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Most descriptions of obsidian-bearing rhyolitic lava flows and domes are largely based on relatively simple cases
of tectonic plate subduction in North America, but Armenian geologists proposed since the 1960s that these
models are less suitable for describing rhyolitic volcanism in their research area. Obsidian-producing volcanoes
that lie in the Armenian Highlands, they argued, are more complex in form and stratification. Hatis volcano in
central Armenia is one such example. As we document, Hatis is highly unusual, perhaps unique, in that its
obsidian changes in composition with elevation. Prior studies of Hatis obsidian recognized the existence of two
different chemical types. Here, though, we report a series of four obsidian chemical types and their spatial
distributions across the slopes. Our findings were enabled by the use of portable XRF during our field surveys of
Hatis. Additionally, we recognized each of these four chemical types of Hatis obsidian at the Lower Palaeolithic
site of Nor Geghi 1, where thousands of obsidian artifacts reflect Pleistocene hominin behaviors from Marine
Isotope Stage (MIS) 11 (~424-374 ka) to 9 (~337-300 ka). Thus, all four types of Hatis obsidian are archae-
ologically significant despite the fact that their outcrops span more than 500 m (from <1600 to greater than
2100 m asl) in elevation on the volcanic slopes, thereby enabling future studies on links between altitude and
hominin toolstone acquisition behaviors over hundreds of millennia.

1. Introduction then the Armenian Soviet Socialist Republic. Even in the 1990s, studies

typically included just a few Armenian obsidian specimens with vague

The rise and development of obsidian sourcing in the Near East
(Renfrew et al., 1966; 1968;; Dixon et al., 1968; Renfrew and Dixon,
1976) was influenced by geopolitical borders that existed until the end
of the Cold War (Blackman, 1984; Keller et al., 1996). The border
between Turkey and the Soviet Union quite literally shaped lasting
concepts in the field of obsidian sourcing, from supply vs. contact
zones to so-called “gravity models” of lithic source attractiveness.
Hence, the abundance of obsidian in the Armenian Highlands (Fig. 1)
went long unappreciated by Western archaeologists. For example,
Renfrew et al. (1966) had only one obsidian specimen from what was
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attributions (e.g., Gratuze et al., 1993; Bader et al., 1994; Hall and
Shackley, 1994; Francaviglia and Palmieri, 1998). For example, Wil-
liams-Thorpe (1995) accurately discusses sources of obsidian across
most of the Mediterranean region and Near East, but her map reveals
the limits of Western knowledge about Armenian obsidian sources at
the time. She put one star on her map near Yerevan for a supposed
“Erevan” source and a second star near the northwestern tip of Lake
Sevan for a “Sevan” source, neither of which is accurate. Such erro-
neous ideas about Armenian obsidian sources began to shift during the
2000s (e.g., Badalyan et al., 2004; Chataigner et al., 2003) and 2010s
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Fig. 1. Armenian obsidian sources (dots) and source complexes (color coded) as well as the Lower Palaeolithic site of Nor Geghi 1 (black square). The topographic
map is based on digital elevation data from SRTM3 (Shuttle Radar Topography Mission dataset version 3).

Hatis village

Fig. 2. Northern side of Hatis volcano, as viewed from the southern slopes of Gutansar volcano (foreground), looking to the south, with the villages of Hatis to the left

and Kaputan to the right.

(e.g., Cherry et al., 2010; Frahm, 2010, 2014; Chataigner and Gratuze,
2014; Martirosyan-Olshansky, 2014), after changing geopolitical
conditions enabled more international collaborations with Armenian
archaeological and geological research institutes. Additionally, a
greater integration between geological field surveys of obsidian

sources throughout the Armenian Highlands and the corresponding
analytical work led to more nuanced understandings.

The same trend is also true with respect to the relevant geology.
Descriptions and models of obsidian-producing rhyolitic volcanism have
long been based on tectonically simple cases in North America (e.g.,
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Fig. 3. Redrawn version of the Hatis geological map of Sherriff et al. (2019),
largely based on that of Karapetian and Karapetian (1971). The only sampling
location of Blackman et al. (1998) is demarked by a “B” on the map, and “L”
marks the sampling locations of Lebedev et al. (2013).

Fink, 1980, 1987, 1994; Eichelberger et al., 1986; Fink and Manley,
1987; Hughes and Smith, 1993). For example, abundant obsidian
sources throughout the Pacific Northwest, stretching from California to
British Columbia, are the products of the oceanic Juan de Fuca Plate
subducting beneath the continental North American Plate, creating
silica-rich magma that led to rhyolitic lava flows and domes in the
Cascade volcanic arc. Armenian geologists, though, have long noted that
such simple models do not accurately describe volcanism within the
Armenian Highlands (e.g., Shirinian and Karapetian, 1964), where the
Arabian, Eurasian, Anatolian, and African plates interact (Reilinger
et al., 1997). Shirinian and Karapetian (1964:26) note that, unlike
rhyolitic lava domes elsewhere in the world, such “volcanoes of Armenia
are represented by fan-like, stratified, and more complicated forms.”
Specifically, they point out that Hatis volcano is “a stratified edifice of
considerable size, 1000 m high... [that is] very interesting from a
petrological point of view” (26).

Since 2011, we have worked to include obsidian artifact sourcing as
a routine component of Palaeolithic studies within the Armenian
Highlands. An important aspect of this endeavor has been conducting
the needed chemical analyses within Armenia using portable X-ray
fluorescence (pXRF) instruments, and another is conducting surveys of
the obsidian sources, including Hatis (Fig. 2), as we document here. In
2011, the first author visited Hatis with the late Sergey Karapetyan, who
was, at the time, the Chief Researcher in the Volcanology Department of
Armenia’s Institute of Geological Sciences, National Academy of Sci-
ences. As noted above, his research at Hatis dates back as far as the
1960s (Shirinian and Karapetian, 1964). During that 2011 visit, while
standing in front of obsidian outcrops on the southernmost flanks of
Hatis, he mentioned the existence of a different variety of obsidian
farther up the slopes. His thought was that, rather than being autoch-
thonous to Hatis, this other obsidian had been redeposited there by
glaciers. Ultimately, our findings support a different interpretation, but
his observation was crucial for initiating this line of research.

As we show here, Hatis volcano is highly unusual - perhaps even
unique - in that its obsidian varies in composition with elevation. Pre-
viously published studies of Hatis obsidian recognized two different
chemical types. However, as a result of our pXRF analyses of geological
obsidian specimens at 80 sampling loci on the slopes of Hatis, here we
document a sequence of four obsidian chemical types and their spatial
distributions. This study was conducted as one part of our ongoing

Table 1

Journal of Archaeological Science.

Elemental data from previously published studies involving Hatis obsidian.

Fe

zr

Sr

Rb

names

laboratory

technique

reference

6230
6405

20
20
20

91

18
19
18

113
113
204

106
107
93

Hatis

Freiburg
Freiburg

WDXRF
WDXRF

Keller & Seifired 1990

Keller et al. 1996

246

+
+
+

1
1

87

2

Hatis A

1930
900

11,235
6100
9730

21

125
149
106

41

Hatis B
Hatis

126
105
107
108
92

NIST/Smithsonian
IGEM Russia

NAA

Blackman et al. 1998

19
21

14
15
10
10

127
122
82

Phase I

WDXRF

Lebedev et al. 2013

495
924
558

+
+
+

11,270
6184
9839

4
2
1

18

Phase II

21

63
86

3
1

Hatis 1

CNRS Orléans

LA-ICP-MS

Chataigner & Gratuze 2014

20

Hatis 2
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Table 2
Initial collection of Hatis geological obsidian specimens (Frahm 2010).

