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Accurate and fast characterization of hysteretic systems can accelerate progress in fields as diverse as biomed-
icine, sensors, data storage, and logic devices. Here, we introduce a fast approach to determine magnetic pa-
rameters (intrinsic coercivities of elementary domains, interaction fields between the domains, and the variances
of both) of bistable hysteretic systems. The approach uses the first few points in first-order reversal curves
(FORC) to mathematically and empirically determine the projections of traditional FORC diagrams onto the
reversal field and applied field axes. Since this projection approach only requires a few points per each reversal
curve (rather than 100+ points for 100+ curves compared to the traditional FORC method), the time of mea-
surement is reduced by 50-100x over traditional FORC measurements. In addition, the projection results do not
contain the typical FORC artifacts that have been disputed for decades. As a proof of concept, the projection
analysis was used to determine the magnetic parameters of several arrays of bistable magnetic nanowires
(MNWs), and the results were compared with the hysteresis loop and FORC results. For non-interacting arrays of
MNWs, all three methods give the intrinsic coercivity with minor difference. While, the differences become

significant for the interacting arrays of the MNWs that will be discussed in details.

1. Introduction

Hysteretic systems are ubiquitous in engineering, chemistry, biology,
and even economics and social health. Hysteretic systems include
magnetic nanostructures [1-5], living cells [6-12], piezoelectrics
[13-15], ferroelectrics [16,17], piezoresistivity [18-21], thin-film
transistors [22-26], and hydrogen adsorption metal-organics [27-29].
Fundamental to all of these systems is a need to understand the
switching of elementary elements, or domains, and to control the
entanglement between these domains. The traditional measurements for
such systems are hysteresis loops, Fig. 1a, where the system response is
measured while an appropriate stimulus is applied. For the examples
above, response/stimulus pairs could be magnetization/magnetic field,
mitosis/cycline, polarization/electric field, drain current/gate voltage,
Hj adsorption/H; flow, and optical or magnetic pumped/probed spins.
The stimulus is swept from a saturating positive value to a saturating
negative value and back. Unfortunately, hysteresis loops contain limited
information because multiple phenomena affect the loop

simultaneously. For example, interaction with neighboring domains
may combine with the applied stimulus to cause a fraction of the do-
mains to respond at lower or higher values than their intrinsic corre-
sponding parameter. The resulting sheared hysteresis loop could be
misinterpreted as the presence of inhomogeneous domains when it is in
fact caused by the interaction between homogeneous domains, which is
an extrinsic parameter.

To determine what intrinsic stimulus value is needed to switch each
domain, what interactions exist between the domains, and the variances
of both, several techniques have been developed with limited success. In
materials science, scanning probe techniques, such as magnetic force
microscopy (MFM) and scanning tunneling microscopy (STM) measure
single domains while a uniform global field is applied. Modifications to
transmission electron microscopy (TEM) have achieved remarkable
measurements of individual domains as well. These techniques have
high resolution, but they are inherently slow, two-dimensional at most,
and involve a statistically small number of domains from which it is
difficult to determine the full response of the system. A powerful
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solution to overcome these limitations is to modify the macroscopic
hysteretic characterization methods to achieve a fast characterization
method while keeping the balance between accuracy and universality.

Among all advanced macroscopic approaches for characterizing the
hysteretic properties, the first-order reversal curve (FORC) method
stands up because it considers hysteretic systems composed of many
microscopic as its fundamental building blocks, Fig. 1b. Briefly,
Mayergoyz [30-32] proposed the current standard FORC measurement
as an identification technique via the classical Preisach model [33],
which describes magnetic hysteresis loops as a superposition of
numerous independent relays, called hysterons. Hysterons represent the
switching of single elementary particles with rectangular hysteresis
loops, such as those of isolated MNWs acting like Stoner-Wohlfarth
particles. Experimentally, FORC measurements begin by applying a
large magnetic field (H) to ensure the positive saturation of a sample.
Next, the H is reduced to a predefined field, known as the reversal field
(H,), and the moment of the sample is measured while H is retuned to
positive saturation, see Fig. 1b. This process is repeated with decreasing
H; to collect a family of magnetization curves, M(H, H,), as a function of
reversal field and applied field. The FORC distribution is defined as the
second derivative of the magnetization with respect to the reversal field
and applied field, as follows:

1 PM(H,H,)
2 OHOH,

= €y

In FORC analysis, p is plotted as a heat-map with the axes repre-
senting the coercive field (x-axis, H. = '4(H-H;)) and the interaction field
(y-axis, Hy = A(H + H,)). Although the FORC technique is an excep-
tional method for the qualitative and sometimes quantitative explana-
tion of complex systems [34-37], its data collection and analysis induce
practical limitations that make is not favorable for both research labo-
ratory and industrial development levels. First, its measurements are
usually very time-consuming. The long measurements are usually
contaminated with the moment and field drifts that produce spurious
features that are mistakenly assigned to the magnetic properties of the
hysteretic system. Second, its data analysis requires multiple derivatives
and integrals that induce artifacts by amplifying the measurement noises
[38-41]. What is worse, taking derivative with respect to the H (or H;)
causes to erase the features that they are solely a function of H; (or H)
that causes to conceal real features.

In this paper, we use the FORC method as a backbone to establish a
fast and universal approach for analyzing bistable hysteretic systems
while suppressing the FORC method limitations. Note bistable hysteretic
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systems are those that their response can only have two states, either on
(up) or off (down), such as 2D transistors (array of magnetic nanowires,
MNWSs). We first represent an analytical framework to illustrate the
features of FORC heat-maps; and how they evolve the projection of the
heat-maps on the H; and H axes. Then, we represent an experimental
protocol to rapidly measure the projections on the H; and H axes fol-
lowed by a theoretical model to extract the magnetic parameters,
coercivity (H.), interaction field (H,), and their distributions. Next, we
implement the projection method on several arrays of bistable MNWs as
a proof of concept to find their magnetic parameters. Lastly, we compare
the results from our measurement method, which is called the projection
method, to the results from the FORC method and the hysteresis loop
method to underpin their pros and cons.

2. Experimental protocol

As opposed to the traditional FORC method, the projection method
focuses on the projection of the FORC heat-maps on the reversal field
(H,) and applied field (H) axes for describing the hysteresis behavior of
bistable hysteretic systems. The FORC heat-maps are projected on the H;
axis by taking an integral as follows

o 1 OM(H,, H) 1 oM (H,,H)
Py (H) = H, H)dH = — - ——"— 3 oH
i, (H,) / p(H, H)d 2 oH H:w+2 OH, |y
o Lovtr )
2 aHr H=H,

(2)

When the H is very large, the whole system is in the saturation state,
therefore, the first term is zero because the magnetization no longer
changes with H;. The second term is the variation of the magnetization
with respect of the H; at H = H,, simply, it is the irreversible switching at
H,. Similarly, the FORC heat-maps are projected on the H axis as follows

" 1 OM(H,,H) 10M(H,,H)
Py(H) = H, H)dH, = — = — "~ ——
u(H) /,&”( ) 2T OH |y, 2 OH |y
_ _l aM(HhH) +l aMlower(H)
T2 OH |y, 2 OH
3

Here, the first term determines the variation in the magnetization
with respect to the H at H = H;. This term is also known as the reversible
switching at H = H; because it shows the spontaneous magnetization at
this field. The second term shows the derivative of the lower branch of
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Fig. 1. Schematically illustrating the response/stimulus of hysteretic systems determined using, (a) the hysteresis loop measurement and (b) first-order reversal
curve (FORC) measurement. Inset in subfigure (b) shows the response of a hysteron that switches as H,, where the H. and H, are the intrinsic parameter (coercivity)

and extrinsic parameter (interaction field), respectively.
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the hysteresis loop (Mjower)-

According to Eq. (2) and (3), both projections on the H; and H axes
can be determined by measuring a few data points at the beginning of
each FORC. It helps to significantly reduce the measurement time by
collecting a few points instead of measuring several points for each
FORC. Fig. 2 compares the FORC method with the projection method.
The projection method protocol includes only measuring the first few
data points for each FORC. However, it should be mentioned that the
projection method measures the projections of the FORC heat-maps on
the H; and H axes, not the coercivity (H.) and interaction (H,) axes.
Therefore, it does not directly measures the H., Hy, and their distribu-
tions. In the next section, we propose a theoretical model for the pro-
jection method to find these values for bistable hysteretic systems.

