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Abstract

Functional magnetic resonance imaging (fMRI) is one of the most popular
neuroimaging technologies used in human brain studies. However, fMRI data
analysis faces several challenges, including intensive computation due to the
massive data size and large estimation errors due to a low signal-to-noise
ratio of the data. A new statistical model and a computational algorithm
are proposed to address these challenges. Specifically, a new multi-subject
general linear model is built for stimulus-evoked fMRI data. The new model
assumes that brain responses to stimuli at different brain regions of various
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subjects fall into a low-rank structure and can be represented by a few princi-
pal functions. Therefore, the new model enables combining data information
across subjects and regions to evaluate subject-specific and region-specific
brain activity. Two optimization functions and a new fast-to-compute algo-
rithm are developed to analyze multi-subject stimulus-evoked fMRI data and
address two research questions of a broad interest in psychology: evaluating
every subject’s brain responses to different stimuli and identifying brain re-
gions responsive to the stimuli. Both simulation and real data analysis are
conducted to show that the new method can outperform existing methods
by providing more efficient estimates of brain activity.

Keywords: fMRI Data, general linear model, low-rank representation

1. Introduction

Functional magnetic resonance imaging (fMRI) measures human brain ac-
tivity non-invasively through blood-oxygen-level-dependent contrast [1] and
records activity of the entire brain with a high spatial resolution. Therefore,
fMRI is one of the most popular neuroimaging technologies used in human
brain research. In many psychological and medical studies, researchers use
different stimuli to evoke subjects’ brain activities during fMRI recordings.
The purposes of this paper are to analyze these multi-subject, stimulus-
evoked fMRI data, evaluate each subject’s brain responses to different stim-
uli, and identify voxels that have different responses to different stimuli.

The analysis of stimulus-evoked fMRI data usually uses a general linear
model (GLM) [2, 3, 4], in which the fMRI time series follows a linear re-
gression of the stimulus sequence through hemodynamic response functions
(HRF). Under the GLM, the HRF describes each subject’s brain response to
each stimulus type at each region and, therefore, is the estimation target of
fMRI data analysis.

Several challenges are present when analyzing multi-subject, stimulus-
evoked fMRI data. First, the data are massive in size. Typical fMRI data
of one subject from one experimental session consist of 100,000 to 200,000
spatially indexed time series. Each time series contains measurements of
brain activity at one brain voxel and at several hundred time points—with a
time unit ranging from 1 second(s) to 2 s. A voxel is a small 3D cubic volume
in the brain (2 cm×2 cm×2 cm for the data under study). Consequently,
fMRI data analysis can be computationally intensive. Second, the HRF
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varies across regions, subjects, and stimulus types presented to the subject.
Third, fMRI data have complex spatial and temporal properties. Fourth,
each subject’s fMRI data usually have a weak signal-to-noise ratio (SNR)
[5], which brings an additional difficulty to accurate HRF estimation.

Most existing approaches to estimating HRFs attend to one or part of the
challenges described above. For example, to address the first two challenges,
researchers commonly use voxel-wise analysis [2, 3, 4], that is, analyze fMRI
time series at each voxel independently. Although this approach is compu-
tationally fast and accommodates variations of brain activity across voxels,
the approach ignores spatial information of fMRI data and association among
voxels. Despite the development of joint models for brain activities at dif-
ferent locations [6, 7, 8, 9, 10, 11, 12], these approaches tend to use many
parameters to accommodate the variation of brain responses across many
voxels and subjects and require strong regularization or strong priors to re-
duce estimation errors. Moreover, existing methods are mainly focused on
examining brain responses to each stimulus, which limits the ability to com-
pare brain responses to different stimuli, as explained below.

Many psychological fMRI studies use the brain response to one stimulus
as the reference and compare the brain responses to other stimuli with respect
to the reference. This approach is to correct for the nuisance brain response
caused by the fMRI data collection process, for example, the brain response
due to anxiety and uncomfortableness experienced during fMRI scanning [13,
14]. In this situation, the brain response to the stimulus of interest beyond
the response to the reference stimulus should represent more accurately the
brain activity due to the stimulus of interest in reality. Existing methods for
comparing brain responses are still through a two-step approach: estimating
responses to different stimuli first and then performing tests on the response
estimates through voxel-wise analysis. However, this two-step approach leads
to many false discoveries [15].

We develop a new joint model for multi-subject, stimulus-evoked fMRI
data to address limitations in existing fMRI data analysis methods. With
an assumption of a low-rank structure for HRFs of different voxels and sub-
jects, the new model, called multi-subject, low-rank general linear model
(MSLRGLM), uses much fewer parameters than nonparametric models to
accommodate the variation of brain responses across different subjects and
voxels. In addition to model flexibility, the new model also enjoys a better
estimation efficiency of HRFs than existing methods.

We formulate the MSLRGLM estimation as an optimization problem.
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Specifically, we propose two optimization functions to address two research
questions: estimating subject-specific and voxel-specific HRFs and identify-
ing voxels with different responses to different stimuli. We use regularization
penalties in the optimization functions to incorporate spatial and temporal
information of fMRI data. We include a sparsity-inducing penalty in the opti-
mization function to identify voxels that have different responses to different
stimuli. We use the sparsity to produce stable and interpretable brain re-
sponse estimates, similar to many existing approaches [16, 17], because sparse
neural responses have been reported in the literature [18, 19, 20, 21]. To ad-
dress the computational challenge in estimating HRFs of many subjects and
voxels, we develop a new computational algorithm to minimize the optimiza-
tion functions. We show that the proposed new model and computational
algorithm provide more efficient HRF estimates with smaller variances than
existing methods through both simulation and real data analysis. In sum-
mary, our new modeling and estimating approaches address the challenges
in fMRI data analysis.

