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6 Wl LEY CAMACHO ET AL.
1 | INTRODUCTION

The crossing number of a graph G, denoted by cr(G), is the minimum number of edge
crossings over all drawings of G in the plane. It quantifies how close or far a graph is from
being planar. Drawings with few crossings have been studied in connection with read-
ability and VLSI chip design [23]. See [28] for a survey of crossing number variants and
some of their applications. Computing the crossing number of a graph is an NP-hard
problem [15,21]. The precise values are not known even for very special graph classes,
such as complete and complete bipartite graphs. Nevertheless, there exist long-standing
conjectures. Zarankiewicz [29] conjectured that for the complete bipartite graph K, ,, the
bound

oo s[5 a5 =

given by a certain straight-line drawing of K, , with vertices placed along two axes, is the best
possible. Later, Harary and Hill [20] conjectured that the upper bound for the complete
graph K,
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given by Guy [18], is the best possible.

Among the best-known drawings of complete graphs are drawings where the vertices
are placed on one or two circles and edges do not cross the circles. Such drawings are
1-circle drawings (or 2-page book drawings) [3] and 2-circle drawings (or cylindrical
drawings) [5], respectively. (For more details, refer to Section 4.) A question of interest
[6,22] is to determine which other families of drawings of K, achieve the conjectured
minimum number of crossings, H (n). One possible direction is to look at greater numbers
of circles.

As a natural extension of 1- and 2-circle drawings, a k-circle drawing of a graph G in the
plane is a drawing in which the vertices are placed on k disjoint circles and the edges do not
cross the circles [14]. The minimum number of crossings in a k-circle drawing of a graph G is
the k-circle crossing number of G. For the special case when G is a k-partite graph, if we further
require that the vertices on each circle form an independent set, we call these drawings
k-partite-circle drawings. We call the minimum number of crossings in a k-partite-circle
drawing the k-partite-circle crossing number and denote it by creg(G). In this paper, we de-
termine bounds for the tripartite-circle crossing number of complete tripartite graphs, and we
conclude that for n > 13 there are no balanced restricted 3-circle drawings of K, that achieve
the minimum number of crossings.

1.1 | Previous results and related work

In this section, we concentrate on bipartite-circle crossing numbers and on the crossing
numbers of complete tripartite graphs. The 2-circle drawings are also called cylindrical
because they can be thought of as drawings on the surface of a cylinder, with the vertices on
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the top and bottom circles. Analogously, a 3-circle drawing can also be understood as a pair
of pants drawing (an instance of the map crossing number [26]), where two circles are
enclosed by the third. A radial drawing [9] of two concentric circles is equivalent to a
2-circle drawing (cylindrical drawing). For k-circle drawings with k > 3, three or more
concentric circles (or more generally three pairwise nested circles) would require that any
edges from the outermost to the innermost circle would necessarily cross the middle circle
(s), so a radial drawing with three or more concentric circles is not equivalent to a k-circle
drawing. Consequently, 3-partite-circle drawings of complete tripartite graphs do not
contain three pairwise nested circles.

The bipartite-circle drawings of bipartite graphs, in which the vertices of each part are
placed on a circle and no edge crosses a circle, are of special interest due to their connection
to one of the conjectured optimal drawings of K,,. A 2-circle drawing of K,, with H (n)
crossings can be obtained from a bipartite-circle drawing of K, /2 ./21 by adding straight-
line edges between vertices on the same circle. In general, the bipartite-circle crossing
number of complete bipartite graphs, also known as the bipartite cylindrical crossing
number, is fully understood. In 1997, Richter and Thomassen [27] settled the balanced case
by showing that

cro(Knn) = n(;‘) 1

Abrego, Fernandez-Merchant, and Sparks [7] generalized this result to all complete
bipartite graphs. For m < n, the bipartite-circle crossing number is

cro(Kmn) = (2)(";) + 15i§5m ([%(j - 1)J - {%(i - 1)J]2
—n- X “%(]‘ - 1)J - [%(i - 1)J].
1<i<j<m

In particular, if m divides n, then cre(Kp,n) = ‘12 - n(m — 1)(2mn — 3m — n).

For the general crossing number of complete tripartite graphs, Gethner et al. [16] proved an
upper bound A(m, n, p) on cr(K,,,p) that is analogous to the Zarankiewicz Conjecture for
K. Additionally, they proved that among straight-line drawings their bound is asymptotically
very close to best possible. For balanced tripartite graphs, A(n, n, n) is of order °/¢ - n*, much
less than our lower bound of 5/, - n* (see Corollary 2) because their drawings are not restricted
by circles. (A similar gap exists between Z (n, n) ~ /6 - n* and cro (K,,,) ~ /s - n*.) Asano [8]
determined the crossing numbers of Kj ; , and K 3 ,, and Ginn and Miller [17] gave bounds on
cr(Ks 3,,). More recently, building upon this study, we [13] established the exact tripartite-circle
crossing number of K, , , for every integer n > 3, as

()

n—1

cte (Kzn)= 6{%“ J +2n — 3. 3)

For other crossing number results and equivalent terminology, see, for example, [28].
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1.2 | Ouwur results

We prove several bounds on the tripartite-circle crossing number of complete tripartite
graphs.

