1, JANUARY 2021

over three years, to study the longitudinal effect of aging in
iris recognition of children. Studies before Johnson et al. [35]
in 2018 were not longitudinal, i.e., the same subjects were not
followed up for more than six months, or the subjects that were
followed were adults. The focus age group of our research is 4
to 14 years. In addition, many of the prior studies concentrated
on FNMR performance and did not explore the root causes for
the match score effects that drive the FNMR. We believe that
understanding root causes is essential in making reliable deci-
sions on temporal stability of biometric recognition systems.
To the best of our knowledge this is one of the first longitu-
dinal studies exploring the aging effect on iris as a biometric
in children. The rest of this article is organized in the follow-
ing order: Section II details the dataset, collection protocol,
data statistics and provides an outline of the data processing.
Section III details the Linear Mixed Effects (LME) model that
we use in our analysis. Section IV provides a discussion on
overall image quality and dilation constancy. Section V reports
our results. Section VI discusses the limitations of our analy-
sis and suggests possible future work. Section VII summarizes
answers to the questions posted in Section I.

II. METHODOLOGY

The research in this article is part of a larger longitudinal
study of biometric characteristics in children. The age of par-
ticipants in the study spans 4yrs to 14yrs. The dataset consists
of six modalities including iris. The research team collaborates
with the local elementary and middle school to identify and
enroll subjects for voluntary participation, in accordance with
an approved IRB protocol.

The collection equipment is set up in an isolated room pro-
vided by the school for the entire duration of the collection
week. However, the rooms may vary with availability at each
session. Thus it is expected that there may be changes in the
collection environment due to factors such as lighting and
noise which may impact biometric measurements. Measures to
mitigate the impact of environmental factors are taken, includ-
ing drawing the blinds in the room to prevent exposure from
external daylight and providing participants some leisure time
to get accommodated to the room environment like lighting,
body temperature, and humidity. The protocol allows partici-
pants voluntary participation on a given day of collection with
the option to abstain from participating; however, any personal
emotional state remains unaccounted. The same equipment,
Iris Guard IG-AD100 Dual Iris Camera, has been used for all
collections.

Starting in January 2016, the study covers three years, with
an approximate time interval of 6 months, with seven sessions
included as of November 2019. 239 subjects were enrolled;
however, not all subjects participated in all sessions. The vari-
ation in the number of participants for each session is impacted
by newly enrolled participants each school year, absentees,
those unwilling to participate on a given day, and participants
whose families have moved out of the school district. 209 sub-
jects have participated in more than one session. Enrollment
age varies from 4yrs to 11 yrs, with one subject with an enroll-
ment age of 3yrs. After the first year, enrollment was offered
to only pre-kindergarten class, which are primarily 4 years
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Fig. 1. (a) Summary of subject count (top and comparison count (bottom)
for right and left iris by time between sessions(6,12,18,24,30 and 36 months)
in this study; (b) An articulating arm mount for the Iris ID camera.

old. To maintain privacy, we use only the birth-year of the
participants. Thus, the ages are approximate. The age of three
subjects were approximated based on their grade at enroll-
ment as their birth-year was unavailable. The enrollment age
breakdown is shown in Table 1.

A. Iris Data Collection

The Iris Guard IG-AD100 Dual Iris Camera [36] provides
ISO/IEC 29794-6 [8] compliant iris images in the NIR wave-
length. The sensor has auto-focus and a mirror which assists
participants to self-adjust their position relative to the sen-
sor. Once the subjects are correctly positioned, both the eyes
are captured, with a delay of a few seconds between the left
and right iris capture. In addition to the NIR illuminators, the
sensor also uses a flashing white light intended to stabilize
the subject’s pupil dilation. Capturing the iris was more dif-
ficult in younger subjects (4 - 5 yrs), as they have difficulty
holding their eyes still, opening their eyes wide enough for
the sensor to sense and capture the data, and not tilting their
head relative to the camera. Participants were asked to place
their chin on an eye-examination grade chin rest for stability,
and collectors adjusted the height, distance and positioning of
the camera. Some subjects still had difficulty with iris capture
resulting in poor quality images as well as failure to capture.
We included an articulating mount for the camera, shown in
Figure 1(b), from the 6th session to provide more flexible con-
trol on part of the collector. With this, the collector had control
of the position of the camera instead of asking the subjects to
adjust their position with respect to the camera. This reduced
the issue of failure to capture by a large degree. A second
commercially available iris sensor, iCAM T10 by Iris ID, was
introduced from the 4th Collection due to its binocular form
factor. However, this article analyzes the data collected only
from IG-AD100.

B. Failure to Acquire (FTA)

Data from approximately 25 subjects were not acquired
at one or more sessions, even though they participated for
other modalities. This includes failure to acquire (FTA), refusal
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to participate, health issues or time-constraint for collection.
More details are provided in the Discussion section and this
is the focus of future work.

C. Iris Matcher

A commercially available SDK, VeriEye [37], by
Neurotechnology, was used for image comparison and
deriving all attributes used in this study. The iris recognition
software and all metrics considered for analyses follows
ISO/IEC 29794-6 [8]. Based on the IREX X [38] report,
Neurotechnology is one of the top two contenders in every
field of analysis. Matching was done on VeriEye version
10.0 and all other attributes were obtained from VeriEye
version 11.1. VeriEye computes a similarity score or match
score (MS) in the range of 0 and 1556 where a higher score
indicates greater similarity; it also computes the pupil and iris
radii, expressed in pixel units. VeriEye provides a threshold
calibration of match score vs. FAR; for an FAR of 0.1% the
corresponding match score threshold is 36 [37]. All analysis
has been done at 0.1% False Match Rate (FMR) as suggested
in IREX VI [8]. Additional analyses were performed in
MATLAB R2018b and RStudio.

D. Statistics of the Data

418 irides from 209 subjects were processed. There is a
variation in the capture between right iris (RI) and left iris
(LI), due to enrollment failure.

Two images were captured for each eye at the first and
sixth session; for all other sessions, four images were cap-
tured per eye. Images collected before the seventh session had
high intra-session correlation due to the internal setup of the
camera which captures multiple images within seconds. The
collection protocol was modified in the seventh session. Four
images were captured per eye in two different sets spaced by
a time gap of approximately two minutes. Participation count
of number of subjects and the number of comparisons for
different time-frames are summarized in Figure 1(a).

Six images from two different subjects with clearly observ-
able artifacts were discarded from the database based on a
manual cleaning. Two different errors were identified in those
images - four images were blurred with iris obstructed by hair
and two images had an obscured iris with reflecting light from
eye glasses. Examples are shown in Figure 2.

The first session that a subject participated is considered
as the enrollment session. Images collected at the enrollment
session are mated with all images from subsequent sessions.
Intra-session image comparison is not considered in this study
due to:

« intra-session image comparison does not contribute to a

real world application scenario

« the measures have no contribution towards how increased

time between enrollment and probe impact performance.
The data has been sectioned and analyzed in three ways: G1:
analysis of all 209 subjects who participated in more than one
session; G2: analysis of a subgroup of 105 (RI:101) subjects
who participated in at least Ist and 7th session with intermit-
tent absentees; and G3: analysis of a subgroup of 63 (RI:62)
subjects who participated in all seven sessions. LI and Rl irides

Error 1: Error 2:
Obscured iris reflecting Blurred image with iris
light from eye glass obstructed by hair

Fig. 2. Examples of images of two subjects removed from the dataset on
manual cleaning. Obvious errors were identified (obscured iris and blurred
iris). A total of six images were removed. Two images had Error 1 and four
images had Error 2.

were processed separately. The total number of comparisons
per subject are non-uniform. A total of 20428 (right: 10096,
left: 10332) comparisons were performed; 6421 (LI: 3216; RI:
3205) probe images were compared against 1301 (LI: 658; RI:
643) enrollment images from 209 subjects.

