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Abstract

The study of plant functional traits and variation among and within species can help illuminate functional coordination
and trade-offs in key processes that allow plants to grow, reproduce and survive. We studied 20 leaf, above-ground stem,
below-ground stem and fine-root traits of 17 Costus species from forests in Costa Rica and Panama to answer the following
questions: (i) Do congeneric species show above-ground and below-ground trait coordination and trade-offs consistent with
theory of resource acquisition and conservation? (ii) Is there correlated evolution among traits? (iii) Given the diversity of
habitats over which Costus occurs, what is the relative contribution of site and species to trait variation? We performed a
principal components analysis (PCA) to assess for the existence of a spectrum of trait variation and found that the first two
PCs accounted for 21.4 % and 17.8 % of the total trait variation, respectively, with the first axis of variation being consistent
with a continuum of resource-acquisitive and resource-conservative traits in water acquisition and use, and the second
axis of variation being related to the leaf economics spectrum. Stomatal conductance was negatively related to both above-
ground stem and rhizome specific density, and these relationships became stronger after accounting for evolutionary
relatedness, indicating correlated evolution. Despite elevation and climatic differences among sites, high trait variation was
ascribed to individuals rather than to sites. We conclude that Costus species present trait coordination and trade-offs that
allow species to be categorized as having a resource-acquisitive or resource-conservative functional strategy, consistent
with a whole-plant functional strategy with evident coordination and trade-offs between above-ground and below-ground
function. Our results also show that herbaceous species and species with rhizomes tend to agree with trade-offs found in
more species-rich comparisons.

Keywords: Ecophysiology; functional strategies; rhizome traits; specific root length; stem specific density; tropics; variance
component analysis.

Introduction

Functional traits are defined as any morphological, physiological (Violle et al. 2007). However, traits do not usually work in
or phenological characteristic that indirectly influences fitness isolation. Indeed, ecologists often use suites of correlated
through their effects on growth, reproduction and survival functional traits, i.e. plant strategies, to provide insights into
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the way that plants acquire, use and conserve resources (Reich
et al. 2003; Wright et al. 2004; Zanne et al. 2010; Reich 2014).
Resource-acquisitive strategies involve traits that allow for fast
acquisition and use of resources (high turnover), which in turn
results in fast growth rates and low capacity to tolerate stress.
On the other hand, resource-conservative strategies involve
traits that allow for slow use of resources and slow growth,
but with increased capacity to tolerate stress. For instance, leaf
traits related to carbon and nutrient economy have been found
to covary among plant species worldwide resulting in a ‘leaf
economics spectrum’ (LES) (Reich et al. 1997; Westoby et al. 2002;
Wright et al. 2004). In this spectrum, leaves with high specific
leaf area (SLA) and high nutrient concentration also have high
photosynthetic and respiration rates, but a short lifespan
(resource-acquisitive strategy), whereas leaves with low SLA
and nutrient concentration also have low photosynthetic and
respiration rates, but a long lifespan (resource-conservative
strategy) (Reich et al. 1997; Wright et al. 2004). This economic
spectrum has been extended to stems (Chave et al. 2009) and,
with mixed support, to roots (Kong et al. 2015, 2019; Roumet
et al. 2016). The existence of spectra of variation within organs
suggests that coordination (positive covariance) and trade-offs
(negative covariance) among traits limit organ function, and
likely whole-plant function.

Despite the importance of below-ground processes on plant
physiology and performance (Laliberté 2017), below-ground
traits have only recently been incorporated into plant functional
strategy frameworks (McCormack et al. 2012; Mommer and
Weemstra 2012; Weemstra et al. 2016). Root traits that allow
plants to acquire large amounts of water and nutrients, such
as high root length density (cm root cm= soil) or specific
root length (SRL; m g?), should be beneficial in resource-
rich environments, whereas traits that allow plants to avoid
water stress by accessing more stable sources of water and
restricting resource loss (or encouraging conservation), such as
high root diameter or root tissue density (RTD; g cm-3), should
be beneficial in resource-poor environments (Bowsher et al.
2016). Specific root length is suggested to be the below-ground
analogue to SLA, but SRL is often orthogonal to the main axis
of root variation usually formed by root diameter and RTD
(Freschet et al. 2010; Liu et al. 2010; Bowsher et al. 2016; Kramer-
Walter et al. 2016; Weemstra et al. 2016), complicating efforts to
identify a single axis characterizing below-ground function that
aligns with above-ground function (Reich 2014). More recently,
the inclusion of mycorrhiza (e.g. mycorrhizal colonization) in
root functional trait frameworks has shown the existence of a
fungal collaboration gradient that dominates the root economic
spectrum in a large data set of species (McCormack and Iversen
2019; Bergmann et al. 2020; Weigelt et al. 2021). However, the
question remains as to what extent plants align their above-
ground and below-ground traits, i.e. are traits coordinated
across organs reflecting a single unified whole-plant functional
strategy?