Theorem 1. Let m,n, and p be natural numbers and t:={(m,n,p),
(n, p, m), (p, m, n)}. Then the following bounds hold:

> (cr@ (Kap)+ ab[c = 1“%“ < cto(Knnp)

(a,b,c)et
< Z Gl s

For m, n, p > 3 we improve the lower bound by 2 in Corollary 12. Using Equation (1) and
Corollary 12, Theorem 1 simplifies as follows for the balanced case. Note that the lower bound
of order ~°/, - n* and the upper bound of order ~%/, - n* are fairly close.

Corollary 2. For any integer n > 3,

3n(§) + 3n2[§Hn ; 1J + 2 < cro(Kppn) < 3(’21)2 + 3nzl%HnT_lJ

Finally, k-partite-circle drawings of complete k-partite graphs easily give rise to drawings of
complete graphs, known as restricted k-circle drawings, by adding straight-line segments between
each pair of vertices on the same circle. If the numbers of vertices on the circles are as close to equal
as possible, these drawings are called balanced restricted k-circle drawings of K,. The minimum
number of crossings in such a drawing is denoted by bcrg(K,). Certain balanced 1- and 2-circle
drawings of the complete graph have H (n) crossings and are conjectured to be optimal [11,12,3,20,5].
Our results imply that this phenomenon does not generalize to balanced restricted 3-circle drawings.

Corollary 3. For n=9,10 and n > 13, the number of crossings in any balanced
restricted 3-circle drawing of K,, exceeds H (n), that is, bcrg(K,) > H (n).

For n < 7, balanced restricted 3-circle drawings of K, achieve the Harary-Hill bound, and
we give drawings for K¢ and K;. For 8 < n < 11, we conclude that there exist unbalanced
restricted 3-circle drawings of K,, with H (n) crossings.

1.3 | Organization

The remainder of our paper is organized as follows: In Section 2, we introduce tools to count
the number of the crossings, which we then use in Section 3 to prove Theorem 1 and
Corollary 2. We discuss the connection to the Harary-Hill conjecture in Section 4 and conclude
with a list of open problems in Section 5.
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2 | TOOLS FOR COUNTING THE NUMBER OF CROSSINGS

A simple drawing of G is a drawing where no edge crosses itself, two edges that share a vertex
do not cross, and two edges with no shared vertices intersect at most once. Drawings that
minimize the number of crossings are simple, so we only consider simple drawings. In a
tripartite-circle drawing of K, , ,, we label the three circles m, N, and p, and their numbers of
vertices are m, n, and p, respectively. Consider Figure 1. Note that this drawing can be
transformed by a projective transformation of the plane such that any one circle encloses the
other two. Therefore, without loss of generality we consider drawings where the outer circle p
contains the inner circles M and N. In such a drawing, we label the vertices on circles m and N in
clockwise order and the vertices on circle p in counterclockwise order. Likewise, we read arcs of
circles in clockwise order for inner circles and in counterclockwise order for outer circles.

2.1 | Defining the x-labels

For simplicity and without loss of generality, both papers [7,27] considered simple bipartite-
circle drawings of the complete bipartite graph where the two circles are assumed to be nested.
Their results rely on the assignment of a vertex x;(A,B) on the outer circle B for each vertexi on
the inner circle a. Because we are dealing with three circles and a pair of them is not necessarily
nested, we adapt this definition as follows.

Let i be a vertex on circle A. The star formed by all edges from i to B together with circle B
partitions the plane into several disjoint regions, as shown in Figure 2. Exactly one of these
regions contains circle A. Such a region is enclosed by two edges from i to B and an arc on B
between two consecutive vertices. We define the second of these vertices (in clockwise or
counterclockwise order depending on whether B is an inner or outer circle, respectively) as
x; (A,B). If the two circles are clear from the context, we may also write Xx;.

Abrego et al. [7] observed that the x-labels are weakly ordered and suffice to describe
the drawing up to isomorphism. Because we number the vertices on the outer circle in
counterclockwise order (opposite to how it is done in [7]), the ordering of x-labels on the
circle is reversed when compared to Lemma 1.4 from [7]. In particular, our weak ordering
stated below is achieved, following the proof from [7], by possibly renumbering the inner
vertices.

-7 1 T .l
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FIGURE 1 The vertices on the circles m and N are labeled clockwise; the vertices of the circle p are labeled
counterclockwise
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Lemma 4 (Abrego et al. [7, Lemma 1.4]). Consider a simple bipartite-circle drawing of
K., where the circles a and B have a and b vertices, respectively, and the vertices are labeled
so that x; = b. Then it holds that

X=X = 2>Xg.

Moreover, for a given sequence (s;); with sy > s, > --+ >5,, up to isomorphism, there is a
unique simple bipartite-circle drawing of K, , with x; = s; for alli € A.

