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The human brain is a directional network system of brain regions involving di-
rectional connectivity. Seizures are a directional network phenomenon as abnormal
neuronal activities start from a seizure onset zone (SOZ) and propagate to other-
wise healthy regions. To localize the SOZ of an epileptic patient, clinicians use
intracranial EEG (iEEG) to record the patient’s intracranial brain activity in many
small regions. iEEG data are high-dimensional multivariate time series. We build
a state-space multivariate autoregression (SSMAR) for iEEG data to model the un-
derlying directional brain network. To produce scientifically interpretable network
results, we incorporate into the SSMAR the scientific knowledge that the underly-
ing brain network tends to have a cluster structure. Specifically, we assign to the SS-
MAR parameters a stochastic-blockmodel-motivated prior, which reflects the cluster
structure. We develop a Bayesian framework to estimate the SSMAR, infer direc-
tional connections, and identify clusters for the unobserved network edges. The
new method is robust to violations of model assumptions and outperforms existing
network methods. By applying the new method to an epileptic patient’s iEEG data,
we reveal seizure initiation and propagation in the patient’s directional brain net-
work and discover a unique directional connectivity property of the SOZ. Overall,
the network results obtained in this study bring new insights into epileptic patients’
normal and abnormal epileptic brain mechanisms and have the potential to assist
neurologists and clinicians in localizing the SOZ—a long-standing research focus in
epilepsy diagnosis and treatment.

Keywords: Stochastic blockmodel, cluster structure, directional connectivity, intracra-
nial EEG.
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1 Introduction

Brain activities form a directional network, where network nodes are brain regions and

each network edge represents a directional influence exerted by one region on another.

Such directional information flow from one region to another is referred to as directional

connectivity also called effective connectivity [1]. The purposes of this paper are to

present a new statistical approach for analysis of intracranial electroencephalographic

(iEEG) data and to use our approach to uncover the normal and abnormal directional

brain networks of epileptic patients over the course of seizure development.

Seizures are a directional network phenomenon [2], as abnormal, excessive, and syn-

chronous neuronal activities start from the seizure onset zone (SOZ) and propagate to

otherwise healthy brain regions. Brain surgery to remove the SOZ is a common treat-

ment consideration for patients with drug resistant epilepsy. Pre-surgical evaluation

includes localization of the SOZ using iEEG, which is absolutely critical to the success

of the surgery. Clinicians place iEEG electrodes on the exposed brain (inside the skull)

of epileptic patients to record their neuronal activities in many regions. The recorded

data are high-dimensional multivariate time-series of voltage waveforms, which often

exceed 50 channels (with each channel corresponding to one region). Figure 1(a) shows

the electrode placement on the left hemisphere of a patient who underwent iEEG record-

ings in epilepsy evaluation. Figure 1(b) illustrates 5-second segments of the patient’s

iEEG recordings in two regions/channels.

To localize the SOZ, trained EEG experts visually examine iEEG waveforms and des-

ignate the region that first shows abnormal epileptic activity to be the SOZ [3]. However,

despite careful planning, sometimes visual analysis of intracranial EEG fails to localize

the SOZ clearly [4]. One crucial reason is that sometimes seizure onsets consist of low
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(a) iEEG electrode grid (b) 5-second iEEG recordings from 2 channels

Figure 1: (a) The iEEG electrode placement on the left hemisphere of the epileptic patient
under study. (b) iEEG time-series segments of two regions/channels.

amplitude, very fast activity. This activity may not generate appropriate power that can

be visually detected until the seizure is well underway. Activity with greater power that

can be identified may occur later, by which time seizure activity has spread beyond the

actual SOZ and involves brain regions that are involved in seizure occurrence but do not

serve as the electrical source. Given that seizures are a directional network phenomenon,

our method for mapping directional brain networks (i.e., identifying directional connec-

tions) using iEEG data is expected to improve understanding of the brain system and

localization of the SOZ.

iEEG data are high-dimensional multivariate time series recordings of many small

regions’ neuronal activities at a high temporal resolution (millisecond scale) and spatial

resolution (about 10 mm in diameter) and with a strong signal-to-noise ratio (SNR) [5], in

contrast to popular functional magnetic resonance imaging (fMRI) with a low temporal

resolution and scalp EEG with a low spatial resolution. As such, iEEG data provide

valuable information about directional brain networks.

Mapping directional brain networks based on high-dimensional multivariate time
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series, however, faces multiple challenges. First, it is difficult to construct a model that

can accurately characterize the complex mechanism of a high-dimensional brain system,

i.e, how each region’s activity depends on many others’ activities. Second, the estima-

tion of a high-dimensional model has a large variance. With many regions being studied

and enormous possibilities in directional connections among the regions, it is challeng-

ing to identify only a few strong connections among enormous candidate ones. Though

incorporating anatomic connectivity (AC) information into the directional connectivity

model can improve the estimation of directional connections [6], AC information is not

always available. Here, we consider mapping directional brain networks without rely-

ing on AC information. Simple sparsity regularization does not address the challenge

because high-dimensional sparse networks have many different forms, most of which

do not accurately reflect the brain’s functional organization. For example, standard L1-

regularized estimates [7, 8] lead to the sparse network in which every region has only

a few connections with other regions. However, this sparse network is not consistent

with known brain networks in which regions with similar functions tend to be closely

connected [9]. Third, the computation for analyzing high-dimensional multivariate time

series data can be intensive. Existing approaches to mapping directional networks usu-

ally address only a part of these challenges, as explained below.