Specimen Provenience Observations Location / notes
Correct source: Hatis obsidian
AR.2009.7.1 M.J. Blackman  low Al-Ti unspecified location;
cluster specimen #ARO-008
AR.2009.7.2 M.J. Blackman low Al-Ti unspecified location;
cluster specimen #AR0-008
AR.2009.8.1 M.J. Blackman low Al-Ti unspecified location;
cluster specimen #ARO-009
AR.2009.8.2 M.J. Blackman  low Al-Ti unspecified location;
cluster specimen #AR0-009
AR.2009.27.1  LP. Savov / J. low Al-Ti unspecified location; field
F. Luhr cluster #9-31A-04
AR.2009.27.2  LP. Savov / J. low Al-Ti unspecified location; field
F. Luhr cluster #9-31A-04
AR.2009.28.1  LP. Savov / J. high Al-Ti unspecified location; field
F. Luhr cluster #9-31D-04
AR.2009.48.1 S.G. high AI-Ti unspecified location;
Karapetyan cluster specimen #756d
AR.2009.72.2  R.S. Badalyan high Al-Ti purportedly from the “Akunk
cluster deposit,” apparently a lithic
scatter
AR.2009.72.3  R.S. Badalyan low Al-Ti purportedly from the “Akunk
cluster deposit,” apparently a lithic
scatter
AR.2009.73.1  R.S. Badalyan low Al-Ti purportedly from the “Akunk
cluster deposit”
AR.2009.74.1  R.S. Badalyan low Al-Ti purportedly from the “Zar
cluster deposit”
AR.2009.74.2  R.S. Badalyan low Al-Ti purportedly from the “Zar
cluster deposit”
Incorrect source: Gutansar
obsidian
AR.2009.72.1  R.S. Badalyan not Hatis purportedly from the “Akunk
obsidian deposit,” apparently a lithic
scatter
Incorrect source: Mets Arteni
obsidian
AR.2009.75.1  R.S. Badalyan not Hatis purportedly from the
obsidian “Kaputan deposit,”

apparently a lithic scatter

research, including the Hrazdan Gorge Palaeolithic Project and the
Pleistocene Archaeology, Geochronology, and Environment of the
Southern Caucasus (PAGES) Project (see Sherriff et al., 2019). The
Hrazdan River valley, adjacent to Hatis volcano, encompasses a cluster
of sites that span the Lower through Upper Palaeolithic (see Gasparyan
and Arimura, 2014; Sherriff et al., 2019 for overviews). One of the Lower
Palaeolithic sites, Nor Geghi 1 (NG1), has a lithic assemblage that is
entirely obsidian and reflects Pleistocene hominin behaviors between
Marine Isotope Stage (MIS) 11 (~424-374 ka) and 9 (~337-300 ka;
Adler et al., 2014). We show here that each chemical type of Hatis
obsidian occurs among the NG1 lithics, highlighting that all four types
are archaeologically significant despite the fact that the outcrops’ ele-
vations span more than 500 m on these volcanic slopes.

2. History of research on Hatis obsidian

Hatis (sometimes transliterated as “Atis” in earlier publications) is a
Quaternary volcano on the western margins of the Gegham Range, a
plateau composed of ~100 volcanic centers across an area of 2800 km?
(Sherriff et al., 2019). The volcano reaches nearly 1000 m above its
surroundings: its summit lies at 2530 m asl, and its base is 1450 m asl at
Akunk village. Its eruptive stages are not particularly well dated (for
various reasons, as discussed below); however, the currently available
dates put the obsidian emplacement in the Middle Pleistocene,
approximately half a million years ago. This obsidian- and perlite-
bearing felsic stage was followed by eruptions of felsic-intermediate
and intermediate lavas an unknown amount of time later (Fig. 3). The
complex history of volcanism in the Gegham Range and along the
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Hrazdan River valley has recently been summarized by Sherriff et al.
(2019), but it must be stressed that there is only a fragmentary frame-
work for understanding these processes at present. This region experi-
enced at least six phases of effusive volcanism during the Pleistocene,
each of which included multiple intervals of volcanic activity, producing
a series of interbedded lavas and sedimentary sequences, some of which
contain artifacts. The archaeological focus of this study, NG1, is an
example of a site contained in such sediments. As discussed in Section 5,
NG1 has been well dated via *°’Ar-3°Ar dating and tephra analyses, but
such detailed work has yet to be completed throughout the Gegham
Range and its adjacent areas.

Studies of Hatis obsidian date to the 1960s and 1970s (e.g., Shirinian
and Karapetian, 1964; Karapetian, 1966; 1968; 1970;; Karapetian and
Karapetian, 1971), as do the first chronometric dates for Hatis obsidian.
Fission track (FT) dating of Hatis obsidian produced an age of ~330 ka,
but “°K-*°Ar dating of the same material resulted in an age of ~650 ka
(Komarov et al., 1972). It should be emphasized that similar in-
consistencies between FT and *“°K—**Ar dates occur for other obsidians in
Armenia. For example, a specimen of obsidian from Gutansar volcano
yielded a FT date of ~330 ka and a 40g_40Ar date of ~550 ka (Komarov
et al., 1972). Therefore, there is a clear disparity between these two
different dating techniques when applied to Armenian obsidian.

Keller and Seifried (1990) chemically analyzed a single obsidian
specimen from Hatis using wavelength-dispersive XRF (WDXRF;
Table 1), but within a few years, they had analyzed four Hatis obsidian
specimens (Keller et al., 1996). Two compositions were noted among the
specimens, which Keller et al. (1996) termed “A” and “B.” Based on the
elemental relationships between A and B obsidian, Keller and colleagues
proposed the two obsidians had comagmatic origins, meaning that both
likely derived from a common parent magma (rather than one of the
types having originated elsewhere). Unfortunately, the spatial re-
lationships of these four specimens — and the two obsidian chemical
compositions — on the slopes of Hatis volcano were not elucidated.

Blackman et al. (1998) analyzed five obsidian specimens from the
base of Hatis, near Akunk village (labeled as “B” in Fig. 3), using neutron
activation analysis (NAA), and they found only one chemical composi-
tion of obsidian (Table 1). In the same volume, Poidevin (1998) noted,
based on the data from Keller et al. (1996), that there are two distinct
Hatis obsidian chemical types and that Sr, Rb, and Zr readily discern
them. Unfortunately, instead of interpreting the considerable disparity
between the FT and “°K-*Ar dates for Hatis obsidian in Komarov et al.
(1972) as evidence that FT dates are unreliable, Poidevin (1998) spec-
ulates that “the two geochemical groups could match two totally sepa-
rate periods of magmatic activity” (148): one period at 650 ka and a
second one at 330 ka. Unfortunately, his specious idea that two Hatis
obsidian compositions correspond to two vastly different eruptive pe-
riods still persists within the obsidian-focused literature.

