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Abstract

A tripartite‐circle drawing of a tripartite graph is a

drawing in the plane, where each part of a vertex

partition is placed on one of three disjoint circles,

and the edges do not cross the circles. We present

upper and lower bounds on the minimum number of

crossings in tripartite‐circle drawings of Km n p, , and

the exact value for K n2,2, . In contrast to 1‐ and 2‐circle
drawings, which may attain the Harary–Hill bound,

our results imply that balanced restricted 3‐circle
drawings of the complete graph are not optimal.
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1 | INTRODUCTION

The crossing number of a graph G, denoted by Gcr( ), is the minimum number of edge
crossings over all drawings of G in the plane. It quantifies how close or far a graph is from
being planar. Drawings with few crossings have been studied in connection with read-
ability and VLSI chip design [23]. See [28] for a survey of crossing number variants and
some of their applications. Computing the crossing number of a graph is an NP‐hard
problem [15,21]. The precise values are not known even for very special graph classes,
such as complete and complete bipartite graphs. Nevertheless, there exist long‐standing
conjectures. Zarankiewicz [29] conjectured that for the complete bipartite graph Km n, , the
bound

≤



























K

m m n n
Z m ncr( )

2

− 1

2 2

− 1

2
=: ( , ),m n,

given by a certain straight‐line drawing of Km n, with vertices placed along two axes, is the best
possible. Later, Harary and Hill [20] conjectured that the upper bound for the complete
graph Kn,

≤



























K

n n n n
H ncr( )

1

4 2

− 1

2

− 2

2

− 3

2
=: ( ),n

given by Guy [18], is the best possible.
Among the best‐known drawings of complete graphs are drawings where the vertices

are placed on one or two circles and edges do not cross the circles. Such drawings are
1‐circle drawings (or 2‐page book drawings) [3] and 2‐circle drawings (or cylindrical
drawings) [5], respectively. (For more details, refer to Section 4.) A question of interest
[6,22] is to determine which other families of drawings of Kn achieve the conjectured
minimum number of crossings, H n( ). One possible direction is to look at greater numbers
of circles.

As a natural extension of 1‐ and 2‐circle drawings, a k‐circle drawing of a graph G in the
plane is a drawing in which the vertices are placed on k disjoint circles and the edges do not
cross the circles [14]. The minimum number of crossings in a k‐circle drawing of a graph G is
the k‐circle crossing number ofG. For the special case whenG is a k‐partite graph, if we further
require that the vertices on each circle form an independent set, we call these drawings
k‐partite‐circle drawings. We call the minimum number of crossings in a k‐partite‐circle
drawing the k‐partite‐circle crossing number and denote it by ⓚ Gcr ( ). In this paper, we de-
termine bounds for the tripartite‐circle crossing number of complete tripartite graphs, and we
conclude that for ≥n 13 there are no balanced restricted 3‐circle drawings of Kn that achieve
the minimum number of crossings.

1.1 | Previous results and related work

In this section, we concentrate on bipartite‐circle crossing numbers and on the crossing
numbers of complete tripartite graphs. The 2‐circle drawings are also called cylindrical
because they can be thought of as drawings on the surface of a cylinder, with the vertices on
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the top and bottom circles. Analogously, a 3‐circle drawing can also be understood as a pair
of pants drawing (an instance of the map crossing number [26]), where two circles are
enclosed by the third. A radial drawing [9] of two concentric circles is equivalent to a
2‐circle drawing (cylindrical drawing). For k‐circle drawings with ≥k 3, three or more
concentric circles (or more generally three pairwise nested circles) would require that any
edges from the outermost to the innermost circle would necessarily cross the middle circle
(s), so a radial drawing with three or more concentric circles is not equivalent to a k‐circle
drawing. Consequently, 3‐partite‐circle drawings of complete tripartite graphs do not
contain three pairwise nested circles.

The bipartite‐circle drawings of bipartite graphs, in which the vertices of each part are
placed on a circle and no edge crosses a circle, are of special interest due to their connection
to one of the conjectured optimal drawings of Kn. A 2‐circle drawing of Kn with H n( )

crossings can be obtained from a bipartite‐circle drawing of ∕ ∕   K n n2 , 2 by adding straight‐
line edges between vertices on the same circle. In general, the bipartite‐circle crossing
number of complete bipartite graphs, also known as the bipartite cylindrical crossing
number, is fully understood. In 1997, Richter and Thomassen [27] settled the balanced case
by showing that
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Ábrego, Fernández‐Merchant, and Sparks [7] generalized this result to all complete
bipartite graphs. For ≤m n, the bipartite‐circle crossing number is
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In particular, if m divides n, then ∕ ⋅② K n m mn m ncr ( ) = ( − 1)(2 − 3 − )m n,
1

12 .
For the general crossing number of complete tripartite graphs, Gethner et al. [16] proved an

upper bound A m n p( , , ) on Kcr( )m n p, , that is analogous to the Zarankiewicz Conjecture for
Km n, . Additionally, they proved that among straight‐line drawings their bound is asymptotically
very close to best possible. For balanced tripartite graphs, A n n n( , , ) is of order ∕ ⋅ n9

16
4, much

less than our lower bound of ∕ ⋅ n5
4

4 (see Corollary 2) because their drawings are not restricted
by circles. (A similar gap exists between ∕ ⋅Z n n n( , ) ~ 1

16
4 and ∕ ⋅② K ncr ( ) ~n n,

1
6

4.) Asano [8]
determined the crossing numbers of K n1,3, and K n2,3, , and Ginn and Miller [17] gave bounds on

Kcr( )n3,3, . More recently, building upon this study, we [13] established the exact tripartite‐circle
crossing number of K n2,2, for every integer ≥n 3, as
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For other crossing number results and equivalent terminology, see, for example, [28].
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1.2 | Our results

We prove several bounds on the tripartite‐circle crossing number of complete tripartite
graphs.