Other below-ground traits have been completely left out from
recent plant functional strategy frameworks. For example, some
plant species use below-ground stems (i.e. rhizomes) as important
anchoring structures, for carbohydrate and water storage, and for
vegetative reproduction. Traits such as rhizome water content
(RhWC; %) and rhizome specific density (RhSD; g cm™*) provide
information on water storage capacity or investment in structural
carbon in rhizomes. Evaluating rhizome traits of perennial herbs
can give us insights into the growth strategy of these plants. We
expect that species with below-ground resource-conservative
traits would also have low RhWC and high RhSD, indicating

a greater investment in structural carbon rather than in water
storage, with opposite values of traits corresponding to resource-
acquisitive. These rhizome traits would also align with fine-
root traits, and above-ground traits, if a whole-plant economic
spectrum does exist (Reich 2014).

We studied closely related species from the genus Costus
because (i) species co-occur at multiple sites, (ii) a well-resolved
phylogeny exists (Vargas et al. 2021) and (iii) they have speciated
rapidly in recent history, giving opportunities to study traits that
have recently evolved. By using congeneric species, we reduced
the effect of large divergence patterns (e.g. across families or life
forms) on observed trait values.

Given the potential importance for above-ground and below-
ground relationships in determining whole-plant functional
strategies, we studied a group of closely related tropical
species in the genus Costus living in contrasting habitats to
answer the following questions: (i) Do congeneric species
show above-ground and below-ground trait coordination and
trade-offs consistent with theory of resource acquisition and
conservation? (ii) Is there correlated evolution among traits?
(iii) Given the diversity of habitats over which Costus occurs,
what is the relative contribution of site and species to trait
variation? Given the habitat variability across sites, and the
morphological differences among species living at the same site,
we hypothesized that Costus will show a diversity of strategies
(i.e. combination of traits), ranging from resource-acquisitive to
resource-conservative strategies that matches their habitats.
For example, species in wet habitats are expected to have
traits that allow for greater water use, such as low rhizome
and stem specific density and high stomatal conductance. We
also hypothesized that species identity plays a significant role
in explaining trait variation. Research to date on tropical plant
functional traits has largely been confined to woody species
and to the context of community assembly (Kraft et al. 2008),
with little work on how functional traits and trade-offs can help
understand the physiological mechanisms by which herbaceous
species respond to environmental variation.

Methods

Study sites

We measured leaf, above-ground stem, below-ground stem
(rhizome from now on) and fine-root traits on individual plants of 17
species of Costus in six sites in Costa Rica and two sites in Panama
(6 of these 17 species were present at more than one site; Table 1)
during the rainy season. Field sites varied in elevation (Fig. 1), which
affects mean annual temperature (MAT) and precipitation (MAP) as
well as precipitation seasonality. We used the latitude and longitude
of the sampled individuals to download bioclimatic variables
from WorldClim 2.0 (Fick and Hijmans 2017) and then averaged by
species and sites. Lowland wet forests have high MAT and MAP
and low precipitation seasonality, whereas highland wet montane
and pre-montane forests have relatively lower MAT and MAP and
high precipitation seasonality (E. Avila-Lovera et al., submitted for
publication). Lowland seasonal forests have a more pronounced
dry season than lowland wet forests (see Supporting Information—
Table S1 for more bioclimatic data of field sites). Permit information
can be found in Supporting Information—Notes S1.

Study species

The genus Costus (Costaceae) comprises approximately 60
species in the Neotropics, and it occupies habitats that range
from lowland to montane forests, from deep shade understory to
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Table 1. List of species studied, abbreviation use in figures, sites where they are present, elevation and habitat type. BDT: Bocas del Toro
(Panama), LA: Las Alturas (Costa Rica), LC: Las Cruces (Costa Rica), LG: La Gamba (Costa Rica), LS: La Selva (Costa Rica), MV: Monteverde (Costa

Rica), PLR: Pipeline Road (Panama), TG: Tortuguero (Costa Rica).

Species Abbreviation Site Elevation (m asl) Habitat type
C. aff. wilsonii aff.wils MV 1519.3 Montane forest, streams
C. alleni alle PLR 113.5 Wet forest, deep shade
C. bracteatus brac LS 77.5 Wet forest
TG 12.3 Wet forest
C. guanaiensis var. macrostobilus guan PLR 69.2 Seasonal forest
C. laevis laev LC 1216.8 Pre-montane forest,
streams
LG 113.2 Wet forest
LS 61.5 Wet forest
PLR 92.0 Seasonal forest
TG 20.0 Wet forest
C. lima lima LG 82.0 Wet forest, riverine
C. malortieanus malo LS 56.0 Wet forest
C. montanus mont MV 1569.3 Montane forest
C. osae osae LG 122.2 Wet forest, streams
C. plicatus plic LG 112.2 Wet forest, riverine
C. pulverulentus pulv LG 130.5 Wet forest
LS 68.8 Wet forest, treefall gaps
PLR 73.0 Seasonal forest
TG 16.4 Wet forest
C. ricus ricu LG 211.25 Wet forest
C. scaber scab LG 227.7 Wet forest
LS 78.4 Wet forest, streams
PLR 74.8 Seasonal forest
TG 26.3 Wet forest
C. stenophyllus sten LG 180.2 Wet forest
C. villosissimus vill PLR 70.0 Seasonal forest, forest
edges
C. wilsonii wils LA 1559.0 Montane forest
LC 1216.8 Pre-montane forest
C. woodsonii wood BDT 0 Beach
TG 3.8 Beach