Arutyunyan et al. (2007) refer to two volcanic phases at Hatis vol-
cano: Phase I circa 700 ka and Phase II circa 500 ka. The two phases are
based on three “°K-*°Ar dates: 700 + 30 ka and 660 + 40 ka for two
rhyolite specimens and 480 + 40 ka for a single specimen of obsidian.
Consequently, Arutyunyan et al. (2007) propose that there were two
phases during which obsidian was produced at Hatis, but just one of the
three specimens was reportedly obsidian. Unfortunately, their sampling
locations at Hatis volcano are not reported, minimizing the value of their
dates.

Lebedev et al. (2013) dated three obsidian specimens from Hatis
volcano (the “L” locations in Fig. 3), and they also chemically analyzed
these three specimens using WDXRF (Table 1). Their dates, they argue,
imply two phases: Phase I circa 740 + 250 ka (n = 1, note the 2¢ un-
certainty) and Phase II circa 480 + 50 ka (n = 2). Due to small sample
sizes and large uncertainties, these dates are not statistically signifi-
cantly different. In addition, these obsidian specimens do not appear to
differ geochemically (Table 1). Consequently, the proposed Phases I and
II of Lebedev et al. (2013) do not correspond to the Hatis A and B
obsidian compositions of Keller et al. (1996). As discussed later, it would
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Table 3
Accuracy assessment based on five microbeam standards.
SiO, TiOy Al,O03 Cry03 FeOrot MnO MgO CaO Na,0 K0 P,0s F SO3 Cl
Smithsonian VG-568, USNM #72854: Rhyolitic obsidian, Yellowstone National Park
Frahm 2010 mean 76.91 0.075 12.03 < 1.122 0.022 0.030 0.433 3.68 5.01 < < < 0.098
LOD LOD LOD LOD
st 0.35 0.009 0.10 0.110  0.008 0.005 0.016 0.15 0.08 0.011
dev
Smithsonian recommended values
Jarosewich et al. 76.71 0.12* 12.06 < 1.23 0.30 < 0.10 0.50 3.75 4.89 < n.m. n.m. n.m.
1980 LOD 0.01
Published values from the GeoReM Database
Mean of database mean  76.84 0.08 12.24 < 1.11 0.03 0.03 0.44 3.34 4.91 < 0.17 < 0.102
values LOD LOD LOD
st 0.46 0.01 0.24 0.05 0.01 0.01 0.04 0.46 0.09 0.04 0.009
dev
Smithsonian VG-2, USNM #111240/52: Basaltic glass, Juan de Fuca Ridge
Frahm 2010 mean  50.28 1.81 14.10 0.010 11.85 0.194 7.13 10.90 2.75 0.20 0.207 < 0.356 0.035
LOD
st 0.12 0.01 0.04 0.005 0.05 0.008 0.06 0.04 0.07 0.01 0.017 0.010 0.004
dev
Smithsonian recommended values
Jarosewich et al. 50.81 1.85 14.06 < 11.84 0.22 6.71 11.12 2.62 0.19 0.20 n.m. n.m. n.m.
1980 LOD
Published values from the GeoReM Database
Mean of published mean  50.66 1.93 13.88 0.016 11.88 0.21 6.76 11.00 2.67 0.22 0.221 0.05 0.355 0.031
values
st 0.41 0.40 0.34 0.004 0.31 0.02 0.39 0.38 0.09 0.12 0.054 0.03 0.021 0.006
dev
Smithsonian, USNM #113716: Basaltic glass, Indian Ocean
Frahm 2010 mean  51.363 1.276  15.615  0.042 9.226  0.167 8.39 11.247 2790 0.079  0.119 < 0.256 <
LOD LOD
st 0.177 0.015 0.113 0.003 0.061 0.012 0.18 0.040 0.109 0.004 0.013 0.014
dev
Smithsonian recommended values
Jarosewich et al. 51.52 1.30 15.39 < 9.13 0.17 8.21 11.31 2.48 0.09 0.12 n.m. n.m. n.m.
1980 LOD
Published values from the GeoReM Database
Mean of published mean  51.45 1.38 15.22 n.m 9.16 0.17 8.14 11.21 2.64 0.10 0.13 n.m. 0.29 n.m.
values
st 0.01 0.08 0.06 0.11 0.01 0.03 0.11 0.01 0.03
dev
Smithsonian, USNM #2213: Tektite glass, synthetic, Corning Glass Company
Frahm 2010 mean  75.23 0.507 11.25 < 4.905  0.096 1.54 2631 1.063 1.814 < < < 0.013
LOD LOD LOD LOD
st 0.14 0.008 0.04 0.103  0.007 0.02 0.019 0.040 0.021 0.003
dev
Smithsonian recommended values
Jarosewich et al. 75.75 0.50 11.34 < 4.96 0.11 1.51 2.66 1.06 1.88 < n.m. n.m. n.m.
1980 LOD LOD
Published values from literature sources
Mean of published mean  75.85 0.51 11.20 n.m. 4.96 0.10 1.53 2.66 0.99 1.94 n.m. n.m. n.m. n.m.
values
st 0.92 0.01 0.15 0.10 0.01 0.05 0.06 0.01 0.07
dev
G-Probe-2/USGS NKT-1G: Peralkaline basaltic glass, Knippa, Texas
Frahm 2010 mean 38.60 3.96 10.35 n.m. 12.36 0.19 14.79 13.43 3.33 1.38 0.95 n.m. n.m. n.m.
st 0.18 0.07 0.09 0.12 0.02 0.63 0.11 0.06 0.03 0.07
dev
Interlaboratory “round robin” in Potts et al. (2005)
Recommended mean 38.68 3.95 10.20 0.06 12.11 0.21 14.33 13.21 3.48 1.28 0.97 n.m. n.m. n.m.
values
st 0.07 0.01 0.04 0.01 0.05 0.01 0.05 0.04 0.02 0.01 0.02
dev

* Known error: mean published values compiled in the GeoReM Database all fall between 0.05% and 0.09%

< LOD: Below minimum limits of detection
n.m.: Not measured
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be highly unusual for two obsidian-bearing flows to vary so greatly in
time (e.g., hundreds of millennia) but not in trace-element composition.
Instead, the two proposed phases seem to reflect the considerable
measurement uncertainty (2 of + 250 ka) of their Phase I date.

