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t single pixel spectral imaging
system for glow discharge optical emission
spectrometry elemental mapping enabled by
compressed sensing†

Gerardo Gamez, * Yue She, Paola Rivera, Songyue Shi and Kevin Finch

Glow discharge optical emission spectroscopy elemental mapping (GDOES EM), enabled by spectral

imaging strategies, is an advantageous technique for direct multi-elemental analysis of solid samples in

rapid timeframes. Here, a single-pixel, or point scan, spectral imaging system based on compressed

sensing image sampling, is developed and optimized in terms of matrix density, compression factor,

sparsifying basis, and reconstruction algorithm for coupling with GDOES EM. It is shown that a 512

matrix density at a compression factor of 30% provides the highest spatial fidelity in terms of the peak

signal-to-noise ratio (PSNR) and complex wavelet structural similarity index measure (cw-SSIM) while

maintaining fast measurement times. The background equivalent concentration (BEC) of Cu I at

510.5 nm is improved when implementing the discrete wavelet transform (DWT) sparsifying basis and

Two-step Iterative Shrinking/Thresholding Algorithm for Linear Inverse Problems (TwIST) reconstruction

algorithm. Utilizing these optimum conditions, a GDOES EM of a flexible, etched-copper circuit board

was then successfully demonstrated with the compressed sensing single-pixel spectral imaging system

(CSSPIS). The newly developed CSSPIS allows taking advantage of the significant cost-efficiency of

point-scanning approaches (>10� vs. intensified array detector systems), while overcoming (up to several

orders of magnitude) their inherent and substantial throughput limitations. Ultimately, it has the potential

to be implemented on readily available commercial GDOES instruments by adapting the collection optics.
1. Introduction

Mapping the distribution of elements in solid samples is critical
for understanding the underlying mechanisms of natural and
engineered materials.1–7 There are several elemental mapping
(EM) techniques currently available but, while they possess
different advantages, a common limitation is long acquisition
times, which can require several hours or more. Glow discharge
optical emission spectroscopy (GDOES) has been shown to
permit EM from within the sputtered area when operated in
pulsed power mode and sustained under higher-than-typical
pressures.8–15 Leveraging the inherent GDOES advantages of
direct solid sampling, simultaneous multi-elemental analysis,
fast sputtering rates, multi-matrix calibration schemes, and
depth proling in the nm scale, results in ultra-high throughput
elemental mapping capabilities that can be several orders-of-
magnitude faster vs. typical techniques.2,11,16
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One of the aspects that enables GDOES EM is its coupling to
an appropriate spectral imaging system for data collection, with
several embodiments reported. On the one hand, wavelength-
scan approaches, also known as staring-camera type, allow
measuring monochromatic images one wavelength at a time,
with the advantage of giving access to both spatial dimensions
simultaneously. The wavelength selection device used inu-
ences greatly the GDOES EM performance: a monochromator
gives access to a wide l range but l-scan is slow and it
compromises light-throughput vs. spectral resolution;8,9

a dichroic lter is very cost effective and can have a large
numerical aperture (NA) but the l range and spectral resolution
for each lter are very limited, such that tens of lters would be
needed for multi-elemental analysis;14 acousto-optic tunable
lters give fast random l access and can also have a large NA but
they have limited l range and UV capabilities, spectral resolu-
tion that varies with l, and can be costly.15 On the other hand,
line-scan approaches, also known as push-broom type, allow
measuring one spatial dimension and the l dimension simul-
taneously while the remaining spatial dimension has to be
scanned. Reported grating spectrograph line-scan systems used
for GDOES EM have shown large NA, a wide l range that could
potentially be extended into VUV, and fast hyperspectral
J. Anal. At. Spectrom.
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imaging capabilities.10–13 One type of spectral imaging system
that has not yet been demonstrated with GDOES EM is the
point-scan approach, or single-pixel imaging system (SPIS). The
main reason is that the typically required scanning in the two
spatial dimensions leads to signicantly slower data acquisi-
tion. However, the use of a single pixel detector is the most
hardware cost-effective approach, by at least an order of
magnitude, in contrast to the 2D array detectors necessary for
GDOES EM with the line- or wavelength-scanning approaches.