Network mapping approaches fall into two major categories: information-theoretic-

measure based methods and model-based methods. The former includes correlations,

cross-correlations [10, 11], cross-coherence [12], transfer entropy [13], directed transin-

formation [14], and directed information [15], and many others [16, 17]. Although these

measures are fast to compute, they are mainly for quantifying pairwise relationship be-

tween regions and ignore system features of the brain in which each region’s activity de-
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pends on many other regions’ activities. Thus, information-measure-based approaches

lack the ability to delineate the entire signal pathway of directional connections from

regions to regions.

Model-based methods have been developed to describe simultaneous directional

connectivity among all the recorded regions. The most popular models include dy-

namic causal modeling [DCM, 18] and neural mass models [NMM, 19], which use

ordinary differential equations (ODE) to characterize directional connectivity. Because

of their complex mathematical formulation, the DCM and NNM are typically used for

low-dimensional brain networks (consisting of only a few brain regions being studied).

To address this limitation, [20–22] proposed to use linear ODEs to approximate high-

dimensional brain systems (consisting of many regions). However, parameter estima-

tion of deterministic ODE models is sensitive to the model specification, data noise, and

data-sampling frequency.

We propose to use a state-space multivariate autoregression-based (SSMAR) model

for iEEG data to address the limitation of existing methods. First, the state-space frame-

work allows for separating the model error due to the inherent model inadequacy for

a complex system and the data measurement error. The SSMAR with the two errors is

flexible to approximate different systems and is robust to various deviations from the

assumed model. Equally importantly, the formulation of SSMAR is much simpler than

ODE models, which thus, enables fast computation for high-dimensional data.

Different from standard MAR [23–25] and SSMAR [26, 27], our SSMAR is uniquely

constructed for analyzing iEEG data to map directional brain networks. It has been

widely documented [28, 29] that brain networks have a cluster structure, in which re-

gions are more densely connected with regions in the same cluster than with regions
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otherwise. Our approach incorporates the cluster structure to greatly improve the model

estimation. Specifically, we propose a stochastic blockmodel (SBM)-motivated prior for

the SSMAR parameters, restricting the estimated network to have the cluster structure.

The SBM [30–33] is a generative model for the networks in the cluster structure. How-

ever, existing applications of the SBM [34, 35] and most cluster identification methods

(also called community detection, a terminology often used in social network literature)

[36, 37] are for observed networks with known edges. The proposed method addresses

a more challenging problem of inferring unobserved networks based on multivariate time

series measurements of network nodes’ activities.

Using the SBM-motivated prior for SSMAR parameters, we develop a Bayesian frame-

work to make inferences about the underlying network. The proposed Bayesian ap-

proach has three major advantages. First, our method improves the efficiency in iden-

tifying connected brain regions (i.e., a high true positive) and produces scientifically

interpretable network results by incorporating the cluster structure into the model. Sec-

ond, the proposed Bayesian framework accounts for the model error due to the model

inadequacy for the complex system as well as the statistical uncertainty in identifying

connected regions. Third, the simple SSMAR formulation brings the flexibility to ap-

proximate various brain systems and enables fast computation for high-dimensional

multivariate time series data. As such, our approach effectively addresses the three ma-

jor challenges in mapping high-dimensional brain networks.

The rest of the article is organized as follows. In Section 2, we introduce the new

SSMAR model for directional brain networks with the cluster structure. We build a

Bayesian hierarchical model with an SBM-motivated prior to make inferences of SS-

MAR parameters and develop an efficient Markov chain Monte Carlo (MCMC) simula-

7



tion algorithm for the ensuing posterior inference. In Section 3, we apply the developed

Bayesian model to data simulated under two different model settings and network pat-

terns and compare the ensuing results with those of existing network mapping methods.

We show that the proposed method is robust to various deviations from the assumed

model and outperforms existing methods by achieving much higher accuracy in identi-

fying connected brain regions. Section 4 presents the analysis results of real iEEG data

from an epileptic patient by the new SSMAR model. We reveal the patient’s directional

brain network changes over the course of seizure development, uncover a unique di-

rectional connectivity property of the SOZ, and use this property to localize the SOZ.

Section 5 concludes with a discussion.

2 Dynamic System Models and Bayesian Inference

2.1 The State-Space MAR Model

Let y(t) = (y1(t), . . . , yd(t))
′ be observed iEEG measurements of d brain regions (equiva-

lently d network nodes of the brain network under study) at time t andx(t) = (x1(t), . . . , xd(t))
′

be the underlying neuronal state functions of the d brain regions at time t for t = 1, . . . , T .