Citing Arutyunyan et al. (2007), Chataigner and Gratuze (2014:38)
write that, at Hatis, “two phases of activity have been recognized: (a)
approximately 700 ka ago, the formation of the Hatis volcano — the
composition of the obsidian corresponds to calc-alkaline rhyolites [and]
(b) about 50 ka ago.” Note that the second date reflects either a typo-
graphical error or misreading of Arutyunyan et al. (2007), who proposed
a volcanic phase at Hatis circa 500 (not 50) ka. Chataigner and Gratuze
(2014:38) conclude a discussion of Hatis, including laser ablation
inductively coupled plasma mass spectrometry (LA-ICP-MS) measure-
ments of four obsidian specimens, as follows:

Poidevin (1998) has distinguished three subgroups: Hatis I and Hatis
II belong to the first phase of activity; while Hatis III, a vitreous
rhyolite enriched in rare earth elements, belongs to the second
phase... The obsidian from the Hatis mountain is represented by two
groups that are easily differentiated by their strontium content. The
first one (Hatis 1), with lower strontium concentrations (about 81
ppm), originates in the western outcrops (Akunk [2 specimens] and
Kaputan [1 specimen]), while the second one (Hatis 2), with higher
strontium contents (136 ppm), comes from the southeastern slopes
(Zerborian [1 specimen; perhaps named after the village of Zar]).
(brackets and italics added)

Four observations can be made about this paragraph. First, as pre-
viously noted, Poidevin’s (1998) speculative phases were based on a
disparity between FT and “°K-*CAr dates for the same material, not
different compositions of Hatis obsidian. Second, Poidevin (1998)
makes no mention of a “Hatis III” vitreous rhyolite (although we
located an aphanitic trachyte on Hatis that might be the material in
question; Frahm, 2019). Third, the spatial distributions are vague and
simply named for nearby villages. Lastly, Chataigner and Gratuze
(2014) report lower Sr values for their Hatis 1 and 2 (81 and 136 ppm,
respectively) than do Keller et al. (1996) for Hatis A and B obsidians
(113 and 204 ppm; Table 1), complicating the question of whether the
Hatis 1 and 2 obsidians are equivalent to Hatis A and B obsidians. There
are, though, known offsets between their LA-ICP-MS data (including Sr)
and other published values for Armenian obsidians (Frahm, 2014). For
example, they list a Sr content of 87 &+ 12 ppm for Gutansar obsidian,
but an inter-laboratory comparison resulted in a recommended Sr value
of 129 + 6 ppm (Frahm, 2019). Likewise, for Aghvorik obsidian, they
report a Sr content of 143 + 6 ppm, but the recommended inter-
laboratory value for Sr is 198 + 9 ppm (Frahm, 2019). As a result, it
is challenging to directly correlate “Hatis A and B” (Keller et al., 1996)
with “Hatis 1 and 2” (Chataigner and Gratuze, 2014), even if it would
seem logical to simply do so.

Perhaps most importantly, the elemental data for Hatis obsidian re-
ported by Chataigner and Gratuze (2014) were first published in Gratuze
(2007), in which it was evident that these obsidian specimens derived
from archaeological lithic scatters, not geological outcrops. Gratuze
(2007) does not specify how or when the purported geological speci-
mens were collected. It is telling, however, that he identified Gutansar
obsidian at two of the Hatis sampling locations (Kaputan and Zovashen)
as well as Hatis obsidian at one of the Gutansar sampling locations
(Fontan). This is a common issue with secondhand specimens from the
Armenian Highlands, where lithic scatters composed entirely of obsidian
artifacts frequently occur on this complex volcanic landscape. For
example, Blackman (1984) reported two different obsidian composi-
tions (“Sevan I,” n =5 and “Sevan II,” n = 1) among six specimens from a
purported “Lake Sevan” obsidian source. Instead, his data suggest that
“Sevan I” corresponds to Gutansar and “Sevan II” corresponds to
Geghasar obsidian, which would be consistent with an archaeological
lithic scatter expected in such a location. Ultimately, though, Gratuze
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(2007) recognized that these Hatis and Gutansar obsidian samples were
mixed, and the admixture was not his fault. It means, however, that the
location descriptions lack geological relevance.

3. Authors’ preliminary research

The first two authors conducted studies of Hatis obsidian during the
course of their doctoral dissertations (Frahm, 2010; Olshansky, 2018;
see also Martirosyan-Olshansky, 2014). Their findings and datasets
based on various analytical techniques are summarized below.

3.1. Frahm’s data and findings

Frahm (2010) assembled an initial collection of Hatis obsidian thanks
to specimens from (1) M. James Blackman (see Section 2 above and
Blackman et al., 1998) of the Smithsonian Institution’s Nuclear Labora-
tory for Archaeological Research; (2) James Luhr from the Global
Volcanism Project of the Smithsonian’s National Museum of Natural
History and his former postdoctoral researcher, Ivan Savov; (3) our friend
and colleague Sergey Karapetyan (e.g., Karapetian et al, 2001); and (4)
Ruben Badalyan (e.g., Badalyan et al., 2004) from the Institute of
Archaeology and Ethnography, National Academy of Science, Republic of
Armenia. The details regarding this initial collection are summarized in
Table 2. Of the fifteen assembled obsidian specimens, thirteen derived
from Hatis, whereas the other two originated from different obsidian
sources. These two specimens (one from Gutansar, one from Mets Arteni)
likely reflect, at least in part, the same issue encountered by Gratuze
(2007): sampling from anthropogenic lithic scatters, not geological
outcrops.

3.1.1. EMPA at the University of Minnesota

All of these obsidian specimens were chemically analyzed with
electron microprobe analysis (EMPA), specifically a JEOL 8900R housed
in the Department of Earth and Environmental Sciences, University of
Minnesota. EMPA is a variety of X-ray spectrometry that not only has
been used for sourcing obsidian artifacts for three decades (e.g., Merrick
and Brown, 1984a; 1984b;; Merrick et al., 1994; Tykot, 1997) but also is
favored by tephrochronologists to geochemically match volcanic ash to
a given eruption (e.g., Smith et al., 1977; Tryon et al., 2009). Fourteen
“major” elements (e.g., Si, Ti, Al, Fe, Mn, Ca, Na, K) were measured
under a set of conditions (15 kV voltage, 60 nA current, 30 pm beam
diameter, 25 s each on peak and background measurements) that
minimized beam-induced alteration in obsidian (e.g., Na and K migra-
tion; Hunt and Hill, 2001). Other special procedures (e.g., periodic re-
peaking of the spectrometers) are documented by Frahm (2012). Data
correction used JEOL’s implementation of the ZAF scheme, and cali-
bration relied on microbeam standards from the Smithsonian (e.g.,
Kakanui hornblende for Mg, Ca, Ti, Fe) and elsewhere.

Accuracy of the EMPA measurements was assessed using five micro-
beam glass standards as well as a well-characterized obsidian specimen.
Table 3 summarizes the EMPA measurements and published values for
the five standards: (1) Smithsonian VG-568, USNM #72854: rhyolitic
obsidian, Yellowstone National Park; (2) Smithsonian VG-2, USNM
#111240/52: basaltic glass, Juan de Fuca Ridge; (3) Smithsonian, USNM
#113716: basaltic glass, Indian Ocean; (4) Smithsonian, USNM #2213:
tektite glass, synthetic, Corning Glass; and (5) G-Probe-2/USGS NKT-1G:
peralkaline basaltic glass, Knippa, Texas. The EMPA measurements
compare well to values from the Smithsonian Microbeam Standards
program (Jarosewich et al., 1980), the G-Probe-2 testing program (Potts
et al., 2005), and the GeoReM (Geological and Environmental Reference
Materials) web database. Table 4 shows the EMPA measurements and
inter-laboratory values (Glascock, 1999; Frahm, 2019) for a specimen of
Sierra de Pachuca (Mexico) obsidian, which has essentially become a de
facto standard for sourcing. The datasets exhibit excellent agreement
and, thus, high accuracy. Table 5 lists the EMPA data for these Hatis
specimens, which, when plotted, reveal two clusters (Fig. 4).



