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Abstract—Many fingerprint recognition systems cap-
ture four fingerprints in one image. In such systems,
the fingerprint processing pipeline must first segment
each four-fingerprint slap into individual fingerprints.
Note that most of the current fingerprint segmen-
tation algorithms have been designed and evaluated
using only adult fingerprint datasets. In this work, we
have developed a human-annotated in-house dataset
of 15790 slaps of which 9084 are adult samples and
6706 are samples drawn from children from ages 4 to
12. Subsequently, the dataset is used to evaluate the
matching performance of the NFSEG, a slap fingerprint
segmentation system developed by NIST, on slaps from
adults and juvenile subjects. Our results reveal the
lower performance of NFSEG on slaps from juvenile
subjects. Finally, we utilized our novel dataset to
develop the Mask-RCNN based Clarkson Fingerprint
Segmentation (CFSEG). Our matching results using
the Verifinger fingerprint matcher indicate that CF-
SEG outperforms NFSEG for both adults and juvenile
slaps. The CFSEG model is publicly available at https:
//github.com/keivanB/Clarkson_Finger_Segment

Index Terms—juvenile and adult fingerprints, deep
slap Segmentation, Mask-RCNN

1. Introduction
Due to their high accuracy and convenience, fingerprint-

based recognition systems are now in widespread use, e.g. in
border crossings, cell-phone authentication, and health care.
Many fingerprint recognition systems use high-end multi-
finger scanners instead of single finger scanners in order to
achieve more accurate identification [1]. In such systems,
the fingerprint processing pipeline relies on a fingerprint
segmentation model to localize individual fingerprints [2]
within each four-finger slap. As a result, slap fingerprint
segmentation models are an integral part of fingerprint
recognition systems as the loss of fingerprint ridge structure
due to improper segmentation can significantly degrade the
overall matching performance [3].

To the best of our knowledge, all current slap fingerprint
segmentation models have been developed using adult
datasets [2], [4], [5]. However, since aging is known to
affect the size and ridge-valley structure of the fingerprints,
lower the quality and diminish the matching performance
[6], [7], careful consideration and modeling are required to
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accurately segment and match slaps from juvenile subjects.
However, the lack of publicly available juvenile datasets,
as well as privacy concerns, have led to a dearth of work
on this topic.
In this work, we have developed a human-annotated

in-house dataset of 15790 slaps (Children: 6706, Adult:
9084). Our new dataset allows us to accurately evaluate
the performance of the NFSEG model on both adult and
juvenile subjects. NFSEG is one of the most popular
fingerprint segmentation system published by NIST [4].
This segmentation system is used as a benchmark algo-
rithm to evaluate the performance of a newly developed
slap segmentation algorithm. Additionally, we utilized our
human-annotated dataset to develop Clarkson Fingerprint
SEGmentation (CFSEG) – a novel deep learning-based
fingerprint segmentation model designed to accurately
segment both adult and juvenile slap fingerprints. Our test
results using the Verifinger fingerprint matcher (version
10, compliant with NIST MINEX [8]), show that CFSEG
outperforms NFSEG in both adult and juvenile cohorts of
our dataset.

2. Collection and Annotation of Slap
Fingerprints

We combined several in-house adult and juvenile datasets
to create a balanced and representative dataset for training
and evaluating CFSEG. Our dataset contains a total of
15790 slap fingerprints (adults: 9084, juvenile: 6706) from
203 adults and 242 juvenile subjects. All slaps are captured
at 500 ppi using the FBI certified Crossmatch L Scan
Guardian (9000251) fingerprint scanner [9].

Initially, all slaps are segmented using the NFSEG model.
Subsequently, we developed a Graphic User Interface (GUI)
based on the open-source labelImg [10] platform for fin-
gerprint annotation. Our GUI allows us to utilize NFSEG
segmentations as a starting point for each capture. This
process significantly reduced our annotation time to a
practical time frame. Additionally, this pipeline allows us to
utilize the estimated angle of rotation from the NFSEG and
rotate each slap to the upright position. In the first stage,
human annotators evaluated each slap for the correct angle
of rotation. In the second stage, annotators cycle through
slaps and correct the fingerprints that are incorrectly

ar
X

iv
:2

11
0.