2.2 | Defining the y-labels

As observed in Lemma 4, the x-labels are sufficient to describe a bipartite-circle drawing. We
now aim to describe tripartite-circle drawings. We therefore introduce a new vertex assign-
ment, );(A, B) that depends on all three circles. See Figure 3. Let a, B, and c be the three circles
and i be a vertex on a. The star formed by all edges from i to B together with circle B partitions
the plane into disjoint regions. Exactly one of these regions contains the third circle c. This
region is enclosed by two edges incident to i and the arc between two consecutive vertices on B.
We define the second of these two vertices (in clockwise or counterclockwise order depending
on whether B is an inner or outer circle, respectively) as y,(A, B).

Nested: a inside B Nested: B inside a Non-Nested: a beside B

FIGURE 2 Definition of vertex x;(A,B)

- — _o — —

Nested: a is inside B Non-Nested: a is beside B

FIGURE 3 Illustration of y,(A, B) for the cases when (a) a is inside B and (b) when a is besides B
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2.3 | Counting crossings using x- and y-labels

If two edges ab and cd cross, then at least two (nonadjacent) vertices in {a, b, c, d} are on the
same circle. Hence, there are six total types of crossings between edges ab and cd:

MP/MP-crossings: a and c lieon M, and b and d lieon P;
NP/NP-crossings: a and c lieon N, and b and d lie on P;
MN/MN-crossings: a and c lieon M, and b and d lieon N;
MN/MP-crossings: a and ¢ lieon M, blieson N, and d lieson P;
MN/NP-crossings: a and c lieon N, b lieson M, and d lies on P;
MP/NP-crossings: a and c lie on P, b lieson M, and d lieson N.

We typically color the edges between each pair of circles with the same color, using three
different colors for the different pairs. The first three types of crossings above only involve two
circles and these are called monochromatic crossings. The last three types involve all three
circles with edges of different colors. Thus, these crossings are called bichromatic crossings. We
use the x- and y-labels to count the monochromatic and bichromatic crossings, respectively.
The following definitions are used throughout the rest of the paper.

For vertices k and ¢ on a circle with n vertices numbered 1, ..., n clockwise (respectively,
counterclockwise), let

d,(k,€):=¢ — k mod n

denote the distance from k to ¢ in clockwise (respectively, counterclockwise) order on the
circle. Let [n] = {1, 2, ..., n}. For any u, v € [n], define

d,,(u,v)) N (n - d,,(u,v))

A URY) ==( 5 5

For vertices i and j on the inner (respectively, outer) circle A, we use [i, j | to denote the arc
of A read clockwise (respectively, counterclockwise) from i to j. We include i and j in the
interval [i, j |, whereas (i, j ) does not include i and j. We similarly define [i,j) and (i, j ].
2.3.1 | Counting crossings involving two circles

We start by stating the following result from [27] to take care of the monochromatic crossings.

Lemma 5 (Richter and Thomassen [27, Sect. 2]). The number of crossings in a simple
bipartite-circle drawing of the complete bipartite graph K,, , is

Z fn(xi,xj)-
1<i<j<m
2.3.2 | Counting crossings involving three circles

The following lemma introduces a means of counting all three types of bichromatic crossings
using the y-labels. See Figure 4 for a visual representation of a possible MP/NP-crossing.
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FIGURE 4 [Illustration for the case that (A,B,C) = (M,N,P). Since k' € [; and ¢ € L, edges between the
vertices i, j, k', and ¢ do not cross, but edges between the vertices i, j, k, and ¢ do cross since k and ¢ are in the
same interval L,

Lemma 6. Let 4, B, and c be three disjoint circles with the disjoint vertex sets {1, ..., a},
{1, ..., b}, and {1, ..., c}, respectively. Then the number of AC/BC-crossings is given by

1 a
1 b

I/\ I/\
I/\ I/\

Proof. Fix a vertex i on A and a vertex j on B and consider the corresponding vertices
¥(A, C) and yj(B, C) on circle c, see Figure 4. For every pair of distinct vertices k and ¢
both in the interval [y, (A, C), yj(B, C))=: I, on c there is exactly one crossing among edges
ik and i¢, and jk and j¢. Similarly, there is exactly one crossing among the edges ik and
i¢, and edges jk and j¢ when k and ¢ are in [ yj(B, C), ¥.(A, C))=: L. Moreover note that if
avertex k is in I; and a vertex ¢ is in I, then there are no crossings among edges ik, i¢, jk,
and j¢. Consequently, there are exactly f,(y;(A, C), yj(B, C)) crossings among edges
incident with vertices i and j. Therefore the total number of AC/BC-crossings is as
claimed. O

2.3.3 | Total crossing count

The number of crossings in a simple tripartite-circle drawing of K, » , can be found by counting
the crossings in the three different, simple bipartite-circle drawings of K, », Ky p, and K, p,
along with crossings involving all three circles. Therefore, we say a cyclic assignment of (a, B, c)
to (M, N, P) is one triple in the set t := {(M,N,P), (N,P,M), (P,M,N)}, with the number of vertices
on the circles a, B, and c denoted by a, b, and ¢, respectively.