high light gaps and from dry forest edges to ravines and swamps
(Kay et al. 2005). Therefore, it is an interesting group to study
plant trait coordination and trade-offs. Furthermore, species
in the genus have the ability to reproduce vegetatively via
rhizomes, which also store water, carbohydrates and nutrients
(Klimesova et al. 2018).

We sampled adult individuals of species of the genus
Costus during the wet seasons of 2018 (July, Costa Rica)
and 2019 (June, Panama). For all traits measured, we aimed
to sample six individuals per species per site (Table 1,
see Supporting Information—Table S1), but could not do
it for the following species: C. bracteatus and C. laevis in
Tortuguero (n = 3 each), and C. lima (n = 2) and C. ricus (n = 4) in
La Gamba.

Plant functional traits

We chose plant functional traits related to the carbon and water
economy of plants, that vary in response to environmental
conditions, including precipitation and temperature regime
(E. Avila-Lovera et al., submitted for publication), and that are
commonly measured to allow for comparison with other
studies. We also included less common traits, such as RhWC and
RhSD, as species in the Costus genus have perennating rhizomes
that are important for the life of the plants. We studied a total of
20 traits among leaves, above-ground stems, rhizomes and fine
roots [see Supporting Information—Table S1; Fig. S3-S22].

Above-ground traits. All leaf traits were measured in one fully
expanded leaf per individual, usually from the fourth-sixth
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Figure 1. Map of Costa Rica and Panama showing the geographic location of the eight field sites. Shading corresponds to elevation (m asl).

node of the plant to standardize leaf age across individuals. We
chose to include traits that could vary with light environment
and water and nutrient availability, the so-called economic
traits, and followed standard protocols (Cornelissen et al. 2003;
Pérez-Harguindeguy et al. 2013).

Leaf relative chlorophyll content (Chl; SPAD units) and
maximum stomatal conductance (g; mmol m= s) were
measured in situ between 0730 and 1200 h preferably on
rainless days. Chlorophyll content was measured using a digital
chlorophyll meter (SPAD 502, Konica Minolta Sensing Inc., Japan),
whereas g, was measured with a steady-state leaf porometer
(SC-1, Meter Environment, USA). After these measurements were
taken, the leaf, including the petiole, was collected, placed in a
zip lock bag and transported to the lab for further processing.

In the lab, we measured leaf thickness (LT; mm) in the
middle portion of the leaf (avoiding major veins) using a digital
micrometer (Mitutoyo IP65, Global Industrial, Port Washington,
NY, USA); then, the whole leaf (lamina + petiole) was
photographed against a white background including a ruler. We
determined leaf size as leaf area (LA; cm?) using Image]J software
(Rasband 1997). The leaf was then weighed whole to obtain leaf
fresh mass and dried at 60 °C for 72 h to obtain leaf dry mass.
From these variables we calculated multiple leaf traits: leaf
dry matter content (LDMC; mg g'), calculated as leaf dry mass
divided by leaf fresh mass, i.e. what proportion of the whole leaf
is not water; SLA (cm? g™), calculated as LA divided by leaf dry
mass; and finally, we calculated two traits, lamina dry mass to
petiole dry mass ratio (LM:PM ratio; g g*) and leaf area to petiole
dry mass ratio (LA:PM ratio; cm2 g%), that have been previously
studied in palms and heliconias as a measure of the costs of leaf
mass support (Chazdon 1986; Rundel et al. 1998).

Dry leaf samples were ground to a fine powder using a mill
(Wiley mini-mill, Thomas Scientific, Swedesboro, NJ, USA) and
analysed for phosphorus (P; %) and potassium (K; %) concentrations
at the Analytical Laboratory of the University of California, Davis (UC
Davis). Ground leaf samples were also sent to the UC Davis Stable
Isotope Facility for determination of carbon isotopic composition
(8™C; %o), carbon concentration (C; %), nitrogen isotopic composition

(8"N; %o) and nitrogen concentration (N; %). Values of 8*C were
standardized against Vienna Pee Dee Belemnite.