III. LINEAR MIXED EFFECTS MODEL

Ordinary Least Square (OLS) regression modelling gives
exploratory insight into the match score (MS) as time increases
between enrollment and query. A linear functional form is
often used for individual growth modelling based on visual
inspection of the individual patterns, constricted time-duration
of the data (3 years) and referencing the literature [9], [39].
However, modelling longitudinal data of sampled data sets for
constricted time duration to explore changes in a population
is a challenge due to the following reasons:

« Different subjects will have a different trajectory of the

empirical growth;

« A simple linear model might not be a proper representa-
tion of accumulative intra-individual and inter-individual
variation for longitudinal data; and

e Variation in MS may reflect other factors in addition to
ageing like random fluctuations of different factors (error
or quantitatively unaccountable factors like environment,
medication, illumination, emotion etc).

Linear Mixed Effects Models address the disparity between
within-individual variation, and inter-individual differences.
“Mixed Effects” refers to a combination of fixed effects and
random effects on the response variable. Fixed effects quantify
the response variable with respect to the effects of predictors
on the inter-subject variation and random effects quantify any
possible variation in the response that could be accounted for
by predictors on the intra-subject variation. The basic model
structure is defined as:

Response ~ F_expression + (R_expression|Factor) (1)

Here, F_expression represents the fixed effects model matrix.
Each random effect is represented by: (R_expression|Factor)
where, R_expression is the random effect predictor having
different effects on the Response variable for each level of
grouping factor, i.e., Factor.

All modelling and analysis has been computed on the R
platform using the package ‘lme4’ [40]. When a restricted
portion of lifespan is being analyzed, as in our case, the model
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does not predict or conclude anything beyond the time-frame
of research.

A. LMER Model and Predictors

The variation in MS is modelled using the predictors -
time difference between collection of enrollment and probe
image (TD), enrollment age (EA), probe dilation (PD) and
dilation difference between probe and enrollment image (AD)
as described below.

1) Time Difference (TD): The difference in time between

the enrollment and probe image measured in “months”.

2) Enrollment Age (EA): Age when the subject is enrolled
in the study, i.e., the age of their first collection in
“yvears”.

3) Dilation (D): Dilation or pupil dilation is a dimension-
less quantity measuring the degree to which the pupil
is dilated or constricted, measured as a ratio of pupil
radius and iris radius. The measure follows ISO/IEC
29794-6 [8] as defined below.

Pupil radius

Dilation(D) = x 100 2)

Iris radius

The dilation of the probe image is considered for the
model denoted by PD.

4) Delta Dilation (AD): Difference in the pupil dilation
between a mated pair of iris images. The measure
follows NIST work in [9] as below.

L= 1 3)

_ Dbz
100

considering, D1 > D2, where, D1 and D2 are the
pupil dilation of the first and the second iris images as
estimated by equation (2).

The designed model to predict the match score is repre-
sented in equation (4). The model considers linear change in
the match score for up to 36 months between enrollment and
query. Though the modelling of the MS is considered lin-
ear statistically, non-linear changes in the predictors are taken
into account by including second order terms. To the best of
our knowledge, there is no prior indication or evidence of
non-linear change in the iris. We have tested different configu-
rations of the model. The model in Equation (4) was concluded
to be the best fit. This model has been used to interpret results
and is extensively discussed in Section V-Al.

MS ~ By + B,TD + B,EA + B;PD + B,AD
+ BSEA” + Bs APD? + B;AD? + by
+ by TD + b3;PD + by; AD + bg;PD? 4)

Delta Dilation(AD) =1 —

where,

o Br is the fixed regression coefficient for corresponding
parameter, k.

o by is the random regression coefficient for corresponding
parameter, k, for subject, i.

e Bo + bo; is the sum of fixed and subject specific random
intercept corresponding to the initial state.

o Br + by is the subject specifi (i) gradient for the corre-
sponding parameter k.

RI: Histogram of Overall Quality Scores at different Collecitons

THES SAITES TEISAS

Fig. 3. Distribution of overall quality score of all images from Collection 1
through Collection 7 (left to right).

o Time Difference (TD) between enrollment and subse-
quent verification has been considered for both fixed and
random effects to account for possible variability in MS
due to both intra-subjects and inter-subject effects of TD.

o Enrollment Age (EA) has been considered only for fixed
effect. All other predictors are considered for both fixed
and random effect.

« Both linear and quadratic factors are introduced for vari-
ables: dilation difference (AD) , probe dilation (PD) and
enrollment age (EA) for fixed effects. We assume the non-
linearity in modelling with respect to match score (MS)
for inter-subject data.

o Both linear and quadratic factors are considered for
probe dilation in random effects for intra-subject data, to
account for any non-linearity in dilation for each subject
over time.

« We consider correlation between all coefficients associ-
ated with the same random effect term, i.e., for each
subject we consider correlation between coefficients of
TD, PD, AD and PD?.

IV. OVERALL IMAGE QUALITY AND DILATION
CONSTANCY (DC)

ISO/IEC 29794-2 [8] defines quality measures for a single
image, which can be combined to a single scalar overall iris
quality score ranging from 0 to 100; higher value is better
quality. The score reflects the expected performance of the
iris image. The overall image quality scores of all images col-
lected in the seven sessions are derived from VeriEye [37]
and the distribution is shown in Figure 3. The t-test statistics
show there is a statistically significant (p < 0.001) difference
in the mean of the overall quality scores between collection
sessions when compared to Collection 1 except for Collection
6 (p>0.5). However, as the mean values are —57.79, 51.72,
54.53, 55.97, 54.95, 55.97, 54.95 for Collection 1 through
Collection 7, the difference in the mean quality scores are prac-
tically not significant. Pearson’s correlation between image
quality score and age at collection of the image spanning 4 to
14 years is weak with correlation coefficient of 0.14.

Dilation Constancy (DC) evaluates the similarity in pupil
dilation in a mated pair of iris images. It is a dimensionless
quantity measured as below.

Dilation Const (DC) 100 — max(D1, D2) 5)
11ation Constanc =
y 100 — min(D1, D2)
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RIGHT: 209 SUBJECTS WITH
ATLEAST 2 COLLECTIONS

RIGHT: COMPLETE 2 YEARS
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Fig. 4. Box-plots of all scores from individual subjects for right iris grouped
based on participation: G1 (left) : all subjects have at least one mated pair
data; G2 (middle): all subjects have mated pairs from at least at 6 and 36
month TF; G3 (right): all subjects have mated pairs from all TFs (6, 12, 18,
24, 30, 36 months). Relative False Accept Rate (FAR) w.r.t the MS is shown
in the right y-axis.
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where D1 and D2 are the pupil dilation of the first and the
second iris images as estimated in equation (2) as detailed
in Section III. Delta Dilation depends on the variability of
both D1 and D2. If either of D1 or D2 changes, delta dilation
changes. If the delta dilation increases, the dilation constancy
decreases and vice-versa. DC has been used to understand
the match score variability with DC and any relation between
false non-match and DC. DC and Delta Dilation are related:
AD =1-DC.

V. RESULTS & DISCUSSION

This section reports the analysis of the performance of bio-
metric recognition of iris in children with increasing time
difference between enrollment and probe in presence of
variable factors - enrollment age, dilation, and dilation differ-
ence between enrollment and probe. The next sections cover
modelling of the match scores using linear mixed effect model
for groups based on participation and age, dilation and dila-
tion constancy, false non-match rate, detailed examination of
the false non-match cases and ROC of the dataset. The overall
goal is to assess the viability of biometric applications of iris
recognition in children as they age.

A. Iris Match Score Analysis: Participation Based Groups

Based on participation we have three groups: G1, G2 and
G3 (refer Section II-D). We have analyzed MS following the
model described in Section III-A. A visual summary of the
data is shown in Figure 4. Extensive analysis of the results
from the model for G1-LI addressing the impact of aging on
iris recognition performance in children are detailed in the
following section. The same conclusions are true for all three
groups with only a small variation in coefficients.