Theorem 7. The number of crossings in a simple tripartite-circle drawing of K, n p is
given by

> > i xi(AB), X (A, B) + ) f.(5i(A, ©), (B, O)|.
(AB,O)et| i<Jj i_ef]\;
ijeA je
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Proof. The monochromatic crossings are counted by the first expressions in the brackets
using Lemma 5. The second expression corresponds to the bichromatic crossings using
Lemma 6. O

3 | BOUNDING THE TRIPARTITE-CIRCLE CROSSING
NUMBER—PROOFS OF THEOREM 1 AND COROLLARY 2

In this section, we prove the upper and lower bounds of Theorem 1 and Corollary 2. We start
with the lower bounds and then proceed with the upper bounds.

3.1 | Lower bounds
To prove the lower bounds, we start with two lemmas.

Lemma 8. The function f,(a,b) attains its minimum M if and only if
la — bl € {{n/2],[n/21}. Among pairs (a,b) such that la — bl & {|n/2],[n/21}, the
minimum of f, exceeds M by 1 if n is even and by 2 if n is odd.

Proof. First note that d, (a, b) = |n/2] if and only if la — bl € {{n/2], [n/2]} because
n=|n/2] + [n/2].

. . . X n—x n)2 n?—2n

Consider the auxiliary real-valued function g, (x) = ( 2) + ( 5 ) = ( - 5) +—

It is a quadratic function minimized at % symmetric about x = % decreasing for x < % and

increasing for x > g Consequently, the minimum value of g, over the integers is attained at

x €{ln/2],[n/21}; the next smallest value of g, over the integers is attained at
x € {ln/2] — 1,[n/2] + 1}. Finally, the claim follows by a computation showing that

2 if n isodd, n
1 if n iseven.

g (n/2] = 1) — g,(In/2)) = {

For every cyclic assignment of (A,B,C) to (M,N,P), we denote the minimum number of aB/
Ac-crossings among all simple tripartite-circle drawings of K, , , by crg(Km,n’p).

Lemma 9. For every cyclic assignment of (A,B,C) to (M,N,P),
c— lJ
|
Proof. From the count in Lemma 6, and its minimization in Lemma 8, we have the
lower bound

Z LA, 0,y (B.0) 2 Z (LCQZJ)+(rcéﬂ):ab[(tcgzj)+(rcéﬂ)}.

a
b

Cr%(Km,n,p) > ab l%J

I/\ I/\
I/\ I/\

a
b

I/\ I/\
|/\ I/\

Adding the last two terms directly yields the claim. O
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This allows us to find a lower bound on cre(Kp,n,p).

Proof of the lower bound of Theorem 1. In Theorem 7 we count the total number of
crossings in a simple tripartite-circle drawing of Ky, p.

Cr@(Km,n,p) > cre(Km,n) + Cr@(Km,p) + Cr@(Kn,p) + Crg(Km,n,p) + Crg(Km,n,p)

+ crb(Kmn,p)-

Lemma 9 gives a lower bound on the last three summands and directly implies the
claimed lower bound:

ctoKmnp) = D, (Cr@(Ka,b) + ab EHC ; 1” O

(A,B,O)et

3.1.1 | Improving the lower bound

With the help of the following lemmas, the lower bound can be improved by 2. This
improvement is relevant in the analysis of small graphs and the connection to the
Harary-Hill conjecture. It is also used in [13] to settle the tripartite-circle crossing number
of KZ,Z,n-

Lemma 10 (Special Inversion Lemma). Fix the placement of two circles A and B inside
circle c. For a tripartite-circle drawing D, x;(A, C) = y,(A, C) for all i on 4 if and only if
yj(C, A) =y (C,A) forall j,k onc.

Proof. Let D* be the restriction of D to edges between a and c. We refer to the connected
components of the complement of D* as faces. We start with an observation. By the
definitions of x; (A, C) and (A, C), we have x;(A, C) = y,(A, C) if and only if the pair of
incident edges {i, x;(A, C)} and {i, x; (A, C) + 1} divides the interior of c into two parts
where a and B lie in the same part and all other edges from i lie in the other part. This
holds for all i if and only if no edge of D* separates a from B; in other words, the circle B
lies in a face F of D* adjacent to A. Figure 5 shows an example with x;(A, C) = y,(A, C)
for all i and with the faces adjacent to A shaded in gray. Circle B lies in one of these faces,
say F. This finishes our observation.

Now we prove the lemma. Suppose x;(A, C) = 3;(A, C) for all i on a. By the above
observation, the circle B lies in a face F of D* adjacent to a. Let g and q + 1 be the two
vertices on a and on the boundary of F, where q + 1 comes clockwise directly after q.
For each j on c, the triangle T; = (j, g, g + 1) cannot cross F, since it is a face, and
shares the side {q, ¢ + 1} with F. By the properties of simple drawings, either F is in the
interior of Tj and all other edges from j are on the exterior, or F is on the exterior of T;
and all other edges from j are in the interior of Tj. In either case, y,(C, A) = ¢ + 1for all
jonc.