Theorem 1. Let m n, , and p be natural numbers and ≔t m n p{( , , ),

n p m p m n( , , ), ( , , )}. Then the following bounds hold:

≤

≤

∈
② ③

∈

t

t





























 



 






















K ab
c c

K

a b
ab

c c

cr ( )+
− 1

2 2
cr ( )

2 2
+

− 1

2 2
.

a b c
a b m n p

a b c

( , , )
, , ,

( , , )

For ≥m n p, , 3 we improve the lower bound by 2 in Corollary 12. Using Equation (1) and
Corollary 12, Theorem 1 simplifies as follows for the balanced case. Note that the lower bound
of order ∕ ⋅ n~5

4
4 and the upper bound of order ∕ ⋅ n~6

4
4 are fairly close.

Corollary 2. For any integer ≥n 3,
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Finally, k‐partite‐circle drawings of complete k‐partite graphs easily give rise to drawings of
complete graphs, known as restricted k‐circle drawings, by adding straight‐line segments between
each pair of vertices on the same circle. If the numbers of vertices on the circles are as close to equal
as possible, these drawings are called balanced restricted k‐circle drawings of Kn. The minimum
number of crossings in such a drawing is denoted by ⓚ Kbcr ( )n . Certain balanced 1‐ and 2‐circle
drawings of the complete graph haveH n( ) crossings and are conjectured to be optimal [11,12,3,20,5].
Our results imply that this phenomenon does not generalize to balanced restricted 3‐circle drawings.

Corollary 3. For n = 9, 10 and ≥n 13, the number of crossings in any balanced
restricted 3‐circle drawing of Kn exceeds H n( ), that is, ② K H nbcr ( ) > ( )n .

For ≤n 7, balanced restricted 3‐circle drawings of Kn achieve the Harary–Hill bound, and
we give drawings for K6 and K7. For ≤ ≤n8 11, we conclude that there exist unbalanced
restricted 3‐circle drawings of Kn with H n( ) crossings.

1.3 | Organization

The remainder of our paper is organized as follows: In Section 2, we introduce tools to count
the number of the crossings, which we then use in Section 3 to prove Theorem 1 and
Corollary 2. We discuss the connection to the Harary–Hill conjecture in Section 4 and conclude
with a list of open problems in Section 5.
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2 | TOOLS FOR COUNTING THE NUMBER OF CROSSINGS

A simple drawing of G is a drawing where no edge crosses itself, two edges that share a vertex
do not cross, and two edges with no shared vertices intersect at most once. Drawings that
minimize the number of crossings are simple, so we only consider simple drawings. In a
tripartite‐circle drawing of Km n p, , , we label the three circles M, N, and P, and their numbers of
vertices are m n, , and p, respectively. Consider Figure 1. Note that this drawing can be
transformed by a projective transformation of the plane such that any one circle encloses the
other two. Therefore, without loss of generality we consider drawings where the outer circle P

contains the inner circles M and N. In such a drawing, we label the vertices on circles M and N in
clockwise order and the vertices on circle P in counterclockwise order. Likewise, we read arcs of
circles in clockwise order for inner circles and in counterclockwise order for outer circles.

2.1 | Defining the x‐labels

For simplicity and without loss of generality, both papers [7,27] considered simple bipartite‐
circle drawings of the complete bipartite graph where the two circles are assumed to be nested.
Their results rely on the assignment of a vertex x (A,B)i on the outer circle B for each vertex i on
the inner circle A. Because we are dealing with three circles and a pair of them is not necessarily
nested, we adapt this definition as follows.

Let i be a vertex on circle A. The star formed by all edges from i to B together with circle B

partitions the plane into several disjoint regions, as shown in Figure 2. Exactly one of these
regions contains circle A. Such a region is enclosed by two edges from i to B and an arc on B

between two consecutive vertices. We define the second of these vertices (in clockwise or
counterclockwise order depending on whether B is an inner or outer circle, respectively) as
x (A,B)i . If the two circles are clear from the context, we may also write xi.

Ábrego et al. [7] observed that the x‐labels are weakly ordered and suffice to describe
the drawing up to isomorphism. Because we number the vertices on the outer circle in
counterclockwise order (opposite to how it is done in [7]), the ordering of x‐labels on the
circle is reversed when compared to Lemma 1.4 from [7]. In particular, our weak ordering
stated below is achieved, following the proof from [7], by possibly renumbering the inner
vertices.

FIGURE 1 The vertices on the circles M and N are labeled clockwise; the vertices of the circle P are labeled
counterclockwise
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Lemma 4 (Ábrego et al. [7, Lemma 1.4]). Consider a simple bipartite‐circle drawing of
Ka b, where the circles A and B have a and b vertices, respectively, and the vertices are labeled
so that x b=1 . Then it holds that

≥ ≥ ⋯ ≥x x x .a1 2

Moreover, for a given sequence s( )i i with ≥ ≥ ⋯ ≥s s sa1 2 , up to isomorphism, there is a
unique simple bipartite‐circle drawing of Ka b, with x s=i i for all ∈i A.

