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Abstract—Face recognition (FR) systems are fast becoming
ubiquitous. However, differential performance among certain
demographics was identified in several widely used FR models.
The skin tone of the subject is an important factor in addressing
the differential performance. Previous work has used modeling
methods to propose skin tone measures of subjects across
different illuminations or utilized subjective labels of skin color
and demographic information. However, such models heavily rely
on consistent background and lighting for calibration, or utilize
labeled datasets, which are time-consuming to generate or are
unavailable. In this work, we have developed a novel and data-
driven skin color measure capable of accurately representing
subjects’ skin tone from a single image, without requiring a
consistent background or illumination. Our measure leverages
the dichromatic reflection model in RGB space to decompose
skin patches into diffuse and specular bases.

Index Terms—face recognition, differential performance, skin
reflectance, skin color

I. INTRODUCTION

Interest in facial recognition has been increasing rapidly
as the technology has improved in performance and reliability
over the past few decades. Facial recognition systems are com-
monly used in video authentication, criminal identification and
building/device access control and many other areas [1]. Since
facial recognition is involved in such critical applications,
researchers are investigating how error rates differ between dif-
ferent demographic groups. A report by the National Institute
of Standards and Technology (NIST) studied this question and
found evidence of demographic differentials in the majority
of algorithms evaluated [2]. While the best algorithms did not
present a differential, there is a desire to minimize this for all
algorithms. Performance differential commonly comes about
by maximizing overall predictive accuracy without considering
how one subgroup’s performance masks another’s deficiencies
[3]. Recent research has focused on providing solutions to
differential performance in facial recognition, or often called
”bias” by the popular press. The problem has two components,
false negatives and false positives. Since each is a unique
problem and bias encompasses a larger, diverse set of issues,
biometric researchers prefer the term differential performance
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rather then bias [4]. The solutions typically fall into one
of three categories: re-balanced training sets [5], protected
attribute suppression [6], and model adaption [7]. Nearly all
of these solutions require datasets containing demographic
labels for applying their strategies and evaluating performance.
While datasets like this exist [8], [9], they represent a small
fraction of the total number of datasets for facial recognition.
Furthermore, datasets are often labeled for a single task [10],
and demographic data may be overlooked because it is difficult
to collect reliably. For this reason, many researchers apply
demographic information to datasets after collection. One ap-
proach is to use an off-the-shelf deep-learning-based ethnicity
classifier. The authors in [5] utilize the proprietary Face++
API for labeling their datasets. While this method scales
easily to large datasets, the failure points of these models
are not well understood and the complex relationships they
rely on are very difficult to interpret. Due to this limitation,
many researchers rely on more readily apparent attributes such
as skin color for labeling their datasets. While skin color
doesn’t directly represent demographic information, it does
have correlation with ethnic self-definitions [11]. Nevertheless,
determining a person’s inherent skin color from an image can
be challenging due to a person’s natural skin variability, the
camera parameters, and changes in lighting. Figure 1 depicts
the variation of skin tone for a subject in MEDS-II dataset
[8]. A widespread method for estimating skin pigment from
facial images is via Fitzpatrick skin type (FST) [12]. Despite
its popularity, evidence is beginning to mount that FST has
limited quantification and reliability [13], particularly for non-
white individuals [14]. In response to FST’s limitations and
off-the-self deep algorithm’s poor interpretability, researchers
have developed the skin color metrics Individual Typology
Angle (ITA) [15] and Relative Skin Reflectance (RSR) [16].
ITA utilizes colorimetric parameters to provide a point-wise
estimate of the skin color represented in the image of a
person. On the other hand, RSR is a data-driven approach
that utilizes the distribution of skin pixels in color space to
fit a linear model estimating skin tone. Both methods are
sensitive to changes in illumination and RSR in particular
requires a highly controlled acquisition environment (constant
background, lighting and camera). These restrictions greatly
hamper the usefulness of these metrics in the more challenging
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deployments of facial recognition without control over the

collection environment.

Motivated by these shortcomings, we introduce Skin Re-

flectance Estimate based on Dichromatic Separation (SREDS).

SREDS provides a continuous skin tone estimate by leveraging

the dichromatic reflection model [17] and explicitly consider-

ing the different types of illumination across the face. This

provides SREDS with superior or comparable performance in

both less consistent and highly controlled acquisition environ-

ments. Additionally, the dichromatic model provides us greater

interpretabilty into the locations of the face most utilized in

the final metric generation.