Compressed sensing (CS) is a sampling scheme that allows
reconstruction of signals with only a fraction of the samples
required by the Nyquist theorem, thus allowing for much faster
data acquisition.17–27 The principles that enable CS are: group
sampling, which allows obtaining more information per sample
and inherent multiplex advantages; incoherence, which trans-
lates into random selection of groups for sampling to avoid bias
and improve the probability of including all required compo-
nents in less measurements; and data sparsity, which refers to
having most of the signal information contained in only a few
components, or ample redundant information, such that the
data is compressible. Thus, several CS based approaches have
been demonstrated for allowing much faster data acquisition in
single-pixel imaging systems.28–34

Herein, a CSSPIS, based on a digital micromirror device
(DMD) spatial modulator, is developed and adapted for GDOES
EM. The effects of the operating and image reconstruction
parameters are studied with respect to the image delity
performance and the optimized operating conditions are
demonstrated with GDOES EM. This will enable taking advan-
tage of the SPIS signicant cost-effectiveness and make GDOES
EMmore accessible, while allowing for much faster throughput
compared to its traditional SPIS counterpart. An additional
potential advantage is that this approach opens the possibility
to perform EM on commercial GDOES systems, typically
featuring single-pixel detectors, by adapting the optical collec-
tion path with a spatial modulator.

2. Experimental
Compressed sensing single pixel spectral imaging system

The GD lamp, previously described in,9 was adapted with
a 9 mm cathode sputtering diameter. The GD was operated
under UHP Ar gas (99.999%) owing at a rate of 0.15 L min�1

controlled by a mass ow controller (Apex, AX-MC-1SLPM-D/
5M) and in conjunction with a roughing pump (Edwards,
RV12), resulted in a pressure of 14 Torr monitored by a pressure
gauge (MKS, 901P-11040). The RF power supply (Dressler, Cesar
1350) was pulsed at 1 kHz and 4% duty cycle, and the forward
power was adjusted to �350 W with the reected power <5 W. A
chiller (Thermo Scientic, Neslab Merlin M25) cooled the RF
power supply, impedance matching network, and GD backing
electrode.

Fig. 1A shows how the light from the GD was collected with
a series of plano-convex singlet lenses (Thorlabs, fused silica, 2
inch diameter, 200 mm focal length). L1 collimates the light
towards a at dielectric mirror (Thorlabs, fused silica, BB3-E02)
that reects it to L2, which focuses the light onto the DMD
J. Anal. At. Spectrom.
(Texas Instruments, DLP® LightCraer™ Evaluation Module
with DLP 0.3 WVGA chipset). L3 then collimates the encoded
light from the DMD and L4 focuses the light onto the entrance
slit of the monochromator (Chromex, Model 500iS/SM, linear
dispersion 1.6 nm mm�1), which was open to the maximum
width of 2 mm. The exit slit width was also completely open to
2 mm and a PMT (Hamamatsu, R928P), connected to a high
voltage power supply (Bertan, 230-05R), was used for detection.

The PMT output was split in two with the rst part connected
to a low noise amplier (Stanford Research Systems, Model
SR570) followed by a low-pass lter (KROHN-HITE, Model 3342)
and digitized by DAQ (National Instruments, USB-6259), while
the second part was connected to a home-built amplier and
digitized by another DAQ (National Instruments, USB-6001).
The purpose of this was for measuring the full dynamic range
with a low-gain branch, which is advantageous for measuring
the baseline and the highest intensities resulting from just a few
selected encoding masks, i.e. matrices. However, most of the
matrices will yield similar intensities, thus using the high-gain
branch allows “zooming-in” around these intensities and
enables to better distinguish the differences that contain most
of the information, but the few highest intensity data will
appear saturated in this case.
Image encoding

