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ABSTRACT

In this work, we utilize progressive growth-based Generative
Adversarial Networks (GANs) to develop the Clarkson Fin-
gerprint Generator (CFG). We demonstrate that the CFG is
capable of generating realistic, high fidelity, 512 x 512 pixels,
full, plain impression fingerprints. Our results suggest that the
fingerprints generated by the CFG are unique, diverse, and re-
semble the training dataset in terms of minutiae configuration
and quality, while not revealing the underlying identities of
the training data. We make the pre-trained CFG model and the
synthetically generated dataset publicly available at ht tps:
//github.com/keivanB/Clarkson_Finger_Gen

Index Terms— Fingerprint Synthesis, Generative Adver-
sarial Networks, Fingerprint Matching, Fingerprint Quality

1. INTRODUCTION

Fingerprint identification systems are widely accepted as in-
expensive and secure, making them one of the most prevalent
forms of biometric recognition. Current state-of-the-art fin-
gerprint recognition systems heavily rely on Convolutional
Neural Networks (CNNs) [1]. While these systems show
exceptional performance, they require expensive large-scale
fingerprint datasets for training and evaluation. However, col-
lecting and sharing large-scale biometric datasets comes with
inherent risks and privacy concerns. For instance, the Na-
tional Institute of Standards and Technology (NIST) recently
discontinued several publicly available datasets from their
catalog due to privacy issues [2]. Generating synthetic fin-
gerprints can help alleviate both expense and privacy issues.
Synthetic datasets can be generated easily at scale while still
representing the training dataset and shielding the identity of
the individuals that were used during training.

The traditional approach to fingerprint synthesis involves
sampling from independent statistical models for orientation
field and minutiae with Gabor-filtering or other models to
generate the final ridge structure [3, 4, 5]. The fingerprints
generated using these approaches suffer from some shortcom-
ings. The additive noise used in the ridge valley generation
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process can give the generated fingerprints a distinct visual
pattern. Additionally, fingerprints generated using the tradi-
tional approaches can be distinguished from real fingerprints
using their minutiae distribution [6]. Finally, the independent
modeling used in the traditional approach is not necessarily
able to capture the correlation between the orientation field,
ridge valley structure, and minutiae patterns.

More recently, GAN models have been employed for fin-
gerprint synthesis [7, 8, 9, 10]. Contrary to the previous fin-
gerprint synthetic approaches, GANs don’t rely on indepen-
dent statistical models for each aspect of fingerprints. They
are capable of learning the high-dimensional probability dis-
tribution of the training data and generating samples from the
learned distribution. Previous GAN-based fingerprint synthe-
sis work mainly utilized the Improved Wasserstein GAN (IW-
GAN) architecture [11]. These models, however, are unstable
and fail to generalize to high-resolution images [8, 9, 10].
Previous work has proposed different training regimens to
address these issues. Finger-GAN utilizes additional total
variation constraints to impose connectivity within the gen-
erated images [9]. Fahim et al. proposed a loss doping ap-
proach to stabilize the training process and prevent mode col-
lapse [10]. The proposed methods improved the stability of
the training process, but failed to produce full plain impres-
sion fingerprints with precise boundary and high fidelity. Cao
et al. focused on fingerprint search at scale and utilized a
large-scale dataset of 250,000 rolled fingerprints. Despite the
large dataset, the authors still observed the same mode col-
lapse issues. In response, they proposed an unsupervised pre-
training step, adding additional computational overhead. To
the best of our knowledge, this is the only GAN-based model
in previous work that is capable of producing high fidelity,
512 x 512 pixels, 500 dpi, rolled fingerprints [8]. In this work,
we introduce the Clarkson Fingerprint Generator (CFG), a
GAN-based fingerprint synthesis model which uses progres-
sive growth training to generate realistic 512 x 512 pixels,
plain impression fingerprint images, Figure 1 illustrates ex-
amples of the synthetic fingerprints. Our contributions are as
follows:

* Contrary to the previous IWGAN-based fingerprint
synthesis models, the CFG utilizes a multi-resolution
and progressive growth training approach [12, 13]. The



CFG can generate high fidelity plain fingerprint with
realistic shape and boundaries at 512 x 512 pixels and
does not suffer the mode collapse and quality issues
associated with previously proposed IWGAN-based
fingerprint generators [9, 10]. When compared to the
model used in [8], the multi-resolution fingerprint syn-
thesis model can be trained using a smaller dataset and
without computationally expensive pre-training steps.