From the same plant sampled for leaf traits, we collected
a c¢. 10-cm-long stem sample subtending the leaf previously
sampled, which was placed in a zip lock bag and transported
to the lab for further processing. From the collected stem, we
sectioned a 2-cm-long piece and measured its fresh volume
using the water mass displacement method (De Guzman et al.
2017).Then, the stem sample was dried at 60 °C for 72 h to obtain
stem dry mass. We calculated stem specific density (SSD; g cm-3)
as stem dry mass divided by stem fresh volume.

Below-ground traits. Rhizomes with attached roots were dug up,
placed in a zip lock bag and transported to the lab for further
processing. Rhizomes were washed, and a portion was sectioned,
blotted dry and its fresh mass measured. Fresh volume was
determined as in stems, and the rhizome portion was dried at
60 °C for 72 h to obtain rhizome dry mass. We calculated RhWC
(%) as rhizome water mass divided by rhizome fresh mass and
multiplied by 100, and RhSD (g cm~3) was calculated as rhizome
dry mass divided by rhizome fresh volume.

Fine roots (<2 mm thick) that were attached to the rhizomes
via coarse roots were collected from 0 to 10 cm soil depth. These
fine roots were measured for length and dried at 60 °C for 72 h
to obtain fine-root dry mass. Specific root length (m g) was
calculated as fine-root length divided by fine-root dry mass.
Photos of the fresh roots were taken and fine-root diameter
(FRD; mm) was measured using ImageJ. Length and diameter of
fine roots were then used to calculate fine-root volume, and dry
mass and volume were used to calculate RTD (g cm~3). We could
not obtain fine-root traits for samples in Panama for logistic
reasons.

Statistical analyses

We performed one principal components analysis (PCA) for
above-ground and below-ground traits to extract the main axes
of variation using both individual data points and species means
acrosssitesandthe‘prcomp’functioninRv.3.6.6(RCoreTeam2020).
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Traits were standardized to mean 0 and standard deviation 1
before running the analysis. We tested for phylogenetic signal
in traits using species means across sites (H, of Blomberg’s
K =0, significance at P < 0.05) and using the ‘phylosig’ function
of the ‘phytools’ package in R (Revell 2012, 2019), and found no
phylogenetic signal for any trait [see Supporting Information—
Table S2]; thus, we did not include phylogenetic information
in the PCAs. These results contrast with what has been found
for some root traits in a large data set (Valverde-Barrantes et al.
2017).

To test for pairwise correlations among traits, we performed
an analysis on the species means across sites using the ‘rcorr’
function of the ‘Hmisc’ package in R, and the plots were
performed with the function ‘corrplot’ from the ‘corrplot’
package in R (Wei et al. 2021). To infer correlated evolution of
traits, we estimated phylogenetic independent contrasts (PICs)
of species means across sites using the function ‘pic’ of the ‘ape’
package in R (Paradis et al. 2004, 2018) and a phylogenetic tree
[see Supporting Information—Fig. S1] constructed from a larger
Costus phylogeny publicly available (Vargas et al. 2021). Finally,
we ran a correlation analysis using the PICs. We decided not to
correct for multiple testing, as recommended by Moran (2003).

To determine the contribution of site, species and
individuals to the observed trait variation, we performed a
variance component analysis. We ran a general linear mixed-
effects model using the ‘Imer’ function from the ‘Ime4’ package
(Bates et al. 2015, 2020), to determine the proportion of variance
explained by the three factors: site, species and individuals. The
model used the raw trait data, not mean values.

Results

PCAs performed on species means across sites and on individual
plant values were qualitatively similar; hence, we only present
and discuss the former here (the latter can be found in
Supporting Information—Fig. S2). The first two PC axes together
explained 39.2 % of the total variation, with PC1 explaining
21.4 % and PC2 explaining 17.8 % (Fig. 2; Table 2). PC1 captured
a trade-off between resource acquisition and conservation of
water: species with a resource-acquisitive strategy had high LA,
g,, LT, P and RhWC mostly indicating high water use; whereas
species with a resource-conservative strategy had high LA:PM,
SSD and RhSD mostly indicating low water use and transport
(Fig. 2). PC2 explained a similar amount of variation as PC1, with
a resource-conservation versus resource-acquisition trade-off
that was in accordance with the leaf economic spectrum: Chl,
LDMC, $*C and C loaded positively with PC2 indicating high
investment in structure, and SLA and K loaded negatively with
PC2 indicating high capacity for leaf photosynthesis (Fig. 2).
Interestingly, most below-ground traits, especially fine-root
traits, strongly loaded with PC3, being orthogonal to the rest of
the traits (Table 2).