3. Theoretical analysis

As mentioned in the previous section, the projection method mea-
sures the projections of the FORC heat-maps on the H, and H axes. To
determine the coercivity (H), interaction fields (Hy), and their distri-
butions for a hysteretic system, it is necessary to find the correlation
between these parameters with results of the projection method. The
simplest correlation can be achieved for bistable hysteretic systems,
where the response has only two stable states, either on (up) or off
(down). Therefore, we numerically model several bistable hysteretic
systems with different levels of interaction and coercivity distributions
to find the correlation between the simulation parameters and the fea-
tures on the FORC heat-maps that determine the projections of the FORC
heat-maps on the H; and H axes. Details about modeling are given in the
SI. Fig. 3 shows the results of this analysis along with a scheme to
illustrate how the important points are transformed on the H, and H
axes.

The outer points are the most important because they determine the
width of the projections on the H; and H axes, which can be readily
determined from the projection method data. Other points collapse on
each other during integration, e.g. all points along the dashed line in
Fig. 3b. Therefore, we focus only on the outer points, here are labeled as
A, B, and C. Our theoretical simulations of FORC heat-maps indicates
that point A occurs where hysterons with minimum coercivity under the
maximum interactions are found, (H™", H™). Point C indicates the
hysterons with highest coercivity on the FORC heat-maps. They are the
last hysterons to switch, that is, when the interaction field is maximum
and opposing to their switching. Therefore, point C shows the hysterons
that switch at fields equal to the maximum coercivity plus the maximum
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Fig. 2. Schematically compares the required data points for determining the
magnetic parameters using (a) the first-order reversal curve (FORC) and (b) the
projection method.
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interaction, (HZ'®™ + Hy'™, 0). Point B is the most mysterious point
because we could not find an explicit relation between its location and
the simulation parameters. Thus, we consider two unknown parameters
to identify its location, (HE, -HD). Note these results also were realized in
previous literature in simulations of FORC heat-maps of bistable arrays
of MNWs and bistable magnetic dots [42-44].

According to the FORC method, the correlation between the H and H;
axes to the H. and H, axes are
H= ! H,+H dH, = ! H,—H 4

*ﬁ( ut [)an r*ﬁ( u c) ()

It should be mentioned that the real relationship between the (H;, H)
plane and (H,, H) plane is a 45 degrees rotation, which requires a factor
of the square root of 2 instead of a factor of 2 as it is commonly used in
the FORC formula [42]. Using Eq. (4), the location of the aforemen-
tioned points on H; and H axes will be as follows

On H axis On H; axis

max min max __ pymin
o _Hpe L HM L HY — HY

A A (5a)
V2 V2
, —HB4+HB —HB —HB
B — u + C BH — u C (Sb)
V2 V2
, Hmax + Hr?z/u _ ymax _ pymax
C — u C C// — u [ (SC)
V2 V2

According to Eq. (5) and Fig. 3, points A”” and C’ determine the
width of the Py, (Wy,) and points B’ and C’ determine the width of Py
(Wp). Note the Py, and Py are the projection of the FORC heat-maps on
the H; and H axes as defined in Eq. (2) and (3), respectively. That is
because, for example, the HT®* 4+ HPM < HT 4 HP¥ for projection
onto the H axis. Therefore, one has

1 .
Wy, = ﬁ (ZH;nax + H‘r.nax _ H:lxn) (63)
1
Wy = — (H"™ H™max HB _ HB 6b
n= (H 4 HI o+ HY = HY) (6b)

For a better visualization, Fig. 3a provides the location of the points
with exaggeration. One can use the terminology relationships to deter-
mine the width of Py, and Py as follows:

Wy, = |AB|cos(B,) + |BC|sin(1,) (7a)
Wy, = |AC|cos(8)) (7b)
Wy = |BC|cos(,) (70)
Wy = |AB|sin(B,) + |AC|sin(6,) (7d)

