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ABSTRACT

Identifying the depths of the hydrocarbon-fluid contacts in a res-
ervoir is important for determining hydrocarbon reserves and pro-
duction planning. Using core samples from the Tay Sandstone
reservoir in the central North Sea, we show that there is a mag-
netic enhancement at the hydrocarbon-fluid contacts that is
detectable through both magnetic susceptibility measurements
and magnetic hysteresis measurements. We observed this mag-
netic enhancement at both gas-oil and oil-water contacts, which
have been independently identified using nonmagnetic methods;
we did not consider gas-water contacts in this study. We demon-
strate that this magnetic enhancement is caused by the precipita-
tion of new nanometric iron oxide (magnetite) and iron sulfide
(greigite) phases. The magnetic enhancement may be caused by
diagenetic changes or preferential biodegradation at the top of the
oil column during early filling and at the oil-water contact. Our
findings have the potential to be used to identify paleo-hydrocarbon-
fluid contact in both structurally modified fields and failed wells.
The technique can also be used to infer the fill history of a basin
and calibrate petroleum systems models. Magnetic susceptibility
measurements have the advantage that they can easily and
quickly be measured in the field on whole core material.

INTRODUCTION

Hydrocarbon-fluid contacts are boundaries that separate hydrocarbon
phases from each other and from the formation water (Ahmed,
1989). Identifying the locations of these hydrocarbon-fluid contacts is
crucial for determining hydrocarbon reserves and production planning.

As source rocks undergo burial, oil is generated and then
expelled. The oil commonly migrates upward because of buoyancy,
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until it escapes at the surface or seabed or is trapped in a reservoir.
As burial depth increases, depending on the kerogen type, the
source rock can also expel gas, which also migrates upward but
typically at faster rates than oil. If gas reaches the reservoir it will
dissolve in the oil, potentially creating a multiphase system
depending on pressure and temperature (Larter and di Primio,
2005). As pressure drops or temperature increases, the gas
exsolves from the oil and a gas cap is formed above the oil with
the formation water lying below the oil (Ahmed, 1989).

Resistivity wire-line logs (Figure 1) are good for identifying
oil-water contacts (OWCs) and gas-water contacts (GWCs),
because the resistivity of hydrocarbons is significantly higher
than that of water (Rider and Kennedy, 1996). However,
because oil and gas have roughly the same resistance, resistivity
logs cannot be used to differentiate gas-oil contacts (GOCs).
To identify GOCs (and GWCs), neutron porosity and density
wire-line logs can be used; gas is less dense than oil or water,
and because neutron-derived porosities for gas are signifi-
cantly underestimated, this provides a clear contrast (known
as the gas effect) as shown in Figure 1 (Rider and Kennedy,
1996). It has been found that hydrocarbon-fluid contacts are
not always sharp boundaries; they can be gradational with an
intermediate transition zone of mixed fluids. Depending on
the lateral pressure, variation in the reservoir bed can be flat
or tilted (Dennis et al., 2000). If pressure data (e.g., wireline
repeat formation tester data) are available, an accurate deter-
mination of fluid contacts can be made.

The reducing conditions generated by hydrocarbons can
alter (produce or destroy) the ferromagnetic minerals that may
be present, that is, iron oxides and iron sulfides depending on
the conditions (Reynolds et al., 1990; Emmerton et al., 2012;
Abubakar et al., 2015, 2020). The iron oxide magnetite and
the iron sulfides pyrrhotite and greigite are the most common
magnetic minerals precipitated, whereas the iron oxide hema-
tite, if initially present, typically gets replaced or dissolved. Also
common in these environments are iron-rich nonmagnetic min-
erals such as pyrite and siderite (Machel, 1995). The exact bal-
ance of magnetic and nonmagnetic iron-rich minerals depends
on the local environment.

Mineral magnetic measurements carried out on shallow
drill cuttings from oil-producing and dry wells from oil fields in
Venezuela have found magnetic susceptibility anomalies in oil-
producing wells that are caused by the presence of iron-rich
spherical aggregates and magnetic phases of authigenic origin
(Costanzo-Alvarez et al., 2000; Aldana et al., 2003). Similarly,
Liu et al. (2006) found that in addition to anomalies in the
magnetic susceptibility, magnetic hysteresis parameters that
are mass dependent (e.g., saturation magnetization [Ms] and
remanent saturation magnetization [Mrs]) were 2–5 times
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higher in oil-producing zones compared to non–oil-
producing zones with fine-grained (�25 nm) magne-
tite contributing to this enhanced signal. This
enhanced signal in the oil-bearing layers has also been
attributed to the presence of fine-grained pyrrhotite
in oil wells located in Venezuela and Oklahoma
(Reynolds et al., 1990; Mena andWalther, 2012).