Table 4
Interlaboratory data comparison for Sierra de Pachuca obsidian.
Technique Laboratory Publication SiO, TiO, Al,03 Cry03 FeOror MnO MgO CaO NayO K20 P,0s F SO3 Cl
Sierra de Pachuca specimen analyzed by the first author
EMPA University of Minnesota Frahm 2010 mean 75.70 0.19 11.30 < LOD 217 0.14 0.05 0.11 5.02 4.63 < LOD < LOD < LOD 0.19
st dev 0.36 0.01 0.07 0.03 0.01 0.01 0.02 0.30 0.09 0.01
Mean values derived from published datasets below
mean 75.98 0.20 11.68 n.m. 2.13 0.14 0.07 0.12 5.26 4.42 0.03 0.29 n.m. 0.14
st dev 2.94 0.03 0.90 0.14 0.02 0.04 0.03 0.35 0.43 0.02 0.02 0.02
Published datasets for Sierra de Pachuca obsidian
EDXRF Ashe Analytics, Montana Glascock 1999 mean 2.11 0.14
st dev 0.14 0.01
Geoarchaeological XRF Lab Silva de la Mora 2018 mean 0.23 2.44 0.13
st dev 0.01 0.07 0.01
MURR Archaeometry Lab Frahm 2019 2.01 0.13
Glascock 2011 mean 0.16 2.05 0.10 4.60
st dev 0.02 0.15 0.01 0.20
NWR Obsidian Studies Lab Glascock 1999 mean 0.19 2.21 0.15
st dev 0.02 0.08 0.01
ICP-AES/MS CNRS, Grenoble, France Glascock 1999 mean 10.43 1.96 0.16 0.05 0.10 5.28 3.75 0.01
st dev 0.40 0.08 0.01 0.01 0.01 0.09 0.08
PUC-Rio de Janeiro, Brazil Glascock 1999 0.18 12.32 2.14 0.11 0.06 0.09 5.27 4.44
ICP-MS PUC-Rio de Janeiro, Brazil de B. Pereira et al. 2001 mean 0.18 0.11
st dev 0.01 0.01
MURR Archaeometry Lab Glascock & Ferguson 2012 76.85 0.19 11.50 1.99 0.15 0.07 0.11 5.20 4.50
LA-ICP-MS CNRS, Orléans, France Glascock 1999 mean 75.30 0.20 12.30 2.21 0.14 0.05 out 5.10 4.17 0.04
st dev 0.21 0.01 0.42 0.13 0.01 0.01 0.23 0.04
California State University Carballo et al. 2007 mean 2.10 0.14 5.01 4.32
st dev 0.10 0.01 0.30 0.20
PUC-Rio de Janeiro, Brazil de B. Pereira et al. 2001 mean 0.23 0.13
st dev 0.01 0.01
MURR Archaeometry Lab Glascock & Ferguson 2012 72.72 0.25 13.41 2.18 0.13 0.05 0.15 5.28 5.33
NAA CNRS, Orléans, France Glascock 1999 mean 73.38 0.22 11.70 2.21 0.13 out 0.16 6.00 5.10
st dev 0.64 0.01 0.08 0.13 0.02 0.03 0.54 0.07
MURR Archaeometry Lab Frahm 2019 11.57 2.07 0.14 4.98 3.99 0.12
Cobean et al., 1991 mean 1.99 0.14 5.01 4.76 0.15
st dev 0.13 0.02 0.19 0.36 0.03
Glascock 1999 mean 2.03 0.15 5.12 4.55 0.15
st dev 0.03 0.01 0.12 0.29 0.02
Glascock & Ferguson 2012 11.48 2.09 0.14 5.01 3.96 0.11
PIXE CNRS, Grenoble, France Glascock 1999 mean 76.37 0.18 10.43 2.01 0.13 0.11 5.16 4.08 0.16
st dev 0.11 0.01 0.40 0.03 0.01 0.01 0.11 0.04 0.01
PIXE/PIGME ANSTO, Australia Glascock 1999 mean 81.72 0.19 12.41 2.33 0.16 0.13 6.11 4.61 0.29
st dev 4.28 0.01 0.66 0.15 0.01 0.01 0.36 0.20 0.02
WDXRF CNR-ITABC, Rome, Italy Glascock 1999 75.52 0.21 10.92 2.43 0.15 0.14 0.11 5.04 4.18

out: Extreme outlier measurement removed from the data table due to clear analytical errors
< LOD: Below minimum limits of detection
n.m.: Not measured
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Table 5
EMPA measurements of the initial Hatis geological obsidian specimens.
Specimen / source SiOy TiO, Al,03 Cry03 FeOyor MnO MgO CaO NayO K20 P,0s F SO3 Cl
Correct source: Hatis obsidian
AR.2009.7.1 mean 75.64 0.101 13.87 < LOD 0.838 0.060 0.158 0.991 4.304 4.325 0.020 < LOD < LOD 0.044
std dev 0.15 0.006 0.06 0.019 0.011 0.005 0.034 0.176 0.032 0.008 0.006
AR.2009.7.2 mean 75.46 0.101 13.87 < LOD 0.834 0.059 0.152 1.014 4.310 4.310 0.021 < LOD < LOD 0.048
std dev 0.21 0.010 0.07 0.019 0.010 0.007 0.019 0.177 0.048 0.012 0.005
AR.2009.8.1 mean 75.14 0.103 13.81 < LOD 0.840 0.062 0.156 0.978 4.331 4.341 0.023 0.004 < LOD 0.045
std dev 0.24 0.007 0.05 0.021 0.007 0.007 0.011 0.148 0.022 0.008 0.003 0.006
AR.2009.8.2 mean 75.51 0.101 13.90 < LOD 0.856 0.060 0.157 0.968 4.369 4.291 0.017 < LOD < LOD 0.048
std dev 0.30 0.008 0.05 0.015 0.007 0.007 0.022 0.117 0.043 0.011 0.006
AR.2009.27.1 mean 75.50 0.101 13.82 < LOD 0.408 0.052 0.088 0.951 4.319 4.316 0.021 < LOD < LOD 0.042
std dev 0.28 0.008 0.16 0.029 0.008 0.015 0.073 0.144 0.080 0.009 0.007
AR.2009.27.2 mean 75.23 0.104 13.82 < LOD 0.420 0.052 0.087 0.953 4.281 4.365 0.022 < LOD < LOD 0.047
std dev 0.23 0.008 0.13 0.029 0.011 0.016 0.020 0.131 0.070 0.009 0.005
AR.2009.28.1 mean 74.83 0.145 14.15 < LOD 0.594 0.050 0.188 1.159 4.302 4.333 0.047 < LOD < LOD 0.045
std dev 0.39 0.009 0.12 0.132 0.011 0.084 0.112 0.098 0.112 0.008 0.006
AR.2009.48.1 mean 74.76 0.130 14.13 < LOD 0.868 0.050 0.167 1.082 4.018 4.839 0.032 < LOD < LOD 0.044
std dev 0.26 0.007 0.03 0.079 0.011 0.033 0.050 0.131 0.069 0.008 0.006
AR.2009.72.2 mean 74.51 0.128 14.07 < LOD 0.671 0.052 0.230 1.205 4.241 4.297 0.034 < LOD < LOD 0.051
std dev 0.20 0.007 0.08 0.072 0.008 0.018 0.028 0.126 0.054 0.008 0.023
AR.2009.72.3 mean 74.87 0.089 13.80 < LOD 0.735 0.062 0.126 0.848 4.181 4.557 0.013 < LOD < LOD 0.049
std dev 0.15 0.008 0.05 0.062 0.007 0.013 0.095 0.179 0.091 0.006 0.005
AR.2009.73.1 mean 75.52 0.100 13.70 < LOD 0.846 0.054 0.151 0.980 4.235 4.299 0.025 < LOD < LOD 0.049
std dev 0.29 0.012 0.34 0.010 0.010 0.008 0.009 0.168 0.029 0.009 0.009
AR.2009.74.1 mean 74.92 0.092 13.79 < LOD 0.633 0.059 0.151 0.948 4.237 4.393 0.018 < LOD 0.011 0.042
std dev 0.18 0.008 0.07 0.087 0.013 0.006 0.034 0.110 0.067 0.008 0.007 0.006
AR.2009.74.2 mean 74.71 0.092 13.78 < LOD 0.822 0.058 0.151 0.942 4.237 4.373 0.022 < LOD 0.014 0.044
std dev 0.16 0.007 0.10 0.019 0.006 0.007 0.035 0.136 0.049 0.006 0.009 0.005
Incorrect source: Gutansar obsidian
AR.2009.72.1 mean 74.61 0.159 13.93 < LOD 0.546 0.057 0.201 0.993 4.355 4.446 0.033 < LOD < LOD 0.028
std dev 0.21 0.009 0.15 0.098 0.010 0.010 0.030 0.107 0.048 0.014 0.007
Gutansar data mean 74.55 0.175 14.00 < LOD 0.947 0.073 0.189 0.971 4.415 4.256 0.033 0.003 0.004 0.038
std dev 0.40 0.003 0.12 0.238 0.008 0.041 0.033 0.070 0.086 0.003 0.001 0.002 0.003
Incorrect source: Mets Arteni obsidian
AR.2009.75.1 mean 76.84 0.062 13.46 < LOD 0.455 0.096 0.039 0.492 4.470 4.360 < LOD < LOD < LOD 0.041
std dev 0.22 0.007 0.05 0.017 0.008 0.005 0.014 0.140 0.141 0.008
Mets Arteni data mean 76.40 0.059 13.23 < LOD 0.362 0.092 0.035 0.487 4.115 4.797 0.006 < LOD < LOD 0.042
std dev 0.02 0.003 0.06 0.020 0.003 0.006 0.010 0.039 0.096 0.002 0.002