2.2 | Defining the y‐labels

As observed in Lemma 4, the x‐labels are sufficient to describe a bipartite‐circle drawing. We
now aim to describe tripartite‐circle drawings. We therefore introduce a new vertex assign-
ment, y (A, B)i that depends on all three circles. See Figure 3. Let A, B, and C be the three circles
and i be a vertex on A. The star formed by all edges from i to B together with circle B partitions
the plane into disjoint regions. Exactly one of these regions contains the third circle C. This
region is enclosed by two edges incident to i and the arc between two consecutive vertices on B.
We define the second of these two vertices (in clockwise or counterclockwise order depending
on whether B is an inner or outer circle, respectively) as y (A, B)i .

(A) (B)

FIGURE 3 Illustration of y (A, B)i for the cases when (a) A is inside B and (b) when A is besides B

(A) (B) (C)

FIGURE 2 Definition of vertex x (A,B)i
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2.3 | Counting crossings using x‐ and y‐labels

If two edges ab and cd cross, then at least two (nonadjacent) vertices in a b c d{ , , , } are on the
same circle. Hence, there are six total types of crossings between edges ab and cd:

∕

∕

∕

∕

∕

∕

a c b d

a c b d

a c b d

a c b d

a c b d

a c b d

MP MP‐crossings: and lie on M, and and lie on P;

NP NP‐crossings: and lie on N, and and lie on P;

MN MN‐crossings: and lie on M, and and lie on N;

MN MP‐crossings: and lie on M, lies on N, and lies on P;

MN NP‐crossings: and lie on N, lies on M, and lies on P;

MP NP‐crossings: and lie on P, lies on M, and lies on N.

We typically color the edges between each pair of circles with the same color, using three
different colors for the different pairs. The first three types of crossings above only involve two
circles and these are called monochromatic crossings. The last three types involve all three
circles with edges of different colors. Thus, these crossings are called bichromatic crossings. We
use the x‐ and y‐labels to count the monochromatic and bichromatic crossings, respectively.
The following definitions are used throughout the rest of the paper.

For vertices k and ℓ on a circle with n vertices numbered n1, …, clockwise (respectively,
counterclockwise), let

≔d k k n( , ℓ) ℓ − modn

denote the distance from k to ℓ in clockwise (respectively, counterclockwise) order on the
circle. Let ≔n n[ ] {1, 2, …, }. For any ∈u v n, [ ], define
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− ( , )

2
.n

n n

For vertices i and j on the inner (respectively, outer) circle A, we use i j[ , ] to denote the arc
of A read clockwise (respectively, counterclockwise) from i to j. We include i and j in the
interval i j[ , ], whereas i j( , ) does not include i and j. We similarly define i j[ , ) and i j( , ].

2.3.1 | Counting crossings involving two circles

We start by stating the following result from [27] to take care of the monochromatic crossings.

Lemma 5 (Richter and Thomassen [27, Sect. 2]). The number of crossings in a simple
bipartite‐circle drawing of the complete bipartite graph Km n, is

≤ ≤

 f x x( , ).
i j m

n i j

1 <

2.3.2 | Counting crossings involving three circles

The following lemma introduces a means of counting all three types of bichromatic crossings
using the y‐labels. See Figure 4 for a visual representation of a possible ∕MP NP‐crossing.
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Lemma 6. Let A, B, and C be three disjoint circles with the disjoint vertex sets a{1, …, },

b{1, …, }, and c{1, …, }, respectively. Then the number of ∕AC BC‐crossings is given by

≤ ≤

≤ ≤

 f y y( (A, C), (B, C)).
i a

j b

c i j
1

1

Proof. Fix a vertex i on A and a vertex j on B and consider the corresponding vertices
y (A, C)i and y (B, C)j on circle C, see Figure 4. For every pair of distinct vertices k and ℓ
both in the interval ≕y y I[ (A, C), (B, C))i j 1 on C there is exactly one crossing among edges
ik and iℓ, and jk and jℓ. Similarly, there is exactly one crossing among the edges ik and
iℓ, and edges jk and jℓ when k and ℓ are in ≕y y I[ (B, C), (A, C))j i 2. Moreover note that if
a vertex k is in I1 and a vertex ℓ is in I2 then there are no crossings among edges ik i jk, ℓ, ,
and jℓ. Consequently, there are exactly f y y( (A, C), (B, C))c i j crossings among edges
incident with vertices i and j. Therefore the total number of ∕AC BC‐crossings is as
claimed. □

2.3.3 | Total crossing count

The number of crossings in a simple tripartite‐circle drawing of Km n p, , can be found by counting
the crossings in the three different, simple bipartite‐circle drawings of K K,m n m p, , , and Kn p, ,
along with crossings involving all three circles. Therefore, we say a cyclic assignment of (A, B, C)
to (M, N, P) is one triple in the set ≔t {(M,N,P), (N,P,M), (P,M,N)}, with the number of vertices
on the circles A, B, and C denoted by a b, , and c, respectively.

Theorem 7. The number of crossings in a simple tripartite‐circle drawing of Km n p, , is
given by

∈
∈

∈
∈
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f x x f y y( (A,B), (A, B)) + ( (A, C), (B, C)) .

i j

i j

b i j
i
j

c i j
(A,B,C) <

, A

A
B

FIGURE 4 Illustration for the case that (A,B,C) = (M,N,P). Since ∈k I′ 1 and ∈ Iℓ 2, edges between the
vertices i j k, , ′, and ℓ do not cross, but edges between the vertices i j k, , , and ℓ do cross since k and ℓ are in the
same interval I2
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Proof. The monochromatic crossings are counted by the first expressions in the brackets
using Lemma 5. The second expression corresponds to the bichromatic crossings using
Lemma 6. □

3 | BOUNDING THE TRIPARTITE ‐CIRCLE CROSSING
NUMBER—PROOFS OF THEOREM 1 AND COROLLARY 2

In this section, we prove the upper and lower bounds of Theorem 1 and Corollary 2. We start
with the lower bounds and then proceed with the upper bounds.