For the converse, suppose yj(C, A) =y, (C,A)=q + 1 for all j,k on c and some g

on A. Then for each j on c, the triangle Tj = (j,q,q + 1) is the smallest triangle
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FIGURE 5 Depiction of special y-inversion

(by containment) from j to a that encloses 8. By the minimality of T}, no edge from j in
D* can cross the interior of T;. The intersection of these triangles over all j on c is a face F
of D* containing B and adjacent to A at{q, g + 1}. By the observation, x;(A, C) = y,(A, C)
for all i on A. O

For vertices x and y on a circle with n vertices, we define
min d, (x, y) = min{d, (x, J’), d,(y, x)}.

The following lemma analyzes the situation when a term counting bichromatic crossings is
minimized.

Lemma 11. Consider a tripartite-circle drawing with circles 4, B, and c with c vertices on
c If f.(5»(A,C),y(B,C)) = min ch (u,v) for every i € A and j € B, then there are
(u,v)€lc]

vertices ua, ug € C with the following properties:

(i) For both circles D € {A, B}, ».(D, C) € {up, up + 1} for alli € D.
(ii) For some circleD € {A, B}, »;(D, C) = up for alli € D. If ¢ is even, then for both circles
D e {A,B},3(D,C) = up for alli € D.

Proof. Suppose that f,(y,(A, C), yj(B, C)) equals the minimum value of f, for every
i € A and j € B. By Lemma 8, it holds that ly;(A, C) — (B, O)I € {l¢/2],[c/21} and
min d.();(A, C),y,(B, C)) = [¢/2].

First we prove property (i). Without loss of generality, we assume that D = A. Let
V= yj(B, C) for some j € B. The vertex v on c can have only one vertex at distance
lc/2] = c/2 if ¢ is even and only two vertices at distance |c/2], adjacent to one another, if
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¢ is odd. Since min d.(y;(A, C),v) = [c/2]for alli € A, we get that the y,(A, C) labels are
all the same in the even case, or all on one of two adjacent vertices in the odd case.
Next we prove property (ii). Suppose for contradiction that (A, C) =
us, (A, C) = up + 1,y,(B,C) = up, and y(B,C)=ug+1 for some i,j €A and
k,¢ € B. Since min d.();(A, C),yj(B, C)) = lc/2] for every i € A and j € B, we get
that min d.(ua, ug) = min d.(ua, ug + 1) = [¢/2]. No vertex on c other than u, is at
distance | ¢/2] from both ug and ug + 1, but up + 1 # us must also be at distance |c/2]
from both. O

Now, we use these insights to improve the lower bound of Theorem 1.

Corollary 12 (Improvement of lower bound of  Theorem 1). Let
t:={(m, n, p), (n, p, m), (p, m, n)}. Then, for any integers m, n, p > 3, it holds that

cro Kmnp) = D, (cr@ (Kap) + abl%“c ; 1” + 2.

(a,b,c)et

Proof. Recall that the lower bound in Theorem 1 was obtained by simultaneously

minimizing all six terms in the formula of Theorem 7. Suppose a bichromatic crossing

count Zisgﬁ(M(A, C),yj(B, C)) attains its minimum. Lemma 11(ii) implies without
je

loss of generality that all y,(A, C) labels are equal. Lemma 10 then implies that
x(C,A) = yj(C, A) for all j on c (and x;(C, B) = %(C, B) for all j € C if ¢ is even). To
achieve the minimum number of monochromatic crossings between A and c, the
x;(C, A) labels must be equally spaced around a as already observed in [27]. Then,
since y;(C, A) = x;(C, A), the yj(C, A) labels are also equally spaced. Since a > 3,
the yj(C,A) labels are on more than two points. By Lemma 11, the term
Z}i:léfa(yi (B, A),yj(C, A)) does not attain its minimum.

For ¢ even, Lemma 11(ii) further implies that all the y,(B, C) labels are equal. By
Lemma 10, x;(C, B) = yj(C, B) for all j € C. If the minimum number of monochromatic
crossings between B and c is achieved, then the bichromatic crossings term
ZIGA 5 (3(A, B), yJ(C B)) also does not attain its minimum. By Lemma 8, if ¢ is odd
then at least one of the six terms is at least 2 more than its minimum. If ¢ is even then at least
two of the six terms are at least 1 more than their minima. Regardless of the parity of ¢, the
lower bound given by minimizing all six terms simultaneously can be improved by 2. []

3.2 | Upper bounds

In this subsection, we provide drawings that settle the upper bounds of Theorem 1
and Corollary 2. We define the drawing within a small stripe around the equator of the sphere
and visualize it by a rectangle where the left and right boundaries are identified. Consider
Figure 6 for an illustration. In contrast to before, in the following drawings the interiors of the
three circles are disjoint.
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PM/MN-Cr MN/MN-cr MN /NP-cr NP /NP-cr NP /PM-cr PM/PM-cCr

FIGURE 6 Illustration of the construction of a tripartite-circle drawing of K, ., withm = 4,n =5,p = 6
on a small strip around the equator of a sphere, the left and right boundaries of the rectangle are identified. The
subdrawing induced by the circles A := M and B := N is highlighted by colors

Definition (Linear Description). We start by defining the subdrawing D’ induced by the
vertices of two distinct circles a and B. Let A be a circle with a vertices and B a disjoint
circle with b vertices. We assume that a is strictly left of 8. The vertices are placed on the
circles such that [a/2] and [b/2] vertices lie in the closed top halves of A and s,

respectively; the vertices on a are labeled clockwise by {1, .., a} starting with the
clockwise first vertex in the closed top half, while the vertices on B are labeled
counterclockwise by {1, ..., b} starting with the counterclockwise first vertex in the closed
top half. Let & and ¢, be two vertical lines separating A and B where &, is strictly left of £,.