04
06

7v
1 

 [c
s.C

V
]  

6 
O

ct
 2

02
1



segmented by NFSEG while the rest of the bounding
boxes remain untouched. This process resulted in a cleaned
and annotated dataset with a total of 52674 localized
fingerprints (adult: 30304, juvenile: 22370). Finally, we
used a rigorous two stage 10-fold cross-validation process
based on the unique identities in the dataset to derive
our training, validation, and test sets. At each fold, 80%
of the adult and 80% of the juvenile identities were used
for training while the remaining 20% of identities of both
types were used for validation (10%) and testing (10%).

3. Clarkson Fingerprint Segmentation
(CFSEG)

Our CFSEG model for slap segmentation is based on the
Mask-RCNN architecture [11]. In this section, we discuss
the overall Mask R-CNN model, the loss functions, and
the training scheme used for training the CFSEG.

A. Architecture of Mask R-CNN
Mask-RCNN is a simple and flexible two-stage deep

architecture developed to perform semantic segmentation,
object localization, and object instance segmentation of
natural images [11]. As a result, we adopt Mask-RCNN
architecture for CFSEG.
The first stage of this architecture contains the Region

Proposal Network (RPN) which proposes candidate object
bounding boxes. It consists of two networks, a Convolution
Neural Network (CNN) and a Region Proposal Network
(RPN). The CNN is the backbone of the Mask R-CNN
architecture, and it is responsible for extracting feature
maps from the input images. Any CNN model designed for
image classification tasks (such as ResNet, MobileNet, or
VGG) could be used as the backbone network [12]. Previous
research has shown that the ResNet-FPN backbone pro-
vides better performance in terms of accuracy and speed on
object detection tasks [11]. Therefore, we have used ResNet-
101 [13] as the backbone network in our experiments. On
the other hand, the RPN is responsible for generating a set
of ‘Region Proposals’, which signify regions in the feature
map that have a high probability of containing objects. In
the second stage, a small, Fully Connected Neural Network
(FCNN) takes the proposed regions from the first stage and
predicts bounding boxes and object classes for each of them.
Note that the proposed regions generated by the RPN can
be of different sizes. However, fully connected layers in the
networks only take a fixed size vector to make predictions.
The ROIAlign [11], which is a modified version of Max-
Pooling, is used to fix the size of these proposed regions.
ROIAlign also fixes the misalignment which preserves the
exact spatial location of an object and helps to improve
overall accuracy.
A fully convolutions network is added (parallel with

the existing branch for classification and bounding box
regression) which is responsible for predicting segmentation
masks in a pixel-to-pixel manner on each Region Of Interest
(ROI).

B. Loss function

For training RPNs, a class label indicating whether it
is an object or not is assigned to each anchor. Anchor
boxes are reference boxes placed at different positions in
the input image. A positive label is assigned to an anchor
if that anchor has an Intersection over Union (IoU) greater
than 0.7 with any ground truth objects. A negative label
is assigned to an anchor if that anchor has an IoU less
than 0.3 with any ground truth objects. The anchors that
have an IoU value between 0.3 and 0.7 are considered
neutral and excluded from the training set. Shift and
resizing operations are performed before training the RPN
which helps make the anchor cover the ground truth object
completely. With this definition, a multi-task loss function
is used to train the Mask R-CNN. This loss function
is divided into three parts which combine the loss of
classification, localization, and segmentation as follows:

L = Lcls + Lbox + Lmask (1)
The class, bounding box, and mask losses are represented

by Lcls, Lbox and Lmask respectively. Lcls is the log
loss function over two classes carried out as a binary
classification by predicting an object being a target object
or not. The smooth L1 loss is used for bounding box loss
Lbox. Mask loss Lmask is the average binary cross-entropy
loss, and it is calculated for each class separately. These
calculations prevent competition among the classes when
generating masks. The details of different loss functions
are as follows:

L({pi}, {ti}) = 1
Ncls

∑
i

Lcls(pi, p
∗
i ) + λ

Nbox∑
i

p∗
iL

smooth
box (ti − t∗i ) + (−1 ∗ 1

m2 )
∑

1≤i,j≤m

[yij log yk
ij

+ (1− yij) log(1− yk
ij)] (2)

Here, i represents the index number of an anchor and pi is
the predicted probability of an anchor being an object. The
ground-truth binary label is represented by p∗

i . ti and t∗i
represent the vector with four coordinates of the predicted
and ground-truth bounding box respectively. m is the size
of the mask output; yij is the label of a cell (i,j) in the true
mask for the region of size m × m; yk

ij is the k-th mask
predicted value of the same cell in the mask learned for
the ground-truth class k.

C. Training

An image-centric training approached [14] is utilized in
this work and only positive anchors are used to determine
the loss of the network. Our training approach is as follows:

• N ROIs are generated from each image with the
ratio of positive to negative ROIs of 1:3, where N is
selected as 64 and 512 for backbone and FPN stages
respectively.

• When training RPN, the anchors aspect ratio is 3, and
the span is 5 scales. The RPN is trained individually



Fig. 1: Example for calculating positive and negative errors
between the predicted and ground truth bounding box.

and does not share features with other parts of the
Mask-RCNN network.

• The Stochastic Gradient Descent (SGD) with a learn-
ing rate of 0.001, momentum of 0.9, and decay of 0.0001
are used to train the network.

During inference, the region proposal number increases
to 300 and 1000 for the backbone and FPN stages, re-
spectively. This increment helps the network not miss any
potential regions during inference time. The bounding box
prediction branch considers each proposal proposed by
the backbone and FPN network. Then the non-maximum
suppression is performed to remove the low-scoring ROIs.
To keep computational overhead to a minimum during
training and inference, the mask branch only runs over
the 50 highest scoring ROIs.

4. Evaluation and Results
In this work, we utilized both the Mean Absolute Error

(MAE) of the predicted bounding boxes and fingerprint
matching performance as our evaluation metrics. In this
section, we describe our evaluation process and results.

A. Mean Absolute Error (MAE)
The MAE measures the distance between the detected

bounding box and the annotated ground-truth bounding
box in terms of pixels. Slap fingerprint segmentation
models have to find the balance between over-extending
the bounding boxes (over-segmentation) vs. excessively
reducing the predicted bounding box (under-segmentation).
Over-segmentation can lead to the ridge-valley structure
of other fingerprints leaking into the bounding box of
other fingerprints. This extra noise can potentially degrade
the matching performance. On the other hand, under-
segmentation can cause the loss of the valuable parts of
the fingerprints.
Previous work has identified that under-segmentation

beyond 32 pixels from the sides and 64 pixels from the
top or bottom of the fingerprint can negatively affect the
matching performance [3]. As a result, we calculate and
report MAE for each side of the bounding box individually,
i.e. the error is calculated by measuring how far those four
sides are from the four sides of the ground truth bounding
box. In Figure 1, the red dotted rectangle represents
the ground-truth bounding box generated by a human-
annotator and the blue rectangle represents the detected

bounding box by a fingerprint detection model. If any side
of a detected bounding box captures more information than
the side of the ground-truth bounding box, we consider it
as a positive error. On the other hand, if any side of a
detected bounding box captures less information than the
ground-truth bounding box, we consider it as a negative
error. Finally, the MAE for each side is calculated using the
equation 3, Where, n is the total number of fingerprints in
the test dataset. X represents any side such as left, right,
top, bottom, of the bounding box.

MAE =
∑n

i=0 abs(X errori)
Total_fingerprints_in_the_dataset (3)