The rest of the article is organized as follows. Section 2 reviews exist-
ing HRF estimation methods under the GLM framework and introduces a
new multi-subject GLM for fMRI data of different subjects and voxels. We
present our estimation approach with new optimization functions in Section
3 and propose a new computational algorithm to minimize the functions in
Section 4. The proposed HRF estimation method is compared with several
existing ones through simulation studies in Section 5. Section 6 presents
analysis results of multi-subject fMRI data collected in a psychological study
on emotion. We evaluate each subject’s brain responses to emotional stim-
uli and identify voxels responsive to the stimuli using the proposed method.
Section 7 concludes.

2. Multi-Subject General Linear Model

2.1. The General Linear Model

Let yiv(t) be the fMRI measurement of brain activity at voxel v of subject
i at time t, t = κ, 2κ, . . . , Tκ, i = 1, 2, · · · , n, and v = 1, 2, · · · , V , where T
is the total number of time points of fMRI time series, V is the total number
of voxels under study, and κ is the time interval between consecutive 3D
images. For the fMRI data under analysis, κ equals 2 s.

Suppose K different stimuli are presented in the fMRI experiment. Let
sik(t) be the stimulus function that indicates the evoked times of the kth
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stimulus in the fMRI experiment session for subject i. That is, if the kth
stimulus is evoked at time t, sik(t) = 1, and 0 otherwise. The GLM assumes
the fMRI time series of one subject i in voxel v follows a linear regression of
K stimulus functions:

yiv(t) = C(t) div +
K∑
k=1

∫ m

0

hiv,k(u) · sik(t− u)du+ εiv(t), (1)

where hiv,k(u) is the hemodynamic response function (HRF) of subject i and
voxel v in response to the kth stimulus, [0,m] is the given domain for the
HRF, and εiv(t) is an error term. The HRF hiv,k(t) describes subject i’s brain
response to the kth stimulus at voxel v.

We let C(t) = (
√

2/T cos(π t
T

), . . . ,
√

2/T cos(r π t
T

)) and div ∈ <r be
an r-dimensional coefficient vector for C(t). The values of div are estimated
based on data. We use C(t) div to characterize a low frequency drift in fMRI
data caused by machine noise, subject’s motion, respiration, and heartbeat
[22, 23]. Here, we choose r = 7, equivalent to applying a high-pass, 128-
second filtering to the data.

The HRF estimation under the GLM falls into two categories: parametric
approaches that assume HRFs to have certain functional forms usually with
only a few free parameters, and nonparametric approaches that use many
functional bases to represent HRFs. The former includes the canonical HRF
[4, 24], Poisson model [25], a linear combination of the canonical HRF and
its first order derivative [26, 27, 28, 29], an inverse logit model [30], and many
others. Nonparametric approaches include but are not limited to the finite
impulse response (FIR) method [31, 32], smooth FIR [3], and many basis-
representation methods that use penalties to regularize the variances of the
estimates [33, 34, 35, 36, 37, 38].

The above voxel-wise methods analyze the fMRI time series of one subject
and one voxel at a time. However, fMRI time series at spatially close voxels
are strongly correlated. It is more efficient to utilize spatial information
of fMRI data to estimate HRFs. In this line of thought, [39, 10, 11, 40]
used the brain parcellation, assumed voxels within the same parcel share the
same HRF shapes, and assigned a spatially adaptive prior to HRF heights.
[41, 42] used a Poisson HRF [43, 25] and characterized spatial and temporal
associations between the GLM errors within a Bayesian framework. [44]
developed a hierarchical model for multi-subject fMRI data and imposed
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spatial and temporal regularization on HRF estimates.
Overall, existing nonparametric approaches to HRF estimation rely on

enormous free parameters to accommodate variations of HRFs across many
subjects and voxels. We propose a new nonparametric joint model for HRFs
of all voxels and subjects to address this issue and assume these HRFs have a
low-dimensional structure. Consequently, the number of parameters for char-
acterizing many HRFs is significantly reduced compared to existing nonpara-
metric or semiparametric methods. The details of the new model are given
below.

We start with a nonparametric representation of hijk(t) with spline bases

[45, 46, 47, 48]: hiv,k(t) =
∑L

l=1$
i
lv,k ·bl(t), where (b1(t), . . . , bL(t)) are fourth-

order B-spline bases defined on an equally-spaced partition of the HRF do-
main [0,m]. The GLM (1) then becomes

yiv(t) = C(t) div +
K∑
k=1

L∑
l=1

$i
lv,k ·

∫ m

0

bl(u) · sik(t− u)du+ εiv(t).

Let Y i
v = (yiv(1), . . . , yiv(T ))′, Λi

v,k = ($i
1v,k, . . . , $

i
Lv,k)

′, C be a T × r
matrix with the tth row equal to C(t), Xi

k be a T ×L matrix with the (t, l)th
entry equal to

∫ m
0
bl(u) · sik(t−u)du, and εiv = (εiv(1), . . . , εiv(T ))′. The above

GLM has a matrix form:

Y i
v = C div +

K∑
k=1

Xi
k Λi

v,k + εiv.