(i) On ¢ we mark a - b points, which are labeled by a;j fori € [a] and j € [b] such that
the indices increase lexicographically from top to bottom. Each a;; belongs to an
edge of vertex i on a; between vertex i and a;; the edge is realized by some x- and
y-monotone curve el{,-. Moreover, no two curves el%j intersect.

(ii) On ¢, we mark a - b points, which are labeled by b; j for i € [b] and j € [a] such that
the indices increase lexicographically from top to bottom. Each b;; belongs to an
edge of vertex i on B; the edge between these two points is realized by some x- and
y-monotone curves eif,-. Moreover, no two curves efj intersect.

(iii) Between ¢ and £, we connect a;; and b;; by a straight-line segment.

The drawing D is obtained by constructing a drawing D’ for each pair of circles and
overlaying them. By construction, the drawing D has the following properties:

(i) each edge is x-monotone,
(ii) the drawing is partitioned into six vertical stripes; within each stripe every edge is
x- and y-monotone,
(iii) there exist two types of stripes, either containing aB/aB-crossings or AB/Bc-crossings, and
(iv) each edge is contained in three stripes.
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These properties imply the following fact.
Proposition 13. The drawing D is simple.

Proof. For each pair of edges, there exists a unique stripe where the two edges potentially
cross. Since, by property (ii), the edges are x- and y-monotone within each stripe, any pair
of edges have at most one point in common. Because edges are x-monotone, no edge
crosses itself. Thus, D is a simple drawing. O

It remains to analyze the number of crossings for which we present two proofs. Proof 1 uses
the fact that the drawings are simple together with Lemma 5 and 6 and offers an insight on
what is needed to improve the construction. The crossing number can also be directly com-
puted, as shown in Proof 2, providing an upper bound even if the drawings were not simple.

Proposition 14. For any integers m,n,p > 3, let t:= {(m, n, p), (n, p, m), (p, m, n)}.
The number of crossings in the drawing D is

(IG5l )

Proof 1. It is easy to see from the construction that x;(A,B) = (A, B).x;(B, A) =
% (B, A), and dp (3 (A, B),yj(C, B)) = Lg]. Consequently, by Lemma 5, the number of
crossings of type AB/aB is

Y ﬁmmmwm3»:gnﬂ

1<i<j<a 2

By Lemma 6, the number of types aB/Bc is

Lb/2] [b/2]
2. HO(AB).y(CB)) = ac| | ——| + | —— || = aclb/2Lb - D/2).
1<i<a
1<j<c

This finishes the first proof. O

Proof 2. Alternatively, we count the number of crossings directly. By definition, the
AB/AB crossings occur between ¢ and 4; in this part of the drawing the edges are straight-
line segments. Any pair of vertices on circle A and any pair of vertices on circle B together

form exactly one crossing. We have (;)(2) crossings.

For the crossings of type aB/gc, it suffices to count the bundle crossings. If two bundles
cross they add ac crossings. Moreover, it follows from the construction that two bundles
cross if and only if they are both in the top or both in the bottom half. Consequently, the
number of crossings is
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)2)

As shown above, this evaluates to ac|b/2][(b — 1)/2] and therefore finishes the second
proof of the proposition. O

As the proposition was the last missing item, this finishes the proof of the upper bound and
thus of Theorem 1. Note that this construction achieves the minimum possible number of
bichromatic crossings by Lemma 9.

3.3 | Balanced case
Theorem 1 and Corollary 12 imply Corollary 2 for the special case of m = n = p.
Proof of Corollary 2. For the lower bound, Theorem 1 and Corollary 12 give that

njln—1

cto(Knnn) > 3cr0(Knn) + 3n2[5“

[+2

With the bipartite cylindrical crossing number from Equation (1) we have

n n n—1
cro(K >3n + 3n2l—“ J + 2.
@( n,n,n) (3) B 5

For the upper bound, the construction includes drawings for K, , ,. In this case, we
obtain highly symmetric drawings, which are especially appealing. In particular, such a
drawing can be defined by two consecutive stripes; see Figure 9C. The formula simplifies to

(5] -5l =

While the lower bound order is /4 - n*, the upper bound order is °/, - n*. Consequently,
the bounds are fairly close. Moreover, instead of a linear representation, similar drawings can
be defined in a cyclic way, as shown in Figure 7.

Remark. By a slight modification, we improve the upper bound. To do so, we place
at least one vertex on the intersection of the closed top and bottom half of the circle
and route half of its incident edges via the upper half and the other half of its edges
via the bottom half. This idea is used to construct the drawings in Figure 8 (and
Figure 9C).