We have identified a magnetic enhancement at
hydrocarbon-fluid contacts. In this paper, we show
that peaks in magnetic susceptibility, Ms, and rema-
nent saturation, coupled with size of magnetic miner-
als, can be used to determine the hydrocarbon
contacts on core samples. These new approaches
have the potential to be used in the identification of
paleo-hydrocarbon-fluid contacts, which are vital to
understanding the fill history of basins. To demon-
strate these effects, we have obtained and studied
core samples from the Tay Sandstone Member in the
Central North Sea Basin.

STUDY AREA

The wells used in this study are in the Central North
Sea Basin of the United Kingdom North Sea (Figure
2). The central graben is located approximately 240
km east of Scotland and is one of the three arms of
the failed North Sea rift system, which also includes
the Viking graben and the Inner and Outer Moray
Firth (Erratt et al., 1999).

A stratigraphic column of the study area is shown
in Figure 3. The Upper Jurassic Kimmeridge Clay is
themain source rock in the area (Figure 3). It is mature
for oil to the east of the study area, with burial depths
greater than 3250 m, and generally late mature for oil
to early mature for gas at the eastern edge, with burial
depths of approximately 4750 m (Isaksen, 2004). In
the central graben, the main hydrocarbon reservoirs
are Upper Jurassic shallow marine sandstones and
Cenozoic deep-water sandstones.

Initial accumulation of oil was in the Upper
Jurassic Fulmar Formation sandstones. Because the
source rock lies directly above this formation, it
makes an ideal short distance migration pathway.
However, the Fulmar is affected by both stratigraphic
complexity and salt movement, which makes sand-
stones commonly discontinuous and fractured. Over
time, sediment loading led to capillary failure in the
seal above the Fulmar sandstones, which initiated

vertical migration, with the fractured chalk and possi-
bly the salt wall and diapirs acting as vertical conduits
for migration into the overlying Cenozoic sandstones.
In our study area, three-dimensional basin modeling
(Badejo et al., in press) suggests the oil migrates verti-
cally to the Tay Sandstone Member of Eocene age in
the east and moves laterally to the west by a fill and
spill mechanism. All the core samples studied are
from this formation.

Compared to the Fulmar sandstones the Ceno-
zoic sandstones are only slightly deformed and
laterally continuous, facilitating lateral migration of
distances of up to 50 km for oil and up to 32 km for
gas (Cayley, 1987; Kubala et al., 2003).

Figure 1. Wire-line logs for well 21/25-04. A decrease in resis-
tivity indicates a change from hydrocarbons to formation water.
GOC5 gas-oil contact; GR5 gamma-ray log; ILD5 deep induc-
tion log used to determine formation resistivity; NPHI 5 neutron
porosity log; OWC5 oil-water contact; RHOB5 bulk density log.

BADEJO ET AL. 1975
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METHODOLOGY

Sample Collection

Well cores were sampled from the British Geological
Survey core repository in Keyworth, United King-
dom. Composite logs were used to determine which
wells in the study area have penetrated OWCs or
GOCs or both: 6 out of the 18 wells selected have
core material with a clear OWC, whereas only 2
wells sample a clear GOC. The composite logs were
also used to determine the presence of hydrocarbon
in the Tay Sandstone Member and if the core recov-
ery was successful from the formation. Samples were
selected based on geological observation (water-wet
sandstone, oil-stained sandstone, sandstones in gas
cap, siltstones, and shale). Samples taken were typi-
cally 2-cm chips. Data from wells 21/25-04, 21/25-
A1, and 21/29a-08 are shown in this paper.

In addition to the core sections, pure oil samples
were obtained from wells 21/29a-8 and 21/24-2 (Fig-
ure 2). The oil samples were absorbed in kaolinite clay
for magnetic measurements. To purify the kaolinite
clay, it was washed in hydrogen peroxide to get rid of
any organic matter, then it was washed in deionized
water and left in an oven at 100�C for 24 hr. For each
sample, the mass of the kaolinite clay was measured
before (1.98 g per sample) and after oil was added
(�3 g). Approximately 0.15 g of the mixture was used
for the low-temperature (LT) experiments. The con-
centration of oil in both samples was �35% by total
mass; we subtracted that from the overall signal.