* We compare quality metric distributions to assess di-
versity of the synthetic fingerprints and their similarity
to bonafide fingerprints. We also match every synthetic
fingerprint to every bonafide fingerprint to ensure that
the synthetic fingerprints do not reveal the real identi-
ties.

e We utilized a CNN-based Presentation Attack Detec-
tion (PAD) model to evaluate fingerprints generated us-
ing the CFG. This process reaffirms the high fidelity of
the samples generated using the CFG.

* We make the pre-trained CFG model and the syntheti-
cally generated fingerprints publicly available. To the
best of our knowledge, the CFG is the first publicly
available GAN-based fingerprint synthesis model.

2. CLARKSON FINGERPRINT GENERATOR

In this work, we utilize multi-resolution training for fin-
gerprint synthesis [13]. Multi-resolution GAN models start
the training process by training both the Generator (G) and
Discriminator (D) at lower spatial resolutions and progres-
sively increasing (growing) the spatial resolution throughout
the training. Progressive growth-based GANs are capable
of effectively capturing high-frequency components of the
training data and producing high-fidelity and realistic human
faces [13]. The main known limitation of the progressive
growth approach is the generator’s strong location prefer-
ence for details. This issue has led to artifacts in generating
high-resolution faces across different poses [14]. However,
fingerprint recognition systems operate at a relatively fixed
scale and do not suffer from the pose, illumination, and ex-
pression variations associated with face images. As a result,
we believe this architecture alleviates the problems observed
in the previous IWGAN-based fingerprint synthesis mod-
els while introducing a minimal amount of artifacts to the
synthesized fingerprints. To the best of our knowledge, the
CFG is the first fingerprint synthesis model that leverages
multi-resolution and progressive growth training.

3. TRAINING AND EVALUATION

The CFG utilizes StyleGAN architecture [13]. The model is
trained from scratch using 72,000, 512 x 512 pixels bonafide
fingerprints from 250 unique identities, captured using a

Fig. 1. Examples of generated fingerprint images by the pro-
posed approach (512 x 512 pixels at 500 dpi)

Crossmatch Guardian scanner (DB-1). The CFG is trained in
an unsupervised manner, i.e. we did not provide the model
with unique identity labels. The bonafide fingerprints are
processed at 8 resolutions from 4 x 4 up to 512 x 512 pixels
during progressive training. Subsequently, we utilized the
CFG to generate 50,000 synthetically generated 512 x 512
plain impression fingerprints (DB-2). Note that the synthetic
fingerprints are generated without any truncation to represent
the full range of the CFG [13].

Previous work on fingerprint synthesis relied on Frechet
Inception Distance (FID) [9] and Structural SIMilarity (SSIM)
[10] measures to respectively evaluate the quality and diver-
sity of the generated samples. In the test, the CFG achieved
FID of 24 which is considerably better than the FID of
70 reported by Finger-GAN [9]. We calculated FID using
the 50,000 fingerprints. Unfortunately, the use of in-house
datasets and proprietary code limits our ability to compare
FID with previous fingerprint synthesis models. Also, since
FID utilizes an inception network trained on ImageNet [15],
it is best suited for evaluating generators of natural images
rather then biometric images. Consequently, we utilize the
BOZORTH3 minutiae-based fingerprint matcher [16] to eval-
uate the uniqueness of the synthetically generated fingerprints
through their imposter distribution [8] and expand upon pre-
vious works by evaluating the quality and diversity of the
synthetic fingerprints through fingerprint metrics. We evalu-
ated the quality of the fingerprints using NIST NFIQ 2.0 [17]
and utilized the NIST NBIS software [16] to evaluate and
compare the minutiae configuration of the training (DB-1)
and synthetic (DB-2) fingerprints. Additionally, we leveraged
the work of Olsen et al. to extract features based on ridge-
valley signature [18]. To accurately estimate the ridge-valley
features, each fingerprint is decomposed into overlapping
blocks of 32 x 32 pixels and we averaged the results over the
15 patches with lowest standard deviation in terms of ridge
valley uniformity (highest quality).