Depending on the parity of n, the number of monochromatic crossings between two
circles is
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AB/AC-crossings AB/AB-crossings AB/BC-crossings

FIGURE 7 A tripartite-circle drawing of K, , , forn = 5

(A) er(Ks5,5) < 528 . (B) ar(Kee,6) < 1161

A drawing of Kss.s with 528 crossings. A drawing of Kge with 1161 crossings.

FIGURE 8 Improved tripartite-circle drawings of K,, ,, , for n = 5,6

() + = 0(("2) +("17)) n oda,

2((”/2‘1);12 + hm—2)n2 + 1Yy - nz) n even,

while the number of bichromatic crossings is
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(1) + (") n odd,

(<n;1>)z +2(n - 1)((,1/2_1) + (éz)) +(n/2)* + (n/2 = 1)* n even.

Consequently, multiplying by three and summing both terms, the number of crossings
evaluates to

342n* — 513 +3n2 + n—1) n odd,
3,(2n* — 613 + 7n?) n even.

Unfortunately, this improves only lower-order terms, that is, the number of saved crossings is

o S o1 ¢ f 110 T30t C T 40 19

An optimal drawing of K32, with Two drawings of K333 with Two drawings of K444, one with
three crossings. 42 crossings. 177 and one with 180 crossings.

FIGURE 9 Drawings of K, ,, for n = 2, 3, 4 with few crossings. (B, C) The two drawings are obtained by
considering either the dash—dotted edge or the dotted edge

TABLE 1 Bounds of cre(Ky,,,,) for small n

Lower bound Improved Improved Upper bound

n Corollary 2 lower bound upper bound Corollary 2

2 - 3 3 -

3 38 - 42 54

4 146 147 175 204

5 452 = 528 600

6 1010 - 1161 1323

7 2060 = 2430 2646

8 3650 - 4176 4656

9 6158 - 7296 7776

10 9602 - 11,025 12,075
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FIGURE 10 A 3-circle drawing of K4 44 With 175 crossings

3 —n?2 —n+1) nodd,
3L,(n = 3n?) n even.

3.3.1 | Balanced case with few vertices

In this section, we present numerical results and improved drawings of K, ,, ,, for small values
of n. The values are summarized in Table 1. We improve the upper bounds with concrete
drawings and the lower bounds with Corollary 12 and the following fact:

Proposition 15. For any integers m, n, and p,

)2 e~ () (7))

The proposition follows from the fact that a tripartite-circle drawing of K, ,, yields a
drawing of the complete graph K,,,,4, by adding all straight-line segments within the three
circles; see also Section 4.

In the following we explain how to obtain the bounds displayed in Table 1. For n = 2, it holds
that cre(Ks22) > 3 since cr (Kg) = 3 and Figure 9A shows that three crossings can be attained.

For n = 3, a lower bound of 38 follows from Corollary 12 and the upper bound of 42 from
the drawing in Figure 9B.

In case n = 4, we use Proposition 15 for the lower bound. Since cr(Kj;) = 150, we obtain
cre(Ky4,4) > cr(Kjz) — 3 = 147. For the upper bound, Figure 10 presents a drawing with 175
crossings.

This drawing is obtained by a slight modification of the drawing corresponding to
Figure 9C with the dash-dotted edge. In particular, in the middle copy (orange), the long edge
between the leftmost vertex of 8 and the rightmost vertex of ¢ is drawn in the top half, while its
corresponding edges in the other two copies are drawn in the bottom half. This saves the two
crossings between the middle long edge and the left and right long edges.

For n > 5, we use the ideas of Section 3.3 to improve the upper bounds.
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4 | CONNECTION TO THE HARARY-HILL CONJECTURE

The Harary-Hill Conjecture [11,20] states that the number of crossings in any drawing (in the
plane) of the complete graph K, is at least
n—l“n—z {n—3J
2 2 2

Drawings with exactly H(n) crossings [12,20] show that cr(K,) < H(n). The Harary-Hill
conjecture has been confirmed for n < 12 (see [19] for n < 10 and [25] for n = 11, 12), and
either cr(Kj3) = H(13) or H(13) — 2 [1]. The conjecture has been proved when restricted to
certain families of graphs [2-5,10,24].

For decades, only two families of drawings of K,, with H (n) crossings were known, shown in
Figure 11: the Blazek-Koman construction [12], which is an instance of a 1-circle drawing, and the
Harary-Hill construction [20], which is an instance of a balanced restricted 2-circle drawing.

Abrego et al. announced in [6] a new family of drawings of K, having the property that
each edge is crossed at least once, so these are not k-circle drawings. Kync¢l and others [22]
naturally asked about the existence of alternative k-circle constructions of K,, with H (n)
crossings: Is H(n) = becrp(K,) for some k > 3? (Recall that bcrg denotes the minimum
number of crossings in a balanced restricted k-circle crossing drawing.) Figure 12 shows

1
H(n) = "

n

2

Construction of Blazek and Koman; Construction of Harary and Hill;
a 1-circle drawing. a 2-circle drawing.