Magnetic Measurements

Magnetic measurements were carried out to deter-
mine the morphology, mineralogy, and size of the
magnetic minerals present. The magnetic techniques
used are described below.
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Figure 2. Study area (red rectangle) located in the western central graben of the United Kingdom North Sea. Known hydrocarbon fields
are highlighted in green.
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Magnetic Hysteresis Measurements
Room-temperature magnetic hysteresis measure-
ments on a vibrating sample magnetometer (VSM)
were done at Imperial College London. The VSM
measures the magnetic response to an applied
field. All materials fall into one of the three mag-
netic categories: diamagnetic, paramagnetic, or
ferromagnetic. Diamagnetic and paramagnetic

minerals have a linear relationship with the
applied field, with negative and positive slopes,
respectively (Dunlop and €Ozdemir, 1997). In fer-
romagnetic materials, the magnetization does not
return to zero when the field is removed but
retains a record of the applied field. The path of
magnetization as a function of the applied field is
known as a hysteresis loop. If the applied field

Figure 3. Tectonostratigraphy of the western central graben of the United Kingdom North Sea showing lithology and ages of rifting in
the study area. FM5 Formation; Kimm clay5 Kimmeridge Clay; SM5 Sandstone Member.

BADEJO ET AL. 1977
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reaches a sufficient level, the material acquires its
Ms. Removing this field gives an Mrs. To reduce
the magnetization to zero a reverse field, coercive
force is applied.

In very small grains, the magnetization is uni-
form, and the particle is said to be single domain
(SD) (Dunlop and €Ozdemir, 1997). As a grain gets
bigger, its magnetization breaks up into areas
(domains) of uniform magnetization separated by
narrow domain walls; such grains are termed multi-
domain (MD). Small SD grains have magnetic
moments that are unstable because of thermal fluctu-
ations (<30 nm for magnetite), and are called super-
paramagnetic (SP) grains or thermally relaxing SD
grains (Dunlop and €Ozdemir, 1997). Small MD
grains just above the SD toMD threshold size (�100
nm for magnetite), display SD-like characteristics
and are termed pseudosingle domain grain (PSD)
(Roberts et al., 2017).

First-order reversal curves (FORC) diagrams are
used to identify the domain state distributions within a
sample (Roberts et al., 2000, 2014). A FORC diagram
is calculated from a class of partial hysteresis curves
(Roberts et al., 2000). As a first approximation, the
x-axis represents the coercivity, whereas the y-axis
describes the magnetic interaction within the sample.
The “irregular” measurement protocol by Zhao et al.
(2015) was used for all the FORCs in this paper.

LT Measurements
The LT (20–300 K) experiments were carried out on
the Magnetic Properties Measurement System at the
University of Minnesota’s Institute for Rock Magne-
tism inMinneapolis. These measurements assist iden-
tification of the magnetic minerals present based on
mineral-specific crystallographic transitions (e.g., the
Verwey transition in magnetite at TV �120 K) (Ver-
wey, 1939), the Morin transition in hematite at TM

�263 K (Morin, 1950), the Besnus transition in
monoclinic pyrrhotite at TBes �30–34 K (Besnus and
Meyer, 1964), and to identify nanometric particles
(<30 nm) that are difficult to detect at room temper-
ature because of high thermal energy.

Susceptibility Measurements
High-temperature (HT) experiments were carried
out on a KLY-2 KappaBridge AC Susceptibility
Bridge in Imperial College London. Susceptibility
was measured as samples were heated from room

temperature to 700�C in an argon atmosphere. This
is used to help determine the mineralogy of the sam-
ples based on their Curie temperature and thermo-
magnetic behavior (Dunlop and €Ozdemir, 1997).

A variable field susceptibility meter was used to
measure the magnetic susceptibility at room temper-
ature over a wide range of frequencies (30–10 kHz)
at a field of 300 Am�1 at Imperial College London.
For small grains, susceptibility varies as a function of
frequency because the grains behave as SP grains at
low frequency and behave as SD grains at high fre-
quency; larger grains (i.e., >40 nm) are essentially
invariant to the applied frequencies (Muxworthy,
2001).

Scanning Electron Microscopy
Because the abundance of magnetic minerals was less
than 1% of the sample, magnetic extraction was
needed for imaging. Samples were crushed to an
even grain size and passed through a Frantz electro-
magnet magnetic separator three times to reduce the
abundance of nonmagnetic materials.

Samples were grounded and coated in gold for
imaging energy-dispersive x-ray (EDX) analysis on the
Zeiss LEOGemini 1525 scanning electron microscope
(SEM) at Imperial College London. The EDX analysis
had a spot size of approximately 1mm. Some uncoated
samples were also imaged on a Phenom desktop SEM.