Fig. 1B and C show the experimental timing diagram. The DMD
was setup as a second monitor to a computer, such that it
projected a video consisting of a sequence of encodingmatrices.
These video sequences of Scrambled Block Hadamard
Ensemble (SBHE) structurally random matrices (SRM) were
produced as previously described.28 Different video sequences
were produced at various matrix densities, including 512, 1024,
2048, and 4096. In short, the image size is 256 � 256 pixels, for
a total of 65 536 pixels. The matrix density refers to number of
DMD pixels that simultaneously reect parts of the image
towards the detector, where their respective intensities are
combined. In addition, video sequences at different compres-
sion factors were also produced, including 10%, 20%, 30%,
40%, 50%, and 100%. The compression factor refers to the
fraction of measurements/combinations used to reconstruct the
image with respect to the ones required by the Nyquist theorem,
or in a determined system of equations, which would corre-
spond to 65 536 for 100% in our case. During all video
sequences, each different encoding matrix was projected (ON)
for �66 ms, followed by a blank matrix (OFF) projected for �33
ms that served to block the GD emission from reaching the
monochromator. This effectively results in a sequence of base-
line resolved intensity peaks that enable improved analysis and
processing of GDOES intensity data collected for each matrix.28
Data analysis

The data analysis and processing consists of several steps.
Essentially, the intensity of each matrix combination is aver-
aged over its ON time and extracted into a single le. Next, the
low-gain and high-gain intensity data are combined by
This journal is © The Royal Society of Chemistry 2022
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Fig. 1 (A) Schematic of the instrument setup for CSSPIS from GDOES EM where the light is imaged onto the DMD spatial modulator and the
resulting encoded image is refocused into the monochromator. The experimental timing showing (B) the DMD projection period and (C) the GD
pulsing frequency. Note the different time scales of each plot. See Experimental section for further details.

Paper JAAS

Pu
bl

is
he

d 
on

 1
8 

Fe
br

ua
ry

 2
02

2.
 D

ow
nl

oa
de

d 
by

 T
ex

as
 T

ec
h 

U
ni

ve
rs

ity
 o

n 
3/

16
/2

02
2 

9:
08

:2
1 

PM
. 

View Article Online
matching the different scales, which allows replacing the satu-
rated intensities in the high-gain data set with the unsaturated
ones in the low-gain set. Then, if necessary, baseline and
amplitude dri corrections are applied, where a small set of
This journal is © The Royal Society of Chemistry 2022
identical encoding matrices, applied before the beginning and
aer the end of the measurement, are used to assess the dri.
Finally, two CS algorithms, selected for their speed advan-
tages,35 were implemented for image reconstruction, including
J. Anal. At. Spectrom.
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Two-step Iterative Shrinking/Thresholding Algorithm for Linear
Inverse Problems (TwIST)36 and Gradient Projection for Sparse
Reconstruction (GPSR).37 In addition, two different sparsifying
basis, including 9–7 discrete wavelet transform (DWT) and
discrete cosine transform (DCT), were utilized. The recon-
structed images were median ltered (12 � 12 block size) and
the intensity scale normalized to 16 bit.
3. Results & discussion

The model sample used for studying the effect of the operating/
reconstruction conditions on GDOES EM CSSPIS was a nickel
(75.2%)/chromium (19.4%) alloy substrate (NIMONIC alloy 75,
E3918, 0.005% copper) with pure copper wire surface inserts of
1 mm diameter, separated by 1 mm edge-to-edge (Fig. 2A).
Fig. 2B shows an end-on picture of the sample in the chamber
while the GD is in operation (plasma ON). Given the slit width
limitations of the monochromator, only part of the GDOES
Fig. 2 (A) Model sample of stainless steel SRMwith pure copper inserts. (B
ON). (C–H) Reconstructed images obtained with the CSSPIS from G
compression factors (matrix density 512, DWT, TwIST).