According to Fig. 3a, the lengths and angles in Eq. (7) are

IAB =/ (H? — Hn)? 4+ (H7 + HEY? (8a)
IAC| =\ (e 4 Hes — H) o+ (Hp) (8b)
IBC| =/ (H™ + He — HEY? 4 (HP) ®80)
tan(n,) = S6c _ Ay 0 = —n, 8d)

- AXBC - ngax + Hll;xa.r _ Hf

AYAC Hl)lll.‘(
an(@,) ==A¢— v 0, = 14— 0 8e
an( 2) AXAC H(r.nm( +H;nux _ H(rmn ! - 2 ( )
AYap  H™ + Hf
tan(p,) = AX,,  HE — Hmin

P =m4+p, (8
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H

Fig. 3. a) Schematic of a FORC diagram showing the points of interest (A, B, and C) in the (H,, H,) plane and correlating the length of lines connecting the (H., H,)
plane onto (H,, H) plane. b) Shows the theoretical simulation of a hysteretic system composed of bistable interacting hysterons with a Gaussian distribution

of coercivity.

Substituting Eq. (6) and (8) into Eq. (7) provides four equations
while there are five unknown parameters in Eq. (5) that must be
calculated. Points A and C on the H; axis provide the last equation. Since
one has points A and C locations on H; axis, their center is

A’ onH,axi, C”’onH,axi. H™mex . gmin H®e

CenteroftheWy, :[ onHaxis) + [C”" onHaxis] = L + A I
2 2v2 V2
)

Note, one could alternatively use the center of the Wy; however,
since Eq. (6) gives a simpler relationship, we chose this one. Otherwise,
there should not be any difference between the results if another is
chosen.

Finding the magnetic parameters, H,, Hy, and their distributions,
requires solving Eq. (7) and Eq. (9) using conditions at Eq. (8). Since
they are fully coupled and nonlinear, convergence to the right values is
somehow troublesome. For simplicity, we first normalize them as fol-
lows and then solve them using a graphical approach. The normalization
is

H:m'n _ Hf? _ HE _ H;mu
5 = H:nax + H’;ﬂa.\’ (p - Hgl(l.\’ + HII‘HQX - HLV‘WZX + le‘naxw - H;nax + H'Vlll(b\' (10)
Consequently, Eq. (6) to Eq. (8) will be

T3+ 0= = (=& + (@ cos(py) /(1 =) + Zsintn)
(11a)

%(wag) — /(1= & + wcos(01) (11b)

%(1+/17¢):\/(17(/))2+/12605(711) (11c)

%(1 +A—9) =1\/(9 =8+ (0+1)sin(B) + 1/ (1 = &)’ + a?sin(6))
11d)

tan(f,) = L’L; (11e)

w

tan(6,) = 1—75 (119

tan(ip) = —— (11g)

an(n) = 1— v g

H'™ + H

Wy = 7 —(1+w—¢) (11h)
Hf.'lﬂ/\' +Hmax .
WH:#ﬂ#ﬂl—(p) (110

To graphically find the solutions for magnetic parameters, we
consider two vectors for o and A, where each vector changes from 0 to 1.
These two vectors form a 2D space and each point in this space can be
substituted in Eq. (11-a) to (11-g) to find the solutions for & and ¢ in
which these four equations are valid. Then, we use Eq. (11-h) and (11-i)
constraints to identify all possible solutions leading to similar H®™* +
HY® values that meet the condition in Eq. (9), which gives the average
coercivity (H2'®). If the same H2'® were found, those values for w, A, ¢,
and & are the solutions. A typical issue for all graphical methods is that
they sometimes result in multiple solutions or none. In these cases, one
can consider tolerances indicating whether the solutions for H2'® are
identical or fall in an interval with a reasonable error. Choosing a large
tolerance can cause very scattered results while a very tight tolerance
may not result in a solution at all. Therefore, we first chose a moderate to
large error tolerance to calculate the magnetic parameters. Then, we
kept reducing the tolerance until a single (or a few) solutions were
found. This was done very quickly (~10 s) using an automated algo-
rithm written in MATLAB.