RESULTS

Oil Samples

The following LT experiments were carried out on
the samples to identify possible magnetic transitions.
(1) LT demagnetization: the samples were induced
with a saturation isothermal remanent magnetization
(SIRM) at room temperature (RTSIRM; field = 2.5
T), and then cooled to 10 K and back to 300 K in
zero-field. This generates two curves called RTSIRM
cooling and RTSIRM warming curves. (2) Field-
cooled (FC) – zero-field–cooled (ZFC) warming
curves: induce a SIRM at 10 K and warm in zero field
to 300 K. In the ZFC scenario, the sample is first
cooled to 10 K in zero field; in the FC scenario, it is
cooled in a field at 2.5 T. The RTSIRM cooling and
warming and FC and ZFC curves were measured for
the blank kaolinite clay and for the oil from wells 21/
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24-02 and 21/29a-08 (Figure 4). The curves for the
blank kaolinite clay (Figure 4A) are noisy and show
no evidence for any magnetic minerals. In compari-
son, the signal-to-noise ratio for the oil samples (Fig-
ure 4B, C) is much higher (i.e., magnetization is
approximately two orders of magnitude stronger).

Drops in remanence at approximately 120 K on
the RTSIRM cooling curve suggest the presence of
magnetite in both wells (Figure 4B, C), whereas a
drop in magnetization at approximately 37 K on the
cycling cooling curve (Figure 4B) could be caused by
the presence of monoclinic pyrrhotite in well 21/24-
02 (Verwey, 1939; Besnus andMeyer, 1964).

Core Samples

Hysteresis loops (Figure 5), FORC diagrams (mea-
sured if signal-to-noise ratio in the loop was high
enough), and susceptibility were measured for all
samples. An increase in Ms, Mrs, and susceptibility
(normalized by mass) were noticed at the
hydrocarbon-fluid contacts as shown in wells 21/25-
04, 21/25-A1, and 21/29a-08 (Figure 6). Differences

in susceptibility measured at 990 Hz and 6000 Hz
observed in samples from well 21/25-A1 and 21/25-
04 (Figure 6D, E) suggest the presence of SP grains
(i.e., 25–35 nm in size) (Muxworthy, 2001; Mena
andWalther, 2012).

The LT experiments identified the presence of
magnetite (decrease in remanence at �120 K) in all
the samples (Figures 7, 8). The increase in remanence
on cooling noticed in most of the samples (e.g.,
s63594, s63600, s73397, and s72399) (Figures 7A,
M and 8D, G, respectively) suggests the presence of
goethite or titanohematite (Sprain et al., 2016). The
RTSIRM cooling and warming curves identified the
presence of hematite (drop in remanence at�250 K)
in a few samples (e.g., s63599) (Figure 7J). This was
expected because hematite is commonly replaced or
dissolved in diagenetic settings caused by hydrocar-
bons (Burton et al., 1993).

No Besnus transition was noticed in any of the
LT curves measured, indicating there is no mono-
clinic pyrrhotite in the samples, but other iron sul-
fides such as hexagonal pyrrhotite or greigite may be
present because they have no LT transition (Horng,
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Figure 4. Cycling cooling and warming curves and field-cooled zero-field–cooled curves for (1) pure kaolinite clay-noisy signal; (2) oil
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2018). The absence of a lambda transition (rapid
increase in susceptibility at �200�C followed by a
rapid decrease in susceptibility at 250�C) in the
HT-susceptibility experiments suggests a lack of hex-
agonal pyrrhotite in the samples (Dunlop and
€Ozdemir, 1997). Greigite is typically unstable during
heating with thermal decomposition from
200�C–400�C (Chang et al., 2008). Its presence in
samples is inferred from the HT-susceptibility heat-
ing and cooling behaviors; kinks in susceptibility on
heating between 200�C and 400�C (e.g., s72399,
s7203, and s72406) (Figures 8H, K, and N, respec-
tively) have been attributed to the presence of grei-
gite (Dekkers et al., 2000).

Siderite is paramagnetic at room temperature,
but in the presence of a field it acquires a large ther-
mal remanence on cooling below its N�eel tempera-
ture (�37 K) (Frederichs et al., 2003). On heating of
LT SIRM after FC or ZFC, there is a noticeable drop
in remanence between 10 and 40 K in the FC experi-
ment. This was used to identify the presence of sid-
erite as shown in samples s63599 and s72399 (Fig-
ures 7J, 8G). In the absence of FC and ZFC curves,
the heating and cooling behavior of susceptibility
was used to identify siderite. When heating in argon,
siderite alters to magnetite above 400�C, and on
cooling, a rapid increase in susceptibility at 580�C

accompanied by a Hopkinson-like peak is observed,
suggesting the formation of SP magnetite (Housen
et al., 1996). This behavior was noticed in samples
s63594, s63596, s63598, s63599, s63600, s72396,
s72397, s72399, and s72403 (Figures 7B, E, H, K,
N; 8B, E, H, K).