J. Anal. At. Spectrom.
image projected on to the DMD made it through to the PMT
detector, which is highlighted by the red rectangle in Fig. 2A.
Fig. 2C to H show samples of reconstructed spectral images
under selected conditions. It is evident that the image quality
improves as more measurements are obtained, or at higher
compression factor percentages, particularly from 10% to 30%
while higher percentages yield diminishing returns.
Fidelity assessment

The delity of the spectral images obtained with the CSSPIS was
quantied by two methods: the more typical peak signal-to-
noise ratio (PSNR) method and the complex wavelet structural
similarity index measure (cw-SSIM). The PSNR method calcu-
lates the mean squared error (MSE) by doing a pixel-to-pixel
comparison between the image of interest and a standard
image. This is followed by weighing the MSE with the maximum
possible pixel value and expressing the result in decibels, where
higher PSNR values indicate improved delity. While the PSNR
) End-on view of mountedmodel sample during GD operation (plasma
DOES EM of the model sample at 510.5 nm, Cu I, under different

This journal is © The Royal Society of Chemistry 2022
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metric has several advantages, including that is simple to
compute, it is a global measure that is not very well suited to
assess perceived visual quality.38 For example, the PSNR value
will be signicantly affected if the image of interest is exactly the
same as the standard image but just shied a couple of pixels.

The SSIM method is a slightly more involved calculation but
gives a better assessment of perceived visual quality.38,39 In this
case, the interdependency of nearby pixels is taken into account
by only focusing on a small window section, or local group of
pixels, of the image-of-interest (x) and the corresponding one in
the standard image (y) at any given time. It compares luminance
(l, or brightness, measured as the average intensity, m), contrast
(c, measured as standard deviation, s), and structure (s,
measured as cross correlation of x and y aer mean removal,
sxy) between the small image sections:38

Sðx; yÞ ¼ lðx; yÞcðx; yÞsðx; yÞ

¼
�

2mxmy þ C1

mx
2 þ my

2 þ C1

��
2sxsy þ C2

sx
2 þ sy

2 þ C2

��
2sxy þ C3

sxsy þ C3

�

where C1, C2 and C3 are small positive constants to stabilize
near zero values. The small window section is then shied pixel-
by-pixel across the image to yield an SSIM map and the total
SSIM score is obtained by averaging all the SSIM map values.
The total SSIM values are expressed in a zero to 1 scale, where
values closer to 1 indicate higher delity.

The results of the delity assessment for the 512 matrix
density as a function of compression factor are shown in Fig. 3.
Fig. 3 Fidelity characterization, in terms of PSNR (A) and SSIM (B), of
GDOES EM CSSPIS reconstructed images at 512 matrix density as
a function of compression factor. The effect of the sparsifying basis/
reconstruction algorithm were also studied: DCT/TwIST (A), DWT/
TwIST (C), DCT/GPSR (:), DWT/GPSR (-).

This journal is © The Royal Society of Chemistry 2022
It should be noted that only the part of the image that made it
through the monochromator entrance slit (brighter part of
Fig. 2C–H, corresponding to the red box highlight of Fig. 2A)
was taken into account for the comparison. In general, the
PSNR values improve from�28 db at 10% compression factor to
�32 db at 30%. On the other hand, the PSNR stays constant
from 30% to 50% compression factor. The SSIM shows a similar
trend, with values improving from�0.85 at 10% to�0.9 at 30%,
where they reach a plateau. Interestingly, the effect of the
algorithm, or sparsifying basis, used during the reconstruction
is indistinguishable within the experimental error for both
delity quantication methods. These general trends change
gradually as the matrix density is increased to 1024 (Fig. S1†),
2048 (Fig. S2†), and ultimately 4096 (Fig. 4). For example, the
PSNR values keep increasing as a function of compression
factor, with no evident plateau, and with a steeper slope at
higher matrix densities. Furthermore, the overall PSNR values
obtained are worse as the matrix density is increased, particu-
larly at lower compression factors. It is also worth noting that
the choice of sparsifying basis and reconstruction algorithm
start to have an increasingly signicant effect at higher matrix
densities.