The pairwise correlations supported the relationships
found among traits in the PCA (see all results in Supporting
Information—Table S3), for example, LA and LT were
positively related with each other (Fig. 3A), whereas g, was
negatively related to SSD (Figs 3A and 4A). Similarly, g, was
negativelyrelated toRhSD (Figs 3A and 4B) and positivelyrelated to
RhWC (Fig. 3A). Furthermore, when correlations were performed
on the PICs, the number of significant correlations increased
from 24 to 27 and the strength of most correlations (r-value)
increased as well (Fig. 3). Some interesting correlations using
both species means and PICs were between: (i) leaf size and

Resource strategy = acquisitive = conservative

_— lima
~

PC2 (17.8% explained var.)
o

\ guan

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
PC1 (21.4% explained var.)

Figure 2. Principal components analysis (PCA) biplot of the studied functional
traits. Groupings denote species with resource-acquisition or resource-
conservation strategies. Species are abbreviated as shown in Table 1. Chl:
chlorophyll concentration; g_: stomatal conductance; LT: leaf thickness; LA: leaf
area; LDMC: leaf dry matter content; SLA: specific leaf area; LM:PM: lamina dry
mass to petiole dry mass ratio; LA:PM: leaf area to petiole dry mass ratio; P: leaf
phosphorus concentration; K: leaf potassium concentration; $**C: leaf carbon
isotopic composition; C: leaf carbon concentration; **N: leaf nitrogen isotopic
composition; N: leaf nitrogen concentration; SSD: stem specific density; RhWC:
rhizome water content; RhSD: rhizome specific density; SRL: specific root length;
FRD: fine-root diameter; RTD: root tissue density.

thickness (Fig. 3); (ii) g, and structural above-ground stem and
rhizome traits: SSD, RhWC and RhSD (Figs 3 and 4); (iii) SRL and
leaf N and 6N (Fig. 3); and (iv) SRL and RTD (Fig. 3).

The variance component analysis showed that there was
substantial trait variation explained by individuals: 32-87 % of
total trait variation compared to 5-58 % explained by species,
and 0.4-42 % explained by sites (Fig. 5). Individual variation was
particularly high in FRD and g, (Fig. 5). Remarkably, site only
explained a relatively high proportion of variance in RTD (26 %),
leaf 8N (35 %) and SSD (42 %) (Fig. 5). Specific leaf area was the
trait with the lowest variation ascribed to site (Fig. 5), despite its
important role describing the leaf economic spectrum.

Discussion

We studied 20 leaf, above-ground stem, rhizome and fine-
root traits of 17 Costus species in eight sites that span lowland
seasonal and wet forests to pre-montane and montane wet
forests. We found evidence for trait coordination and trade-
offs among functional traits, as well as correlated evolution.
Furthermore, trait variation ascribed to individuals was high
across all traits measured, indicating a high contribution of
individual variation to total within-genus variation for Costus.
We found coordination and trade-offs among traits that are
consistent with two distinct axes of resource acquisition and
conservation related to different functions. The first two axes
of the PCA roughly explained a similar amount of the total trait

2202 Yotel\ 91 uo 1senb Aq 12081¥9/€200eId/ L/ | /aIo1E/e|dgoe/Woo" dno-olwapede/:sdny Wwolj papeojumoq



6 | AoBPLANTS, 2022,Vol. 14, No. 1

Table 2. Results from the PCA analysis on species means, including
the eigenvalue of the first three PCs, the percent of total variance
explained by the first three PCs and the cumulative variance
explained. Trait loadings are also included, where bolded values
indicate the highestloading of the trait among the three first PC axes.

PC1 PC2 PC3

Eigenvalue 4.28 3.56 3.14
Percent of total variance explained (%) 214 17.8 15.7
Cumulative variance explained (%) 21.4 39.2 54.9
Trait loadings

Above-ground traits

Chlorophyll concentration 0.14 0.73 0.32
Stomatal conductance 0.66 0.34 0.14
Leaf thickness 0.62 | -0.38 | -0.25
Leaf area 0.77 0.04 | -0.24
Leaf dry matter content -0.11 0.89 | -0.13
Specific leaf area -0.28 | -0.78 0.31
Leaf mass to petiole mass ratio -0.28 0.51 | -0.12
Leaf area to petiole mass ratio -0.48 0.09 0.13
Phosphorus concentration 0.53 | -0.27 0.43
Potassium concentration 0.24 | -0.48 | -0.19
Carbon isotopic composition 0.04 0.44 | -0.11
Carbon concentration 0.16 0.71 | -0.03
Nitrogen isotopic composition -0.34 0.07 0.32
Nitrogen concentration -0.12 | -0.18 0.74
Stem specific density -0.77 0.09 | -0.11

Below-ground traits

Rhizome water content 0.74 0.14 0.53
Rhizome specific density -0.76 | -0.12 | -0.53
Specific root length 0.39 0.01 | -0.78
Fine-root diameter -0.35 0.17 0.69
Root tissue density 0.01 0.04 0.45

variation, precluding the existence of a single major axis of
variation as observed in some studies (Freschet et al. 2010; Liu
et al. 2010). For example, PC1 showed coordination and trade-
offs among traits, both above-ground and below-ground, related
to water acquisition, use and movement. On the other hand,
traits loading on PC2 were consistent with the leaf economic
spectrum, with some species having high leaf C and LDMC,
aligning with a resource-conservation strategy, whereas others
had low LDMC and high nutrient concentrations, corresponding
with a resource-acquisition strategy. Taken together, these
results are consistent with the global plant economic spectrum
(Reich 2014; Diaz et al. 2016) and support the idea of a unified
whole-plant functional strategy. Interestingly, fine-root traits
loaded strongly with the third PC, not being related to the first
two axes of variation.