The FORC diagrams with a vertical spread of
concentric contoured peaks on the vertical axis Bi = 0
suggest the presence of interacting SD particles (Rob-
erts et al., 2000). Such behavior is observed at the
hydrocarbon-fluid contacts seen in s63594 and
s63599 (Figure 7F, I). The FORC diagrams with a
contoured peak below the Bi = 0 axis are indicative of
SD greigite (Horng, 2018); this was observed in one
well 21/25-A1 at the OWC (sample s72403; Figure
8L). The FORC diagrams for some samples have a
vertical spread on the Bi axis, which suggests the
presence of PSD grains (Roberts et al., 2000, Roberts
et al., 2017) as seen in s63594, s63596, and s63598
(Figure 7C, F, I). The FORC diagrams also suggest
the presence of SP grains (Roberts et al., 2018) above
and below the hydrocarbon-fluid contact as seen in
samples s63594, s63598, s63600, s72396, s72399,
and s72406 (Figures 7C, I, O; Figures 8C, I, O). Sam-
ples with multiaxial anisotropy were identified by
the steeply dipping negative region to the right of the
horizontal Bu axis (Valdez-Grijalva and Muxworthy,

Mrs

Ms

Bc

Figure 5. Hysteresis loop of sample s63654 from well 21/25-04 annotating saturation magnetization (Ms), remanent saturation magneti-
zation (Mrs), and coercivity (Bc).
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2019) (Figures 7C, F, I; Figure 8C, F, I, L, O). This
feature may also be because of SD vortex behavior
(Lascu et al., 2018; Valdez-Grijalva et al., 2018).

The SEM images on magnetic extracts showed a
variety of grain sizes and iron-phase mineralogy.
Framboids were found in samples such as s63598
(Figure 9A). The EDX analysis of the framboid in
Figure 9 identified iron- and sulfur-containing grains,
which are likely (the EDX was not calibrated for
this) a mixture of 1–2-mm-sized pyrite grains and
smaller-than-100-nm greigite grains. Bigger magne-
tite and pyrite grains (3–5-mm-sized) were found as
well (e.g., s63597) (Figure 9B); the bigger magnetite
grains are likely responsible for the PSD behavior
noticed in s63594, s63596, and s63598 (Figure 7C,
F, I). The EDX confirmed the presence of iron oxide
minerals, which are most likely magnetite grains
ranging from 50 to 350 nm in size (Figure 9C, D).

DISCUSSION

Peaks in Ms, Mrs, and susceptibility have been found
at the hydrocarbon-fluid contacts (Figure 6). The
hysteresis parameters have been “slope corrected,”

(i.e., linear diamagnetic and paramagnetic contribu-
tions removed); however, the susceptibility measures
the total magnetic signal, which possibly includes
contributions from Fe-bearing paramagnetic minerals
that are common in, for example, clays. The behavior
at the OWC appears clear, and there is an enhance-
ment in both the hysteresis (ferromagnetic) signal
and the susceptibility (ferromagnetic and paramag-
netic). At the GOC, there is an enhancement in the
ferromagnetic signal, but in Figure 6D, it is seen that
the combined paramagnetic and ferromagnetic signal
is invariant to the GOC. We suggest that the ferro-
magnetic minerals at this GOC are forming at the
expense of the paramagnetic signal (i.e., iron-rich
paramagnetic minerals are becoming ferromagnetic).

The FORC diagrams from samples at the
hydrocarbon-fluid contacts (Figures 7F, L and 8L,
respectively) suggest the presence of stable SD grains
(i.e., �50–100 nm). The FORC diagrams from sam-
ples above and below the hydrocarbon contacts sug-
gest the presence of smaller SP grains and PSD grains
(Figures 7C, I, O; 8C, I, O). The LT and HT experi-
ments confirmed the presence of magnetite, greigite,
siderite, hematite, titanohematite, and goethite in
the samples (Figures 7, 8). Only magnetite was
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observed in the oil-well samples, with possibly mono-
clinic pyrrhotite also present.

Can Magnetic Minerals Be Carried in
the Oil?

The oil samples from wells 21/24-02 and 21/29a-08
(Figure 5B, C) have magnetizations that are two
orders of magnitude higher than the kaolinite clay

sample (Figure 5A) and contain magnetite (identified
by its Verwey transition at �120 K). This suggests the
magnetic minerals can form complexes within the oil
that can be transported from the source rock to the
reservoir provided they are small enough to fit through
the pore throats of the carrier beds. The presence of
framboids (e.g., s63597) (Figure 9A) suggests the dia-
genetic conditions caused by the oil could lead to the
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precipitation of magnetic and nonmagnetic minerals
in the reservoir that are too large to be transported
(Wilkin and Barnes, 1997; Lin et al., 2016).