3.1 | Lower bounds

To prove the lower bounds, we start with two lemmas.

Lemma 8. The function f a b( , )n attains its minimum M if and only if
∈ ∕ ∕     a b n n− { 2 , 2 }. Among pairs a b( , ) such that ∉ ∕ ∕     a b n n− { 2 , 2 }, the

minimum of fn exceeds M by 1 if n is even and by 2 if n is odd.

Proof. First note that ∕ d a b n( , ) = 2n if and only if ∈ ∕ ∕     a b n n− { 2 , 2 } because
∕ ∕   n n n= 2 + 2 .

Consider the auxiliary real‐valued function ( )( ) ( )g x x( ) = + = − +n
x n x n n n

2

−

2 2

2 − 2

4

2

.

It is a quadratic function minimized at n
2
, symmetric about x =

n

2
, decreasing for x <

n

2
, and

increasing for x >
n

2
. Consequently, the minimum value of gn over the integers is attained at

∈ ∕ ∕   x n n{ 2 , 2 }; the next smallest value of gn over the integers is attained at
∈ ∕ ∕   x n n{ 2 − 1, 2 + 1}. Finally, the claim follows by a computation showing that

∕ ∕    g n g n
n

n
( 2 − 1) − ( 2 ) =

2 if is odd,

1 if is even.n n
□

For every cyclic assignment of (A,B,C) to (M,N,P), we denote the minimum number of AB/
AC‐crossings among all simple tripartite‐circle drawings of Km n p, , by ③ Kcr ( )m n p

A
, , .

Lemma 9. For every cyclic assignment of (A,B,C) to (M,N,P),

≥③














K ab

c c
cr ( )

2

− 1

2
.m n p

C
, ,

Proof. From the count in Lemma 6, and its minimization in Lemma 8, we have the
lower bound

≥
∕ ∕ ∕ ∕

≤ ≤

≤ ≤

≤ ≤

≤ ≤

  


  







  











  







  








f y y
c c

ab
c c

( (A, C), (B, C))
2

2
+

2

2
=

2

2
+

2

2
.

i a

j b

c i j
i a

j b

1

1

1

1

Adding the last two terms directly yields the claim. □
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This allows us to find a lower bound on ③ Kcr ( )m n p, , .

Proof of the lower bound of Theorem 1. In Theorem 7 we count the total number of
crossings in a simple tripartite‐circle drawing of Km n p, , .

≥③ ② ② ② ③ ③

③

K K K K K K

K

cr ( ) cr ( ) + cr ( ) + cr ( ) + cr ( ) + cr ( )

+ cr ( ).

m n p m n m p n p m n p m n p

m n p

, , , , ,
M

, ,
N

, ,

P
, ,

Lemma 9 gives a lower bound on the last three summands and directly implies the
claimed lower bound:

≥③

∈

②

t

 



















K K ab

c c
cr ( ) cr ( ) +

2

− 1

2
.m n p a b, ,

(A,B,C)

, □

3.1.1 | Improving the lower bound

With the help of the following lemmas, the lower bound can be improved by 2. This
improvement is relevant in the analysis of small graphs and the connection to the
Harary–Hill conjecture. It is also used in [13] to settle the tripartite‐circle crossing number
of K n2,2, .

Lemma 10 (Special Inversion Lemma). Fix the placement of two circles A and B inside
circle C. For a tripartite‐circle drawing D x y, (A, C) = (A, C)i i for all i on A if and only if
y y(C, A) = (C, A)j k for all j k, on C.

Proof. Let D* be the restriction of D to edges between A and C. We refer to the connected
components of the complement of D* as faces. We start with an observation. By the
definitions of x (A, C)i and y (A, C)i , we have x y(A, C) = (A, C)i i if and only if the pair of
incident edges i x{ , (A, C)}i and i x{ , (A, C) + 1}i divides the interior of C into two parts
where A and B lie in the same part and all other edges from i lie in the other part. This
holds for all i if and only if no edge of D* separates A from B; in other words, the circle B

lies in a face F of D* adjacent to A. Figure 5 shows an example with x y(A, C) = (A, C)i i

for all i and with the faces adjacent to A shaded in gray. Circle B lies in one of these faces,
say F . This finishes our observation.

Now we prove the lemma. Suppose x y(A, C) = (A, C)i i for all i on A. By the above
observation, the circle B lies in a face F of D* adjacent to A. Let q and q + 1 be the two
vertices on A and on the boundary of F , where q + 1 comes clockwise directly after q.
For each j on C, the triangle T j q q= ( , , + 1)j cannot cross F , since it is a face, and
shares the side q q{ , + 1} with F . By the properties of simple drawings, either F is in the
interior of Tj and all other edges from j are on the exterior, or F is on the exterior of Tj
and all other edges from j are in the interior ofTj. In either case, y q(C, A) = + 1j for all
j on C.

For the converse, suppose y y q(C, A) = (C, A) = + 1j k for all j k, on C and some q

on A. Then for each j on C, the triangle T j q q= ( , , + 1)j is the smallest triangle
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(by containment) from j to A that encloses B. By the minimality of Tj, no edge from j in
D* can cross the interior ofTj. The intersection of these triangles over all j on C is a face F
of D* containing B and adjacent to A at q q{ , + 1}. By the observation, x y(A, C) = (A, C)i i

for all i on A. □

For vertices x and y on a circle with n vertices, we define

≔d x y d x y d y xmin ( , ) min{ ( , ), ( , )}.n n n

The following lemma analyzes the situation when a term counting bichromatic crossings is
minimized.