Few studies have examined below-ground traits and how
they relate to above-ground traits and results from these studies
are often contradictory. For example, some studies found no
coordination between leaf, stem and root traits (Fortunel et al.

chi
>

gs

gs
LT
LA

LbMC @

SLA @ [ ]

LM.PM

LA.PM

o0 LT
LA

SLA

@ LvPm

@ Lovc

LA.PM

d13C

d13C

d15N

d15N

SSD
RhWC
RhSD

SRL Y

FRD o0
RTD

O
O
® ® ssp

000
@ rhwe

RhSD

® O sRL
FRD

Chl
o

gs

gs
LT

LA
LDMC
SLA
LM.PM
LA.PM

LT
LA

[ J
@ Lovc
SLA

o0
@ vprPv

LA.PM

d13C

d13C ()
=z
n
d15N °
[ J

SSD
RhWC @
RhSD @

SRL @
FRD
RTD

RhSD

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 3. Correlation plots showing significant correlations only (P < 0.05). (A)
Cross-species correlations. (B) Correlations using phylogenetic contrasts. Chl:
chlorophyll concentration; g_: stomatal conductance; LT: leaf thickness; LA: leaf
area; LDMC: leaf dry matter content; SLA: specific leaf area; LM:PM: lamina dry
mass to petiole dry mass ratio; LA:PM: leaf area to petiole dry mass ratio; P: leaf
phosphorus concentration; K: leaf potassium concentration; $*C: leaf carbon
isotopic composition; C: leaf carbon concentration; §**N: leaf nitrogen isotopic
composition; N: leaf nitrogen concentration; SSD: stem specific density; RhWC:
rhizome water content; RhSD: rhizome specific density; SRL: specific root length;
FRD: fine-root diameter; RTD: root tissue density.

2012; Bowsher et al. 2016; Silva et al. 2017), whereas others found
leaf-root functional coordination (Freschet et al. 2010; Liu et al.
2010). In our system, rhizomes provide structural support and
water transport to above-ground organs (Maas 1972) and thus
may be critical for herbaceous plants to achieve tall heights
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contrasts. Contrasts were calculated as the difference between trait values of sister species divided by branch length. Trend line is included when correlations were

significant. Species are abbreviated as shown in Table 1.

(e.g. 2 m in C. montanus) given their lack of woody tissue; hence,
they play an important role in plant functioning. We found
that rhizome traits related to above-ground traits loading on
PC1, but were orthogonal to SRL, indicating that below-ground
function in these species may be multidimensional, as has been
previously found in a review of tree species (Weemstra et al.
2016), seedlings of temperate tree species (Kramer-Walter et al.
2016) and temperate herbaceous plants (Zhou et al. 2018). Being
perennial organs, rhizomes perform multiple functions: they
provide support for aerial shoots, serve as carbohydrate storage
organs and are a mean for vegetative reproduction (clonality); as
anatomical stems, they hydraulically connect roots and aerial
shoots. The importance of rhizomes for the life of Costus plants
is evidence in their coordination with above-ground function.
One reason for the no coordination between above-ground
and fine-root traits is that multiple combinations of these
traits can be favoured in the Neotropical forests sampled.

A previous study on trait-environment relationships using
the same species studied here suggested that few functional
traits respond to environmental variation (E. Avila-Lovera
et al., submitted for publication). In the current study, for
example, closely related C. osae and C. lima are found in La
Gamba, Costa Rica, and experience similar macroclimate
conditions (MAT and MAP). However, these species have
different suites of above-ground traits: C. osae has low LDMC
and high nutrients (K and P), whereas C. lima has high leaf C,
low N and g, albeit having similar values of RhWC, RhSD and
SRL. These results may indicate adaptation to different light
microhabitats: C. osae occurs in shady ravines, where there is
high water availability (low LDMC is favoured) but low light
availability (where leaf nutrients can enhance photosynthetic
activity), and C. lima is found in sun-exposed habitats
characterized by both high water and light availability (high
g, is favoured).
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Figure 5. Variance component analysis of the traits studied. We partitioned
the total trait variation into three levels: sites, species and individuals. Chl:
chlorophyll concentration; g.: stomatal conductance; LT: leaf thickness; LA: leaf
area; LDMC: leaf dry matter content; SLA: specific leaf area; LM:PM: lamina dry
mass to petiole dry mass ratio; LA:PM: leaf area to petiole dry mass ratio; P: leaf
phosphorus concentration; K: leaf potassium concentration; §**C: leaf carbon
isotopic composition; C: leaf carbon concentration; 8'°N: leaf nitrogen isotopic
composition; N: leaf nitrogen concentration; SSD: stem specific density; RhWC:
rhizome water content; RhSD: rhizome specific density; SRL: specific root length;
FRD: fine-root diameter;, RTD: root tissue density.