< LOD: Below minimum limits of detection
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Fig. 4. Scatterplot of TiO vs. Al;03, as measured via EMPA, for the initial Hatis obsidian specimens, revealing the presence of two chemical types among
these specimens.
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Fig. 5. Plot of the EMPA data for the Hatis obsidian specimens on a TAS (Total Alkali Silica) diagram (Le Maitre et al., 2002), demonstrating that, as anticipated, they

are rhyolitic in composition.

These EMPA data are important for several reasons. First, thirteen
Hatis obsidian specimens were, at the time, the largest available dataset
for this volcano (e.g., Blackman et al., 1998 tested five specimens).
Second, the results show how the four obsidian types at the volcano
went unnoticed for so long. As attested by obsidian that derived from
other volcanoes (Gutansar and Mets Arteni), some portion of the spec-
imens likely came from anthropogenic lithic scatters rather than out-
crops. Third, these data allow us to plot the Hatis specimens on a TAS
(Total Alkali Silica) diagram (Le Maitre et al., 2002). All of the speci-
mens fall together, as expected, in the “rhyolite” portion of this diagram
(Fig. 5). Finally, based on Student’s t tests, six elements within the EMPA
dataset have statistically different concentrations between these two
chemical types of Hatis obsidian: SiO3 (p = 0.0188), TiO; (p < 0.0001),
Aly03 (p < 0.0001), MnO (p = 0.0097), MgO (p = 0.0115), and CaO (p <
0.0001). Nevertheless, the two types of Hatis obsidian seem to be
comagmatic, consistent with Keller et al. (1996).

3.1.2. NAA and EDXRF at MURR

Some of the obsidian specimens were sent to the Archaeometry
Laboratory at the University of Missouri Research Reactor (MURR) for
NAA and energy-dispersive XRF (EDXRF), as discussed by Frahm (2010).
For NAA, obsidian specimens were crushed to yield small fragments for
two rounds of irradiation, as described by Glascock (1999). For the short
irradiation, 100 mg of fragments were exposed to a neutron flux for 5 s,
and they sat idle for 25 min before the emitted gamma rays were
measured for 12 min. In the long irradiation, 300 mg of fragments were
irradiated for 70 h and then measured twice: a 2000-second measure-
ment took place after eight days, and a three-hour measurement took
place after another four weeks. These measurements were calibrated

using the United States’ National Institute of Standards and Technology
(NIST) standard #278 (an obsidian reportedly from Newberry Caldera,
Oregon), and NIST standard #1633a (trace elements in bituminous coal
fly ash) was used as a quality check of the data. The resulting mea-
surements for 28 elements are summarized in Table 6. Several other
obsidian specimens tested at the same time are now included within the
Peabody-Yale Reference Obsidians (PYRO) calibration and evaluation
sets (Frahm, 2019), so Table 7 gives a comparison to assess the accuracy.

Obsidian specimens were also analyzed at MURR with an ElvaX
EDXRF system, as described by Glascock (2011). This instrument is
equipped with a 5-W X-ray tube (W anode, 50 kV maximum voltage, 100
PA maximum current) and a Si P-N diode detector with an energy res-
olution of 180 eV in practice. Eleven elements of interest (K, Ti, Mn, Fe,
Zn, Ga, Rb, Sr, Y, Zr, Nb) were measured with a voltage of 40 kV and a
current set to yield a count rate of ~6000 cps. The specimens were
measured whole (i.e., without preparation as powders), and the X-ray
beam diameter was ~3-4 mm. Each was measured for 3-5 min. The
resulting spectra were downloaded to a PC for peak deconvolution and
quantification using proprietary software. Their standards were a set of
40 obsidian specimens which were drawn from the MURR collections
(and which became a basis for the Bruker “obsidian” calibration for
Tracer pXRF models; Glascock and Ferguson, 2012). Table 8 summarizes
the EDXRF data for the Hatis obsidian specimens. As with NAA, several
specimens concurrently measured with EDXRF are included in PYRO
sets (Frahm, 2019), and Table 7 also shows a comparison to the inter-
laboratory recommended values to evaluate the EDXRF data accuracy.

Table 9 establishes that, for elements in common between NAA and
EDXREF, there are a few statistically significant differences between the
two datasets, as determined using a Student’s t test. For example, as
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Table 6

NAA measurements at MURR of the initial Hatis geological specimens.