Lemma 11. Consider a tripartite‐circle drawing with circles A, B, and C with c vertices on
C. If

∈
f y y f u v( (A, C), (B, C)) = min ( , )c i j

u v c
c

( , ) [ ]2
for every ∈i A and ∈j B, then there are

vertices ∈u u, CA B with the following properties:

(i) For both circles ∈ ∈y u uD {A, B}, (D, C) { , + 1}i D D for all ∈i D.
(ii) For some circle ∈ y uD {A, B}, (D, C) =i D for all ∈i D. If c is even, then for both circles

∈ y uD {A, B}, (D, C) =i D for all ∈i D.

Proof. Suppose that f y y( (A, C), (B, C))c i j equals the minimum value of fc for every

∈i A and ∈j B. By Lemma 8, it holds that ∈ ∕ ∕     y y c c(A, C) − (B, C) { 2 , 2 }i j and

∕ d y y cmin ( (A, C), (B, C)) = 2c i j .

First we prove property (i). Without loss of generality, we assume that D = A. Let
≔v y (B, C)j for some ∈j B. The vertex v on C can have only one vertex at distance
∕ ∕ c c2 = 2 if c is even and only two vertices at distance ∕ c 2 , adjacent to one another, if

FIGURE 5 Depiction of special y‐inversion
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c is odd. Since ∕ d y v cmin ( (A, C), ) = 2c i for all ∈i A, we get that the y (A, C)i labels are
all the same in the even case, or all on one of two adjacent vertices in the odd case.

Next we prove property (ii). Suppose for contradiction that y (A, C) =i

u y u y u, (A, C) = + 1, (B, C) =j kA A B, and y u(B, C) = + 1ℓ B for some ∈i j, A and

∈k, ℓ B. Since ∕ d y y cmin ( (A, C), (B, C)) = 2c i j for every ∈i A and ∈j B, we get

that ∕ d u u d u u cmin ( , ) = min ( , + 1) = 2c cA B A B . No vertex on C other than uA is at
distance ∕ c 2 from both uB and u + 1B , but ≠u u+ 1A A must also be at distance ∕ c 2

from both. □

Now, we use these insights to improve the lower bound of Theorem 1.

Corollary 12 (Improvement of lower bound of Theorem 1). Let
≔t m n p n p m p m n{( , , ), ( , , ), ( , , )}. Then, for any integers ≥m n p, , 3, it holds that

≥③

∈

②

t

 



















K K ab

c c
cr ( ) cr ( ) +

2

− 1

2
+ 2.m n p

a b c

a b, ,

( , , )

,

Proof. Recall that the lower bound in Theorem 1 was obtained by simultaneously
minimizing all six terms in the formula of Theorem 7. Suppose a bichromatic crossing
count ∈

∈
 f y y( (A, C), (B, C))i

j
c i j

A
B

attains its minimum. Lemma 11(ii) implies without

loss of generality that all y (A, C)i labels are equal. Lemma 10 then implies that
x y(C, A) = (C, A)j j for all j on C (and x y(C, B) = (C, B)j j for all ∈j C if c is even). To

achieve the minimum number of monochromatic crossings between A and C, the
x (C, A)j labels must be equally spaced around A as already observed in [27]. Then,
since y x(C, A) = (C, A)j j , the y (C, A)j labels are also equally spaced. Since ≥a 3,

the y (C, A)j labels are on more than two points. By Lemma 11, the term
∈
∈

 f y y( (B, A), (C, A))i
j

a i j
B
C

does not attain its minimum.

For c even, Lemma 11(ii) further implies that all the y (B, C)i labels are equal. By
Lemma 10, x y(C, B) = (C, B)j j for all ∈j C. If the minimum number of monochromatic
crossings between B and C is achieved, then the bichromatic crossings term

∈
∈

 f y y( (A, B), (C, B))i
j

b i j
A
C

also does not attain its minimum. By Lemma 8, if c is odd
then at least one of the six terms is at least 2 more than its minimum. If c is even then at least
two of the six terms are at least 1 more than their minima. Regardless of the parity of c, the
lower bound given by minimizing all six terms simultaneously can be improved by 2. □

3.2 | Upper bounds

In this subsection, we provide drawings that settle the upper bounds of Theorem 1
and Corollary 2. We define the drawing within a small stripe around the equator of the sphere
and visualize it by a rectangle where the left and right boundaries are identified. Consider
Figure 6 for an illustration. In contrast to before, in the following drawings the interiors of the
three circles are disjoint.
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Definition (Linear Description). We start by defining the subdrawing D′ induced by the
vertices of two distinct circles A and B. Let A be a circle with a vertices and B a disjoint
circle with b vertices. We assume that A is strictly left of B. The vertices are placed on the
circles such that ∕ a 2 and ∕ b 2 vertices lie in the closed top halves of A and B,

respectively; the vertices on A are labeled clockwise by a{1, …, } starting with the
clockwise first vertex in the closed top half, while the vertices on B are labeled
counterclockwise by b{1, …, } starting with the counterclockwise first vertex in the closed
top half. Let ℓ1 and ℓ2 be two vertical lines separating A and B where ℓ1 is strictly left of ℓ2.