Since each iEEG electrode directly records one brain region’s neuronal activity with a

high spatial and temporal resolution, we propose a simple space model that links yi(t)

to xi(t):

yi(t) = ci · xi(t) + εi(t), i = 1, . . . , d, (1)

where ci is a unknown constant, and εi(t) is a data measurement error with mean zero.

For the state model that describes directional connectivity among the d regions at
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the neuronal level, we propose to use the simplest dynamic system model, i.e., the first-

order multivariate-autoregression (MAR), for x(t):

xi(t) =
d∑
j=1

Aij · xj(t− 1) + ηi(t), i = 1, . . . , d, t = 1, . . . , T,

where ηi(t) is the model error due to the model inadequacy in characterizing the dy-

namics of region i.

Our goal is to develop a parsimonious model to detect the existence of temporal

dependence among neuronal activities of regions rather than building a comprehensive

model that can explain all the neuronal activities. Due to the high-dimensionality and

the current limited understanding of the brain system, it is extremely difficult to build

such a comprehensive dynamic system model. Even though more complex models, such

as high-order MARs, may fit the observed data better, they still suffer from the model

inadequacy. More seriously, high-order MARs have large estimation errors because they

have at least d2 more parameters than first-order MARs. Consequently, the first-order

MAR is more efficient for detecting connected regions and addresses our needs.

Under the state-space MAR, identifying connected regions and mapping the brain

network are equivalent to selecting statistically significant nonzero Aijs. To distinguish

nonzero directional connections from zero ones, we introduce indicators for Aijs:

xi(t) =
d∑
j=1

γij · Aij · xj(t− 1) + ηi(t), i = 1, . . . , d, t = 1, . . . , T, (2)

where γij is an indicator, taking values either 0 or 1. We use γijs to stand for the set of

indicators {γij, i, j = 1, . . . , d}. The use of indicators is similar to the “spike and slab”
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prior [38–40] in the Bayesian variable selection framework [41–44]. Under (2), identi-

fying connected brain regions, i.e., selecting directional network edges, is equivalent to

selecting nonzero γijs, which is the focus of our model estimation.

The observation model (1) and the state model (2) together are the proposed state-

space MAR (SSMAR) for the brain’s directional connectivity. Note that the first-order

SSMAR is different from the first-order MAR: The former is robust to violations of model

assumptions, but the latter is not. This is because the SSMAR uses two error terms, ηi(t)

and εi(t), to accommodate the model inadequacy and measurement error separately.

We let ηi(t)
i.i.d∼ N(0, 1) for several reasons. First, ci in (1) and the variance of ηi(t)

are not uniquely defined. Since we treat the former as unknown, we fix the latter at 1

to avoid the identifiability issue. Second, letting ηi(t) be independent between regions

enables γij and Aij to capture the dependence between regions more efficiently than

otherwise. Third, letting ηi(t) be independent over time brings parsimony to the model.

Again, our purpose is to detect the existence of temporal dependence between regions’

iEEG rather than capturing all possible temporal dependence. Similarly, for the latter

two reasons, we let εi(t)
i.i.d∼ N(0, τi). We show through simulation studies (Section 3)

that our approach is robust to violations of model assumptions.

2.2 Bayesian Hierarchical Model for SSMAR

Since nonzero γijs define the brain’s directional network, we impose the cluster structure

on the estimated brain network through using a stochastic blockmodel (SBM)-motivated

[30–32, 45] prior for γijs. The cluster structure means that regions within the same clus-

ter connect more closely with each other than with regions in a different cluster. The

cluster structure fits the brain’s functional organization reported in the literature [28, 29]
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and is also useful in epilepsy diagnosis. For example, regions in the SOZ’s cluster are

those affected by the SOZ’s activities most. Information about the SOZ’s cluster and its

changes during seizure development can help neurologists assess the effect of seizures

on brain functions. In summary, developing the SBM-motivated prior for SSMAR pa-

rameters to impose the cluster structure on estimated networks is another important

novelty of our approach.

Let K be the pre-specified number of clusters. Let mi = (mi1, . . . ,miK)′ be a K-

dimensional vector with only one element being 1 and the rest being 0; mi labels the

cluster of region i, i.e., mik = 1 indicates region i in the kth cluster. Let Bk1k2 , k1, k2 =

1, . . . , K, denote the prior probability of a nonzero directional connection from a region

in cluster k2 to another region in cluster k1. Let B be a K ×K matrix with entries Bk1k2

for k1, k2 = 1, . . . , K.