Let Yi be a T × V matrix whose vth column equals Y i
v . The GLM for

Yi can be written in a matrix form:

Yi = C di +
K∑
k=1

Xi
k Λi

k + Ei, (2)

where Λi
k is an L × V matrix with the (l, v)th entry being $i

lv,k, di is an
r×V matrix with the vth column equal to dij, and Ei is a T ×V matrix with
the (t, v)th entry being εiv(t).
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2.2. A Multi-Subject Low-Rank General Linear Model

The model (2) is the most flexible nonparametric model for HRFs of
n (i = 1, . . . , n) subjects and V (v = 1, . . . , V ) voxels in response to K
(k = 1, . . . , K) stimuli within the GLM framework. However, this model
contains n · V · K · L basis coefficients (Λi

k) for representing many HRFs.
In a typical fMRI study, n can be easily more than one hundred, V is in
thousands, and L is in dozens. Therefore, Model (2) can contain enormous
free parameters. To reduce the number of free parameters and also to enable
combining data information across subjects and voxels to estimate HRFs, we
assume

Λi
k = Wk Pi

k,

where Wk and Pi
k are L×R and R× V matrices, respectively. The rank of

Λi
k, R, is given and much smaller than V . Under the low-rank assumption

of Λi
k, (2) becomes

Yi = C di +
K∑
k=1

Xi
k Wk Pi

k + Ei. (3)

We refer to this model as multi-subject, low-rank general linear model (MSLR-
GLM). The key model parameters of the MSLRGLM are summarized in
Table 1.

The MSLRGLM has a similar idea to matrix factorization [49, 50, 51, 52,
53] or factor models [54, 55], and the rank R of the MSLRGLM is similar to
the dimension of factor matrices. Let B(t) = (b1(t), . . . , bL(t)). Under the
model (3), the HRFs, hiv,k(t), of n subjects and V voxels are decomposed into
a functional part B(t)Wk and a spatial part Pi

k. The former is R principal
functions for representing HRFs of different voxels and subjects, and the
latter is subject-specific and voxel-specific coefficients for functional bases.
As such, the MSLRGLM enables borrowing information across subjects and
voxels to estimate HRFs while accommodating subject-specific and voxel-
specific variation of HRFs. In addition, since the MSLRGLM uses much
fewer parameters than the nonparametric method (with L × V parameters
in each subject i’s Λi

k), the MSLRGLM leads to HRF estimates with smaller
variances, as demonstrated in Section 5. We choose R = 2 in our study,
because HRFs of different subjects and voxels all have a finite domain and
a single-mode shape and differ mainly in height and time-to-peak [5]. We
also found that using R larger than 2 does not improve estimation or change
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Table 1: Notations of Key Parameters

Parameter Descriptions
Yi Subject i’s fMRI data (in a T × V matrix form) at V voxels and T time points.

C(t) Functions (
√

2/T cos(π t
T

), . . . ,
√

2/T cos(r π t
T

)) for characterizing a low-
frequency drift in fMRI data.

C A T × r matrix with the tth row equal to C(t).
div An r × 1 vector of coefficients for C(t) of subject i and voxel v.
di A T × V matrix with the vth column equal to div.
Xi
k A T × L matrix with the (t, l)th entry equal to

∫ m
0
bl(u) · sik(t− u)du.

Wk An L×R matrix (in the model (3)) of coefficients of principal functions for
representing HRFs of all subjects and voxels in response to the kth stimulus.

Wlr,k The (l, r)th entry of the matrix Wk.
Pi
k An R× V matrix (in the model (3)) of subject-specific and voxel-specific

coefficients for representing subject i’s HRFs in response to the kth stimulus.
P i
rv,k The (r, v)th entry of the matrix Pi

k.
Pk {Pi

k, i = 1, . . . , n}.
Θ All the parameters in the MSLRGLM {di,Wk,P

i
k, i = 1, . . . , n, k = 1, . . . , K}.

analysis results much but rather adds computational costs.

3. Model Estimation

We use the model (3) to estimate HRFs of different subjects, voxels, and
stimulus types and identify brain voxels with different responses to different
stimuli. We propose two optimization functions with different penalties to
achieve these two goals.

3.1. Optimization Functions

Let Θ = {di,Wk,P
i
k, i = 1, . . . , n, k = 1, . . . , K}. One can estimate Θ

by minimizing the sum of squared errors (SSE) of the model (3):

SSE(Θ) =
1

n

n∑
i=1

‖ Yi −C di −
K∑
k=1

Xi
k Wk Pi

k ‖2F .

To reduce the estimation variance of Θ and also to produce temporally [43]
and spatially smooth HRF estimates, we propose to minimize a penalized

8



SSE (PSSE) with two penalties:

Υ1(Wk) =
R∑
r=1

∫ m

0

(
L∑
l=1

Wlr,k ·b(2)l (t))2dt and Υ2(P
i
k) =

R∑
r=1

∑
v∼ṽ

(P i
rv,k−P i

rṽ,k)
2,

where the notation v ∼ ṽ stands for neighboring voxels v and ṽ. The first
penalty is to regularize the roughness of principal functions B(t)Wk, and the
second one is to make spatially close voxels have similar voxel-specific coef-
ficients P i

rv,k for B(t)Wk, and thus, similar HRFs. In summary, we propose
to estimate HRFs by minimizing the PSSE:

PSSE(Θ) = SSE(Θ) + λ
K∑
k=1

Υ1(Wk) + τ
K∑
k=1

n∑
i=1

Υ2(P
i
k). (4)

Another important research problem in fMRI data analysis is to compare
brain responses to different stimuli. Without loss of generality, we compare
HRFs of the first two stimuli and identify voxels with different population-
wide responses to the two stimuli. Let Pk = {Pi

k, i = 1, . . . , n}. Following
many voxel selection approaches [16, 17], we take into account the sparsity
that only a few voxels have different responses to the first two stimuli, and
address the HRF comparison problem by minimizing the following PSSE:

PSSEc(Θ) = SSE(Θ) + λ
K∑
k=1

Υ1(Wk) + τ
K∑
k=1

n∑
i=1

Υ2(P
i
k) + µΥ3(P1,P2), (5)

subject to W2 = W1, where

Υ3(P1,P2) =
V∑
v=1

√√√√ n∑
i=1

R∑
r=1

(P i
rv,1 − P i

rv,2)
2.