4. Experimental method

As a proof of concept, we electrodeposited different arrays of nickel
(Ni) magnetic nanowires (MNWs) using a well-established electrode-
position technique inside nanoporous track-etched polycarbonate tem-
plates. Detailed information regarding the electrolyte and the
electrodeposition conditions are given in the SI. To reach the bistable
condition, we electrodeposited the MNWs with very large aspect ratios
(length to radius) of at least 10, see the SEM images in the SI, to guar-
antee the bistable condition for each MNW array. We chose the Ni
MNWs because they have negligible crystal anisotropy. Therefore, their
coercivity is determined primarily by their shape anisotropy, e.g. the
aspect ratio and diameter. X-ray diffraction data is presented in the SI to
confirm the cubic structure of Ni. Note that the interaction fields can be
adjusted using the templates’ filling factor, defined as the ratio of the
MNWs surface area to the total area of the template. In this study, four
types of samples were synthesized with the following MNW diameters
(array fill factors): 30 nm (0.5%), 50 nm (1%), 100 nm (2%), 200 nm
(12%). The SEM images of the templates are given in the SI. The mag-
netic characteristics of the MNWs were measured using the hysteresis
loop method, FORC method, and the projection method. Details
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regarding the measurements are given in the SI. The hysteresis loop data
and FORC data were analyzed according to the literature [44-46], and
the projection data were analyzed as explained in the previous section.

5. Results and discussion

In Fig. 4, we plotted the results for the interaction field (H,), coer-
civity (Hc), and their variances calculated using the hysteresis loop
measurement, FORC measurement, and projection method. For a
bistable hysteretic system, the H, distribution is a symmetric function
centered at zero, where the number of on (up) and off (down) hysterons
are the same. Therefore, it is sufficient to only determine its maximum
value that is equal to its minimum value with a negative sign. The
quantitative values for H®™*, H2"%, and their variances according to the
FORC measurement were calculated by projecting the FORC heat-maps
on the H, and H, axes, respectively. Note that the hysteresis loop mea-
surement is unable to determine the H, as well as the variances of the Hy
and H..

The main challenge of all magnetic characterization is decoupling
the effects of the Hy on the H, distribution. The presence of Hy, in hys-
teresis not only causes a shift in the H. distribution but also makes its
distribution broaden, leading to a larger apparent coercivity variance
(oc). Some literature considers this large variance to the contribution of
the MNWs at the boundaries [42,43], or the geometrical non-uniformity
[47-49], but this explanation was disputed later by experimental and
theoretical analyses [37,42,50]. Furthermore, it was also observed using
other magnetic measurements, such ferromagnetic resonance (FMR),
that Hy, can cause large o if not fully decoupled from the H, distribution
[51-55]. Here, the projection method validates this observation. Ac-
cording to Fig. 4a, as the MNWs diameter increases, the H2'® decreases.
Since the MNWs with diameters of 30 nm to 100 nm have negligible
interactions compared to others (due to more distance between MNWs
in these samples), all three methods provide the same H2"®. However, as
the Hy, increases (with increasing the filling factor of the MNW arrays),
Fig. 4b, there is a deviation between the results of the magnetic mea-
surement methods, especially for the highly interacting MNWs array
with a diameter of 200 nm. It should be emphasized, even though the