1) Iris Match Score Modelling: The Linear Mixed Effects
Regression Model (LMER) addresses the questions - Are the
explanatory/predictor variables - time difference (TD), enroll-
ment age (EA), pupil dilation (PD), change in dilation between
mating pair of images (AD) a significant predictor of the
response variable (match score)? Is there a significant decrease
in the iris match scores in children as time between enrollment
and query increases? The LMER model with random slope
for each subject is designed as shown in Equation (4) and

TABLE II
FIXED EFFECTS FOR LEFT AND RIGHT IRIS

Variable | Parameter Left Iris Right Iris
(Est + SE) (Est + SE)
Intercept Bo 387.0+ 12.7 *** 401.5 £ 11.6 ***
TD B1 -1.09 4+ 0.33 ** -1.39 4+ 0.31%*
EA B2 10.88 £+ 3.4 ** 13.3 £ 3.1**
PD B3 -0.74 £ 1.3 NS -14+13NS
AD B4 -394.9 £ 78.9%** -269.5 £+ 61.86***
EA? Bs 14+ 1.7 NS -1.9 £ 1.5 NS
PD? Be -0.22 £ 0.20 NS -168.2 £ 0.16 NS
AD? -1540 + 334.9 *** -1360.2 £ 355.7***

Br
Significance Code: 0 “*** 0.001 **” 0.01 *” 0.05°. 0.1 * " 1 ; *** indicates
p-value between 0 and 0.001 with significance level 0.001 and so on.
Est.: Estimate, SE: Standard Error, NS: Not significant

TABLE III
RANDOM EFFECTS LEFT AND RIGHT IRIS

’ Groups | Parameter [ Standard Deviation |
| LeftIris | RightIris |
Intercept boi 129.7 118.9
TD b1s 42 39
PD b3 15.7 15.3
AD ba; 886.38 636.08
PD? bei 2.4 1.8
Residual 40.7 40.6

detailed in Section III. We have referenced the model used
by NIST in IREX VI [9] as a base model and augmented
it with additional terms like enrollment age as a quadratic
factor. Enrollment age is added to account for the variable
age of the subjects in our dataset. The right and left iris are
modelled separately. The multi-collinearity between indepen-
dent variables are eliminated by re-centering the following
variables - PD, EA and AD, following discussion in [21].
The fixed effect of the designed model considers the over-
all inter-subject variability of TD, EA, PD, AD and impact
of these variabilities on the MS of the entire dataset repre-
senting the population. Approximately 5.54% (4.03% for RI)
variation in the MS is explained by the fixed effects. The intra-
subject variability in the intercept and the gradient is induced
in the model by the random effects of TD, PD, AD factored
by individual subjects. The marginal and combined r-squared
values are obtained using the ‘r2glmm’ package. Both fixed
and random effects combined accounted for approximately
96.34% (95.91% for RI) of variability in the match score.
The 3.6 - 4.1% (approx.) variability which is not explained
by any covariates in the model can be directed to the miscel-
laneous factors like illumination and physiological condition
which is beyond the scope of this study. Restricted or Residual
Maximum Likelihood (REML) method is applied for model
fitting. The model is created based on 10096 observations from
RI and 10332 observations from LI grouped into 209 distinct
individuals. The fixed and random effects are summarized in
Table II and Table III respectively.

The analytic interpretation of the output of the model from
G1-LI is noted below. G1-RI has the same interpretation, but
is not included due to space limitations.

o Null Hypothesis (Hp): There is no correlation between

the individual predictors and the response variable (MS).

o Alternative Hypothesis (Ha): There is correlation between

the individual predictors and the response variable.
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TABLE IV
NUMBER OF SUBJECTS FOR EACH AGE GROUP

4to6years | 7to8years | 9to 1l years
’ Groups |~ wyRrp (LI/RD) (LVRD Total
G1 90/90 54/54 63/63 207/207
G2 25/25 37/34 43/42 105/101
G3 13/15 22/21 28/26 63/62

« Estimate (Est.) provides a measure of change in MS from

the intercept for each unit change in each variable.

o Very high similarity is observed in both estimate and vari-

ability of TD coefficient (81) between both RI and LI. The
estimated decrease in MS, By, due to TD estimate, S, is
1.09 £ 0.33 (approx) with each month increase in the
time gap between mated pair of images, given that the
null hypothesis is true. With p<0.01, the null hypothesis
is rejected. This signifies there is a statistically signifi-
cant decaying relationship between time gap and match
score. However, the practical significance of the estimate
is trivial considering the range of the scores (0 to 1557),
the fixed effect intercept being 387.0 (401.5 for RI), and
the threshold score being 36 at FAR 0.1%. For example,
a MS estimate of 387.0 would reduce to 347.76 in three
years considering the effects predicted by the model. This
score would still result in a match and does not impact
biometric recognition over three years.

« A positive baseline shift is noted for MS estimate, By, due

to EA estimate, ;. With an increase of EA by 1 year,
the MS increases by 10.8 (13.3 in RI) & 3 (approx) with
p < 0.01. This implies that EA has a significant effect on
MS. So, with higher EA, a higher MS can be noted. It
is expected that with increased age the interaction of the
children with the data acquisition system improves. Older
kids are able to hold still and have higher stability by
keeping their eyes open and directed towards the sensor
until the sensor auto-captures. The effect of EA on MS is
linear as the quadratic factor is statistically insignificant.

« Pupil dilation of the probe image (PD), 83 affects the MS

negatively; however the impact is statistically insignifi-
cant.

« Difference in pupil dilation (AD) between two mated pair

of images, B4, has negative correlation with MS. AD in
our dataset varies in the range of 0.1 to 0.4. Thus the MS
may decrease in the range 39.4 to 157.6 due to AD. It
is important to note that the effect on MS due to AD is
higher by approximately 29 to 45 times than that of TD
(LI). The effect of AD is non-linear.

o Ordering covariates based on adding random variability

to the response in the model while considering intercept
for each individual subject (random effect) as seen in
Table III:

AD > Subject > Dilation of the probe image > Time
Difference

Interestingly, we can infer from the model that dilation
difference between two comparing images (in our case
from 2 different TFs) adds in the most variability to the
match score than any other significant factor. Aging effect
contributes to the least variability in MS.

RIGHT IRIS : EA 4 TO 6 YEARS RIGHT IRIS : EA 7 TO 8 YEARS RIGHT IRIS : EA 9 TO 11 YEARS
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Fig. 5. Box-plots of all scores from subjects grouped based on age for G2 (all
subjects have mated pairs from at least at 6 and 36 month TF) for different
TFs for RI. G1 and G3 plots are similar to this and thus are not included
to accommodate space and reduce redundancy. Relative False Accept Rate
(FAR) w.r.t the MS is shown in the right y-axis.

B. Iris Match Score Analysis: Age Based Groups

The dataset has subjects aged between four to 11 years at
enrollment. For this analysis, the entire dataset is grouped into
three sections based on enrollment age - 4 to 6 years, 7 to 8
years and 9 to 11 years for analysis. The count of subjects for
each age group are non-uniform; bin sizes are summarized in
Table IV. Each age group has been analyzed for each participa-
tion based group - G1, G2 and G3 following the LMER model
represented in equation (4). We do not have age information
from 2 subjects in G1 and thus were removed. Thus, instead
of 209, 207 subjects were analyzed in this section for GI.
Boxplots of MS as a factor of TF for different age groups are
shown in Figure 5. The attributes of the boxplots for G1, G2
and G3 are similar; thus only plots from G2 are presented to
accommodate space. Conclusion from the LMER model for
each age group are noted below:

o Estimated TD has a similar impact on MS on different age
groups as our previous model. With the estimated decay
of MS g1 by < 1.02 (p< 0.01) for each month differ-
ence between the capture of the mated pair of images, the
impact is practically insignificant. For the age group of 4
to 6 years, TD is not a statistically significant predictor
of MS.

o AD has similar correlation with MS as we noted in the
previous model analysis. The impact is linear for the 4
to 6 years age group and is non-linear for the other age
groups.

« In contrast to our observation from group-based analysis,
where all age groups were modeled as a whole, EA is
not statistically significant when considering shorter age
ranges compared to a larger age range of the full analysis.

We also did t-test analysis to test the difference in mean
MS between different age groups, if any. The test concluded
that the mean MS of the age group 9 to 11 is higher than
4 to 6 years (p < 0.001) and 7 to 8 years (p < 0.01). The
difference in mean MS between age groups 4 to 6 years and 7
to 8 years is not statistically significant (p > 0.05). However,
we do not notice any impact on the tails of the distribution,
i.e., the iris performance is not impacted as a result of age
or aging as will be discussed in future sections. However to
make a substantial conclusion on this, a more intensive study
for each age is needed.
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Fig. 6. (a) Boxplot of pupil dilation from all images captured in each session
for RI ; (b) Summarized iris dilation constancy compared to the enrollment
image at different TFs (6, 12, 18, 24, 30, 36 months from enrollment) for
right iris.