The penalty Υ3(P1,P2), a generalization of the penalty in the group lasso
[56], is a sparsity-inducing penalty on the differences between voxel-specific
parameters of the HRFs for the first two stimuli. As W1 and W2 are set
equal, the differences between Pi

1 and Pi
2 capture the differences between

subject i’s brain responses to the two stimuli. Using the penalty Υ3(P1,P2)
on the differences between Pi

1 and Pi
2 enables identifying voxels with different

responses to the first two stimuli.
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4. Optimization Algorithms

A crucial challenge in analyzing fMRI data is computationally efficiently
estimating massive HRFs of many subjects and voxels. For the presented
real data analysis under study (Section 6), despite the low-rank structure
for HRFs, the total number of model parameters needed for representing all
the HRFs is more than 5.5 million. Consequently, we develop a computa-
tionally efficient algorithm to solve the above two optimization problems and
estimating massive HRFs.

Let W = {Wk, k = 1, . . . , K}, d̃ = {di, i = 1, . . . , n}, and P̃ = {Pk, k =
1, . . . , K}. Standard approaches [15] to optimizing objective functions PSSE(Θ)
and PSSEc(Θ) are through an alternating search algorithm, which iterates
between finding the minimizer W of PSSE given (P̃ , d̃) and finding the min-
imizer (P̃ , d̃) givenW . However, this algorithm is computationally intensive
due to the large data dimension and many parameters of the objective func-
tions. Instead, we minimize PSSE(Θ) in (4) using a gradient descent method
[57, 58], an iterative algorithm that generates a series of estimates of Θ by
moving a small step along the descent direction of the optimization function
each time.

Direct application of the gradient descent method to minimizing PSSEc(Θ)
in (5) is not feasible, because PSSEc(Θ) is non-differentiable for P1 and P2,
and the gradient of PSSEc(Θ) does not exist for P1 = P2. To address this,
we develop a new gradient descent method, which is computationally effi-
cient and has the same computational complexity as the conventional one.
We explain the details below.

The objective function PSSEc(Θ) in (5) is composed of a convex but
non-differentiable component, µΥ3(P1,P2), and a differentiable component,
SSE(Θ) + λ

∑K
k=1 Υ1(Wk) + τ

∑K
k=1

∑n
i=1 Υ2(P

i
k), i.e., PSSE(Θ).

We denote the parameter value at the tth step by Θt for t = 0, 1, . . .. We
specify the initial value Θ0, let a step-size parameter ρ = 1, and choose a
step-size multiplier α > 1 (α = 2 in our analysis). The proposed gradient
descent algorithm iterates between the following steps.

� At the tth iteration, calculate ∇PSSE(Θt), where ∇ denotes the gra-
dient operator.

� Given the step-size parameter ρ, solve the following optimization prob-
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lem:

Θ∗ = argminΘ〈∇PSSE(Θt),Θ〉+ µΥ3(P1,P2) +
ρ

2
‖Θ−Θt‖22, (6)

where < ·, · > denotes an inner product between two vectors, and ‖.‖2
denotes the Euclidean norm.

� If Θ∗ improves the objective function value at Θt, update Θt+1 = Θ∗.
Otherwise, increase the step-size parameter by ρ = αρ.

� Repeat until convergence.

Each iteration in the above algorithm involves solving a strongly convex
subproblem (6). We show in the appendix that subproblem 6 has a closed
form solution, and the computational cost of solving the subproblem is linear
in terms of the number of parameters. The use of the parameter ρ is to control
the step size in (6), ensuring that the new Θt+1 is not too far from Θt in
the previous step. We use a backtracking line search to tune the step-size
parameter ρ. We find that this is more stable and faster than the commonly
used constant step-size. Given penalty parameters, it took the proposed
optimization algorithm only about 5 minutes to analyze 106 subjects’ fMRI
data at almost 7000 voxels.

4.1. Convergence

We show the convergence of the proposed algorithm with given penalty
parameters λ, τ , and µ. We first make the following assumptions regarding
the optimization function 5.

(1) PSSE(Θ) is continuously differentiable with Lipschitz continuous gradi-
ent, that is, there exists a positive constant L such that for any two Θ1

and Θ2 :

‖∇PSSE(Θ1)−∇PSSE(Θ2)‖2 ≤ L‖Θ1 −Θ2‖2.

(2) The objective function in 5 is bounded from below.

Definition 4.1. Let f : Rn → R be a proper convex function, i.e., f(x) >
−∞∀x ∈ Rn, and f(x) < +∞ for at least one x. A vector g ∈ Rn such that
f(y)− f(x) ≥ 〈g, y−x〉 ∀x, y ∈ Rn is called a subgradient of f at x. The set
of all subgradients of f at x is called the subdifferential of f at x, denoted by
∂f(x).
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Definition 4.2. Parameter Θ∗ is a critical point of the problem in 5 if the
following holds:

∇PSSE(Θ∗) ∈ ∂ (−µΥ3(P∗1 ,P∗2 )) .