FIGURE 11 Drawings of Kg with H (8) = 18 crossings

NS [ -
AN

1-circle drawing 2-circle drawing 3-circle drawing

FIGURE 12 Balanced 1-, 2-, and 3-circle drawings of K, each with 3 = H (6) crossings
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crossing-optimal balanced 1-, 2-, and 3-circle drawings of Ks. We prove that balanced
restricted 3-circle drawings are suboptimal for n large enough.

Corollary 16. For n = 9,10 and n > 13, the number of crossings in any balanced
restricted 3-circle drawing of K, exceeds H (n), that is, bcre(K,) > H (n).

Proof. Suppose n > 14. Let ¢ > 5 and r € {—1, 0, 1} be the unique integers such that

n = 3q + r. We want to show that bcrg(K,,) — H(n) > 0. Consider a balanced restricted

3-circle drawing of K, with g, g, and q + r vertices on the three circles. Then

q+ r)
. ) @

We use Theorem 1 to bound cre(Kgq,q+r) and [q/2](q — 1)/2] > q(q — 2)/4 to remove

the floor function, which yields

bere(K,) = cro(Kgg,q+r) + Z(Z) + (

-1 -1
cro(Kq.q.q+r) 2 Cto(Kqq) + 2cto(Kgg4r) + ¢ {QTHH%J +2q(q + "){%HqTJ

1
> cro(Kqq) + 2cro(Kgq+r) + Zqz(q +r)(3q + r — 6).

By Equation (1), we have cre(Kgq) = q(g). By Equation (2), we obtain cre(Kgq-1) =

(q - 2)(‘;) and cro(Kyq41) = (q — 1)(‘1;1). Thus

3q(g)+iq3(3q—6) ifr=0,
cro(Kgq.q+r) = {(3q — 4)(2) + iqz(q -1DBg -7 ifr=-1, (5)

() +20a-D("") + j@@+ DGg - 5) ifr=1.
The result holds for n > 14 (g > 5) by (4), (5), and H (n) < 61—4(11 - 1)%(n — 3)%

(79" — 24¢> — 46> + 24 — 9) > 0 ifr=0,
bers(K,) — H(n) > {-L(21¢° — 100g> — 36g + 112) >0 if r = -1,

(g +2)(21¢> - 86g — 8) > 0 if r=1.

Finally, by (4) and Corollary 12, bcre(Kg) = cre(Ks33) = 38 > 36 = H(9), bere(Kio)
= CI'@(K3,3,4) +1>64>060= H(lO), and bcr@(K13) = CI'@(K4,4,5) + 7 > 229 > 225 =
H(13). O

Our previous argument does not settle the cases n = 8, n = 11 and 12. The Harary-Hill con-
structions for n < 5 are in fact balanced restricted 3-circle drawings, and we give balanced restricted
3-circle drawings of K¢ and K; in Figures 12C and 13, respectively. If we allow for unbalanced
constructions for n > 8, the crossing number of cre (K>, ,—4) given in Equation (3) implies that
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FIGURE 13 Balanced 3-circle drawing of K; with 9 = H (7) crossings

n—4 n—4 3 3 n even
CrOS(KZ,Z,n—4)+( 4 )2( 4 )+5(1’l—4)2—(n—4)—{3/2 n odd > H(n),

with equality if and only if 8 < n < 11. That is, for n > 8 the drawings of K, given by a crossing-
optimal 3-circle drawing of K, , ,—4 together with the straight-line drawings inside of the three
circles achieve H (n) crossings if and only if 8 < n < 11.

5 | CONCLUSION AND OPEN PROBLEMS

In this paper, we prove upper and lower bounds on the tripartite-circle crossing number of complete
tripartite graphs. For the lower bound, we introduce formulas describing the number of crossings in a
tripartite-circle drawing. For the upper bounds, we present drawings. While there exist restricted
balanced 2-circle drawings achieving the Harary-Hill bound, our results imply that this is not the
case for balanced restricted 3-circle drawings for n > 13. It remains open for future work whether the
same holds for k-partite circle drawings when k > 3. We have made progress in the direction of
extending our work to k > 3 and plan to return to this question in a subsequent paper. We conclude
with a list of interesting open problems for future work:

+ Do there exist k-circle drawings achieving the Harary-Hill bound for k > 3?

« Can the number of crossings of k-circle drawings generally be described by labels analogous
to x-andy-labels?

« How are crossing-minimal k-circle drawings characterized?

« What are the exact values for small graphs? Is crp(K; 3 3) = 42? For the remaining displayed
values in Table 1, we believe that the truth lies closer to the presented upper bounds. In
particular, it remains to develop better tools to improve the lower bounds.

« Are there balanced restricted 3-circle drawings achieving the Harary-Hill bound for Kg, K,
or Ki,?

« We know that balanced restricted 3-circle drawings do not (in general) achieve the Har-
ary-Hill bound, and that extending tripartite-circle drawings of K; , ,_4 does not (in general)
achieve the Harary-Hill bound. Are there other unbalanced restricted 3-circle drawings that
do achieve the Harary-Hill bound?
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