C. Dilation and Its Relationship With Match Score

Dilation is an important factor to be considered in iris recog-
nition. Studies have confirmed change in ocular biometric
parameters with change in dilation [41]. These changes might
affect the performance of algorithms used to generate a match
score. Variable dilation is considered as an explanatory vari-
able in the match score variability with time in recent research
concerning evaluation of aging effect [9]. Physiologically,
studies have indicated that pupil size varies with age [2]. Pupil
size is small for the first year after birth and gradually attains
its maximum size in childhood and adolescence and again
gradually becomes smaller with time. However, the pattern
may not be reflected in this study due to the limited TF of
3 yrs and having no infants in the dataset. Dilation is also
a response variable to environmental factors like illumination,
weather, subject’s medical history and fight and flight response
of the Central Nervous System in response to a stressful envi-
ronment. In this section, we study dilation as an independent
factor impacting performance of iris recognition. Dilation is
derived as defined in Equation (2).

Figure 6 shows dilation for each collection which includes
all participating children at a fixed time point (e.g., Collection
2 in November 2017). All statistical tests were compared
to Collection 1. The t-test of the mean dilation for the six
collections compared to Collection 1 shows that the mean dila-
tion is relatively constant (p > 0.05) except for Collection 3
(p < 0.01). Chi-square analysis of dilation concludes that there
is statistically significant (p < 0.05) difference in the dila-
tion variance of Collection 3, 5, 6 and 7 when compared to
Collection 1. Measures are taken during collection to minimize
impact of illumination and weather as detailed in Section II
and II-A. Although measures are taken to control data collec-
tion environment, the dataset is not immune to impact from
miscellaneous variability factors.

Dilation constancy (DC) is the measure of similarity in pupil
dilation between enrollment and probe image as detailed in
Section IV. Figure 6(b) summarizes the DC between enroll-
ment image and respective probe images collected at different
TFs. Only the graph from G2-RI is included in the paper to
accommodate space. All three groups based on participation
for both LI and RI show similar attributes. In the majority of
the TFs across different groups, the upper 75% of the mated
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Fig. 7. Graphical presentation of match scores (y-axis) and dilation constancy
(x-axis) for different time-periods (top to bottom: 6, 12, 18, 24, 30, 36) for
left and right iris (left and right).

pairs have DC above 0.9. The median DC is greater than 0.9
across all sessions and all TFs. In our dataset, the DC ranges
from 0.55 to 1 and we observe more outliers in the lower quar-
tile of the plots. We implemented a LMER model as described
in Equation (6) to predict DC employing TF and EA as predic-
tors. From the model we conclude that the impact of TF and
EA on DC is statistically insignificant (p > 0.05). Increased
time difference between probe and gallery does not influence
the DC.

DC ~ By + B, TD + B,EA + sEA” + by; + byiTD  (6)

where,

e Br and by; are the fixed regression coefficient for cor-
responding parameter, k and the random regression
coefficient for corresponding parameter, k, for subject,i,
respectively.

o Bo + bo; is the sum of fixed and subject specific random
intercept corresponding to the initial state.

Figure 7 illustrates the relationship between MS and DC. A
triangular pattern is noted. Lower dilation constancy translates
to lower match scores; however, low MS can be seen even
with high dilation constancy likely due to other factors such
as usable iris area, noise, or other quality factors. DC, as has
been previously reported, impacts the MS. However, in this
study, the Pearson’s correlation between DC and MS of all
matches performed is weak with correlation coefficient of 0.28.
DC in this dataset, with substantial outlier variability has not
impacted the tails of the distribution, i.e., DC did not impact
practical application of iris recognition in children to a point
of false non-match. Saying that, iris recognition performance
is sensitive to dilation and thus the data has been collected in
a semi-controlled environment to minimize impact on dilation.

D. Iris Recognition Performance: False Non-Match Rate

False Non-Match Rate (FNMR) is an evaluation metric used
in prior aging studies as discussed in Section I-A and defined
in ISO/IEC standard 2382-37 [42]; it is the fraction of mated
(from the same individual) images that fail to match; it has
operational impact. We calculated FNMR with a MS thresh-
old value of 36, equivalent to False Match Rate (FMR) of
0.1% using the VeriEye FMR calibration [37]. Images were
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TABLE V
SUMMARIZING THE FALSE NON-MATCHES IN THE STUDY
[ Coded ID [ Collection Number for Rejection [ Time-frame of Rejection | Number of Rejections [ Nature of Failure | LI/RI/Both |
20181012017 Collection 7 6 month 4 of 8 mated pairs Angle of Presentation LI
w.r.t. camera
20160104994 Collection 5 and 7 18 months; 30 months | Lo months: 14 of 16 mated pairs | g lment RI
30 month: 2 of 16 mated pairs
LEFT IRIS : FALSE REJECT RATE RIGHT IRIS: MATCH SCORES OF SUBJECTS FALSELY REJECTED
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Fig. 8. FNMR at different TFs (6, 12, 18, 24, 30 and 36 months from
enrollment) for left and right iris. Values marked in blue indicate FNMR
based on our observation at 0.1% FMR. The black lines show the error-bars
calculated based on ‘Rule of 3’. X/Y above each bar indicates the number of
subjects rejected/total number of subjects for this TF.

rejected when the MS were below the set threshold. A chronic
increase in FNMR with time may be correlated with degrading
biometric performance with increased time duration between
enrollment and probe.

Variation in FNMR is shown in Figure 8. Rejection is
observed only in G1. No rejections were seen from G2 and G3.
Single cases of rejections are observed at 6, 18 and 30 month
TF. The three occurrences of FNM cases are summarized in
Table V. At 6 month TF, RI of one of the 186 participating
subjects is rejected; thus, the FNMR at 6 months is 0.54%.
At each of 18 and 30 month TFs, the LI of one of the 137
participating subjects were rejected; The FNMR at both TF
is 0.73%. The slight increase in the FNMR from 0.54% to
0.76% is not an increasing trend in the FNMR but a reflection
of decreased number of subjects.

Out of 20428 mated pairs of images from 418 different iri-
des in the study 20408 mated pairs were above the threshold
and results in a match. 20 mated pairs from two different iri-
des from two subjects failed the set criteria and were falsely
rejected. The failures are summarized in Table V and detailed
analysis and understanding of the root causes are elaborated in
Section V-E. Subject 20181012017 had rejection in the LI in
one session and subject 20160104994 in the RI in two differ-
ent sessions. No subjects were rejected in both irides. When a
subject is rejected, not all images from that session are rejected
(refer to Table V - Number of Rejections). The average DC of
the rejected images is substantially high (0.8 to 0.9). Thus the
FNM are not a result of a large dilation difference between
the mated pair of images in the dataset. Since multiple images
from a single triggered capture were collected on each visit
(except seventh session), the images have high correlation. Due
to the intrinsic setup of the sensor, the sensor provides multiple
images for each triggered capture, all captured within a few

Time (months)

Fig. 9. Match scores for all cases of rejections in the study. Each graph shows
the match scores (y-axis) of individual subjects at different time-frames (x-
axis). The rejected comparisons MS are marked by red dots. The blue line
indicates the set threshold (MS 36 at 0.1% FAR) for the study. ‘DC’, ‘GQS’
and ‘PQS’ denotes the average dilation constancy, average quality score of
gallery and average quality score of probe of all rejected images of that subject
respectively.

seconds. However, with change in protocol in the 7th ses-
sion, multiple images were collected in two sets, decreasing
the high correlation between images collected in different sets.
Two of the three occurrences of rejections were collected in
the 7th session (refer Table V). Figure 9 depicts the individ-
ual exploratory view of the MS from the two subjects for all
the TFs they participated. Subject 20181012017 has recorded
comparisons at 6 month TF and showed rejections in four of
the eight mated pairs. Since all of the images were not rejected
it is highly unlikely that the rejection is due to irreversible
change in the iris texture. Subject 20160104994 had matching
data from five TFs (6, 12, 18, 24 and 30 month TF) in which
rejection was observed in two sessions - 18 and 30 months. At
18 month TF, 14 of the 16 mated pairs were rejected with the
other two having scores just above the threshold. At 30 month
TF only two of the 16 mated pairs were rejected. However the
MS of the matched pairs of comparison exceed the set thresh-
old by a large margin (refer Figure 9). In between 18 and 36
month TF, the MS “returns” to above threshold at 24 month
TF. These sporadic false non-matches and a trending low MS
all through the five sessions indicate that the false non-matches
are a result of other factors than aging. The underlying causes
of rejections are explored in more detail in the next section.
Since the occurrences of false matches at different TFs
are episodic, the results of the FNMR as marked in ‘blue’
in Figure 8 are statistically analyzed by the ‘Rule of 3’ and
the projected FNMR are marked by the error bars. This rule
has been adapted in practice in biometrics and is described in
ISO/TEC 19795-1 [43]. The rate of occurrence of a particular
event in a population which does not occur in an experiment
is calculated by the ‘Rule of 3’. In our study, at particular
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Fig. 10. False Non Match: Case 1: Iris images of subject 20181012017 at
enrollment (left) and the probe images matched and falsely non-matched at 6
month TF. Iris patterns are partly obscured to maintain privacy.