Theoretical Result 4.1. Assume that the above assumptions (1) and (2)
hold. All the limiting points of the sequence of estimates {Θt, t = 0, 1, . . .}
generated by the proposed gradient descent method are critical points of (5).

The above theorem indicates that the proposed gradient descent method
converges to a point that has a zero sugradient. The proof is in the Appendix.

4.2. Penalty Parameter Selection

We develop new cross-validation-based methods to select penalty param-
eters for PSSE(Θ) and PSSEc(Θ). The fMRI data are randomly split into a
training set consisting of 80% of the data and a testing set consisting of the
rest 20% of the data. Let = be the set of subjects in the training set, ℵ be
the set of subjects in the testing set, and ~ be the number of subjects in ℵ.

We select penalty parameters for PSSE(Θ) first. For a given combination
of λ and τ , we use the training data to calculate Wk, k = 1, . . . , K, through
minimizing PSSE(Θ). For data Yi of each subject i in the testing set, we
solve

(P̂i
k, d̂

i) = argminPi
k,d

i ‖ Yi −C di −
K∑
k=1

Xi
k Wk Pi

k ‖2F + τ
K∑
k=1

Υ2(P
i
k),

and calculate T 1
i =‖ Yi − C d̂i −

∑K
k=1 Xi

k Wk P̂i
k ‖2F as the testing error

for subject i. We choose the combination of (λ, τ) that yields the smallest
average testing error

∑
i∈ℵ T 1

i /~.
Standard cross-validation-based methods are time consuming for select-

ing penalty parameters for PSSEc(Θ), as it involves three different penalty
parameters. To reduce the computational burden, we propose to select λ
and (τ, µ) in two separate steps. The intuition behind this approach is that
λ
∑K

k=1 Υ1(Wk) regularizes the roughness of principal functions B(t)Wk and
does not involve P̃ . The details are given below.

1. Selection of λ.

12



1.a Given a candidate value of λ, we use the training set to calculate
Wk, k = 1, . . . , K, through minimizing

min
Θ

SSE(Θ) + λ

K∑
k=1

Υ1(Wk).

1.b Given Wk, k = 1, . . . , K, from the previous step, calculate the
testing error for each Yi in the testing set as

T 2
i = min

Pi
k,d

i
‖ Yi −C di −

K∑
k=1

Xi
k Wk Pi

k ‖2F .

1.c Select λ∗ that leads to the smallest average testing error
∑

i∈ℵ T 2
i /~.

2. Given λ∗, we select two parameters τ and µ.

2.a Given a combination (τ, µ), we use the training data to obtain
Wk, k = 1, . . . , K, through solving the problem

min
Θ

PSSEc(Θ) = SSE(Θ) + λ∗
K∑
k=1

Υ1(Wk) + τ
K∑
k=1

∑
i∈=

Υ2(P
i
k)

+ µΥ3(P1,P2),

where Υ3(P1,P2) is a function of Pi
1 and Pi

2 for i in the training
set = only.

2.b For each Yi in the testing set ℵ, we solve

(P̂i
k, d̂

i) = argminPi
k,d

i ‖ Yi −C di −
K∑
k=1

Xi
k Wk Pi

k ‖2F .

2.c Calculate the testing error, T 3
i =‖ Yi−C d̂i−

∑K
k=1 Xi

k Wk P̂i
k ‖2F ,

for Yi.

2.d We choose the combination of (τ, µ) that minimizes the average
testing error

∑
i∈ℵ T 3

i /~.
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5. Simulation Study

We generate fMRI data from the GLM (1) using the same experimental
design as that of the real data. The simulated data contain n = 106 subjects’
fMRI time series at V = 153 voxels, which are distributed over a 15×15×15
lattice grid. The data have K = 4 stimuli. We let voxels in the center 7×7×7
grid have different HRFs associated with the first two stimuli.

We simulate HRFs from a semi-parametric model developed by [59]. This
model characterizes subject-specific and voxel-specific brain responses:

hiv,k(t) = Aiv,k · fv,k(t+Oi
v,k), (7)

where fv,k(t) is the functional shape shared in common across n subjects’
HRFs at voxel v in response to the kth stimulus, and Aiv,k and Oi

v,k are
subject-specific and voxel-specific response magnitude and latency, respec-
tively. For easy comparison, we let HRF parameters and fMRI data be the
same as those in the paper [15].

We apply the MSLRGLM to the simulated data by optimizing two func-
tions PSSE(Θ) and PSSEc(Θ). We denote the two optimizations by MSLRGLM-
h and MSLRGLM-c, respectively. The HRF estimates by MSLRGLM-h and
MSLRGLM-c are almost identical. We also estimate HRFs by competing
methods, including the semi-parametric (SEMI) method [59], a nonpara-
metric method with Tikhonov regularization and generalized cross valida-
tion (Tik-GCV) [33, 34], the smooth finite impulse response (SFIR) method
[28, 3], and a method by representing the HRF with the canonical HRF and
its first order derivative [29] (referred to as the canonical method).

Figure 1 shows estimated HRFs by six methods in comparison to the true
HRFs. We use the average relative error (ARE) as the criterion to evaluate
HRF estimation errors:

AREk =
1

nV

n∑
i=1

V∑
v=1

‖ hiv,k − ĥiv,k ‖2
‖ hiv,k ‖2

,

where ĥiv,k denotes an estimate of the HRF, hiv,k. Table 2 summarizes the
AREs of different HRF estimation methods. MSLRGLM-h and MSLRGLM-
c outperform other four methods by having much smaller estimation errors.
Note that the proposed MSLRGLM is different from the data-generating
model (7). SEMI is directly based on the HRF-generating model (7), and
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Table 2: The AREs of estimated HRFs by the proposed low-rank methods and competing
methods.