The relatively weak coordination between above-ground and
below-ground traits in these herbaceous plants contrasts with
those from woody congeneric species at higher latitudes, such
as aspen (Hajek et al. 2013) and oak (Cavender-Bares et al. 2004,
2020), and community-level studies (Withington et al. 2006; Liu
et al. 2010), where a clear coordination between below-ground
and above-ground function exists. The only study performed
in the tropics that we are aware of in which above-ground and
below-ground function was studied, also found little coupling
between above- and below-ground functional traits in dry
forest seedlings (Arrieta-Gonzalez et al. 2021), and the authors
suggested the existence of multiple strategies to cope with water
deficit. When comparing our results to those found at higher
latitudes, seasonality experienced by the woody species rather
than difference in growth form may explain such differences,
such that only certain combinations of traits may be successful in
highly seasonal environments at high latitudes (but see Pivovaroff
et al. 2016). The limited coordination among below-ground traits,
but also among below-ground and above-ground traits may be
due to the multiple functions that below-ground organs perform,
and hence a single main axis of trait variation may be precluded
altogether. Variation in plant form and function within and among
species creates the basis for species co-existence, plasticity and
evolvability (Silva et al. 2017). This way, multiple combinations of
traits that lead to different strategies among congeneric species
may facilitate their co-existence within highly diverse plant
communities (Bruelheide et al. 2018), especially in the Neotropics.

Correlations can sometimes better evidence the co-variation
nature of traits among organs. Even though fine-root traits
were strongly related to each other, they were rarely related to
other traits, below- or above-ground. One of the few notable
relationships was between SRL and both leaf §**N and N, where
species with high SRL also had low leaf 6*N and N. This is an
interesting combination of traits given that high SRL indicates
fast acquisition of water and nutrients, which can be beneficial if

paired with high rates of carbon acquisition mediated by high N
concentration. However, in our data set, species with low SRL had
high leaf N and leaf 6*N. Low SRL indicates low ability to explore
soil for water and nutrient sources; however, these species have
leaves with high N concentration, characteristics of the fast-
return end of the LES. One aspect of below-ground function
that we did not explore and could explain these trait-trait
associations is the capacity of plants to form associations with
mycorrhizal fungi. It has been recently reported that the fungal
collaboration gradient dominates the root economic spectrum in
a large data set of species (Bergmann et al. 2020). More work is
needed to unravel this mystery; it is possible that additional traits
not measured here (e.g. relative growth rate, whole-plant biomass
allocation patterns, rates of nutrient uptake) may shed light on
these seemingly contradictory relationships.

Correlated evolution among traits within groups of closely
related species is common (Santiago and Kim 2009; Kembel and
Cahill 2011; Liu et al. 2012; Savage and Cavender-Bares 2012;
Sedio et al. 2012; Zhang et al. 2014; Bruy et al. 2018; Gallaher et al.
2019). We found correlated evolution among LA and LT. Leaf area
determines the capacity to intercept light (Diaz et al. 2016) and has
known impacts on leaf energy and water balance (Cornelissen
et al. 2003). In Costus, species with large leaves, and likely high
competitive ability, also have thick leaves of high succulence.
High succulence allows for greater metabolite storage and has
implications for structure and defence (Gutterman and Chauser-
Volfson 2000; Mason et al. 2016). We also found correlated
evolution among some above-ground and below-ground traits,
which supports the hypothesis of the existence of the plant
economic spectrum (Freschet et al. 2010; Reich 2014). For example,
g, was negatively correlated with SSD and RhSD, and positively
related to RhWC, indicating that these traits evolved together
and that species with high stomatal opening and profligate water
use have low structural investment in above-ground stems and
rhizomes. This low structural investment may indicate short
lifespan but may promote high hydraulic efficiency (anatomical
work to test this relationship is underway). Finally, SRL, our fine-
root trait analogous to SLA of the LES, only evolved in a correlated
fashion with chlorophyll concentration and leaf nutrients, but in
the opposite direction to what it is expected: species with high
SRL had low leaf chlorophyll concentration, leaf N and 8*N. This
unexpected relationship between SRL and leaf N requires further
study in environments where water and nutrient availability can
be controlled and independently modified.