Na

Mn

Dy

Cl

Ce Co Cs Eu Fe Hf Rb Sb Sc Sr Ta Tb Th Zn Zr Al

Yb

La Lu Nd Sm

Ba

Source / specimen

Correct source: Hatis obsidian

AR.2009.48.1

33,047
32,333
31,661
32,224

493
507
493
507

30,184
35,223
34,783
35,530

2
3
2
3

258
293
309
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73,454
78,928
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77,606

77
79
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67

33
37
36
37

17
16
17
17

0.4
0.4
0.4
0.4

183
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0.3
0.3
0.4
0.3

106
104
113
112

3
3
3
3

7575
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6219

0.5

1.2
1.2

0.7

48
48
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13
14
14
13

0.3
0.3
0.3
0.3

28
29
27
27
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0.5

556
540
516

AR.2009.72.2

0.5

AR.2009.72.3
AR.2009.73.1

0.5

0.6

10

Incorrect source: Mets Arteni obsidian
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corroborated by Table 7, the EDXRF measurements for Zr are more ac-
curate than the NAA measurements, but the reverse is true for Mn (i.e.,
the NAA data are more accurate). Three useful observations can,
nevertheless, be made from these two datasets. First, the data confirm
that two of the “Hatis” obsidian specimens originated from other sources
(i.e., Gutansar and Mets Arteni), perhaps due to sampling from lithic
scatters. Second, these data also confirm the occurrence of two chemical
clusters among the actual Hatis specimens. Third, the datasets can reveal
which elements exhibit statistically significant differences between the
Hatis clusters, even though the sample sizes are small (n = 6 for EDXRF,
n = 4 for NAA). Using a Student’s t test, five elements in the EDXRF data
have statistically significant differences between the two clusters: Ti (p
= 0.0062), Fe (p = 0.0011), Zn (p = 0.0069), St (p = 0.0094), and Zr (p
= 0.0376). In addition, Rb lies on the cusp of significance (p = 0.0778).
Among the NAA data, four elements are significantly different and have
concentrations in Hatis obsidian above the minimum detection limits of
newer pXRF instruments: Fe (p = 0.0128), Rb (p = 0.0215), Sr (p =
0.0008), and Zr (p = 0.0342). Given these compositional differences
between clusters in the EDXRF and NAA data, we focus on Fe, Rb, Sr, and
Zr for this study.

3.2. Martirosyan-Olshansky’s data and findings

Independently, Martirosyan-Olshansky visited and sampled a num-
ber of Armenian obsidian sources, including Hatis volcano, in 2013.
Specifically, she collected 16 obsidian specimens from the southwestern
slopes of Hatis volcano above the village of Akunk, and she transported
them back to the University of California-Los Angeles (UCLA) for
elemental analysis and chemical comparison to artifacts from the
Neolithic settlement of Masis Blur (Martirosyan-Olshansky, 2014). At
UCLA, she used a Bruker Tracer III-V+ pXRF instrument (a Rh anode, Si
PIN-diode detector with a resolution of ~190 eV at a count rate of
10,000 cps) with their typical protocols for obsidian analysis (voltage:
40 kV, current: 14 pA, Cu-Ti beam filter, 200 s measurements). For
quantification, the instrument used the MURR/Bruker “obsidian” cali-
bration scheme, and three standards from the United States Geological
Survey (USGS) — AGV-1 (andesite, Gunao Valley, Oregon), SCo-1 (Cody
Shale, Teapot Dome, Wyoming), and QLO-la (quartz latite, Lake
County, Oregon) — were also analyzed to assess accuracy. Among the 16
Hatis specimens, she identified two chemical types, which she termed
“Akunq A” and “Akunq B” (Martirosyan-Olshansky, 2014), and Table 10
includes the corresponding values. Based on her Sr data, which exhibi-
ted very low error (2-3% relative) for the USGS standards, Akunq A and
B seem to correspond to Hatis A and B, respectively, in Keller et al.
(1996).

Later in her dissertation research, she added 16 new obsidian spec-
imens from the northern, eastern, and southeastern slopes of Hatis
volcano to her initial dataset (Olshansky, 2018). Using the same pXRF
instrument with the additional specimens, she identified four chemical
types from Hatis that are best differentiated by the Fe, Sr, and Zr con-
centrations, as shown here in Table 10, and as a result, she devised a new
naming system in light of the newly recognized obsidian types (i.e.,
Akung A became Hatis 1, Akunq B became Hatis 3). That is, her insights
into the complexity of Hatis as an obsidian source were a direct result of
conducting more extensive surveys and sampling across the volcano
than those who preceded her, as documented here in Section 2.

4. Refining the obsidian types at Hatis

The following sections report the results from our pXRF analyses at
80 sampling loci across Hatis volcano. This method allowed us to
recognize and map out the four obsidian types in the field, and we
discuss our interpretations of these data and the current limitations.
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< LOD: Below minimum limits of detection

n.m.: Not measured

Table 7

Assessment of the EDXRF and NAA measurements at MURR.
Specimen / dataset Mn Fe Zn Rb Sr Y Zr Nb
Aghvorik obsidian (Armenia)
inter-laboratory data 472 + 24 12,240 690 48 4 98 5 198 9 15 6 236 15 18
EDXRF measured values 439 + 51 10,349 170 53 1 94 2 230 5 11 1 229 5 14
NAA measured values 490 + 7 12,100 53 48 2 99 1 216 12 n.m. 229 17 n.m.
Gutansar obsidian (Armenia)
inter-laboratory data 641 + 23 8250 173 44 4 140 5 129 6 22 7 171 13 37
EDXRF measured values 524 + 38 7642 198 50 3 144 3 136 5 11 3 180 5 31
NAA measured values 636 + 8 8173 240 42 2 140 1 129 13 n.m. 138 15 n.m.
Satanakar obsidian (Armenia)
inter-laboratory data 522 + 20 4580 180 34 2 192 2 9 2 8 4 88 10 36
EDXRF measured values 341 5066 28 186 10 1 89 28
NAA measured values 535 + 23 4333 143 34 1 192 5 < LOD n.m. 41 12 n.m.
Chikiani 1 obsidian (Georgia)
inter-laboratory data 482 + 40 5000 280 41 4 130 7 75 12 14 4 81 4 19
EDXRF measured values 372 + 36 5975 336 38 2 130 5 94 10 9 3 97 8 18
Meydan Dag obsidian (Turkey)
inter-laboratory data 519 + 27 9520 310 74 8 200 5 18 3 52 5 286 15 32
EDXRF measured values 416 + 40 8877 190 65 3 192 3 17 3 51 2 277 12 29
NAA measured values 541 9616 75 203 < LOD n.m. 262 n.m.
Nemrut Dag 6 obsidian (Turkey)
inter-laboratory data 1380 + 18 46,680 3860 237 10 233 8 2 1 145 1308 82 76
EDXRF measured values 1597 + 274 43,917 3630 250 21 231 16 10 7 144 14 1093 88 72
NAA measured values 1387 + 29 47,270 1384 234 7 234 7 < LOD n.m. 1293 25 n.m.
Sarikamus 1 obsidian (Turkey)
inter-laboratory data 325 + 14 5724 337 31 2 130 8 22 4 21 4 109 24 14
EDXRF measured values 267 6054 29 126 27 22 112 16
NAA measured values 361 5105 31 133 21 n.m. 81 n.m.
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Table 8