HRF k MSLRGLM-h MSLRGLM-c SEMI Tik-GCV SFIR Canonical
1 0.30 0.30 0.52 0.92 1.10 0.80
2 0.42 0.44 0.52 0.90 1.10 0.85

(a) HRF 1 (b) HRF 2 (c) Selected Voxels

Figure 1: HRF Estimates of Simulated Data. (a) Estimated HRFs of one subject and one
voxel in response to the first stimulus. (b) Estimated HRFs of the same subject and voxel
as (a) in response to the second stimulus. (c) Selected true voxels (in blue) and selected
null voxels (in red if any).

the nonparametric methods, Tik-GCV and SFIR, are consistent with (7).
However, these voxel-wise methods are not as efficient as the MSLRGLM for
estimating HRFs.

We use MSLRGLM-c to identify voxels that have different HRFs of the
first two stimuli. Figure 1(c) shows voxels selected by MSLRGLM-c. All
the selected voxels are true ones (in blue). MSLRGLM-c achieves 0% false
discovery rate (FPR) and 100% true positive rate (TPR). The voxel selec-
tion method by [15] has a slightly higher FPR, 0.3%, with 100% TPR. For
comparison, we also perform voxel-wise t-tests to compare HRF estimates
produced by the other four competing methods mentioned above. The FPR
of SEMI is 15.4% for 100% TPR, the FPR of Tik-GCV is 16.5% for 100%
TPR, and the FPR of the other two methods, SFIR and Canonical, is 100%
for 100% TPR. Overall, the existing voxel-wise methods without using the
spatial information of the data have much larger FPRs than MSLRGLM-c
in identifying voxels that have different responses to different stimuli.

In summary, the proposed MSLRGLM-c can simultaneously estimate
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HRFs of different subjects and voxels efficiently and select active voxels with
high accuracy. In contrast, existing methods cannot achieve accurate HRF
estimation and voxel selection simultaneously.

6. Real Data Analysis

The fMRI data under analysis were collected from a psychology study
on the human brain’s emotion function [60, 61, 62, 63]. The fMRI experi-
ment used threats of mild electric shocks as negative emotional stimuli to
evoke n = 106 subjects’ brain activities. The experiment protocol con-
sisted of four stimuli: threat cues with 20% chances of a mild electric shock,
safety cues with no electric shock, resting periods between cues, and end of
trial cues with sometimes simultaneous real electric shocks. We preprocessed
the fMRI data using FMRIB’s Software Library software [64, Version 5.98;
www.fmrib.ox.ac.uk/fsl] and used FLIRT [65] to register images to Montreal
Neurological Institute (MNI) space.

The purpose of this study is to evaluate subjects’ brain responses to
negative emotional stimuli and identify voxels that are responsive to the
stimuli. To correct for subjects’ emotional brain activity due to the fMRI
scanning [13, 14], we used subjects’ brain responses to safety cues as the
reference and compared subjects’ HRFs due to threat and safety cues. We
performed a region-of-interest analysis of the fMRI data in dorsal anterior
cingulate cortex (dACC). Figure 3(a) shows the dACC brain area. The
dACC is reported to be involved in affective processing in the literature [66]
and be associated with subjects’ mental health [67]. We used the Harvard
subcortical brain atlas to extract subjects’ fMRI data in dACC.

We show the estimated HRFs in response to safety and threat cues in
Figure 2. The HRF estimates by MSLRGLM-h and MSLRGLM-c are al-
most identical. For comparison, we also show the same subject’s estimated
HRFs by other methods. The HRF estimates by voxel-wise nonparametric
methods, SFIR and Tik-GCV, have large variances and two modes, against
the common belief of a single mode in HRFs. The HRF estimates by SEMI
have too large variances to be shown in the figure.

We note that dACC voxels have a different functional shape from the
canonical HRF, which most often describes responses of visual and motor
cortices to visual-motor tasks [5]. The HRFs of emotional stimuli tend to
have more gradual changes over time in contrast to the abrupt increase and
decrease of the canonical HRF. The difference between the HRF in visual and
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motor areas compared with the HRFs of emotional stimuli is consistent with
the prior evidence of heterogeneous HRF waveforms in different brain regions
[68]. The gradual hemodynamic response to emotional stimuli is likely due
to a need for top-down control of attention and emotion regulation, which
is in line with the literature on early positive event-related potentials in
the temporo-occipital brain region [69] related to the dACC. Additionally,
prior studies suggest that this gradual change may also be explained by the
strong decrease in the autoregulation constant of cerebral blood flow [68].
In contrast, abrupt changes of the canonical HRFs related to visual and
motor functions of the brain occur earlier and are likely due to bottom-up
processing. This result provides evidence of the necessity to use a flexible
model for HRFs of different voxels, subjects, and stimulus types. In summary,
the proposed MSLRGLM outperforms all the existing methods by providing
more stable and scientifically more interpretable HRF estimates.
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(b) HRFs of Threat Cues

Figure 2: Estimated HRFs for one selected voxel in dACC. (a) Estimated HRFs
in response to the safety cue. (b) Estimated HRFs in response to the threat cue.