Additionally we evaluate the synthetic fingerprints through



the use of a PAD model trained on a separate set of 50,000
(representing 250 people) and 35,000 PA images (represent-
ing 11 PA types) using Mobile NASNet architecture [19].
We replace the fully connected layers with four layers, three
RELU activated layers of size 500, 50, 10, and a 2-unit soft-
max layer representing bonafide vs PA fingerprints. The PAD
model is initialized using weights trained on ImageNet and
subsequently trained using full fingerprint images. We uti-
lized the Adam optimizer [20], a learning rate of 0.00001, and
batch size of 128. The NASNet model achieves 13.5% At-
tack Presentation Classification Error Rate (APCER) at 0.5%
Bonafide Presentation Classification Error Rate (BPCER).

The training of CFG, the CNN-based PAD model, and
fingerprint synthesis process is carried out using 4 NVIDIA
P100 GPUs provided by the National Science Foundation
(NSF) Chameleon testbed [21].

4. RESULTS AND DISCUSSIONS

Figure 1 depicts several synthetic fingerprints generated with
the CFG. Upon visual investigation, the CFG generates di-
verse, high-fidelity full plain impression fingerprints at 512 x
512 pixels without noisy boundaries and artifacts observed in
the IWGAN-based fingerprint synthesis models [10, 9].

4.1. Matching Performance

To construct the empirical, genuine, and imposter distribu-
tions for the bonafide samples, we randomly select 1000 non-
mated pairs for each fingerprint, resulting in 72 million non-
mated scores, and we utilized all of the 3.8 million mated
pairs. Figure 2 (a) depicts the imposter distribution of the
bonafide fingerprints (DB-1). We select a conservative False
Accept Rate (FAR) of 0.001% to evaluate the uniqueness of
the synthetic fingerprints. Within the bonafide fingerprints
(DB-1), this FPR translates into the True Positive Rate (TPR)
of 0.873 at a score threshold of 41. Note that this threshold
is in line with the rule of thumb threshold (40) suggested for
the BOZORTH3 matcher [16]. We use the same threshold
(41) to evaluate the uniqueness of the synthetically generated
fingerprints (DB-2). The synthetically generated fingerprints
in DB-2 are compared with every bonafide fingerprint used
for training the CFG (DB-1). This process produces more
than 3 billion match scores. We randomly select 40 million
of those to construct an empirical imposter match score dis-
tribution between synthetic fingerprints (DB-2) and bonafide
fingerprints (DB-1). Figure 2 (b) illustrates this imposter dis-
tribution.

Interestingly the empirical distribution of synthetic finger-
prints do not have the long tail that we observed in the im-
poster score distribution of the bonafide fingerprints (DB-1).
Enforcing the same matching threshold (41) resulted in 190
false matches (maximum score of 53) as opposed to 330 false
matches (maximum score of 286) observed in DB-1. Since
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Fig. 2. Imposter score distributions for: (a) bonafide (DB-1),
(B) synthetic (DB-2) versus bonafide (DB-1), (c) synthetic
only (DB-2), and (d) empirical CDFs for (a) and (b).

the imposter distributions are not normally distributed, we
conduct a non-parametric independent samples Kolmogorov-
Smirnov test between the empirical imposter distributions to
confirm the distinctness of the synthetic fingerprints. We per-
form the test between the empirical imposter distribution ob-
served by matching bonafide fingerprints (DB-1) and the em-
pirical imposter distribution observed by matching synthetic
to bonafide fingerprints (DB-2 v. DB-1) with an alternative
hypothesis that the imposter distribution of DB-2-v-DB-1 is
less than DB-1. The Kolmogorov-Smirnov test (D(40M) =
0.0158, p>0) indicates rejecting the null hypothesis in favor
of the alternative hypotheses. As a result, we can confirm that
the synthetic fingerprints generated by the CFG (DB-2) are
distinct from bonafide samples in the training dataset (DB-
1) and do not reveal the identities presented in the training
dataset (DB-1).

Finally, we also compared every synthetic fingerprint to
every other synthetic fingerprint in DB-2 and randomly se-
lected 40M comparisons. Figure 2 (C) shows the empirical
match score distribution for DB-2. We can observe that the
distribution of match scores for synthetic fingerprints from
DB-2 resembles that of bonafide in DB-1. However, the im-
poster distribution of DB-2 has a much longer tail that reveals
an overlap of identities in the generated fingerprints. Enforc-
ing the same threshold as DB-1 (41) results in 302,285 false
matches out of 40M comparisons, compared to 330 in DB-1.
Clearly there are multiple samples from the same identity in
DB-2. This is expected as the CFG is trained in an unsuper-
vised manner (without identity labels) and we did not force



DB-1 (Bonafide) DB-2 (Synthetic)