(i) On ℓ1 we mark ⋅a b points, which are labeled by ai j, for ∈i a[ ] and ∈j b[ ] such that
the indices increase lexicographically from top to bottom. Each ai j, belongs to an
edge of vertex i on A; between vertex i and ai j, the edge is realized by some x‐ and
y‐monotone curve ei j,

1 . Moreover, no two curves ei j,
1 intersect.

(ii) On ℓ2 we mark ⋅a b points, which are labeled by bi j, for ∈i b[ ] and ∈j a[ ] such that
the indices increase lexicographically from top to bottom. Each bi j, belongs to an
edge of vertex i on B; the edge between these two points is realized by some x‐ and
y‐monotone curves ei j,

2 . Moreover, no two curves ei j,
2 intersect.

(iii) Between ℓ1 and ℓ2, we connect ai j, and bj i, by a straight‐line segment.

The drawing D is obtained by constructing a drawing D′ for each pair of circles and
overlaying them. By construction, the drawing D has the following properties:

(i) each edge is x‐monotone,
(ii) the drawing is partitioned into six vertical stripes; within each stripe every edge is

x‐ and y‐monotone,
(iii) there exist two types of stripes, either containing AB/AB‐crossings or AB/BC‐crossings, and
(iv) each edge is contained in three stripes.

FIGURE 6 Illustration of the construction of a tripartite‐circle drawing of Km n p, , with m n p= 4, = 5, = 6

on a small strip around the equator of a sphere, the left and right boundaries of the rectangle are identified. The
subdrawing induced by the circles ≔A M and ≔B N is highlighted by colors
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These properties imply the following fact.

Proposition 13. The drawing D is simple.

Proof. For each pair of edges, there exists a unique stripe where the two edges potentially
cross. Since, by property (ii), the edges are x‐ and y‐monotone within each stripe, any pair
of edges have at most one point in common. Because edges are x‐monotone, no edge
crosses itself. Thus, D is a simple drawing. □

It remains to analyze the number of crossings for which we present two proofs. Proof 1 uses
the fact that the drawings are simple together with Lemma 5 and 6 and offers an insight on
what is needed to improve the construction. The crossing number can also be directly com-
puted, as shown in Proof 2, providing an upper bound even if the drawings were not simple.

Proposition 14. For any integers ≥m n p, , 3, let ≔t m n p n p m p m n{( , , ), ( , , ), ( , , )}.
The number of crossings in the drawing D is

∈t

 


 



 






















a b
ac

b b

2 2
+

2

− 1

2
.

a b c( , , )

Proof 1. It is easy to see from the construction that x y(A,B) = (A, B),i i x (B, A) =i

y (B, A)i , and  d y y( (A, B), (C, B)) =b i j
b

2
. Consequently, by Lemma 5, the number of

crossings of type AB/AB is

≤ ≤

 

 



 


f x x

a b
( (A,B), (A, B)) =

2 2
.

i j a
b i j

1 <

By Lemma 6, the number of types AB/BC is

∕ ∕
∕ ∕

≤ ≤
≤ ≤

 





  







  





   f y y ac

b b
ac b b( (A, B), (C, B)) =

2

2
+

2

2
= 2 ( − 1) 2 .

i a
j c

b i j
1
1

This finishes the first proof. □

Proof 2. Alternatively, we count the number of crossings directly. By definition, the
AB/AB crossings occur between ℓ1 and ℓ2; in this part of the drawing the edges are straight‐
line segments. Any pair of vertices on circle A and any pair of vertices on circle B together

form exactly one crossing. We have ( )( )a b

2 2
crossings.

For the crossings of type AB/BC, it suffices to count the bundle crossings. If two bundles
cross they add ac crossings. Moreover, it follows from the construction that two bundles
cross if and only if they are both in the top or both in the bottom half. Consequently, the
number of crossings is
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∕ ∕





  







  





ac

b b2

2
+

2

2
.

As shown above, this evaluates to ∕ ∕  ac b b2 ( − 1) 2 and therefore finishes the second
proof of the proposition. □

As the proposition was the last missing item, this finishes the proof of the upper bound and
thus of Theorem 1. Note that this construction achieves the minimum possible number of
bichromatic crossings by Lemma 9.

3.3 | Balanced case

Theorem 1 and Corollary 12 imply Corollary 2 for the special case of m n p= = .

Proof of Corollary 2. For the lower bound, Theorem 1 and Corollary 12 give that

≥③ ②














K K n

n n
cr ( ) 3cr ( ) + 3

2

− 1

2
+ 2.n n n n n, , ,

2

With the bipartite cylindrical crossing number from Equation (1) we have

≥③


 

















K n

n
n

n n
cr ( ) 3

3
+ 3

2

− 1

2
+ 2.n n n, ,

2

For the upper bound, the construction includes drawings for Kn n n, , . In this case, we
obtain highly symmetric drawings, which are especially appealing. In particular, such a
drawing can be defined by two consecutive stripes; see Figure 9C. The formula simplifies to



 



















n
n

n n
3

2
+ 3

2

− 1

2
.

2
2

□

While the lower bound order is ∕ ⋅ n5
4

4, the upper bound order is ∕ ⋅ n6
4

4. Consequently,
the bounds are fairly close. Moreover, instead of a linear representation, similar drawings can
be defined in a cyclic way, as shown in Figure 7.

Remark. By a slight modification, we improve the upper bound. To do so, we place
at least one vertex on the intersection of the closed top and bottom half of the circle
and route half of its incident edges via the upper half and the other half of its edges
via the bottom half. This idea is used to construct the drawings in Figure 8 (and
Figure 9C).