We use MSLRGLM-c to select voxels that have different responses to
safety and threat cues. The differences between HRFs of threat and safety
cues are mainly in magnitude but very small within each subject. Never-
theless, we identified around 27% voxels with different responses to the two
cues. Figures 3(b)-3(d) show the selected dACC voxels in axial, coronal, and
sagittal views. We found that the voxels with the most significant responses
to negative emotional stimuli are clustered in a region that spans both the
medial part of the dACC and anterior of the midcingulate cortex (aMCC). It
is likely that this particular region is distinct from other regions of the dACC
and may indeed be a separate functional unit [70]. The dACC has a well-
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established role in emotion and autonomic regulation, while the MCC has
been largely implicated in decision making and skeletomotor control [71, 72].
This particular area may be an important site for the interaction between
negatively salient stimuli and motor signals in the brain and may be involved
in defensive responses like freezing [73, 74]. This result indicates a distinc-
tion between sub-regions in the dACC/aMCC that is consistent with prior
literature that supports functional heterogeneity within this region [75]. Fur-
thermore, this area of the dACC/aMCC is associated with pain and negative
affect [74]. Our analysis confirms different extents of responses to emotion-
ally salient stimuli in dACC/aMCC subregions and identifies the subregion
with the strongest response.

(a) dACC Voxels (b) Z = 43 (c) X = 49 (d) Y = 69

Figure 3: (a) All the dACC voxels (in green). (b)-(d) Selected dACC voxels (in
red) shown in axial, coronal, and sagittal views.

7. Discussions

The two optimization functions PSSE(Θ) and PSSEc(Θ) produce simi-
lar HRF estimates, possibly because the differences between subject-specific
coefficients P1 and P2 are small in comparison to the data error. With an ad-
ditional sparsity penalty, PSSEc(Θ) enables identifying voxels with different
responses to different stimuli. This voxel selection has slightly better accu-
racy than using a population-mean GLM for fMRI data [15]. We suppose
that the larger variation of HRFs across subjects, the better performance of
the MSLRGLM-c.

In general, the differences in height and time-to-peak of HRFs across
different voxels and subjects are the easiest to estimate, so we let the proposed
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model have rank 2. The literature has reported the initial dip in HRFs [76].
However, we found that increasing the rank of the proposed model from 2 to
3 does not enable detecting the initial dip, possibly due to the low temporal
resolution of the data under analysis. The initial dip lasts briefly for only 2
to 3 s [77]. The fMRI data under analysis has a time unit of 2 s, making the
detection of the initial dip difficult. It is possible that for fMRI data with a
much higher temporal resolution, the proposed model with a larger rank can
detect the initial dip in HRFs.

In our optimization approach, we incorporate the spatial information of
the data by imposing regularization only on the differences between neigh-
boring voxels’ HRF estimates. It is possible to account for more complex
distances between voxels in the HRF estimation, for example, structural
connectivity between voxels. The structural connectivity is usually measured
using diffusion tensor imaging (DTI) [78] and can be incorporated as weights
for the differences between voxels’ HRFs in the optimization function. There
are also many other methods for combining fMRI and DTI data study the
human brain functions [79].

Although the proposed method can estimate subject-specific HRFs and
select voxels simultaneously, the estimation of the MSLRGLM requires sig-
nificantly more computational time than the population-mean GLM. This is
because the former has n times more parameters than the latter. The scal-
ability of the proposed model and computational algorithm to much larger
datasets will be the focus of future research.

The proposed MSLRGLM can be used to build scalar-on-image regres-
sion, where subjects’ covariates are the response, and their fMRI data are
predictors. Since the MSLRGLM characterizes subject-specific brain activi-
ties with much fewer parameters than most existing models for fMRI data,
we expect that the ensuing scalar-on-image regression will have a better pre-
diction power than exiting methods. The scalar-on-image regression based
on the MSLRGLM will be another focus of future research.

Appendix

Analytical Solution to Subproblem (6).

The subproblem in the proposed gradient descent method is

Θ∗ = argminΘ〈∇PSSE(Θt),Θ〉+ µΥ3(P1,P2) +
ρ

2
‖Θ−Θt‖22.
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Let Θ∗ = {di∗,W∗
k,P

i∗
k , i = 1, . . . , n, k = 1, . . . , K}, P∗k = {Pi∗

k , i =
1, . . . , n}, Θt = {di,t,Wt

k,P
i,t
k , i = 1, . . . , n, k = 1, . . . , K}, and P tk =

{Pi,t
k , i = 1, . . . , n}.
Let Φ = {di,Wk, i = 1, . . . , n, k = 1, . . . , K} ∪ {Pi

k, i = 1, . . . , n, k =
3, . . . , K}. The optimization (6) is separable into two optimization problems:
the optimization for Φ

Φ∗ = argminΦ〈
∂PSSE(Θt)

∂Φ
,Φ〉+

ρ

2
‖Φ−Φt‖22;

and the other one for (P1,P2)

(P∗1 ,P∗2 ) = argmin(P1,P2)〈
∂PSSE(Θt)

∂(P1,P2)
, (P1,P2)〉+

ρ

2
‖(P1,P2)− (P t1,P t2)‖22

+ µ
V∑
v=1

√√√√ n∑
i=1

R∑
r=1

(P i
rv,1 − P i

rv,2)
2. (8)

We here explain in detail the solution to (8).