TFs (12, 24 and 36) there is no occurrence of FNM. The rule
states that 3/N is the upper bound of such an occurrence at
95% confidence interval, where N is the number of people
in the experiment. We have 209 subjects in the study. Thus
based on this rule the range of FNMR in this study is 0% to
1.4%. However, since our experiment is longitudinal, having
different numbers of subjects at different TFs and between LI
and RI, the fragmented projected maximum FNMR is shown
in Figure 8. The maximum upper bound FNMR is 3.3% for
RI at 36 months. Instances where the projected error is not
shown are cases where we have recorded false non-matches
and do not qualify the criteria for the ‘Rule of 3’. The increase
of the upper limit of FNMR is a reflection of the decreasing
number of subjects, i.e., the upper bound is higher when there
are fewer subjects.

E. Detailed Examination of FNM Images

We did a root cause analysis for false non-matches of the
two subjects (refer Table V) individually.

1) Case 1 (Coded ID - 20181012017): The subject was
enrolled in the 6th session, having two collections in the
dataset, i.e., one recorded TF at 6 month. Rejection was
observed only in the LI. Four out of eight comparisons (2 of 4
images from the 7th session) are rejected. The 4 comparisons
from the truly accepted mated pair had an average MS of 238.
The rejected 4 comparisons had an average MS of 0. The MS
at different TFs are plotted in Figure 9. The average DC of the
four rejected pair of mated images is 0.81. The average over-
all image quality of the rejected images of the gallery images
(GQS) is 45 and the probe images (PQS) is 37.5 which are
below the mean overall quality score distribution. The images
are displayed in Figure 10.

Visual inspection revealed that in the two rejected iris
images (4th and 5th images in Figure 10), the eye is captured
at a rotated angle of 15 degree w.r.t the camera. VeriEye being
a black box, we are not aware of the compensation adapted by
the algorithm to accommodate angle of rotation considered in
their algorithm. However, manually rotating the images by —1
degree, the VeriEye software is able to match the images. This
is a case where the issue is the presentation of the iris to the
camera which is challenging in children and has been observed
in previous studies [30], [32]. We conclude that the root cause
of rejection has no relation to age/aging of the iris biometric.
However, errors such as these lead to false non-matches. We
observe and suggest that when working with children there
is a need for a tool to detect the canthi and rotate the image

AT 12 MONTH:
MATCHED

ENROLLMENT

e

AT 6 MONTHS:
MATCHED

AT 18 MONTH:
REJECTED

AT 24 MONTH:
MATCHED

AT 30 MONTH:
REJECTED

HYPOTHESIZED CAUSE OF REJECTION: Poor enrollment

Fig. 11. False Non Match: Case 2: Example of images collected at different
TF for subject 20160104994. The subject matched with the enrollment image
at 6 month and 24 month TF but falsely non-matched at 12 and 30 month
TF.

to bring the canthi onto a horizontal line for cases where the
image has significant rotation.

2) Case 2 (Coded ID - 20160104994): The subject par-
ticipated in six of the seven collections. We have matching
information from five TFs (6, 12, 18, 24 and 30 months). The
MS at different TFs are plotted in Figure 9. The subject was
falsely rejected at 18 month and 30 month TF only in the
RI. At 18 month TF, 12 of the 16 comparisons performed are
rejected. The average MS of the four matched image-pairs is
38.2, which is just above the set threshold. At 30 month TF,
2 of 16 comparisons performed are rejected. The average MS
of the 14 matched pairs is 66.2. As noted, the subject has a
very low MS for all true matches across different TFs. The
average DC of the rejected mated pairs of images is 0.89.

Visual inspection and analyzing the quality factors of the
images from the subject renders the following observations:

o Visually, the enrollment image has “poor quality” in terms
of the exposed iris area, occluded iris with eyelash and
low contrast between eyelash, pupil and iris.

« Visually, the contrast between the iris and the pupil is sub-
stantially low even with NIR illumination for this subject
across all TFs, giving a salient notion of a “dark iris”.

o The average overall image quality of the rejected images
of the gallery images(GQS) is 26.25 and the rejected
probe images (PQS) is 29.62 on a range of 0 to 100.
The average usable iris area of the 4 enrollment images
is 59.75% and the average pupil to iris contrast is 52.7.
All 3 quality measures - overall image quality, usable iris
area and pupil to iris contrast of the rejected images falls
in the lowest quartile of the distribution.

Since the MS across all TFs for this subject are substantially
low, we are inclined to believe that this is a case of poor enroll-
ment. To further explore this, we set aside the images from
the original enrollment session and considered the subsequent
collection (the subject’s second session) as the enrollment and
match it against all subsequent collections. All mated pairs
match. Thus we conclude that the rejections observed in this
case is due to poor image quality of the enrolled image and
is not affected by time-frame.

F. FMR and FNMR

This section provides a more detailed analysis of ROC, False
Match Rate (FMR) and False Non-Match Rate (FNMR) for
our dataset. All reports are for RI. LI shows a similar pattern
and is thus not included here. The ROC curve is shown in
Figure 12. Table VI compiles the FMR and FNMR over the
36 month TF at different threshold values. Verieye claimed a
FAR of 0.1% at threshold value 36. At that threshold, for our
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Fig. 12. ROC curves for different TFs; Inset image is a magnified
representation.

TABLE VI
FMR AND FNMR IN % AT FIXED THRESHOLDS

Time Threshold 36 Threshold 50 Threshold 100
Frame

FMR [ FNMR [ FMR [ FNMR [ FMR [ FNMR
6 mos. 0.05 0 0 0 0 0.68
12 mos. 0.07 0 0 0 0 047
18 mos. 0.03 0.81 0 1.16 0 14
24 mos. 0.06 0 0.00 0.06 0 14
30 mos. 0.07 0.18 0.01 0.63 0 1.8
36 mos. 0.08 0.17 0.00 0.17 0 14

dataset the FMR varies between 0.03% to 0.08% at different
TFs.

VI. DISCUSSION, LIMITATIONS, AND FUTURE WORK

Impact on iris biometric performance due to increasing time
difference between gallery and probe of iris image in children
is the focus of this work. Addressing this, iris images from
209 subjects in the age group of 3 to 14 years were col-
lected in 7 sessions, spaced approximately six months over
3 years from the same subjects and were analyzed. In addi-
tion to the effect of time window between collections on match
scores (MS), variability factors like dilation, dilation difference
between enrollment and probe image, and enrollment age have
been taken into consideration for analysis. The performance is
assessed with false non-match rate (FNMR) and Linear Mixed
Effects Modelling(LMER).