The drop in remanence at �37 K on the cycling
cooling curve in oil sample 21/24-02 (Figure 5B) is
typically indicative of monoclinic pyrrhotite, but the
ZFC and FC curves (insert in Figure 4B) do not sup-
port this argument (Kind et al., 2013). Additionally,

monoclinic pyrrhotite was not observed under the
SEM in any of the measured core samples. It is com-
monly considered to be detrital in origin because it is
thought to grow too slowly in sediments to be a diage-
netic product (Roberts, 2015; Horng and Roberts,
2018). Monoclinic pyrrhotite is therefore unlikely to
be the cause of the reduction in remanence observed
at approximately 37 K in oil sample 21/24-02
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(RTSIRM cooling curve in Figure 5B). It is unclear
whichmineral is responsible for this.

Surprisingly there was no evidence for siderite in
any of the measurements from the two oil samples
(Figure 5), although it was found in the core samples
(e.g., s63599) (Figure 7J). Siderite is typically authi-
genic in origin and has been observed in hydrocarbon
reducing environments (Burton et al., 1993; Machel,
1995; Emmerton et al., 2012; Roberts, 2015). It is
possible that siderite is precipitated in the reservoir
and the grains are bigger than the minimum pore
throat of sandstone (2 mm) or it acts as a cementing
agent (Nelson, 2009; Roberts, 2015). Therefore, it is
not extracted along with the oil.

Are the Magnetic Minerals Authigenic or
Detrital or Do They Migrate?

Abubakar et al. (2015) showed that magnetic miner-
als are formed in situ in a mature source rock. They
concluded that the vast majority of these minerals

were <60 nm and have the potential to be trans-
ported, although this may have been a result of the
length of the duration lab experiments; in nature, the
minerals might be larger.

The magnetic minerals in the core samples
are likely a mixture of authigenic, detrital, and
transported from source rock (Kimmeridge Clay)
minerals. It is difficult to determine to which of
these categories the magnetic minerals in the core
samples belong. The source rock in this area is a
mudstone (Kimmeridge Clay), which typically has
pore-throat sizes ranging from 5 nm to 100 nm,
whereas the sandstone reservoir typically has 2–20-
mm pore-throat sizes (Nealson, 2009). Magnetic
minerals that migrate with the oil from the source
rock must be less than 100 nm because the oil also
passes through layers of shale. This suggests that
the <100-nm grains that are responsible for the SP
and SD FORC signatures observed in our samples
(e.g., s63596, s72396, and s72403) (Figures 7F;

(A)

(C)

(B)

(D)

Figure 9. Scanning electron microscopy (SEM) images on the Phenom desktop SEM (A) s63597 energy-dispersive x-ray analysis con-
firms FeS Framboid. The SEM images on the LEO SEM; (B) and (C) s63598 from well 21/25-04, and (D) s63600 from well 21/25-04. G5
greigite; M5 magnetite, Py5 pyrite.
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8C, L) could have been transported from the source
rock, whereas the >150-nm grains are either detrital
or authigenic. The framboids, pyrite, and siderite
are authigenic, whereas the >1-mmmagnetite grains
and titanohematite are most likely detrital or as a
result of drilling mud contamination. Similar obser-
vations have been made by Liu et al. (2006).

There is also the possibility that the measured
magnetic response is caused by chemical alteration of
iron-rich phases during the 20–30 yr the cores have
been stored, however, we deem this unlikely as the
enhanced response is seen in several wells in multiple
samples.

Unraveling the Magnetic Signature: End-
Member Analysis

For two of the wells in the area, the FORC diagrams
were analyzed using principal component analysis
(PCA) to help understand variance in FORC distri-
butions as a function of depth and to help identify
possible end members (EMs) (Harrison et al. (2018).
To do this we used version 3.06 of the FORCinel
software package (Harrison and Feinberg, 2008).

Ten samples from well 21/25-04 (Figure 7) were
selected for FORC-PCA, and 95% of the variance
was defined by two EMs: EM1 accounted for 90% of
the variance whereas EM2 accounts for 5% of the
variance. The data are plotted in the principal com-
ponent plane in Figure 10A. The two components
identified (Figure 10B, C) are represented by SP par-
ticles (EM1) and SD particles with multiaxial aniso-
tropy or vortex behavior (EM2). The PSD behavior
is observed in both EMs. The depth variation of the
two components identified is shown in Figure 10D.
The FORC-PCA for well 21/25-04 (Figure 10D)
showed a noticeable increase in the proportion of SD
particles (EM2) at the GOC and OWC. This is also
accompanied by a reduction in the proportion of SP
particles (EM1) at the GOC and an increase in pro-
portion of EM1 at theOWC.