Depending on the parity of n, the number of monochromatic crossings between two
circles is
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∕ ∕ ⋅

∕ ∕

∕








   ( )
( )

( ) ( )

( )

( )( ) n n

n n n n n

+ ( − 1) + odd,

2 + ( − 2) + even,

n n n n

n

− 1

2 2

2

2

2

2

2− 1

2
2 1

2
2 1

4
2

while the number of bichromatic crossings is

FIGURE 7 A tripartite‐circle drawing of Kn n n, , for n = 5

(A) (B)

FIGURE 8 Improved tripartite‐circle drawings of Kn,n,n for n = 5,6
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∕ ∕

∕ ∕

∕ ∕








   ( )
( )

( ) ( )

( ) ( )( )

n n

n n n n

+ odd,

+ 2( − 1) + + ( 2) + ( 2 − 1) even.

n n

n n n

2 2

2

2

2

( − 1)

2

2 2− 1

2

2

2
2 2

Consequently, multiplying by three and summing both terms, the number of crossings
evaluates to

∕

∕





n n n n n

n n n n

(2 − 5 + 3 + − 1) odd,

(2 − 6 + 7 ) even.

3
4

4 3 2

3
4

4 3 2

Unfortunately, this improves only lower‐order terms, that is, the number of saved crossings is

TABLE 1 Bounds of ③ Kcr ( )n n n, , for small n

Lower bound Improved Improved Upper bound

n Corollary 2 lower bound upper bound Corollary 2

2 – 3 3 –

3 38 – 42 54

4 146 147 175 204

5 452 – 528 600

6 1010 – 1161 1323

7 2060 – 2430 2646

8 3650 – 4176 4656

9 6158 – 7296 7776

10 9602 – 11,025 12,075

(A) (B) (C)

FIGURE 9 Drawings of Kn n n, , for n = 2, 3, 4 with few crossings. (B, C) The two drawings are obtained by
considering either the dash–dotted edge or the dotted edge
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∕

∕





n n n n

n n n

( − − + 1) odd,

( − 3 ) even.

3
4

3 2

3
2

3 2

3.3.1 | Balanced case with few vertices

In this section, we present numerical results and improved drawings of Kn n n, , for small values
of n. The values are summarized in Table 1. We improve the upper bounds with concrete
drawings and the lower bounds with Corollary 12 and the following fact:

Proposition 15. For any integers m n, , and p,

≥③


 


 


 


 


 


K cr K

m n p
cr ( ) ( ) −

4
−

4
−

4
.m n p m n p, , + +

The proposition follows from the fact that a tripartite‐circle drawing of Km n p, , yields a
drawing of the complete graph Km n p+ + by adding all straight‐line segments within the three
circles; see also Section 4.

In the following we explain how to obtain the bounds displayed in Table 1. For n = 2, it holds
that ≥③ Kcr ( ) 32,2,2 since cr K( ) = 36 and Figure 9A shows that three crossings can be attained.

For n = 3, a lower bound of 38 follows from Corollary 12 and the upper bound of 42 from
the drawing in Figure 9B.

In case n = 4, we use Proposition 15 for the lower bound. Since cr K( ) = 15012 , we obtain
≥③ K cr Kcr ( ) ( ) − 3 = 1474,4,4 12 . For the upper bound, Figure 10 presents a drawing with 175

crossings.
This drawing is obtained by a slight modification of the drawing corresponding to

Figure 9C with the dash–dotted edge. In particular, in the middle copy (orange), the long edge
between the leftmost vertex of B and the rightmost vertex of C is drawn in the top half, while its
corresponding edges in the other two copies are drawn in the bottom half. This saves the two
crossings between the middle long edge and the left and right long edges.

For ≥n 5, we use the ideas of Section 3.3 to improve the upper bounds.

FIGURE 10 A 3‐circle drawing of K4,4,4 with 175 crossings
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4 | CONNECTION TO THE HARARY–HILL CONJECTURE

The Harary–Hill Conjecture [11,20] states that the number of crossings in any drawing (in the
plane) of the complete graph Kn is at least

≔



























H n

n n n n
( )

1

4 2

− 1

2

− 2

2

− 3

2
.

Drawings with exactly H n( ) crossings [12,20] show that ≤K H ncr( ) ( )n . The Harary–Hill
conjecture has been confirmed for ≤n 12 (see [19] for ≤n 10 and [25] for n = 11, 12), and
either K Hcr( ) = (13)13 or H (13) − 2 [1]. The conjecture has been proved when restricted to
certain families of graphs [2–5,10,24].

For decades, only two families of drawings of Kn with H n( ) crossings were known, shown in
Figure 11: the Blažek–Koman construction [12], which is an instance of a 1‐circle drawing, and the
Harary–Hill construction [20], which is an instance of a balanced restricted 2‐circle drawing.

Ábrego et al. announced in [6] a new family of drawings of Kn having the property that
each edge is crossed at least once, so these are not k‐circle drawings. Kynčl and others [22]
naturally asked about the existence of alternative k‐circle constructions of Kn with H n( )

crossings: Is ⓚH n K( ) = bcr ( )n for some ≥k 3? (Recall that ⓚbcr denotes the minimum
number of crossings in a balanced restricted k‐circle crossing drawing.) Figure 12 shows

(A) (B)

FIGURE 11 Drawings of K8 with H (8) = 18 crossings

(A) (B) (C)

FIGURE 12 Balanced 1‐, 2‐, and 3‐circle drawings of K6, each with H3 = (6) crossings
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crossing‐optimal balanced 1‐, 2‐, and 3‐circle drawings of K6. We prove that balanced
restricted 3‐circle drawings are suboptimal for n large enough.