Prior specification for the cluster structure. The prior for the brain network with the

cluster structure is a joint distribution for indicators γijs, the cluster labels mis, and the

probability matrix B as follows:

γij|mi,mj,B
ind∼ Bernoulli(m′

i Bmj); (3)

mi
i.i.d∼ Multinomial(1; p1, . . . , pK) for i = 1, . . . , d, and (p1, . . . , pK) ∼ Dirichlet(α);(4)

Bkk
i.i.d∼ Uniform(l0, 1) and Bk1k2

i.i.d∼ Uniform(0, u0), k1, k2 = 1, . . . , K, k1 6= k2; (5)

where l0 and u0 are given constants between 0 and 1, and α = (1, . . . , 1), assigning

uniform weights to different clusters. The distribution (3) specifies the probabilities

of both within-cluster and between-cluster connections. For example, if mik1 = 1 and

mjk2 = 1, then m′
i B mj = Bk1k2 , which is the probability of existing a directional

11



connection from cluster k2 to cluster k1; if mik = 1 and mjk = 1, m′
i B mj = Bkk, which

is the prior probability of existing a directional connection between two regions in the

same cluster k. Since within-cluster connections are dense and strong, while between-

cluster connections are sparse [46], we let u0 = 0.1 and l0 = 0.9. The large difference

between u0 and l0 facilitates differentiating within-cluster connections from between-

cluster ones and identifying clusters.

The distributions (3), (4), and (5) together define the SBM-motivated prior for γijs.

Our goal is to identify clusters and select significant edges by estimating the cluster

labels for regions,mis, and the indicators for edges, γijs.

Prior specification for Aijs. We assign a normal prior to Aij :

Aij
i.i.d∼ N(0, ξ20), (6)

where ξ0 is a positive constant so that the density of Aij is almost flat within its domain.

Priors for other parameters. Letx(0) = (x1(0), . . . , xd(0), c = (c1, . . . , cd),µ = (µ1, . . . , µd),

and τ = (τ1, . . . , τd). We assign the following priors to the rest parameters:

xi(0)
ind∼ N(µi, 1), µi

i.i.d∼ N(0, ξ21), ci
i.i.d∼ N(0, ξ21), p(τi) ∝

1

τ 1+ρ0i

exp{−ρ0
τi
}, i = 1, . . . , d, (7)

where ρ0 is a pre-specified small positive constant to give an almost flat prior for τ and

ξ1 is a large positive constant to give almost flat priors for ci and µi.

Joint posterior distribution. All the parameters to be estimated in the proposed Bayesian

framework are Θ = {Γ,B,M,A, c, τ ,µ,p}, where Γ is a d× d matrix with entries γij for

i, j = 1, . . . , d, M is a K × d matrix with the ith column being mi, A is a d × d matrix

with entries Aij for i, j = 1, . . . , d, and p = {p1, . . . , pK}.
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Let X = {x(0), . . . ,x(T )} and Y = {y(1), . . . ,x(T )}. The SSMAR model (1) and

(2) with prior distributions (3), (4), (5), (6), and (7) lead to the posterior distribution:

p(X,Θ|Y) ∝ p(Y|X,Θ) · p(X|Θ) · p(Θ). The detailed formulation of the joint posterior

distribution is provided in the Appendix.

2.3 EM Algorithm for Setting Initial Values and Hyperparameter

We simulate from p(X,Θ|Y) with a partially collapsed Gibbs Sampler [47], whose Markov

Chain Monte Carlo (MCMC) simulation steps are provided in the Appendix.

The MCMC simulation can take many iterations to converge especially for large d.

To address this issue, following the practice suggested in [Chapter 13.1, 48], we use

an expectation-maximization (EM) algorithm to find the starting values for the MCMC

simulation. Specifically, we optimize p(Y|Θ̂) =
∫
p(Y|Θ̂,X) · p(X|Θ)dX by the EM

algorithm, in which the state functions X are treated as missing values. The output of

the EM algorithm, Θ̂ in the final step, is used as the initial value for the following 10,000

MCMC iterations. For all our simulation and real data analysis, we verified that the

MCMC algorithm converged upon evaluating the Gelman-Rubin statistic [49].

We need to determine the value of K, the number of clusters, for the proposed

Bayesian model. Standard approaches to selecting hyperparameters for Bayesian meth-

ods include information criteria and cross-validation. However, these methods are time-

consuming for large d, because they all require running the posterior simulation for each

candidate K. We propose to select the value for K by the EM algorithm. Specifically, we

letK = d in our EM algorithm. We set the initial values ofmii to 1 for i = 1, . . . , d, that is,

we let each region form one independent cluster at the start of the EM algorithm. As the

algorithm iterates, several regions fall into the same cluster, and the number of distinct
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clusters of the d regions becomes stable. Since the EM algorithm can find the number of

clusters that leads to a locally optimal posterior, we let the K in the Bayesian model be

the number of distinct clusters in the final step of the algorithm.

2.4 Posterior Inference

We use two posterior probabilities to map the brain network: P̂m
ij = 1

S

∑S
s=1 δ(m

(s)
i ,m

(s)
j )

and P̂ γ
ij = 1

S

∑S
s=1 γ

(s)
ij , where S is the total number of MCMC samples after burn-in.