Statistical conclusions are drawn from the LMER (refer
Section III) which modelled the match score (MS) variabil-
ity as a function of increasing time difference between gallery
and probe of iris image (TF) in presence of inter-subject and
intra subject variability factors of enrollment age (EA), dila-
tion (PD), and dilation difference between enrollment and
probe (AD). The model considers that the MS varies as a
linear function of the predictor variables. However, non-linear
impact of the predictors are taken into account by adding sec-
ond order terms to the variability factors. With respect to the
design of the model, a next step might be to consider other
models to include additional order terms to fit this data. As
Pinheiro and Bates [44] mentions “By increasing the order of a
polynomial model, one can get increasingly accurate approx-
imations to the true, usually nonlinear, regression function,

within the observed range of the data”. Additionally, non-
linear models which also consider underlying mechanisms
like asymptotes and monotonicity producing the data, while
modelling response variables, could also be considered as
future work. The same model is implemented for three groups
based on participation - G1, G2 and G3. All groups render
similar conclusions. The results can be summarized as: (i) a
slight decay in MS (approx: 16.8/year and avg MS is 399)
with increased TF in a three year period for the enrollment
age of 4 to 14 years; this small decay has no practical impact
on performance of iris recognition; (ii) strong negative corre-
lation between AD and MS; (iii) no significant effect of PD
on MS; (iv) linear significant effect of EA on MS (p < 0.01).
Even with EA rounded off to the nearest year (age calculated
from birth year), we see that EA is significant and thus believe
important to consider it as a predictor in the model.

In addition to aging, i.e., increased time between enrollment
and probe, studying the impact of age on MS is important to
understand any underlying effect. We did a preliminary statisti-
cal assessment of the difference in mean MS between different
age groups - 4 to 6 years, 7 to 8 years and 9 to 11 years. t-test
statistics concluded that the mean MS of age group of 9 to 11
years is significantly (p < 0.01) higher than other age groups.
Additionally, we employed the same LMER model for 3 age
based groups. The conclusions in all age based groups are
mostly similar to the conclusions from LMER implementa-
tion on the participation based groups with few exceptions: (i)
For 4 to 6 years age group, the time difference has statistically
insignificant impact on MS and AD has linear impact on MS;
(ii) Enrollment age is not a statistically significant predictor of
MS for smaller fragmented age groups. Addressing age based
issues is challenging due to limited data for each age group.
The small, non-uniform count of subjects in each age for the
age spread of 4-11 years from approximately 209 subjects
poses a challenge to make conclusions. An age focused data
set needs to be created to meet this challenge.

Dilation and dilation constancy (DC) between enrollment
and probe is evaluated. DC varied between 0.55 and 1 in our
dataset. Low DC necessarily translates to low MS; for high
DC, MS varies from low to high (refer Figure 7), where low
MS are likely due to other factors. The DC of the rejected
images are substantially high (all above 0.8). Dilation dif-
ference between two mated pairs of images has a major
contribution to errors in recognition performance. However, no
case of rejection is recorded due to low DC in our database. In
our study we note that the MS is weakly correlated to DC with
Pearson’s coefficient of 0.28. Dilation and DC impact the iris
recognition on the MS independently. Having very high/very
low dilation in both enrollment and probe leads to a high DC.
Very high dilation in both gallery and probe, though leads to a
high DC, leaves a very low available iris area for analysis. A
very low dilation may lead to segmentation error. We observe
that both dilation and DC contribute to the MS with substantial
effect. TD and EA have no statistical impact on DC. Dilation
is a crucial factor and has multiple causes including age, illu-
mination, medical causes and environmental factors. Of the
studies reviewed in literature in Section I-A, the closest to the
age range of our study, were by Adler in [2] which mentioned
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dilation reaching its maximum in the childhood and adoles-
cence. Thus, a constructive physical relation between age and
dilation remains unavailable. A comprehensive understanding
of the relationship between age and aging on dilation in chil-
dren based on our dataset was performed [28]. We were unable
to acquire exact same dilation at each session from the same
subject. However, even with this knowledge we are unable to
have controlled constant illumination due to our dependency
on the school setup who permits us to use their facility for col-
lections. Measures including closing blinds and giving subjects
time to adapt to the room, were taken to minimize the effect
and variation of illumination and environmental factors. The
Iris Guard camera [36] used for data collection, has a blinking
white LED light with the purpose to provide external stimuli
to accommodate pupil to an uniform dilation for each sub-
ject across sessions. Technology has been adapted by some
software to accommodate dilation to minimize the dilation
difference between collections. Statistical tests showed signif-
icant variability in dilation in collection sessions (Collection
3,5, 6, 7) when compared to Collection 1. However, the
mean dilation in different sessions remained relatively con-
stant (exception: Collection 3 (p<0.01)) when compared to
Collection 1. Illumination heavily impacts dilation. Thus it is
essential to account for change in dilation and area of iris
available for analysis while calculating the MS.

False Non-Match Rate (FNMR) in this study ranges
between 0% to 0.73%. Two subjects were falsely rejected in
the three sessions (6, 18 and 30 month TF). The FNMR at 6
month is 0.54% and 0.73% at 18 and 30 months. The increase
is not an indication of increased FNMR with time but a reflec-
tion of variable subject participation in different sessions. The
FNMR being episodic with most sessions having 0% FNMR,
the upper bound (UB) of the confidence interval for FNMR is
statistically calculated with the ‘Rule of 3’. The UB for FNMR
in 36 month is projected at 3.3%. FNMR in this study does
not indicate aging effect on the iris recognition performance
in children in the age group of 4 to 11 years at enrollment
for a period of three years. Each individual case of rejec-
tion is studied in detail to understand the underlying cause as
detailed in Section V-E. All cases of false non-matches were
accounted for by factors encompassing poor enrollment and
angle of rotation of the captured image w.r.t. to the camera.
This observation goes to the heart of template aging ques-
tions. Even though changes in FNMR are seen, is this aging?
Indeed, false non-matches do not necessarily mean an irre-
versible change in the iris itself. In this study we verified that
all rejected subjects returned to above threshold match scores,
and identified the root causes for the rejections.

This work opens some major areas for future work based
on the challenges and limitations faced. Further quality assess-
ment is needed to understand the errors. Additional quality
assessment of the iris images during capture would be a step
towards accurate assessment of the data. Increased FNMR are
primarily caused by poor quality images. Factors may include
partial occlusion of the area of interest, motion blur, unfo-
cused image, high dilation or other quality issues. Standard
Image Quality for iris is set in the report ISO/IEC 19794-6 by
ISO (International Organization for Standardization) and IEC

(International Electrotechnical Commission) [8]. We plan to
study quality in more detail in future study.

The biggest challenge in research is the limited availability
of data, especially in the fields involving children. The dataset
used in the study is an in-house dataset, which is part of an
ongoing study. To the best of our knowledge this is the only
longitudinal database in the focus age group of 4 to 14 years
directed to study biometrics in children. Presently the study
has enrolled 239 subjects. We believe analyzing longitudinal
data from 209 subjects has statistical significance as we have
reported in this article. High correlation between images from
the same time-frame is noted due to the collection protocol. All
images were collected within seconds of each other based on
the internal setup of the sensor for multiple image collection.
The issue was identified and the protocol was modified from
the 7th session. Multiple images are collected in 2 sets with
approximately one minute in between. LI and RI images are
captured sequentially with a short time delay in between, the
only factor that might influence any difference between LI and
RI analysis.

Any data that holds identifiable information of an individual
is sensitive; more so when it involves children. A two tiered
privacy protocol is adapted to protect the identity of the sub-
jects. Due to privacy reasons we do not share any images in
this article unless absolutely needed (falsely rejected image
samples and image removed from the database upon man-
ual cleaning) to convey our message. For the images that are
included, the iris patterns are obscured. Protecting the privacy
of participants in research study is the responsibility of the
researchers. We are aware of the lack of children biometric
data in the scientific community and the importance of data
in advancing research related to child biometrics. The scope
of such research has the potential for world-wide applications.
We are sharing [45] our dataset through BEAT [46] platform
for algorithm testing for research purposes. Protecting the pri-
vacy of the data and the individuals, the platform will restrict
public access to the data, while giving feedback on the statis-
tics of the performance of the algorithms. In addition to BEAT,
we are directly sharing [45] the Verieye match scores, dilation
information and quality scores associated with EA and TF that
are used in all of the analyses in this article. We are also shar-
ing the data via BEAT and providing VeriEye quality scores
associated with each image/pair of images.