Corollary 16. For n = 9, 10 and ≥n 13, the number of crossings in any balanced
restricted 3‐circle drawing of Kn exceeds H n( ), that is, ③ K H nbcr ( ) > ( )n .

Proof. Suppose ≥n 14. Let ≥q 5 and ∈r {−1, 0, 1} be the unique integers such that
n q r= 3 + . We want to show that ③ K H nbcr ( ) − ( ) > 0n . Consider a balanced restricted
3‐circle drawing of Kn with q q, , and q r+ vertices on the three circles. Then

③ ③


 


 


 


K K

q q r
bcr ( ) = cr ( ) + 2

4
+

+

4
.n q q q r, , + (4)

We use Theorem 1 to bound ③ Kcr ( )q q q r, , + and ∕ ∕ ≥ ∕  q q q q2 ( − 1) 2 ( − 2) 4 to remove
the floor function, which yields

≥

≥

③ ② ②

② ②





























K K K q

q r q r
q q r

q q

K K q q r q r

cr ( ) cr ( ) + 2cr ( ) +
+

2

+ − 1

2
+ 2 ( + )

2

− 1

2

cr ( ) + 2cr ( ) +
1

4
( + )(3 + − 6).

q q q r q q q q r

q q q q r

, , + , , +
2

, , +
2

By Equation (1), we have ② ( )K qcr ( ) =q q
q

, 3
. By Equation (2), we obtain ② Kcr ( ) =q q, −1

( )q( − 2)
q

3
and ② ( )K qcr ( ) = ( − 1)q q

q
, +1

+ 1

3
. Thus

≥③










( )
( )

( ) ( )

K

q q q r

q q q q r

q q q q q r

cr ( )

3 + (3 − 6) if = 0,

(3 − 4) + ( − 1)(3 − 7) if = −1,

+ 2( − 1) + ( + 1)(3 − 5) if = 1.

q q q r

q

q

q q

, , +

3

1

4
3

3

1

4
2

3

+ 1

3

1

4
2

(5)

The result holds for ≥n 14 ( ≥q 5) by (4), (5), and ≤H n n n( ) ( − 1) ( − 3)
1

64
2 2:

≥③








K H n

q q q q r

q q q r

q q q r

bcr ( ) − ( )

(7 − 24 − 46 + 24 − 9) > 0 if = 0,

(21 − 100 − 36 + 112) > 0 if = −1,

( + 2)(21 − 86 − 8) > 0 if = 1.

n
q

q

1

64
4 3 2

192
3 2

192
2

Finally, by (4) and Corollary 12, ≥③ ③ ③K K H Kbcr ( ) = cr ( ) 38 > 36 = (9), bcr ( )9 3,3,3 10

≥③ K H= cr ( ) + 1 64 > 60 = (10)3,3,4 , and ≥③ ③K Kbcr ( ) = cr ( ) + 7 229 > 225 =13 4,4,5

H (13). □

Our previous argument does not settle the cases n n= 8, = 11 and 12. The Harary–Hill con-
structions for ≤n 5 are in fact balanced restricted 3‐circle drawings, and we give balanced restricted
3‐circle drawings of K6 and K7 in Figures 12C and 13, respectively. If we allow for unbalanced
constructions for ≥n 8, the crossing number of ③ Kcr ( )n2,2, −4 given in Equation (3) implies that
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∕
≥○



 


 


 




K
n n

n n
n
n

H ncr ( ) +
− 4

4
=

− 4

4
+

3

2
( − 4) − ( − 4) −

3 even
3 2 odd

( ),n3 2,2, −4
2

with equality if and only if ≤ ≤n8 11. That is, for ≥n 8 the drawings of Kn given by a crossing‐
optimal 3‐circle drawing of K n2,2, −4 together with the straight‐line drawings inside of the three
circles achieve H n( ) crossings if and only if ≤ ≤n8 11.

5 | CONCLUSION AND OPEN PROBLEMS

In this paper, we prove upper and lower bounds on the tripartite‐circle crossing number of complete
tripartite graphs. For the lower bound, we introduce formulas describing the number of crossings in a
tripartite‐circle drawing. For the upper bounds, we present drawings. While there exist restricted
balanced 2‐circle drawings achieving the Harary–Hill bound, our results imply that this is not the
case for balanced restricted 3‐circle drawings for ≥n 13. It remains open for future work whether the
same holds for k‐partite circle drawings when k > 3. We have made progress in the direction of
extending our work to k > 3 and plan to return to this question in a subsequent paper. We conclude
with a list of interesting open problems for future work:

• Do there exist k‐circle drawings achieving the Harary–Hill bound for k > 3?
• Can the number of crossings of k‐circle drawings generally be described by labels analogous
to x y‐and ‐labels?

• How are crossing‐minimal k‐circle drawings characterized?
• What are the exact values for small graphs? Is ③ Kcr ( ) = 423,3,3 ? For the remaining displayed
values in Table 1, we believe that the truth lies closer to the presented upper bounds. In
particular, it remains to develop better tools to improve the lower bounds.

• Are there balanced restricted 3‐circle drawings achieving the Harary–Hill bound for K K,8 11,
or K12?

• We know that balanced restricted 3‐circle drawings do not (in general) achieve the Har-
ary–Hill bound, and that extending tripartite‐circle drawings of K n2,2, −4 does not (in general)
achieve the Harary–Hill bound. Are there other unbalanced restricted 3‐circle drawings that
do achieve the Harary–Hill bound?
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