The former, called the clustering probability, is the posterior probability of two regions

i and j in the same cluster; and the latter, called the network edge probability, is the

posterior probability of nonzero directional connectivity from region j to i. We use P̂m
ij ,

i, j = 1, . . . , d, to identify clusters. Given a threshold ~m, if P̂m
ij > ~m, regions i and j

are put in the same cluster; if additionally, P̂m
jk > ~m, then the three regions i, j, and k

are put in the same cluster regardless of the value of P̂m
ik . We use P̂ γ

ij to select directional

network edges. Given a threshold ~γ , if P̂ γ
ij > ~γ , we deem the directional connection

from region j to i nonzero and select the directional network edge from j to i.

Choice of thresholds. The total numbers of potential network edges and possible net-

work patterns are enormous for high-dimensional networks. Because of the uncertainty

resulted from the high-dimensionality, posterior probabilities P̂m
ij and P̂ γ

ij are all small.

To address this issue, many Bayesian methods select variables based on the ranks of

their posterior probabilities [21, 50]. We here propose to determine the thresholds for

P̂m
ij and P̂ γ

ij based on their significance/p-values under the null hypothesis that all the

regions are independent from each other, as explained in detail below.

We first generate a null data set Y0 that satisfies the null hypothesis. Specifically,

given long iEEG time series before seizure onsets, we randomly sample a short segment
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Y 0
i = {yi(t), t = ti + 1, . . . , ti + T} of each region i and let the pairwise distance between

any two regions’ segments, |ti − tj|, no smaller than 2T . All the regions’ segments Y 0
i ,

i = 1, . . . , d, form Y0, in which the temporal dependence of each region’s time-series

data points remains while the dependence between regions’ time series is almost none.

Applying our Bayesian method to Y0, we obtain the ensuing the clustering probabili-

ties and network edge probabilities, which form the empirical null distributions for P̂m
ij s

and P̂ γ
ijs, respectively. We evaluate the p-values of P̂m

ij s and P̂ γ
ijs based on the null dis-

tributions and determine the thresholds for P̂m
ij s and P̂ γ

ijs corresponding to the chosen

p-value. We here use the p-value of 1% to ensure a low false positive rate.

3 Simulation Study

3.1 Example 1: Simulation from A Third-Order SSMAR

We simulated multivariate time-series data from the following third-order SSMAR.

xi(t) =
d∑
j=1

A1,ij xj(t− 1) +
d∑
j=1

A2,ij xj(t− 2) +
d∑
j=1

A3,ij xj(t− 3) + ηi(t) and

yi(t) = ci · xi(t) + εi(t).

The above system has three clusters of size 15, 15 and 20. We consider region j has a

directional influence over i, if at least one of A1,ij , A2,ij , and A3,ij is nonzero. Figure 2(a)

shows the simulated network pattern, where the presence of a directional connection is

indicated by an edge (grey edges for within-cluster connections and purple edges for

between-cluster connections).
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We simulated ηi(t) from the model

η(t) = 0.5η(t− 1) + δ(t) and δ(t)
i.i.d∼ MNV(0,Σ1), (8)

where Σ1 is a block diagonal matrix with each block corresponding to one cluster. The

diagonal entries of Σ1 all equal 1 and off-diagonal entries in diagonal submatrices follow

Uniform(0,0.5). The upper bound of off-diagonal entries is chosen such that Σ1 is strictly

positive definite.

We generated the observation errors ε(t) = (ε1(t), . . . , εd(t))
′ from the model

ε(t) = 0.5ε(t− 1) + ζ(t) and ζ(t)
i.i.d∼ MVN(0,D

1
2 Σ2D

1
2 ), (9)

where Σ2 is created in the same way as Σ1, and D is a d-by-d diagonal matrix with the

diagonal entries chosen such that the SNRs of all the time series equal 10. The median

SNR of real iEEG data is much higher than 10 [20]. As such, the simulated model errors

and data errors are all spatially and temporally correlated, which violates the model

assumptions of the proposed SSMAR.

Using the simulated edges as the true values, we calculated false positive rates (FPR)

and true positive rates (TPR) of network edge selection based on different thresholds for

P̂ γ
ijs. For comparison, we examined the FPRs and TPRs of popular competing methods,

including the third-order MAR with L1 regularization (implemented by using the R

package BigVAR [8]), denoted by MAR(L1), partial directed coherence (PDC) [51], the

spectrum synchronicity [52], and graphical lasso (Glasso) [53, 54]. Figure 2(b) shows the

ROC curves of TPRs vs. FPRs for these methods. The proposed Bayesian method with

the SBM-motivated prior (BSBM) outperformed the other methods as evidenced by its
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(a) Simulated Cluster Structure (b) ROC Curves (c) Estimated Brain Network

Figure 2: (a) The true simulated network structure. (b) The ROC curves of the proposed
Bayesian method with a SBM-motivated prior (BSBM) and competing methods includ-
ing MAR(L1), PDC, the spectrum synchronicity, and Glasso. (c) The estimated network
corresponding to 1% p-value.

much greater TPRs given the same FPRs.