Further scrutiny on the causes of failure to acquire (FTA)
could assist hardware development and application of biomet-
rics for children. FTA is a concern in this study. We noted
approximately 25 subjects failed to be captured in one or more
sessions. To improve upon the issue, we incorporated an assis-
tive aid from 6th session in the form of a flexible articulating
arm for the iris camera mount with a stabilizer handle allow-
ing the collector to adjust the optimal distance required by the
camera from the target (refer Figure 1) and thus essentially
eliminating FTA in the 6th session. We also included a sec-
ond binocular sensor to support the data collection. However,
those data are not part of this study. On average, biometrics
are presented to the sensor thrice before concluding on FTA.
Pushing too hard to collect data from children from whom we
failed to acquire, would be harsh, keeping in mind the younger
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age of the children, which may induce discomfort and pos-
sible withdrawal from voluntary participation. Our protocol
restricts aggressive data collection from children. The hard-
ware available and used in this study are primarily designed
for adults with inbuilt quality assessment setup for enroll-
ment with no manual control. We believe if the systems were
designed specifically for children, FTA would be improved.

Different studies employ different algorithms to extract
features. Commercial algorithms are black-boxes with no pub-
lic information on the techniques used for image to feature
domain transformation, what (if any) methods are adopted
to address different quality deformations (like dilation, rota-
tion etc.) or matching techniques. Environmental factors may
vary between sessions, like illumination and weather, affecting
the captured image. Induced factors like medication, can also
affect iris. Thus, the features under investigation are an essen-
tial factor in concluding the effect of aging on iris biometric.
This reminds us of the need for further research on invariant
features for iris recognition. In this study we have investi-
gated the impact of difference in time between enrollment and
probe on the iris recognition performance in children under
a semi-controlled environment using a commercial software
VeriEye [37].

VII. CONCLUSION

We conclude by summarizing the answers to the questions,
that this work majorly focused on -

Does aging change the iris structure to a point that impacts
the use of iris for biometric recognition in children? From the
point of view of biometric applications, this study indicates the
viability of the use of iris as a biometric modality in a 3 year
TF on the population with the enrollment age group of 4 to 11
years when the quality of iris image is maintained and FTA
are addressed. Statistical analysis demonstrated a minor decay
in match score over time, i.e., a very small aging effect, much
smaller than other typical sources of variation; the impact is
practically insignificant. The statistical analysis accounts only
for a time-frame of 3 years. The effect on match score is
negligible in the 3-year TF of this study.

If growth in children impacts iris recognition performance,
is there an age at which these impacts are no longer seen?
Our study concluded that iris recognition is effective in chil-
dren for the age group studied, i.e., between 4 to 11 years. We
noted no impact in the iris recognition performance based on
age. A positive correlation between enrollment age and match
score is indicated in the statistical model. This is expected
considering more control and stability with age when present-
ing the biometric to the system, as well as experience with
usage over years. The current study cannot set the minimal
age below which iris recognition is ineffective due to three
major factors. First, ages below four which were not included
in our current dataset needs to be studied. Second, our con-
clusion excludes consideration of causes of Failure to Acquire
(FTA). Thus, FTA needs to be studied. Third, a larger bin size
at each age is needed to make any conclusions about a specific
age group.

Finally, our conclusions are based on research bound by
age between 4 yrs to 14 years over a span of three years, and
does not translate to life-time conclusions. Some answers are
limited by the availability of required research data necessary
for analysis. We plan to continue appending our dataset and
report the analysis in future towards the unaddressed queries.

ACKNOWLEDGMENT

The authors extend their gratitude to the Potsdam
Elementary and Middle School administration, staff, students
and the parents of the participants for supporting their research
and the greater goal of scientific contribution to society. This
project would not have been successful without the efforts and
the valuable time put in by all data collectors including David
Yambay, Ganghee Jang, Keivan Bahmani, Sandip Purnapatra
and Richard Plesh.

REFERENCES

[1] A. K. Jain, B. Klare, and A. Ross, “Guidelines for best practices in bio-
metrics research,” in Proc. Int. Conf. Biometrics (ICB), Phuket, Thailand,
2015, pp. 541-545.

[2] F. H. Adler, Physiology of the Eye: Clinical Application. St. Louis, MO,
USA: Mosby, 1965.

[3] L. Ma, T. Tan, Y. Wang, and D. Zhang, “Efficient iris recognition by
characterizing key local variations,” IEEE Trans. Image Process., vol. 13,
pp. 739-750, 2004.

[4] J. G. Daugman, “Biometric personal identification system based on iris
analysis,” U.S. Patent 5291 560, Mar. 1994.

[5] J. G. Daugman, “High confidence visual recognition of persons by a test
of statistical independence,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 15, no. 11, pp. 1148-1161, Nov. 1993.

[6] R. P. Wildes, “Iris recognition: An emerging biometric technology,”
Proc. IEEE, vol. 85, no. 9, pp. 1348-1363, Sep. 1997.

[7]1 L. Flom and A. Safir, “Iris recognition system,” U.S. Patent 4 641 349,
Feb. 1987,

[8] Information Technology—Biometric Sample Quality—Part 6: Iris Image
Data, Standard ISO/IEC 29794-6:2015, 2015.

[9] P.J. Grother, J. R. Matey, E. Tabassi, G. W. Quinn, and M. Chumakov,
“IREX VI—Temporal stability of iris recognition accuracy,” NIST,
Gaithersburg, MD, USA, Rep. 7948, 2013.

[10] A. Bertillon and R. W. McClaughry, Signaletic Instructions Including
the Theory and Practice of Anthropometrical Identification. New York,
NY, USA: Werner Company, 1896.

[11] L. Flom and A. Safir, U.S. Patent# 4 641349, U.S. Government Printng
Office, Washington, DC, USA, 1987.

[12] P. Tome-Gonzalez, F. Alonso-Fernandez, and J. Ortega-Garcia, “On the
effects of time variability in iris recognition,” in Proc. 2nd IEEE Int.
Conf. Biometrics Theory Appl. Syst. (BTAS), Arlington, VA, USA, 2008,
pp. 411-416.

[13] S. E. Baker, K. W. Bowyer, and P. J. Flynn, “Empirical evidence for
correct iris match score degradation with increased time-lapse between
gallery and probe matches,” in Proc. Int. Conf. Biometrics, 2009,
pp. 1170-1179.

[14] S. E. Baker, K. W. Bowyer, P. J. Flynn, and P. J. Phillips, “Template
aging in iris biometrics,” in Handbook of Iris Recognition. London, U.K.:
Springer, 2013, pp. 205-218.

[15] S. P. Fenker and K. W. Bowyer, “Analysis of template aging in iris
biometrics,” in Proc. IEEE Comput. Sco. Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), Providence, RI, USA, 2012, pp. 45-51.

[16] D. M. Rankin, B. W. Scotney, P. J. Morrow, and B. K. Pierscionek, “Iris
recognition failure over time: The effects of texture,” Pattern Recognit.,
vol. 45, no. 1, pp. 145-150, 2012.

[17] N. Sazonova et al., “A study on quality-adjusted impact of time lapse on
iris recognition,” in Proc. Sens. Technol. Global Health Military Med.
Disaster Response Environ. Monitor. Il Biometric Technol. Hum. Identif.
IX, vol. 8371, 2012, p. 83711W.

[18] A. Czajka, “Template ageing in iris recognition,” in Proc. Int. Conf.
Bio-Inspired Syst. Signal Process. (BioSignals), 2013, pp. 70-78.

[19] D. O. Gorodnichy and M. P. Chumakov, “Analysis of the effect of age-
ing, age, and other factors on iris recognition performance using nexus
scores dataset,” IET Biometrics, vol. 8, no. 1, pp. 29-39, Jan. 2019.

Authorized licensed use limited to: CLARKSON UNIVERSITY LIBRARY. Downloaded on March 16,2022 at 19:02:48 UTC from IEEE Xplore. Restrictions apply.



DAS et al.: IRIS RECOGNITION PERFORMANCE IN CHILDREN: LONGITUDINAL STUDY

[20]
[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(311

[32]

[33]

[34]

[35]

(36]

(371

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

J. Matey, Private Communication, NIST, Gaithersburg, MD, USA,
Oct. 2019.

K. W. Bowyer and E. Ortiz, “Critical examination of the irex VI results,”
IET Biometrics, vol. 4, no. 4, pp. 192-199, Nov. 2015.