To evaluate this measure, we consider both its stability and

meaningfulness compared to ITA and RSR over three different

datasets: Multi-PIE Multi-view dataset [18], the Multiple En-

counter Dataset (MEDS-II) [8], and the Morph dataset [9]. We

measure consistency using intra-subject variation and analyze

meaningfulness by examining the distribution of ethnicities

with respect to skin color estimates. Since bias mitigation

frameworks optimize to reduce differential performance with

respect to their demographic information, we expect any

performance improvement in the demographic labeling to

translate to more fair algorithms for end users. The next

sections provide a description of skin metrics, preprocessing,

datasets used, results, discussion, and conclusions.

Fig. 1. Variability of skin color of the same subject from MEDS-II dataset

II. BENCHMARK SKIN COLOR METRICS

In this section we discuss our implementation of two

existing skin color metrics, ITA and RSR. Each method has

a unique pipeline from facial image to final metric, and we

replicated the original work to the best of our ability.

A. Individual Typology Angle

Individual typology angle (ITA) is a type of colorimetric

analysis designed to measure acquired tanning [15]. Given

the simplicity of ITA and its correlation with Melanin Index

[19], it is an ideal candidate for determining skin tone directly

from an image. An RGB image is converted into CIE-Lab

space [20], as follows: (1) the ‘L’ component which quantifies

luminance, (2) the ‘a’ component - absence or presence of

redness, and (3) the ‘b’ component - yellowness. Using the

‘L’ and ‘b’ components, Pixel-wise ITA value, in degrees, can

be estimated throughout an image as:

ITA =
arctan(L− 50)

b
∗ 180

π
. (1)

In order to find suitable skin pixels in the image, a Dlib

landmark extractor (see Section V) is used to detect the

forehead, left cheek, and right cheek facial regions. For

Fig. 2. Region of interest extraction for cheeks,forehead, and background
crops (Left). Adaptive skin segmentation (Right)

each facial region, pixel-wise ITA is computed and smoothed

using an averaging filter. The mode of each region’s resulting

distribution are averaged together to create a single skin tone

estimate for a face.

B. Relative Skin Reflectance

Relative Skin Reflectance (RSR) is a process designed to

relate physical properties of the skin to the performance of

facial recognition [16]. The pipeline works by removing the

confounding effects of imaging artifacts on skin pixels and

then fitting a line in the direction of greatest variance in

RGB color-space. The resulting metric is related to the skin

tone of each subject relative to the rest of the photos in the

dataset. The computation of RSR begins with the selection

of facial skin pixels using face detection, circular masking,

and luminance outlier removal as described in [21]. Pixel

intensities are then corrected using divisive normalization via

background sampling. We refer to this preprocessing pipeline

as adaptive skin segmentation. Figure 2 depicts the outcome
of adaptive skin segmentation algorithm applied to two faces.

After removal of non-skin and outlier pixels, the researchers

assume that the direction of greatest variation in RGB color-

space represents net skin reflectance. Linear principal compo-

nent analysis (PCA) is used to fit a line in this direction.

The final RSR metric is produced by averaging the pro-

jection of skin pixels onto the first principal component.

Assumptions include consistent lighting, the same acquisition

camera, and constant background. The Multi-PIE dataset was

able to meet all conditions. However, due to the lack of

constant background in MEDS-II and MORPH-II, the back-

ground normalization step was bypassed for these datasets.

As a further limitation, the metric only gives an indication of

where a subject lies in terms of net skin reflectance relative

to the other subjects in the dataset, rather then an absolute

measure.

III. HUMAN SKIN ANALYSIS

Previous work relied on heavily controlled and calibrated

image acquisition, i.e., acquiring multiple samples under

controlled illumination or with different polarization, in or-

der to study the fundamentals of reflectance. The acquired

data is fit to bidirectional reflectance distribution function

(BRDF) and bidirectional surface scattering distribution func-

tion (BSSRDF) models [22] to fully represent the spatially-

varying reflectance of the human face [23], [24]. We lever-

age the dichromatic reflection model [17] for our proposed



“Skin Reflectance Estimate based on Dichromatic Separation”

(SREDS) metric. SREDS generates data-driven, additive, and

interpretable measure of skin color.

The Dichromatic Reflection Model (DRM) is a general

model for estimating the intrinsic reflections from a standard

RGB image. DRM defines two types of reflections, interface

(specular) and body (diffuse), where each reflection compo-
nent can be further decomposed into spectral distributions and

geometric scaling factors [17]. The general reflection model

proposed in DRM is given in two forms:

L(λ, i, e, g) = Li(λ, i, e, g) + Lb(λ, i, e, g) (2)

= mi(i, e, g)ci(λ) +mb(i, e, g)cb(λ), (3)

where in Equation 2, Li, Lb, λ, i, e, and g, respectively,
represent radiance of interface reflection, radiance of body

reflection, wavelength of light, angle of incidence, angle of

existence, and phase angle. The factors Li and Lb are fur-

ther decomposed into compositions, (ci, cb), and magnitudes,
(mi,mb) as shown in Equation 3. Composition components
(representing shading) depend on the geometry of the object

and are independent of the wavelength. Magnitude components

represent the wavelength dependent nature of the radiance

(representing color) and are independent of the geometry of

the object.