The GPSR algorithm, as well as DCT sparsifying basis,
performs better at lower compression factors and increased
matrix densities. This is particularly evident at 4096 (Fig. 4)
where a paired data t-test (2-tail, signicance ¼ 0.05) including
all compression factors gives a p-value of 1.6 � 10�3 for DCT
Fig. 4 Fidelity characterization, in terms of PSNR (A) and SSIM (B), of
GDOES EM CSSPIS reconstructed images at 4096 matrix density as
a function of compression factor. The effect of the sparsifying basis/
reconstruction algorithm were also studied: DCT/TwIST (A), DWT/
TwIST (C), DCT/GPSR (:), DWT/GPSR (-).

J. Anal. At. Spectrom.

https://doi.org/10.1039/d2ja00021k


Fig. 6 Fidelity characterization, in terms of PSNR (A) and SSIM (B), of
computer simulated CSSPIS reconstructed images at 4096 matrix
density as a function of compression factor. The effect of the sparsi-
fying basis/reconstruction algorithm were also studied: DCT/TwIST
(A), DWT/TwIST (C), DCT/GPSR (:), DWT/GPSR (-).
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and 1.1 � 10�3 for DWT, to conrm GPSR outperforms TwIST.
In addition, when GPSR is used, DCT outperforms DWT (p-value
1.8� 10�2). On the other hand, the effect of algorithm and basis
starts to once again become indistinguishable when the
number of measurements is increased to 50% compression
factor. It is instructive to see that the visual perception-based
SSIM at 4096 matrix density shows a similar trend. The better
performance of GPSR vs. TwIST is more evident here (p-values of
9.2 � 10�6 for DCT, and 3.1 � 10�5 for DWT), but DCT
outperforms DWT only up to 30% compression factor (p-values
of 1.3 � 10�2 for GPSR, and 1.5 � 10�3 for TwIST), which also
put into perspective the more abstract PSNR values.

The better performance of the 512 matrix density has to do
with the corresponding matrix signal and its precision. As
mentioned above, the matrices, or encoding masks, displayed
on the DMD enable combining the intensities of several parts of
the image at the PMT detector. Each matrix is a different
combination so it is critical to be able to distinguish between
the different resulting intensities. When less parts of the image
are combined (512 matrix density) the differences between the
corresponding matrix measured intensities are larger, such that
it is easier to distinguish the differences under a particular set
of signal and standard deviation conditions. As more parts of
the image are combined (up to 4096 matrix density) the differ-
ences become gradually smaller, such that the inherent signal
and noise conditions play a more important role, thus making
them harder to distinguish.
Fig. 5 Fidelity characterization, in terms of PSNR (A) and SSIM (B), of
computer simulated CSSPIS reconstructed images at 512 matrix
density as a function of compression factor. The effect of the sparsi-
fying basis/reconstruction algorithm were also studied: DCT/TwIST
(A), DWT/TwIST (C), DCT/GPSR (:), DWT/GPSR (-).

J. Anal. At. Spectrom.
Of course, there is a compromise between matrix intensity
differences and the brightness of the light source being studied.
For example, under very low light level conditions the overall
signal-to-noise (SNR) level from the combinations coming from
the smaller density matrices may start to become inadequate,
Fig. 7 Background equivalent concentration (BEC) of copper (Cu I,
510.5 nm) fromGDOES EMCSSPIS reconstructed images of themodel
sample at 512 matrix density as a function of compression factor. The
effect of the sparsifying basis/reconstruction algorithm were also
studied: DCT/TwIST (A), DWT/TwIST (C), DCT/GPSR (:), DWT/GPSR
(-).