Let P i
v,k = (P i

1v,k, . . . , PRv,k)
T . We let Gi

v,1 = ∂PSSE(Θt)

∂(P i
v,1)

and Gi
v,2 =

∂PSSE(Θt)

∂(P i
v,2)

, i = 1, . . . , n, and v = 1, . . . , V . For simple notations and with-

out loss of generality, we present the solution for n = 1. The optimization
problem in (8) is divided into V smaller problems, each corresponding to one
voxel v in the following form:

min
P i

v,1,P
i
v,2

〈Gi
v,1,P

i
v,1〉+〈Gi

v,2,P
i
v,2〉+µ‖P i

v,1−P i
v,2‖22+

ρ

2
‖P i

v,1−P
i,t
v,1‖22+

ρ

2
‖P i

v,2−P
i,t
v,2‖22.

We introduce a slack vector S = P i
v,1 − P i

v,2 ∈ <R×1. The problem above is
equivalent to

min
P i

v,1,P
i
v,2

〈Gi
v,1,P

i
v,1〉+ 〈Gi

v,2,P
i
v,2〉+ µ‖S‖2 +

ρ

2
‖P i

v,1 − P i,t
v,1‖22 +

ρ

2
‖P i

v,2 − P i,t
v,2‖22,

such that S = P i
v,1 − P i

v,2.

Let α̃ ∈ <R×1 be the vector of dual variables corresponding to the con-
straint S = P i

v,1 − P i
v,2. The Lagrangian function of the above optimization

20



problem is

L(P i
v,1,P

i
v,2,S, α̃) = 〈Gi

v,1,P
i
v,1〉+ 〈Gi

v,2,P
i
v,2〉+ µ‖S‖2 +

ρ

2
‖P i

v,1 − P i,t
v,1‖22

+
ρ

2
‖P i

v,2 − P i,t
v,2‖22 − α̃T (S − (P i

v,1 − P i
v,2)). (9)

Since the minimum of the Lagrangian with respect to S is finite if and only
if ‖α̃‖2 ≤ µ [80], the minimum value of the S term is 0. As such, we can
eliminate them in (9) and a get a reduced form of the Lagrangian function:

L̂(P i
v,1,P

i
v,2,S, α̃) = 〈Gi

v,1,P
i
v,1〉+ 〈Gi

v,2,P
i
v,2〉+

ρ

2
‖P i

v,1 − P i,t
v,1‖22

+
ρ

2
‖P i

v,2 − P i,t
v,2‖22 + α̃T (P i

v,1 − P i
v,2).

We minimize L̂(P i
v,1,P

i
v,2,S, α̃) over (P i

v,1,P
i
v,2) and obtain

P i
v,1 =

−α̃−Gi
v,1 + ρP i,t

v,1

ρ
and P i

v,2 =
α̃−Gi

v,2 + ρP i,t
v,2

ρ
. (10)

Substitute the above two equations back to (9), we obtain the dual problem

min
α̃

1

2
〈α̃, α̃〉+ 〈α̃,

(Gi
v,1 −Gi

v,2)− ρ(P i,t
v,1 − P i,t

v,2)

2
〉, such that ‖α̃‖2 ≤ µ.

Let h̃ = 1
2

[
(Gi

v,1 −Gi
v,2)− ρ(P i,t

v,1 − P i,t
v,2)
]
. The above problem has a closed

form solution: if ‖h̃‖2 < µ then α̃∗ = −h̃, otherwise α̃∗ = −µ h̃
‖h̃‖2

. Plugging

α̃∗ into (10) leads to the solution of P i
v,1 and P i

v,2.

Proof of Theorem 4.1.

At the tth iteration, Θt+1 is the minimizer of the problem (6). Therefore,

〈∇PSSE(Θt),Θt+1−Θt〉+µΥ3(P t+1
1 ,P t+1

2 )+
ρ

2
‖Θt+1−Θt‖22 ≤ µΥ3(P t1,P t2).

From Assumption (1), we have

PSSE(Θt+1) ≤ PSSE(Θt) + 〈∇PSSE(Θt),Θt+1 −Θt〉+
L

2
‖Θt+1 −Θt‖2.
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Combining the above two equations, we have

PSSE(Θt+1)+µΥ3(P t+1
1 ,P t+1

2 ) ≤ PSSE(Θt)+µΥ3(P t1,P t2)−
ρ− L

2
‖Θt+1−Θt‖2.

(11)
This indicates that there exists a step length parameter ρ > L that will lead
to a decrease in the objective function value. In practice, we use backtracking
to find this step length. This also implies that the sequence {Θt} generated
by the algorithm satisfies:

PSSE(Θt+1) + µΥ3(P t+1
1 ,P t+1

2 ) ≤ PSSE(Θt) + µΥ3(P t1,P t2).

Let Θa be a limit point of the sequence {Θt}. That is, there exists a subse-
quence K such that:

lim
k∈K

Θk = Θa.

The sequence of objective function values monotonically decreases and is
bounded below, so the sequence of objective function values converges:

lim
k→∞

PSSE(Θk) + µΥ3(Pk1 ,Pk2 ) = lim
k∈K

PSSE(Θk) + µΥ3(Pk1 ,Pk2 )

= PSSE(Θa) + µΥ3(Pa1 ,Pa2 ).

Passing the limit to (11), we obtain

lim
k∈K→∞

‖Θk+1 −Θk‖2 = 0.

At the tth iteration, Θt+1 is the minimizer of the problem (6), which satisfies
the optimality condition

0 ∈ ∇PSSE(Θt) + ρ(Θt+1 −Θt) + ∂µΥ3(P t+1
1 ,P t+1

2 ).

Passing the limit on t, we have

0 ∈ ∇PSSE(Θa) + ∂µΥ3(Pa1 ,Pa2 ).

The limit point Θa is a critical point of (5).
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