A new FORC-PCA was carried out on 12 sam-
ples in well 21/25-A1, and the variance in the data
were defined by three newly defined EMs (Figure
11A): EM1 accounts for 50% of the variance,
whereas EM2 accounts for 45% and EM3 accounts
for 2%. The three components identified (Figure
11B–D) are represented by SP particles (EM1), SP
particles with multiaxial anisotropy or vortex

behavior (EM2), and stable SD greigite particles
(EM3). The proportions of these EMs are shown in
Figure 11E. Peaks in the proportions of EM3 are
found at the OWC and GOC (Figure 11E). The pro-
portion of EM1 and EM2 decreases at the OWC. At
the GOC, a drop in EM1 is accompanied by an
increase in EM2. The EM1 is more prominent below
the GOC andOWC.

These SD grains identified at the hydrocarbon
contacts can be either magnetite as seen in well 21/
25-04 (EM2, Figure 10) or greigite as seen in well
21/25-A1 (EM3, Figure 11). The FORC-PCA aids in
the interpretation of the data because it was able to
pick out trends that go unnoticed in FORC diagrams
if they were just compared by mere observation. For
example, the FORC diagram at the GOC for well
21/25-A1 showed no SD signal (Figure 8F), but the
PCA was able to identify a relative increase in SD
particle proportions at the GOC (Figure 11). The
proportion of these SD particles is roughly correlated
with the Ms, Mrs, and susceptibility; the highest Ms,
Mrs, and susceptibility values are noticed at the GOC
in well 21/25-04 (Figure 6B, E). This also corre-
sponds to the maximum proportion of SD particles
(Figure 10D) and is consistent with the highest Ms,
Mrs, and susceptibility values measured at the OWC
in well 21/25-A1 (Figure 6A, D), again showing the
highest SD proportions (Figure 11E).

Magnetic Enhancement at the
Hydrocarbon-Fluid Contacts

The FORC-PCA demonstrated the increased abun-
dance of stable SD material at the GOC and OWC
(Figures 10D, 11E). This increased abundance of larger
SD grains at the hydrocarbon-fluid contacts is most
likely caused by changes in diagenetic conditions.
Here, we discuss two possible mechanisms for the
enhancement: (1) thermodynamic and (2) biological.

First, a thermodyanamic model: Burton et al.
(1993) calculated thermodynamic stability diagrams
for iron-bearing minerals at temperatures
(50–200�C) and pressures (1–600 bar) similar to
those expected in our reservoirs. All the minerals
identified in our samples are represented in the ther-
modynamic stability diagrams of Burton et al.
(1993), apart from greigite (Figure 8L); at the time,
the importance of greigite was not appreciated and
was not included in their models. It is now thought

BADEJO ET AL. 1985

Downloaded from http://pubs.geoscienceworld.org/aapgbull/article-pdf/105/10/1973/5417973/bltn19207.pdf
by University of Minnesota user
on 16 March 2022



that the conditions in the reservoir can ensure the sta-
bility of greigite: a high concentration of reactive iron
along with a low supply of organic carbon is needed
to preserve greigite (Kao et al., 2004). Wells 21/25-
04 and 21/25-A1 have API gravity ranging from 40�

to 38�, which is indicative of sweet crude oil with
low sulfur content and has been argued to prevent
greigite from altering to pyrite (Wenger et al., 2002).

We suggest the thermodynamic stability diagrams in
the reservoir includes a region for greigite between
the pyrrhotite and pyrite regions (Sack and Ebel,
2006).

It is possible that subtle diagenetic changes in
total dissolved sulfur, total dissolved iron, or total dis-
solved inorganic carbon at the top of the oil column
and at the oil-water interface could favor the
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Figure 10. First-order reversal curve principal component analysis (FORC PCA) for well 21/25-04. (A) Principal component space, (B)
end member 2 (EM2) represents single-domain particles with multiaxial anisotropy, (C) end member 1 represents superparamagnetic par-
ticles, and (D) proportions of end member 1 (EM1) and EM2 as a function of depth showing an increase in proportion of EM2 at the
gas-oil contact (GOC) (red dashed line) and OWC (blue dashed line). The VARIFORC parameters (Egli, 2013) for FORC PCA smoothing are
sc,0 5 1.2, sc,15 3, sb,0 5 3, sb,1 5 5, and lc5 1, lb5 1.
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precipitation of SD greigite or magnetite at the
hydrocarbon contacts. A model for the formation of
magnetic minerals in the reservoir is shown in Figure
12. The SD grains are likely precipitated at the top of
the oil column during early reservoir filling (Figure
12A). This continues until the spill point is reached
and a stable OWC is formed, which kickstarts the
formation of SD grains at the OWC (Figure 12B).