The DRM introduces a set of assumptions to further sim-

plify Equation 3 and represent the pixel values in the RGB

domain as a tristimulus integration over the amount of received

light and sensitivity of the camera at each wavelength. The

model assumes that the material of interest is in-homogeneous,

opaque, and uniformly colored. Additionally, the material

should have one significant specular reflection, isotropic dif-

fuse reflection, and constant spectral distribution across the

scene. The proposed tristimulus integration is a linear trans-

formation. As a result, every pixel value in the image can be

approximated by a linear combination of interface and body

reflection colors of the material as

CL = miCi +mbCb, (4)

where CL, Ci, Cb, mi, and mb, respectively, represent the

pixel value, color of interface reflection, color of body reflec-

tion, magnitude of interface reflection, and magnitude of body

reflection.

The specular reflection is assumed to have the same spectral

power distribution (color) as the incident illumination. The

amount of specular reflection relates to the angle of incidence,

index of refraction of the material and polarization of the

incoming illumination as governed by Fresnel’s laws [17], and

is largely due to the air-oil interface from the surface of the

skin [24], [25]. The diffuse component is generally assumed to

be isotropic [17], and it is due to the subsurface scattering of

light with melanin and hemoglobin components in epidermis

and dermis layers of skin [24], [26].

IV. SKIN REFLECTANCE ESTIMATE BASED ON

DICHROMATIC SEPARATION (SREDS)

In this paper, we introduce a new measure of skin color,

called the Skin Reflectance Estimate based on Dichromatic

Separation (SREDS). SREDS aims to decompose the light

reflected off the skin into specular and diffuse components

and construct a data-driven skin color metric from the diffuse

component of the skin. The diffuse component is due to

the interaction of the light with hemoglobin and melanin

components in the lower layers of the skin. As a result,

it is assumed to be Lambertian, i.e., is reflected equally in
all directions. Utilizing the diffuse component of the skin

allows the SREDS to be insensitive to naturally accruing

specular reflections due to uncontrolled illumination and be

independent of the angle between the illumination source and

the viewer (camera), thus circumventing the requirement for

consistent illumination and background as needed to calculate

RSR.

SREDS extracts patches of skin from the forehead, and

right and left cheeks of each face image. Selecting smooth

patches of skin allows us to minimize the effect of geometry

on the estimated reflection components. Previous work on skin

reflectance of human face suggests that cheeks and forehead

have similar translucency and isotropic diffuse reflection [27].

This allow us to rely on the DRM to estimate the diffuse

and specular components of the selected skin patches. Given

the independence assumption between specular and diffuse

components, lack of ground truth, and the smoothness of the

selected skin patches (no need to account for the geome-

try of the face), our problem can be classified as a blind

source separation (BSS) problem [28]. Independent component

analysis (ICA) and principal component analysis (PCA) are

two common BSS algorithms [28]. Previous work showed the

effectiveness of ICA in decomposing melanin and hemoglobin

components of skin on samples acquired using high quality

cameras in a lab environment [29].

Fig. 3. Example of a skin patch decomposition. Skin patch of (forehead)
(Row-1), PCA (Row-2), ICA (Row-3), and NNMF (Row-4) decompositions
represented as grayscale images (black represents 0 and white represents 1),
SREDS Bases (Row-5) - Specular (Right), Diffuse (Left).



We observed that in a few cases PCA resulted in meaningful
but very noisy decomposition. However, ICA completely failed
to produce a meaningful decomposition. Figure 3 represents
the PCA (Row-2) and ICA (Row-3) decompositions for a
patch of skin from subject’s forehead (Row-1). Note that, the
sole BSS pipeline does not provide a method for identifying
the diffuse component from the decomposed components.
Given the ineffectiveness of PCA and ICA decompositions,
we propose to relax the independent assumption and utilize
the fact that our images and magnitudes (mi, mb) are all
strictly positive. We propose to employ Non-negative Matrix
Factorization (NMF) [30] to extract representations of specular
and diffuse components from each patch of skin. NMF have
shown to perform very well in image based BSS problems
[31].