P. Grother, J. R. Matey, and G. W. Quinn, “IREX VI: Mixed-effects
longitudinal models for iris ageing: Response to bowyer and ortiz,” IET
Biometrics, vol. 4, no. 4, pp. 200-205, Dec. 2015.

E. Ortiz and K. W. Bowyer, “Exploratory analysis of an operational iris
recognition dataset from a CBSA border-crossing application,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, Boston, MA,
USA, 2015, pp. 34-41.

E. Ortiz and K. W. Bowyer, “Pitfalls in studying ‘big data’ from opera-
tional scenarios,” in Proc. IEEE 8th Int. Conf. Biometrics Theory Appl.
Syst. (BTAS), Niagara Falls, NY, USA, 2016, pp. 1-7.

J. E. Birren, R. C. Casperson, and J. Botwinick, “Age changes in pupil
size,” J. Gerontol., vol. 5, no. 3, pp. 216-221, 1950.

B. Winn, D. Whitaker, D. B. Elliott, and N. J. Phillips, “Factors affecting
light-adapted pupil size in normal human subjects,” Invest. Ophthalmol.
Vis. Sci., vol. 35, no. 3, pp. 1132-1137, 1994.

E. Ortiz, K. W. Bowyer, and P. J. Flynn, “A linear regression analysis
of the effects of age related pupil dilation change in iris biometrics,”
in Proc. IEEE 6th Int. Conf. Biometrics Theory Appl. Syst. (BTAS),
Arlington, VA, USA, 2013, pp. 1-6.

P. Das, L. Holsopple, M. Schuckers, and S. Schuckers, “Analysis of dila-
tion in children and its impact on iris recognition,” in Proc. Forthcoming
Int. Joint Conf. Biometrics (IJCB), Houston, TX, USA, 2020, pp. 1-9.
Office of Human Research Protection. Accessed: Oct. 17, 2019.
[Online]. Available: https://www.hhs.gov/ohrp/regulations-and-
policy/guidance/faq/children-research/index.html

P. Basak, S. De, M. Agarwal, A. Malhotra, M. Vatsa, and R. Singh,
“Multimodal biometric recognition for toddlers and pre-school children,”
in Proc. IEEE Int. Joint Conf. Biometrics (IJCB), Denver, CO, USA,
2017, pp. 627-633.

Children Biometric Multimodal Database (CMBD). Accessed: Jul. 30,
2020. [Online]. Available: http://iab-rubric.org/resources.html

N. Nelufule, A. de Kock, G. Mabuza-Hocquet, and Y. Moolla, “Image
quality assessment for iris biometrics for minors,” in Proc. Conf. Inf.
Commun. Technol. Soc. (ICTAS), Durban, South Africa, 2019, pp. 1-6.
Unique Identification Authority of India. Accessed: Oct. 16, 2018.
[Online]. Available: https://uidai.gov.in/

D. J. W. Campbell, Impact of Demographic Factors on
Performance of Biometric ~ Systems, Defence Res. Develop.
Canada, Ottawa, ON, Canada, 2018. [Online]. Available:
http://cradpdf.drdc-rddc.gc.ca/PDFS/unc308/p806591_A1b.pdf

M. Johnson, D. Yambay, D. Rissacher, L. Holsopple, and S. Schuckers,
“A longitudinal study of iris recognition in children,” in Proc. IEEE
4th Int. Conf. Identity Security Behav. Anal. (ISBA), Singapore, 2018,
pp. 1-7.

IrisGuard.  Accessed: Nov. 14, 2019. [Online]. Available:
https://www.irisguard.com

MegaMatcher 10.0, VeriFinger 10.0, VeriLook 10.0, VeriEye 10.0 and
VeriSpeak 10.0 SDK: Developer’s Guide, Neurotechnology, Vilnius,
Lithuania, 2017.

IREX 10: Identification Track. Accessed: Jan. 21, 2021. [Online].
Available: https://pages.nist.gov/IREX10/

J. D. Singer and J. B. Willett, Applied Longitudinal Data Analysis:
Modeling Change and Event Occurrence. Oxford, U.K.: Oxford Univ.
Press, 2003.

D. Bates, M. Michler, B. Bolker, and S. Walker, “Fitting linear mixed-
effects models using Ime4,” 2014. [Online]. Available: arXiv:1406.5823.
X. Wang, J. Dong, M. Tang, X. Wang, H. Wang, and S. Zhang,
“Effect of pupil dilation on biometric measurements and intraocular lens
power calculations in schoolchildren,” PLoS ONE, vol. 13, no. 9, 2018,
Art. no. e0203677.

Information technology—Vocabulary—Part 37: Biometrics, Standard
ISO/IEC 2382-37:2017(en), 2017.

Information  Technology—Biometric ~ Performance  Testing  and
Reporting—Part 1: Principles and Framework, Standard ISO/IEC
19795-1:2006, 2006.

J. C. Pinheiro and D. M. Bates, Mixed-Effects Models in S and S-PLUS.
New York, NY, USA: Springer, 2006.

Clarkson Longitudinal Iris in Children Database (CLIC)—Matching
and Quality Scores. Accessed: Dec. 7, 2020. [Online]. Available:
https://citer.clarkson.edu/clarkson-longitudinal-iris-in-children-database-
clic-matching-and-quality-scores/

A. Anjos, L. El-Shafey, and S. Marcel, “BEAT: An open-
source web-based open-science platform,” 2017. [Online]. Available:
arXiv:1704.02319.

center.

151

Priyanka Das (Graduate Student Member, IEEE)
received the bachelor’s and M.E. degrees in biomed-
ical engineering from Jadavpur University, India, in
2014 and 2016, respectively. She is currently pur-
suing the Ph.D. degree in iris biometrics with the
Department of Electrical and Computer Engineering,
Clarkson University, where she is a Research
Assistant.

Laura Holsopple is the Managing Director of
the Center for Identification Technology Research
(CITeR), an NSF funded Industry University
Cooperative Research Center (IUCRC), Clarkson
University, focusing on the science of biomet-
rics. Drawing on her over 15 years from Industry
Manufacturing and Development, she has worked
with CITeR/Clarkson University over the last ten
years to promote the Center’s research and bring
continual improvement to the CITeR community and
the affiliate members served by membership in the

Dan Rissacher received the M.S. degree from
the Georgia Institute of Technology and the Ph.D.
degree from Clarkson University, with a dissertation
demonstrating automated detection of human pain
using neural networks on EEG data, where he was
an Assistant Research Professor, when he founded
the study for biometric aging in children. He is cur-
rently an Independent Researcher with his company
CRIA Corporation, a Pilot for American Airlines,
and a Cyber Warfare Operator for the Vermont Air
National Guard. Since then, his research has focused

on pattern recognition, data analytics, and machine learning.

Michael Schuckers received the Doctorate degree
in statistics from Iowa State University, his aca-
demic work has focused on developing statistical
methodology for biometric authentication and appli-
cations in sports, particularly ice hockey. He is
the Charles A. Dana Professor of Statistics with
St. Lawrence University, Canton, NY, USA, where
he also serves as the Director of the Peterson
Quantitative Resource Center. He has also consulted
for professional teams in Major League Baseball and
the National Hockey League among other profes-

sional sports organizations in his role as a Co-Founder of Statistical Sports

Consulting, LLC.

Stephanie Schuckers (Senior Member, IEEE)
received the Doctoral degree in electrical engi-
neering from the University of Michigan. She
is the Paynter-Krigman Endowed Professor of
Engineering Science with the Department of
Electrical and Computer Engineering, Clarkson
University, and serves as the Director of the Center
for Identification Technology Research (CITeR),
a National Science Foundation Industry/University
Cooperative Research Center. Her work is funded
from various sources, including the National Science

Foundation, the Department of Homeland Security, and private industry among
others. She has started her own business, testified for the U.S. Congress, and
has over 100 other academic publications. Her research focuses on processing
and interpreting signals which arise from the human body.

Authorized licensed use limited to: CLARKSON UNIVERSITY LIBRARY. Downloaded on March 16,2022 at 19:02:48 UTC from IEEE Xplore. Restrictions apply.