This journal is © The Royal Society of Chemistry 2022
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leading to worse performance compared to higher matrix
densities, as shown in.28

Computer simulations of the CSSPIS process were performed
to better understand the observed trends. In this case, the
CameraMan image was used and noise was added with the
MATLAB function “awgn” (adds white Gaussian noise to signal)
at a ratio of signal power to noise power of 50 dbW, thus
simulating source noise (Fig. S3†). The image was multiplied
sequentially by each matrix (binary, 1 and 0) in the corre-
sponding series, and the pixel values in each resulting image
were integrated. This was followed by the image reconstruction
Fig. 8 (A) Etched copper flexible electrical board sample, with red circl
board sample during GD operation, with red rectangle showing area imag
under optimized conditions of 512 matrix density, 30% compression fac

This journal is © The Royal Society of Chemistry 2022
method described in the Data Analysis section above. Fig. 5 (512
matrix density) and Fig. 6 (4096 matrix density), as well as S4
(1024) and S5 (2048), show the PSNR and SSIM as a function of
compression factor for the simulation experiments. While the
absolute PSNR and SSIM values are not comparable, the trends
are very instructive. For example, there is a general improved
performance with increased percentages, which is consistent
with the experimental data. Also, the performance of the 512
matrix density, as evidenced by the higher PSNR and SSIM
values, is better compared to the 4096 matrix. This is again
consistent with the experimental data. The trends with respect
e showing area samples by GD. (B) End-on view of mounted copper-
ed by the CSSPIS. (C) GDOES EM of copper (Cu I, 510.5 nm) with CSSPIS
tor, DWT sparsifying basis, and TwIST reconstruction algorithm.

J. Anal. At. Spectrom.
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to effect of the reconstruction algorithm or sparsifying basis are
not the same, which may be due to the experimental data
containing both source and detector noise, while the simulated
data only has source noise added.

An important aspect to consider is how these parameters
would affect the quantitative elemental analysis. Thus, the
images reconstructed from the data obtained with the optimum
512 matrix density were used to calculate background equiva-
lent concentrations (BEC), of the copper inserts (Fig. 7):

BEC ¼ 0:01� k �RSDB� C0

SBR

where the constant k ¼ 3, RSDB is the relative standard devia-
tion of the background, SBR is the signal to background ratio,
and C0 is the copper insert concentration at 99%. The signal was
averaged over the copper insert area, while the background was
averaged over a comparable area on the substrate.

It is interesting to note that in general the BEC value
increases, or becomes worse, from 10% compression factor
compared to 40% (p-value 3.3 � 10�3). This trend can be
explained by looking at Fig. 1, where the images recovered at
10% look smoothed, or blurred, compared to 40%, which
results in lower RSDB values and translates into a lower BEC at
10%. The BEC decreases again when comparing 40% to 100%
(p-value 2.8 � 10�2), but this is due to higher SBR at 100%. In
addition, DWT gives better, or lower, BECs compared to DCT
(paired data t-test, 2 tail, including all compression factors) with
p-values of 2.2 � 10�5 for GPSR, and 3.9 � 10�4 for TwIST. The
BEC values are estimates of detection limits and here they are
one to two orders of magnitude higher compared to typical ones
reported for GDOES bulk analysis, due to several factors. First,
the use of higher operating pressures here leads to lower sput-
tering rates and corresponding lower emission signals. None-
theless, this change is expected to be less than an order of
magnitude. Second, andmost important, the detection limits in
bulk analysis are achieved by integrating the signal for up to
10 s under continuous GD power. On the other hand, the PMT
here was allowed to collect light for�0.066 s during each matrix
measured. However, the GD power is pulsed at 1 kHz with a 4%
duty cycle, which lowers the time the GD signal is actually
collected to 0.00264 s per matrix. Furthermore, one has to take
into account the number of times the same DMD pixel is
included in the total measurement, which comes out to�154 by
using the matrix density (512), image pixel density (256 � 256)
and compression factor (0.3). Thus, the total time in which
signal is collected per pixel in the complete measurement here
is �0.4 s, compared to the 10 s typically used for bulk analysis,
which helps to explain the difference in detection limits,
together with the lower sputtering rates at the higher pressures.
A similar effect on detection limits is observed when performing
GDOES depth proling studies where the signal is integrated for
much shorter times, �0.1 s, compared to bulk analysis.