Figure 2(c) shows the estimated network pattern using the thresholds corresponding

to 1% p-value for P̂m
ij and P̂ γ

ij . The proposed method was able to identify three clusters.

For detecting the directional connections among the 50 regions, the overall TPR and FPR

are 0.84 and 0.02. More specifically, the TPR and FPR are 0.95 and 0 for within-cluster

connections and 0.45 and 0.02 for between-cluster connections. The comparably low

TPR for selecting between-cluster connections is due to several reasons. First, since the

clustering is subjective, our selection of directional network edges based on P γ
ij does not

account for the identified clusters. As within-cluster connections (accounting for 32.6%

of all candidate connections) are much denser than between-cluster connections (9.0%

of all candidate connections), network edge selection is more towards selecting within-

cluster connections, so that the overall network edge selection accuracy is high. Second,

the number of candidate between-cluster connections is enormous and even more than

the total number of true network edges. As such, the true between-cluster connections
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are highly sparse and more difficult to identify than within-cluster connections. Third,

since the number of null connections is large, we used a high threshold for P γ
ij to avoid

many false selections, which also leads to a low TPR for selecting between-cluster con-

nections. Overall, the proposed method outperformed existing methods by achieving a

higher TPR and an almost zero FPR.

In summary, this simulation demonstrates the robustness of our SSMAR to violations

of model assumptions and its efficiency in identifying connected regions and clusters.

3.2 Example 2: Simulation from the Dynamic Causal Modeling

We simulated time series from a 50-dimension dynamic system given by the dynamic

causal modeling (DCM) [18], the most popular ODE-based model for the brain’s direc-

tional connectivity. The DCM is for low-dimensional brain networks. We expanded its

state model to be high-dimensional and the same as that of the sparse regression-DCM

(srDCM) [55], an extension of the DCM for high-dimensional brain networks. We used

this high-dimensional state model to generate x(t) of 50 regions. Then we simulated

y(t) based on the observation model of the DCM, which describes the transformation

of neuronal activity x(t) into observed y(t). The signal-to-noise was set to be 1, which

was considered small in the literature [55]. Figure 3(a) shows the simulated directional

network among 50 regions.

We applied the proposed BSBM to simulated y(t) with 2714 time points, which were

identical to those of the simulated data under the srDCM [55]. We also applied the

BSBM to down-sampled data with 1000 time points. Figures 3(b) and 3(c) show the

ROC curves of the BSBM and other competing methods for the data of two frequencies.

We also analyzed the simulated data by the srDCM. Though the proposed model is
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distinct from the DCM and srDCM, our method was robust to model specification, data

noise, and data-sampling frequency and outperformed existing methods by achieving

the largest area under the ROC curve.

(a) Simulated Network (b) ROC Curves for Data with
2714 Time Points

(c) ROC Curves for Data with
1000 Time Points

Figure 3: Simulation studies of two generative models for fMRI data. (a) The simulated (true)
network pattern. (b) ROC curves of network edges selection for the simulated data at 2714 time points.
(c) ROC curves of network edge selection for the simulated data at 1000 time points.

4 Real iEEG Data Analysis

We applied the proposed method to iEEG data of an epileptic patient, who had 64 elec-

trodes placed on the exposed surface of his brain, as shown in Figure 1(a). iEEG recorded

the patient’s brain activities in 3 seizures. The sampling rate of this patient’s iEEG data

was 4000 Hz. We down-sampled the iEEG data to 1000 Hz, a typical rate used in the

literature [20, 56]. EEG experts manually examined the data and determined seizure

onset times and the SOZ, which was G37. A responsive neurostimulation system was

later implanted in his brain with a lead placed on G37. The use of RNS has significantly

reduced his seizure occurrences. This confirms that the SOZ was accurately located. In

our analysis, we treated seizure onset times as given, since the detection of seizure on-

set time is not difficult. However, we did not use the location information of the SOZ
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when mapping the directional brain network among recorded brain sites. The SOZ was

treated as unknown and equally as other brain sites. As such, we could validate our

network results against the location information of the SOZ.

Channels 63 and 64, as the reference electrodes, were removed from the analysis. We

evaluated connectivity among the rest 62 regions. To minimize the residual artifacts of

60 Hz electrical noise, we used a 60 Hz notch filter during the primary recording and

removed the first principal component through the principal component analysis.

Once a seizure starts, the connection strength between the SOZ and other regions

increases [57], resulting in abnormally synchronized or excessive neuronal activities in

other regions [58]. Thus, an effective brain network mapping methods should reveal

different brain networks before and after seizure onset: More regions are expected to be

affected by the activities from the SOZ after the seizure onset. We applied our method to

map brain networks in the periods around the seizure onset time and examined the ef-

fectiveness of our method in revealing different brain networks before and after seizure

onset. We focused on four time periods: 26 to 50 seconds before seizure onset, 1 to 25

seconds before seizure onset, 1 to 25 seconds after seizure onset, and 26 to 50 seconds

after seizure onset. To ensure effective approximation of the underlying complex brain

system by the SSMAR and also to accommodate potential variation of brain activities

over time, we applied the developed method to each 1-second iEEG segment (contain-

ing 1000 time series measurements) independently. In total, we analyzed 300 1-second

iEEG data segments (4 periods × 25 seconds × 3 seizures).