This continues as long as the trapping mechanism is
unperturbed by geological processes (e.g., regional
tilting, halokinesis, or compression). The reservoir
receives a gas charge, the gas initially dissolves in the
oil, and the precipitation of SD grains continues at
the top of the oil column and at the OWC (Figure
12C). A change in pressure, temperature, or late gas
charge results in the formation of a gas cap, which
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displaces the oil and pushes the SD grains down the
accumulation resulting in a concentration of SD
grains at the GOC (Figure 12D).

Second, a biological mechanism: Biodegradation
may be responsible for the precipitation of SD mag-
netic minerals at the hydrocarbon contacts. Biodegra-
dation of hydrocarbons can occur during early
reservoir filling or at the oil-water interface in tem-
peratures less than 80�C (Head et al., 2003).
Depending on the bacteria, SD magnetite or greigite
may be produced. Bacteria such as GS-15 can pro-
duce fine grained extracellular magnetite via oxida-
tion of certain hydrocarbons in an anaerobic environ-
ment, whereas sulfate reducing bacteria such as
prokaryotes generate high concentrations of hydro-
gen sulfide, which combines with iron to produce
fine-grained greigite (Mann et al., 1990). Wells 21/
25-04 and 21/25-A1 are interpreted to have been
cooler than 80�C at the onset of reservoir filling

before rapid burial caused an increase in temperature
(Badejo et al., 2020). It is possible that limited bio-
degradation would have occurred at the top of the oil
column during trap filling and at the OWC resulting
in precipitation of SD magnetite or greigite at the
contacts prior to burial.

A schematic showing the variation of grain sizes
of magnetic minerals precipitated by the diagenetic
environment caused by hydrocarbons is shown in Fig-
ure 13. This observation could be used to identify
both the OWC and GOC when conventional meth-
ods are unreliable. Given most of the magnetic
minerals should remain in the host rock after hydro-
carbon leakage, this technique has the potential to
identify paleo-hydrocarbon contacts: either flat or
tilted because of structuration. Identification of paleo-
hydrocarbon contacts can provide information on the
filling history of a series of fields within a basin, which
can help calibrate petroleum systems models.

Spill PointSpill Point

Spill Point Spill Point

Precipitation of some SD grains at the top 
of the oil column during early reservoir filing 

OWC formed at a depth that does not 
change over time. This results in the 
formation of SD grains at the contact   

Gas dissolves in oil which may lead to 
some spilling of oil. SD grains continue to
form at the OWC and top of oil.

A gas cap is formed pushing the SD grains to
the GOC. Spilling stops if no fresh charge 
happens and more SD grains are precipitated 
at the OWC   

Legend
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Figure 12. A schematic detailing the formation of single-domain (SD) grain at the gas-oil contact (GOC) and oil-water contact (OWC):
(A) formation of SD grains at the top of the oil during early reservoir filling; (B) oil has filled to the spill point and the precipitation of SD
grains occur at a stable OWC; (C) the reservoir is charged with gas, which dissolves in the oil, and the OWC is still stable, which results in
continued precipitation of SD grains; and (D) a gas cap is formed pushing the SD grains formed at the top of the oil column to the GOC.
SP5 superparamagnetic.
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CONCLUSIONS

Peaks in measured magnetic susceptibility, Ms, and
saturation remanent magnetization values have been
observed at both the GOC and OWC in Tay Sand-
stone Member oil fields (Figure 6). Detailed mag-
netic analysis showed these peaks to be caused by an
increase in the proportion of SDmagnetite or greigite
at the hydrocarbon-fluid contacts (Figures 10, 11,
13). Subtle diagenetic changes at the top of the oil
column and at the oil-water interface are likely to be
responsible for the observed anomalies at the GOC
and OWC (Figure 12). Biodegradation during early
filling of the reservoir and at the OWC may also be
the direct cause of or enhancement of the signal at
the hydrocarbon-fluid contacts. Our understanding
of the processes at contacts are currently being
refined as part of a new study at Imperial College
London. This observation is of importance to the oil
industry, because the presence of paleo-

hydrocarbon-fluid contacts can be identified by carry-
ing out quick magnetic susceptibility measurements
on whole core samples from dry wells. This would
give information on the filling history of a basin, for
example, through identifying a paleo-OWC or could
be used in the calibration of petroleum systems mod-
els in both frontier and mature basins. This new
method can importantly be used on core samples
from hydrocarbon wells where conventional meth-
ods failed to identify the GOC or OWC.
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