Finally, GDOES EM of a exible, etched-copper board sample
was successfully demonstrated with the optimized CSSPIS
(Fig. 8). A matrix density of 512 was implemented because it
proved to be optimum in terms of spatial delity at the lower
30% compression factor to permit the fastest measurement.
J. Anal. At. Spectrom.
Also, the DWT sparsifying basis and TwIST reconstruction
algorithm were used because they showed better BEC values.
The CSSPIS measurement is signicantly faster compared to
typical SPIS systems relying on pixel-to-pixel rastering. In fact,
the improved measurement time is not linear, as the 30% value
would suggest, because the intensities from many pixels, 512 in
this case, are combined at any given measurement. This mul-
tiplexing yields a signicant improvement in SNR ratio at the
detector compared to single pixel rastering systems and
provides for considerably faster data acquisition times. The
enhancement would correspond to the improvement in SNR,
which is � equivalent to the number of combined pixels (more
than two orders-of-magnitude), when the noise is detector
limited. The actual measurement time for the data shown in
Fig. 8 is �32 min, which is already competitive with other
elemental mapping techniques. On the other hand, it is at least
an order of magnitude slower compared to the time required by
GDOES EM using line- or wavelength-scan spectral imaging
techniques. However, the current measurement time here is
limited by implementing the DMD as a second monitor (and
corresponding relatively-slow refresh rate), the pulsed GD
power duty cycle, and the signal averaging during the time the
matrix is projected, which results in a “dilution” of 4% signal in
96% background. Uploading signicantly shorter matrix series
directly into the limited DMD memory would permit much
faster refresh rates and to implement DMD-based synchronized
detection strategies, as demonstrated for LIBS,40 making the
current matrix OFF-time unnecessary and enabling a signi-
cantly improved SBR and lateral resolution.9 Such improve-
ments would allow signicantly faster acquisition times at
similar LODs or better LODs at similar acquisition times.
4. Conclusions

A CSSPIS has been tailored and implemented to GDOES EM for
the rst time, with optimization from actual GD plasma emis-
sion. In terms of spatial delity, the addition of a SSIM
assessment to the PSNR has allowed a better understanding of
the reconstructed images in terms of visual perception. The best
delity performance displayed by the 512 matrix density can be
attributed to the greater differences in peak intensity measured
for each of the encoded matrices, where a compression factor of
30% already yields optimum results. The quantitative perfor-
mance, in terms of BEC, shows the DWT sparsifying basis and
TwIST reconstruction algorithm to be best.

Under optimized conditions, the CSSPIS approach can be
signicantly faster (orders of magnitude in detector noise
limited cases) than the traditional pixel-by-pixel scanning
counterpart because of the compression and multiplexing
properties. Furthermore, while the measurements here were
performed under non-gated continuous detection, DMDs have
the potential to allow synchronized gated detection of pulsed
plasmas with high temporal resolution, as demonstrated for
LIBS,40 which would lead to improved SBR and lateral resolu-
tion in GDOES EM.9 Ultimately, the CSSPIS strategy is also
amenable for being adapted to a potential implementation on
This journal is © The Royal Society of Chemistry 2022
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readily available commercial GDOES instruments to allow
multi-EM capabilities.

It is worth noting that array detectors can make CS spectral
imaging approaches much more powerful by allowing many
combinations to be measured at the same time and having
simultaneous access to the wavelength dimension, which
results in much faster imaging with multi-elemental capabil-
ities. Thus, current work in the PI lab is already underway to
incorporate an array detector and enable coded aperture snap-
shot spectral imaging (CASSI)19,41 with the ultimate capability of
capturing a full hyperspectral data cube in a single snapshot.
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