-}-Projection method
-o-Hysteresis loop method
- FORC method

-}-Projection method
-o-Hysteresis loop
0.3 {"="FORC method

(©

50 100 150 200
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FORC measurements scan the whole hysteresis loop area leading in a
significantly slower measurements compared to the projection method,
its results for the HZ'® are similar to the projection method. Specifically
for interacting arrays of MNWs, the projection method and the FORC
measurements predict similar H2'®, which are different than HZ® from
the hysteresis loop. This difference is due to the hysteresis loop’s
coupling of the interaction field effects on the H, distribution. Therefore,
as can be seen in Fig. 4c, the hysteresis loop method also predicts very
large values for the 6.. The FORC method predicts a larger o, than the
projection method, but it is still significantly smaller than the hysteresis
loop results. It is likely that the FORC method does not fully differentiate
the H,, effects from the H, variance, mainly due to the amplification of
measurement noise (field and moment drifts) during the derivatives.
Another insight revealed by the projection method that reinforces
this observation is the ratio of the o, to the H2'¢, Fig. 4d. The most likely
reason for a variance in coercivity is a variance in MNW diameter within
each sample. These effects have been studied broadly in the past, indi-
cating that MNWs with larger diameters have smaller coercivity
compared to MNWs with smaller diameters. Coercivity is dependent on
the reversal mechanism which changes from coherent rotation of all
spins [56-60] in small diameter nanowires to nucleation and propaga-
tion of a domain wall as the nanowire diameter increases [61]. Experi-
mental and theoretical studies have shown that the nucleation and
propagation of the domain walls occur at lower external fields as the
diameter of MNWs increases, leading the coercivity to be proportional to
the inverse of the diameter squared [62,63]. Furthermore, for bulk
samples, H, becomes fairly independent of sample dimensions and is
only proportional to the crystal anisotropy and exchange constant.
Therefore, it is expected that the ratio of the o, to H2'® decreases as the
diameter increases. Note the polycarbonate nanoporous templates were
prepared in the same method leading to a similar standard deviation for
the MNWs diameters for all samples, see the SEM images in the SI. The
projection method renders compatible results with these facts, unlike
the hysteresis loop and FORC results, see Fig. 4d. Indeed, the hysteresis
loop shows a significant increase in the o, to H2'® ratio because it does
not provide any information about H, and its effects on the H, distri-
bution. Moreover, the FORC results also show a 6. to H3'® ratio larger

{-Projection method
-2-FORC method

(b)

200 -}-Projection method
-o-Hysteresis loop
-a-FORC method
150 (d)

50 100 150 200

Fig. 4. Comparing the hysteretic parameters for the arrays of MNWs calculated using the hysteresis loop method, FORC method, and the projection method. Aside
from subfigure (b), the error bars in other subfigures are in the same size as the symbols.
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than the projection method, which we believe is a misrepresentation
because the FORC method does not fully differentiate the Hy effects from
the H. distribution effects.

For all subfigures of Fig. 4, the error bars are within a reasonable
range, it is in order of 25% for the worst case. There might be several
sources for the errors which worth further studies in the future. The first
source of uncertainties can be the location of the points A, B, and C that
must be chosen from the Py, and Py distributions. Since these are a
single points that should be chosen, peaking different values can cause
some variations in the final results. The second source of uncertainties
can be number of the collected data points on each reversal curve. We
indeed measured several different number of data points, N, (i.e. 4, 7,
and 10), where we found that the N does not affect the results for the
non-interacting MNW arrays while it could slightly affect the results for
the interacting MNW arrays (data are shown in the SI). The last source of
the uncertainties could also be due to the convergence of Eq. (11). In
summary, being able to speed up the characterization of bistable mag-
netic systems by a factor of 50X-100X faster than FORC method without
scarifying the accuracy would definitely benefit the magnetic commu-
nity in all realms.

6. Conclusion

In summary, the projection method not only highly accelerates the
measurements by a factor of 50X-100X but also fully differentiates the
interaction fields from the coercivity distribution of bistable magnetic
systems, which has been elusive for decades. Furthermore, the simple
and unambiguous data acquisition and analysis of the projection method
excel it to be readily adapted to analyze the hysteretic systems observed
in physical sciences, social sciences, and biological sciences. Analyzing
the magnetic parameters of magnetic nanowires (MNWs) array using the
projection method is compatible with the previous theoretical and
experimental analysis of these bistable hysteretic systems. Our
comparative study of the hysteresis loop measurement, first-order
reversal curve (FORC) measurement, and the projection method high-
lighted the significant effects of the interaction fields on the coercivity
distributions, which could not be fully realized on highly interacting
arrays of the MNWs using the hysteresis loop and FORC measurements.
However, it should be mentioned that the provided data analysis here is
valid only for bistable hysteretic systems, such as an array of the mag-
netic nanowires (MNWSs) or perpendicular bit-patterned recording
media that are measured along their uniaxial anisotropy (easy axis). For
more complicated systems, where they violate the bistable condition,
further theoretical simulation of the FORC must be included to deter-
mine an empirical defining the shape of their FORC heat-maps and the
critical points for characterizing the magnetic parameters.

7. Data availability

The datasets presented in the manuscript and MATLAB program for
processing the results are available from the corresponding author upon
reasonable request.
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