For each 1-second data segment and for each pair of regions i and j, we obtained

their clustering probability P̂m
ij and network edge probabilities P̂ γ

ij and P̂ γ
ji. For each

seizure period, we took average of posterior probabilities in 75 segments and denoted
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the ensuing average posterior probabilities by P̄m
ij , P̄ γ

ij and P̄ γ
ji. We identified clusters and

connected brain regions and mapped brain networks for four seizure periods based on

these average probabilities. This analysis is consistent with the medical practice where

reliable epilepsy diagnosis is based on combined information of iEEG recordings of at

least 3 seizures [59].

(a) t ∈ [−50,−25] sec-
onds

(b) t ∈ [−25, 0] seconds (c) t ∈ [0, 25] seconds (d) t ∈ [25, 50] seconds

Figure 4: Brain networks for four periods. t = 0 is the starting time of seizure onset. Grey and
purple edges indicate within-cluster and between-cluster directional connections, respectively, based on
a threshold corresponding to 1% p-value. The node in the diamond is G37, the true SOZ. A node in light
blue corresponds to a region in a cluster containing itself only. Nodes in the same color (dark blue, green,
pink, red or yellow) are regions identified to be in the same cluster.

4.1 Network Results

Figures 4(a)-4(d) show estimated networks for the four periods using the thresholds

corresponding to the p-value of 1%. The SOZ is at G37, indicated by the diamond in

all these four figures, while all the other regions are indicated by circles. The shown

network edges (in grey or purple) indicate their network edge probabilities above the

threshold; and the nodes indicated by the same color other than light blue are corre-

sponding to the regions identified to be in the same cluster. Each region indicated by
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light blue forms one cluster that contains the region itself only.

Our method reveals that the networks for the two pre-seizure periods were simi-

lar (Figures 4(a) and 4(b)), indicating that the subject’s brain network was steady before

seizure onset. However, dramatic changes occurred in the networks once seizure started

(Figures 4(c) and 4(d)). Compared to the pre-seizure networks, more regions were con-

nected to the SOZ (G37) and fell into the same cluster as the SOZ, indicating that the

activity of the SOZ affected more and more regions as seizure developed. This result is

in line with the existing understanding of seizure propagation [2, 57].

To demonstrate the advantages of our method, we also analyzed the same iEEG data

using several competing methods, including correlation, cross-correlation, partial di-

rected coherence (PDC) [51], directed transfer function (DTF) [60], L1-penalized MAR

(MAR(L1)), and graphical lasso (Glasso) [53, 54]. We used each of these methods to ana-

lyze 300 1-second segments independently and obtained 300 calculated values for each

candidate network edge (either directional or undirectional depending on the method).

For each candidate network edge, we used the average of 75 values in each period to

quantify the strength of connection. For comparison, we selected network edges with

top 5% averages, because the network edges selected by our method based on the p-

value of 1% roughly correspond to the edges with top 5% P̄ γ
ijs. Figures 5(a)-5(l) show

the networks estimated by the competing methods in the periods right before and right

after the seizure onset. All these popular methods failed to detect the changes in the

network at the seizure onset time, as evidenced by the similarity between the pre-onset

and seizure-onset networks.
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(a) Corr. Pre-onset (b) Corr. Onset (c) Cross-Corr. Pre-onset (d) Cross-Corr. Onset

(e) MAR(L1) Pre-onset (f) MAR(L1) Onset (g) Glasso Pre-onset (h) Glasso Onset

(i) PDC Pre-onset (j) PDC Onset (k) DTF Pre-onset (l) DTF Onset

Figure 5: Brain networks estimated using correlation, cross-correlation, MAR with an L1

penalty (MAR(L1)), graphical Lasso (Glasso), partial directed coherence (PDC), and directed
transfer function (DTF) methods. Each network edge indicates a pair of regions identified to be
connected by the competing methods.
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4.2 SOZ Localization

We hypothesize that the SOZ exhibits a significant change in its connectivity to other re-

gions at the seizure onset. To quantify this change, we developed the following method.

For each period, for each region, say j, we calculated the average of network edge prob-

abilities from j to all the other regions,
∑

i P̄
γ
ij/d, referred to as region j’s average direc-

tional connectivity (ADC) in the period. We use the ADC difference between the periods

right after and before the seizure onset to quantify the change in directional connectiv-

ity from region j to other regions. Figure 6 shows the ADC changes of 62 regions at

the seizure onset. Except for one region, the SOZ and its neighboring regions have the

highest increases in ADC.

(a) (b)

Figure 6: (a) Directional connectivity changes of 62 regions at seizure onset. (b) Regions with highest
increases in directional connectivity.

We propose to select the regions with high ADC increases to be candidates for SOZ.