Measure Mean \ STD \ Skewness \ Kurtosis | Mean \ STD \ Skewness \ Kurtosis
Ridge Ending Minutiae Count [16] 47.378 | 15.019 1.040 2.323 45.606 | 12.371 0.662 0.602
Bifurcation Minutiae Count [16] 19.723 | 11.831 1.706 5.787 21.11 | 11.247 1.087 0.994
Reliability of Ridge Minutiaes [16] 0.458 0.098 0.149 -0.048 0.453 0.081 -0.148 -0.326
Reliability of Bifurcation Minutiaes [16] | 0.592 | 0.142 -0.547 0.005 0.626 0.145 -0.668 -0.032
Percentage of Bifurcation Minutiaes [16] | 0.285 0.120 0.518 0.192 0.304 0.097 0.267 -0.043
Ridge Count [18] 3.272 | 0.375 0.420 0.66 3.331 0.334 0.326 -0.36
White Lines Count [18] 3.271 0.376 0.423 0.623 3.323 0.337 0.353 -0.356
RTVTR [18] 0.921 0.205 0.657 0.446 0910 | 0.148 0.387 -0.205
Area of the Fingerprint 95.392 | 24.224 0.349 -0.317 | 94.019 | 21.232 0.688 0.307
NFIQ2 Score [17] 57.406 | 18.482 -0.365 2.622 54.687 | 14.616 -0.499 1.058

Table 1. Fingerprint metrics for bonafide (DB-1) and synthetic (DB-2) fingerprints. NFIQ2 score has a range of [0, 100] and
The Ridge to Valley Thickness Ratio (RTVTR) has a range of [0, 1].

the generator to generate fingerprints by varying the disen-
tangled identity portion of the learned latent variable (W).
However, the tests also show that out of 50K samples 11.5K
samples have no comparisons with match score above 41 and
can be considered as synthetically generated unique identi-
ties. In our future work, we aim to train the next generation
of the model using identity, finger, and quality labels. This
would allow researchers to have granular control over those
factors in the generated fingerprints.

4.2. Quality, Diversity, and Fingerprint Metrics

Table 1 presents fingerprint metrics for the synthetic and
bonafide fingerprints. We observe high standard deviation
in the evaluated metrics of the synthetic fingerprints. As an
example, Figure 3 illustrates the distribution of Ridge Ending
Minutiae in the training (DB-1) and synthetic (DB-2) finger-
prints. This suggests that the CFG is generating fingerprints
with diverse minutiae configurations and is not suffering
from the mode collapse issues associated with other INGAN
models [10, 9]. Additionally, we observe that the mean and
standard deviation of the fingerprint metrics from the synthet-
ically generated fingerprints are close to that of the training
dataset (DB-1). Consequently, we can confirm the diver-
sity and quality of the synthetically generated fingerprints.
However, our results indicate differences in the skewness and
kurtosis between synthetic and bonafide fingerprint metrics.
For future work, we believe integrating such metrics into the
GAN-based fingerprint synthesis model could improve the
model’s performance even further.

Additionally, we evaluated our synthetically generated
fingerprint (DB-2) using the trained PAD model. The PAD
model classified 95.2% of the synthetic fingerprint as bonafide
fingerprints. The PAD test reaffirms the quality and fidelity
of the synthetically generated fingerprints.
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Fig. 3. Number of ridge ending minutiae for DB-1 (Left) and
DB-2 (Right)

5. CONCLUSIONS

In this work, we developed a progressive growth-based finger-
print synthesis model capable of generating 512 x 512 pixels,
synthetic, plain, impression fingerprints which are diverse,
unique, and high-fidelity. Our results show that progressive
growth-based GAN models do not suffer from the shortcom-
ings associated with the previously proposed IWGAN-based
fingerprint synthesis models. Our results confirm that the
synthetic fingerprints generated by the CFG closely resemble
the fingerprints in the training dataset in terms of fingerprint
minutiae configurations, ridge-valley structure, and quality
while not revealing the identities presented in the training
dataset. Finally, we make both the CFG and a dataset of syn-
thetically generated samples publicly available to allow other
researchers to continue this work.

6. FUTURE WORK

In future work, we aim to improve the CFG by integrating
quality metrics into the loss function. Additionally, we aim
to provide our model with identity, finger, and quality labels.
This would allow us to control such factors during the synthe-
sis process. Finally, we aim to further investigate the useful-
ness of synthetic fingerprints in training and evaluating PAD
models.
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