Table 1 shows the mean and standard deviation of the
MAE for NFSEG and CFSEG models evaluated using our
dataset. We can observe that, compared to NSFEG, CF-
SEG has lower MAE in almost all directions and produces
more precise bounding boxes for both adults and juvenile
subjects. Additionally, our results confirm that compared
to adults, NFSEG suffers from higher MAE in all directions
in the juvenile cohort of our dataset. Furthermore, we
observe that in both adult and juvenile subjects, NFSEG
has difficulty in accurately localizing the lower boundary
of fingerprints. Figure 2 illustrates the histogram of the
bottom errors for adult and juvenile subjects. We can
observe that while CFSEG maintains the performance in
Juvenile subjects, NFSEG is particularly susceptible to
this type of error in juvenile subjects. Our failure analysis
on such cases revealed that the high error observed in
this direction is because of the over-segmentation at the
distal interphalangeal joint. Figure 3 depicts an example
of this problem, where the red bounding box indicates
the ground truth and the blue bounding box presents the
bounding box predicted by NFSEG. Additionally, the long
tail of the error histogram of the NFSEG model for the
juvenile subjects suggests that NFSEG over-segmented
many juvenile samples below the Minimum Tolerance Limit
(MTL) of -64 pixels suggested by Slapseg-II [3]. This can
potentially reduce the matching performance of the system.

TABLE 1: Mean Absolute Error (MAE) [Mean (Std.)] for
NFSEG and CFSEG

Age
Group Adults Children
Model NFSEG CFSEG NFSEG CFSEG
Left 07.13(28.59) 08.21(14.66) 12.09(38.19) 08.36(16.25)
Top 13.18(44.70) 13.05(20.26) 28.47(92.51) 13.77(21.13)
Right 09.46(31.52) 07.73(13.78) 13.60(34.55) 07.21(14.16)
Bottom 35.23(84.73) 16.60(24.41) 102.87(159.00) 15.00(22.92)

B. Fingerprint Matching
In the second stage of the evaluation process, we utilized

the Verifinger fingerprint matcher (version 10, compliant
with NIST MINEX [8]) to compare the matching accuracy
using the fingerprints segmented with NFSEG and CFSEG.
This helps us better analyze the effects of segmentation
accuracy on the overall performance of the fingerprint
recognition system. In order to evaluate the matching
accuracy, we used the annotated ground truth, NFSEG,



Fig. 2: The histogram of the bottom error (pixels) from predicted bounding boxes by the NFSEG and CFSEG models
for adult (Left) and Juvenile (Right) subjects.

Fig. 3: Example of over-segmentation error in NFSEG. The
red rectangle shows the ground-truth bounding box while
the blue rectangle shows the detected bounding box by the
NFSEG.

and CFSEG bounding boxes. For every fingerprint in the
dataset, we evaluated all the mated comparisons for our
genuine distribution (172348), while randomly selecting 20
non-mated fingerprints to construct an imposter distribu-
tion (441322 imposter comparisons). In total, we performed
600, 000 comparisons using all 10 fingers.
Our results indicate that for both adults and juvenile

cohorts the fingerprints segmented with CFSEG provide
higher accuracy across operation points. Additionally, we
observe lower overall matching performance in juvenile
subjects compared to adults. Finally, Table 2 depicts the
True Positive Rate (TPR) at False Positive Rate (FPR)
of 0.1% for fingerprints segmented using NFSEG, CFSEG,
and human-annotators.
TABLE 2: TPR [Mean (Std.)] at FPR of 0.001 for NFSEG,
CFSEG, and Ground Truth.

Model Adults Children

NFSEG 0.9972 (0.0027) 0.9675 (0.0135)

CFSEG 0.9977 (0.0026) 0.9687 (0.0135)

Ground-Truth 0.9991 (0.0011) 0.9716 (0.0137)

5. Conclusion and Limitations
The experimental results indicate that our novel CFSEG

model provides more precise bounding box predictions with
respect to NFSEG for both adult and juvenile subjects.
However, CFSEG currently depends on the estimated
rotation angle of the slap acquired from NFSEG. This
will be addressed in future work by the introduction of a
regression sub-network for angle prediction and artificially

augmenting the training dataset with rotated slaps. Addi-
tionally, our fingerprint matching experiment is conducted
using the human-annotated class labels (i.e. index, middle,
or ring fingers) for all algorithms to produce a meaningful
comparison between the predicted bounding boxes. Future
work can focus on designing a class prediction sub-network
to integrate this task into the CFSEG and further improve
the overall performance. Finally, the trained CFSEG model
is publicly available to other researchers at https://github.
com/keivanB/Clarkson_Finger_Segment.
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