Additionally, unlike PCA, all the weights in NFM are
strictly positive, i.e., there is no subtraction involved in
representing the input image [32]. This is in line with the
combination of diffuse and specular components proposed in
DRM and leads to better interpretability of the decomposed
representations [32]. The NFM decomposition used in SREDS
is given by

V t ≈
M∑
i=1

wih
t =WH, (5)

where V t denotes the tth skin patch, represented as an n× 3
vector, where n denotes the number of pixels in each skin
patch. W and H respectively represent our n × 2 and 2 × 3
matrix factors. To find the W and H matrices, we solve the
following constrained optimization problem:

argmin
W,H

1

2
||V t −WH||2

subject to W ≥ 0

H ≥ 0, (6)

where ||.||2 denotes the L2 norm. To satisfy the constraints,
we employ non-negative double singular value decomposition
(NNDSVD) with averaging initialization [30] to initialize W
and H matrices when solving the optimization problem in
Equation 5 numerically.

As the specular component reflects the color of the illu-
mination and is generally brighter than the color of skin, we
select the row of H with higher sum as our specular basis
while the other row represents our diffuse basis. We observed
that this simple assignment rule can be very effective over
multiple datasets. The fourth and the fifth rows of Figure 3
respectively show the gray scale representation of our NFM
decomposition and the RGB representation of the associated
specular (right) and diffuse (left) bases. Finally, we utilize
kernel principal component analysis (KPCA) [33] over our
estimated diffuse bases and select the first principal component
as our measure of skin color. We evaluated linear, polynomial,
and radial basis function (RBF) kernels and observed that the
degree-3 polynomial kernel worked best across the evaluated
datasets. The final SREDS measure is an average of the three
individual measures calculated from forehead and cheeks.

V. REGION OF INTEREST SELECTION

In order to identify regions of interest (ROI) to compute
the skin color metrics, we use facial landmark detection.
Given an input image, a facial landmark predictor attempts
to identify key points of interest based on the shape of the
face using a two-step process. First, a face is detected in an
image. Then, key facial landmarks are detected. In this paper,
we use the Dlib library to detect key facial landmarks [34].
Dlib uses this pre-trained facial landmark detector to estimate
the location of 68 coordinates that map to facial structures.
Then using the landmarks near cheeks and the forehead, we
extract rectangular patches from the right cheek, left cheek,
forehead, and background for all subjects. The forehead patch
is extracted by using the distance between the eye landmarks.
The cheek landmarks extracted by estimating the distance
between jawline and lips. An example of the extracted crops
are shown in Figure 2.

VI. DATASETS

1) Multi-PIE: The CMU Multi-PIE face database [18] con-
tains more than 750,000 images of 337 people recorded in up
to four sessions over five months. Subjects were imaged under
15 viewpoints and 19 illumination conditions while displaying
a range of facial expressions. High-resolution frontal images
were acquired as well. We selected three viewpoints (14 0,
05 1, 05 0) where full views of the face were captured and
images where the facial landmark detection failed are removed.
Overall, we select 150,668 images out of 750,000 images from
314 subjects.

2) MEDS-II: Multiple Encounter Dataset (MEDS-II) [8] by
NIST is a data corpus curated from a selection of deceased
subjects with prior multiple encounters. It consists of 1170
images from 425 subjects. We utilized the 856 mugshot images
for our research. Then, images where facial landmark detection
failed are removed, resulting in a reduced image set consisting
of 836 images from 171 subjects.

3) Morph-II: The academic MORPH database is a non-
commercial dataset collected over 5 years with multiple im-
ages of each subject (longitudinal). It is not a controlled
collection (i.e., it was curated in real-world conditions). This
dataset contains 55,139 unique images of more than 13,000
individuals, spanning from 2003 to late 2007. Ages of the
subjects range from 16 to 77, with a median age of 33. The
average number of images per individual is 4. The average
time between photos is 164 days. Images where the facial
landmark detection failed are removed, resulting in a reduced
image set consisting of 55,063 images from 13,152 subjects.

VII. RESULTS AND DISCUSSION

In this work, we evaluate and compare the performance
of ITA, RSR, and SREDS under both controlled (Multi-PIE
[18]) and uncontrolled illumination (MEDS-II [8], Morph-II
[9]). There is no objective measure of ground truth without a
direct measure of skin reflectance controlling for all factors.
However, we propose that the hypothetical perfect skin color
metric has to be stable, i.e robust against all possible variations



TABLE I
INTRA-SUBJECT VARIABILITY OVER MULTIPLE DATASETS. S1: NUMBER OF SUBJECTS, S2: AVERAGE NUMBER OF SAMPLES PER SUBJECT, S3: TOTAL
NUMBER OF SAMPLES (AFTER CLEANING), ITA:INDIVIDUAL TYPOLOGY ANGLE, RSR: RELATIVE SKIN REFLECTANCE, SREDS: SKIN REFLECTANCE
ESTIMATE BASED ON DICHROMATIC SEPARATION, RSR*:RELATIVE SKIN REFLECTANCE USING SKIN PATCHES INSTEAD OF ADAPTIVE SEGMENTATION.