To determine the threshold for ADCs, we calculated the 62 regions’ ADC changes in the

first two pre-seizure periods for the 3 seizures recorded by iEEG. Then we selected the

regions whose ADC changes at the seizure onset are larger than the maximum of ADC

changes in the two pre-seizure periods. Figure 6(b) shows the selected regions (in red).
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Our result showed that the small brain area including the SOZ G37 has the highest

increase in directional connectivity at the seizure onset. This result is in line with the

existing literature about the SOZ [57]: the abnormal, excessive neuronal activity starts

from it and spreads to other regions. Our method quantified brain network changes

and uncovered that the brain area including the SOZ first demonstrated an increase in

directional connectivity during the seizure development.

In summary, with our method, we revealed three characteristics of the epileptic pa-

tient’s directional brain network. (1) The patient’s network changed at the seizure onset

time. (2) The change occurred around the SOZ, as the SOZ cluster expanded to include

more regions, and the number of directional connections between the SOZ and other

regions increased. (3) The extent of the directional connectivity of the SOZ increased

most compared to other regions at the seizure onset time. These three results are in line

with the existing understanding of seizure initiation and propagation. In contrast, ex-

isting network methods could not obtain the above three results together. These results

are useful for identifying the brain areas affected by seizures and for evaluating the ef-

fect of seizures on brain functions. Also, our method has the potential to help clinicians

localize the SOZ and, thus, to improve epilepsy diagnosis and treatment.

5 Discussion

This paper develops a new high-dimensional dynamic system model for mapping di-

rectional brain networks using iEEG data. The proposed approach has three novelties.

First, we propose a state-space first-order MAR-based model for the brain network. This

model is effective for approximating various high-dimensional brain systems and is ro-
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bust to violations of model assumptions. Second, in contrast to standard SSMAR and

MAR models, the proposed Bayesian framework incorporates the prior knowledge of

the cluster structure into the model estimation, which addresses the challenge in detect-

ing connected brain regions among many possible ones. Our method produces scien-

tifically meaningful network results. Third, we develop a stochastic-blockmodel (SBM)-

motivated prior to impose the cluster structure on the SSMAR parameters that denote

directional edges. This is novel from standard SBMs for observed networks where net-

work edges are directly known.

The proposed method can robustly detect directional connections with high accu-

racy, even if the underlying model for the brain network is nonlinear for three reasons.

First, we apply the SSMAR to short iEEG time segments so that the linear MAR can effec-

tively approximate the underlying network system. Second, we use the proposed model

to identify the directional connections through detecting the existence of temporal de-

pendence among neuronal activities of regions rather than estimating the nonlinear in-

teractions among regions. The first-order SSMAR focuses only on the primary temporal

dependence (rather than the exact order or nonlinearity of the dependence) among mul-

tivariate time series. Thus, the model is parsimonious in terms of the number of model

parameters and enables efficient detection of directional connections among many re-

gions. Third, the SBM-motivated prior can effectively capture potential brain network

patterns. Using the SBM-motivated prior increases the efficiency in detecting directional

connections. In summary, the proposed integration of a conventional SSMAR and the

cluster structure yields robustness, flexibility, efficiency, and computational feasibility

in modeling and estimating brain network systems.

The obtained network results from iEEG data analysis by the proposed method re-
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veal how seizures propagate from the SOZ to other regions and thus, bring new insights

into the brain’s normal and abnormal mechanisms and functions and dysfunctions. By

assuming the cluster structure for the brain network, we identify the SOZ’s cluster (the

regions affected strongly by the SOZ’s activity) and its changes during seizure devel-

opment. Such information can help neurologists assess the effect of seizures on brain

functions. Moreover, by revealing the unique connectivity property of the SOZ, our

network analysis can improve SOZ localization in clinical treatment for epilepsy.

We have applied statistical methods used for localizing the SOZ based on EEG data

to our iEEG data. Specifically, [61] developed frequency specific methods to localize the

SOZ through detecting changes in EEG data; and [62] used the differences in persistent

homology between EEG data in pre-seizure and seizure periods to localize the SOZ.

However, these methods tend to have much higher FPRs than the proposed method

most likely because EEG and iEEG data have different properties. The two methods

[61, 62] require the time series before and after seizures to be stationary for a relatively

long period. Since the regions recorded by EEG are large and spatially distant from each

other, the changes in one EEG region take a relatively long time to spread to other re-

gions. As such, the assumption of stationary long time series required by the two meth-

ods can be satisfied with EEG data. In contrast, regions recorded by iEEG are spatially

close. Seizures propagate from the SOZ to other regions quickly, and thus, many regions

surrounding the SOZ can have sharp changes in frequencies and persistent homology in

a short period of time. This phenomenon makes it difficult for the methods that rely on

relatively long stationary time series to separate the SOZ from surrounding regions. Be-

cause our method is focused on detecting the change in directional connectivity instead

of the change in time series, our method can better exclude non-SOZ regions whose
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directional connectivity remains unchanged at the seizure onset.
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