Plant functional traits usually vary as a function of climate
(Cavender-Bares et al. 2004; Wright et al. 2004; Violle et al. 2007,
Moles et al. 2014; Mitchell et al. 2015; Blonder et al. 2017). In
our study however, some traits, such as leaf (LT, LA, LDMC and
SLA) and rhizome structural traits (RhSD), had low percent of
variation ascribed to site. Even within a single genus, we expected
trait variation ascribed to sites given the wide macroclimatic
conditions experienced by species in sites that differ in elevation
[see Supporting Information—Table S1], and the fact that some
traits do respond to climate variation in these Costus species (E.
Avila-Lovera et al. submitted for publication). However, our results
align with other studies that have found low variation due to
site in SLA, LA and LT in tropical riparian plant communities (Liu
et al. 2018). That there was no variation due to site indicates that
(i) those structural traits in the genus Costus are less labile than
other traits (i.e. physiological and nutrient traits), indicating that
they have lower capacity to be adjusted during the course of the
plant lifetime (Scheiner 1993), or (ii) that there are phylogenetic
constrains in those traits, which is further supported by slightly
higher Blomberg’s K values for rhizome structural traits (RhWC and
RhSD) than for other traits [see Supporting Information—Table S2].
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Even though we found little trait variation that can be ascribed to
site, it is important to note that there is habitat variation within
sites, and species may be responding to this variation, rather
than macroclimatic conditions. Future studies in which habitat
variation can be better characterized will add to our understanding
of trait variation in this genus.

Across all traits, a high proportion of total trait variation was
ascribed to individual variation. This is consistent with results
from a recent meta-analysis that showed a high contribution of
intraspecific trait variation to total plant trait variation (Siefert et al.
2015), and from other studies that found that half of the variation
in the LES is within-species variation (Fajardo and Siefert 2018).
Intraspecific trait variation can also be substantial at regional scales
in tropical and subtropical forests (Choat et al. 2007; Umaria and
Swenson 2019) and temperate forests (Fajardo and Piper 2011; Hajek
et al. 2013; Fajardo and Siefert 2018). However, our results contrast
with those that have found that functional traits, especially root
structural traits, are highly associated with phylogeny at levels
above family (Valverde-Barrantes et al. 2017). The fact that we
used a single genus may explain the discrepancy. Nevertheless,
the implications of our results are profound, as high intraspecific
trait variation can drive variation in whole-plant performance
(Westerband et al. 2021), and this may help explain the patterns
we observed in Costus species. High individual variation may result
from species responses to environmental conditions (trait plasticity)
or ecotypic differentiation of populations within species, as several
species in our study are found at more than one site. A recent study
of Costus across environmental gradients suggested that plasticity
is one of the strongest drivers of trait-environment relationships
(E. Avila-Lovera et al., submitted for publication). Regardless of the
mechanism, high individual variation highlights the ability of Costus
species to adjust leaf, above-ground stem, rhizome and fine-root
traits to match the local environmental conditions, which can help
mediate responses to changes in climate. However, further studies
are necessary to evaluate if high individual variation in physiology
has fitness advantages (Nolting et al. 2020).

Conclusions

We conclude that Costus species show two apparent trade-offs
between resource acquisition and conservation, one relating
to water use and one to the LES. Taken together, these axes
determine a unified whole-plant functional strategy for each
Costus species. There was correlated evolution among multiple
traits, especially those related to water movement and use.
Finally, there was little variation in traits ascribed to site, but
high individual variation in most traits, indicating high within-
site and within-species variation.
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independent contrasts analysis and phylogenetic signal tests.
Numbers following species names are unique identifiers (the
species names match those in Vargas et al. 2021).

Figure S2. Principal components analysis (PCA) biplots
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Figure S3. Individual values of chlorophyll concentration by
species and site. Abbreviations are as in Table 1 and Fig. 2.

Figure S4. Individual values of stomatal conductance by
species and site. Abbreviations are as in Table 1 and Fig. 2.

Figure S5. Individual values of leaf thickness by species and
site. Abbreviations are as in Table 1 and Fig. 2.

Figure S6. Individual values of leaf area by species and site.
Abbreviations are as in Table 1 and Fig. 2.

Figure S7. Individual values of leaf dry matter content by
species and site. Abbreviations are as in Table 1 and Fig. 2.

Figure S8. Individual values of specific leaf area by species
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Figure S13. Individual values of leaf carbon isotope
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Figure S14. Individual values of leaf carbon concentration
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Figure S15. Individual values of leaf nitrogen isotope
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Figure S17. Individual values of stem specific density by
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Figure S18. Individual values of rhizome water content by
species and site. Abbreviations are as in Table 1 and Fig. 2.

Figure S19. Individual values of rhizome specific density by
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Figure S20. Individual values of specific root length by
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Figure S21. Individual values of fine-root diameter by
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Figure S22. Individual values of root tissue density by
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