Dataset ITA RSR SREDS RSR* # S1 # S2 # S3

Multi-PIE - High Resolution 0.401 0.307 0.138 0.356 314 3.6 1,170
Multi-PIE - Multi View 0.926 0.860 0.820 0.881 314 447 150,668
MEDS-II 0.448 0.493 0.463 0.475 171 3.3 834
Morph-II 0.645 0.539 0.419 0.562 13,152 4.1 55,045

such as changes in illumination or camera sensitivity; thus, it is

highly desirable for any skin color metric to have lower intra-

subject variability. In order to fairly compare the evaluated

metrics, we individually normalize each metric to have zero

mean and unit variance and use the intra-subject variability

(standard deviation) of each metric to evaluate its effective-

ness. Table I presents the average intra-subject variability of

the ITA, RSR, and SREDS over the evaluated datasets.

The image acquisition environment of Multi-PIE dataset

provides us with both a constant background and controlled

variation of illumination. This allow us to isolate the effect

of illumination change on the intra-subject variability of the

evaluated metrics. Our results suggests that SREDS outper-

forms the other two algorithms in both controlled and varying

illumination environments and without relying on the constant

background. Note that all measures show higher intra-subject

variability under varying illumination. Figure 4 illustrates

SREDS over multiple samples of the same subject collected

while changing the angle incidence from −45° (most left) to
45° (most right) with step size of 15°. SREDS is able to extract
a stable diffuse component while the specular component is

brighter with the increase of the angle of incident.

Fig. 4. Diffuse and specular components vs. illumination change in Multi-PIE
dataset. Row-1: face images, Row-2: forehead skin patches, Row-3: weights
associated with the specular basis, Row-4: specular bases, Row-5: diffuse
bases. Best viewed in color.

We also evaluated all three algorithms using MEDS-II and

Morph-II datasets (uncontrolled illumination). SREDS outper-

forms RSR and ITA in the larger and wider Morph-II dataset.

However, we also observe that ITA provides marginally better

performance then SREDS and RSR in the MEDS-II dataset.

We suspect this might be due to the smaller size of the

MEDS-II and the data-driven nature of the RSR and SREDS.

Additionally, we investigated the relationship between each

measure and the ethnicity labels provided in the datasets. Fig-

ure 5 depicts the distribution of black and white subjects over

each measure. The distribution of SREDS measurements over

black and white subjects in uncontrolled illumination suggests

that SREDS provides a meaningful progression from darker

to lighter skin tone subjects without relying on consistent

background, illumination or camera sensitivity.

(a) MEDS-II

(b) Morph-II

Fig. 5. Histograms of SREDS, RSR and ITA for black (B) and white (W)
subjects in MEDS-II and Morph-II datasets. Best viewed in color.

A. Limitations and Future work

Our results suggests that SREDS can produce a continuous

and interpretable skin color metric across different image

acquisition environments and without relying on constant

background or illumination. However, similar to the other

evaluated measures, SREDS is still susceptible to illumination

change. In future work we aim to improve upon this work

by integrating a more complex basis assignment process. Our

current model does not utilize the wavelength dependent nature

of reflection in the assignment process and treats Red, Green,

and Blue channels equally. Utilizing this fact can potentially

improve the bases assignment process. Finally, in future work

we plan to evaluate the correlation between the estimated

SREDS values and direct measurements of skin reflectance

using a DSM III skin colormeter.



VIII. CONCLUSIONS

While there is currently a large amount of active research
providing solutions for removing bias from facial recognition
systems, many of the methodologies assume the existence of
large-scale data that is labeled and in-domain. Operational sys-
tems rarely can fulfil this requirement. These restrictions make
the solutions very difficult to apply outside of the structured
and labeled datasets generally used to benchmark algorithms.
Inspired by this problem, we developed an interpretable skin
tone estimate with few restrictions that can provide perfor-
mance comparable or superior to similar methods in the liter-
ature. This estimate will provide a way for facial recognition
applications without access to large demographically labeled
datasets within their domain to make effective use of methods
to reduce difference performance and promote fairness in face
recognition.
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