EDXRF measurements at MURR of the initial Hatis geological specimens.
Source / specimen K Ti Mn Fe Zn Ga Rb Sr Y Zr Nb
Correct source: Hatis obsidian
AR.2009.48.1 36,665 1418 408 7358 35 17 105 148 7 107 17
AR.2009.72.2 35,004 1495 433 7658 36 16 103 167 8 115 19
AR.2009.72.3 32,889 1179 375 5847 31 13 111 129 6 96 18
AR.2009.73.1 34,501 984 358 5849 32 14 105 116 7 88 18
AR.2009.74.1 34,476 1100 450 6024 33 15 111 114 8 100 21
AR.2009.74.2 36,160 987 377 6281 32 17 111 124 10 100 21
Incorrect source: Gutansar obsidian
AR.2009.72.1 35,193 1782 474 7525 46 17 146 137 7 177 30
Gutansar means 34,828 1828 524 7642 50 17 144 136 11 180 31
Incorrect source: Mets Arteni obsidian
AR.2009.75.1 37,206 391 492 4433 35 13 145 7 21 84 37
Mets Arteni means 37,446 414 508 4377 33 14 141 8 25 87 38

4.1. pXRF methods

Based on our preliminary studies, we focused on well-measured el-
ements that best discern the different obsidian types from Hatis. As
explained by Hughes (1984:3), it “is not necessarily the case... that the
inclusion of larger numbers of variables... results in a ‘better’ classifi-
cation” in obsidian artifact sourcing. Poorly measured and uninstructive
elements, he states, should be excluded from the dataset and subsequent
statistical tests. Shackley (1988:763) agrees, and a “rule of thumb... is to
use the fewest variables necessary” (Shackley, 1995:546). Elements that
are both well-measured by XRF and highly effective for obsidian
sourcing include Rb, Sr, Y, Zr, Nb, and Fe (Frahm, 2014; 2019). Previ-
ously published research on Hatis obsidian (Section 2; Table 1) and our
own studies (Section 3: Tables 5 to 10) established that we should focus
on a set of four elements — Rb, Sr, Zr, and Fe — to discern among the
different chemical types of Hatis obsidian using pXRF.

Geological obsidian specimens at Hatis volcano were tested in the
field with a Thermo Niton 950 XL3t GOLDD+ instrument (Frahm, 2014;
2016;; Frahm and Feinberg, 2015). This pXRF model is equipped with a
silicon drift X-ray detector (SDD) that has an energy resolution < 155 eV
in practice, and it produces an incident X-ray beam using a miniaturized
2-W tube (Ag anode, 50 kV maximum voltage, and 200 pA maximum
current). The instrument has a built-in GPS receiver that can record
coordinates with each measurement, and the analyzed spots are dis-
played live and recorded using a built-in video camera. The elements of
interest were measured using the “main” X-ray filter and the corre-
sponding conditions (voltage: 40 kV, current: <50 pA) for 20 s.

We applied the fundamental parameters (FP) approach to data
correction for all analyses in this study. That is, FP was used as a means
to account for physical phenomena (e.g., absorption and fluorescence
edge energies, incoherent scattering, photoelectric absorption, fluores-
cent and Coster-Kronig transition yields) that affect the measured X-ray
spectra and must be “corrected” during the quantification calculations.
Each instrument’s factory-set calibration, which was based on a suite of
standard reference materials (SRMs) principally certified by the United
States’ National Institute of Standards and Technology (NIST) and the
United States Geological Survey (USGS), was subsequently “fine-tuned”
using a collection of 24 obsidian reference standards (Frahm, 2014; this
collection was the predecessor of the Peabody-Yale Reference Obsid-
ians, Frahm, 2019). Accuracy of the elements in question was evaluated
using three well-characterized obsidian specimens (Table 11): NIST SRM
278 (Newberry Crater, Oregon), USGS RGM-1 (Glass Mountain, Cali-
fornia), and MURR GBOROL1 (Little Glass Buttes, Oregon). Our values
exhibit good agreement with the recommended or certified values for
these three obsidians and with the mean values from published datasets.

The field-based use of pXRF instruments allows new approaches for
characterizing obsidian sources. For example, Shackley (2005) discusses
the cost- and labor-induced restrictions on source sampling and char-
acterization with laboratory-based techniques, resulting in 10-20% of
specimens collected across a flow or dome actually being analyzed.
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Using pXRF in the field reduces the burden placed on probabilistic
sampling. Instead, sampling can be shaped less by the logistics of
analyzing specimens in a laboratory (e.g., collection and handling,
shipping costs) and more by the expression of a source on the landscape.
For this study, one priority was localizing the boundaries between the
different compositions of obsidian. Coordinates and elevation were
recorded for each measurement with the instrument’s built-in GPS
receiver. Each measurement had at least three replicates, and as many as
ten obsidian specimens were analyzed at each locus. Our resulting
dataset reflects six days of surveys at Hatis, covering a total of ~60 km
by vehicle and ~30 km on foot.

4.2. Results and data analysis

Our pXRF analyses at 80 sampling loci across Hatis volcano revealed
four elemental types of obsidian that correspond to discrete areas on the
volcanic landscape. As noted in Section 2, various nomenclatures have
been applied to obsidian from Hatis (Table 1; e.g., Hatis A and B in Keller
et al., 1996; Hatis 1 and 2 in Chataigner and Gratuze, 2014). There is
also the potential for confusion with the standard nomenclature for
Armenian archaeological sites (e.g., Hatis 1), which are named for the
nearest village and numbered in order of discovery. Consequently, we
opt to use Greek letters. Two- (Fig. 6) and three-dimensional (Fig. 7)
scatterplots based on the elements noted in Section 4.1 - Zr, Rb, Sr, and
Fe — reveal four geochemical clusters. The elemental data (means for
each of the sampling loci), their GPS coordinates, and the elevations are
available in the supplementary materials. Performing discriminant
function analysis (DFA) based on the three “mid-Z” trace elements — Zr,
Rb, and Sr - yields a function that can account for 99.99% of the dataset
variability. The output file from XLSTAT 2019.3.2 is also available in the
supplementary materials. Fig. 8 plots the discriminant function for the
obsidian types by elevation on the southern slopes, revealing an eleva-
tion trend. Each chemical type of obsidian occurs over a range of ele-
vations: alpha at ~1590-1700 m asl, beta at ~1560-1830 m asl, gamma
at ~1710-1910 m asl, and delta at ~1960-2100 m asl.

Fig. 9 places the four obsidian types on a topographic map of Hatis.
Note that all four occur on the southern slopes of the volcano (Fig. 10),
but alpha obsidian is also associated with the perlitic deposits on the
northeastern side. It should be stressed, however, that alpha obsidian is
manifested differently on the two sides of the volcano. Substantial and
prominent obsidian outcrops occur along the southern side of Hatis
(Fig. 11a), exposed principally by colluvial forces. These easily acces-
sible and highly visible outcrops yield sizable blocks of nearly flawless
obsidian in convenient sizes and forms for knapping. On the north-
eastern flanks, only small obsidian nodules and lamellae (typically < 2
cm; Fig. 11b), which are associated with much more pumiceous de-
posits, are exposed only where recent erosion (especially slope failure
due to grazing) and human activities (mainly quarrying raw material to
make concrete) have cut into the flow. Therefore, the northeastern
obsidian not only has low accessibility but also would have served as
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Table 11
Assessing accuracy based on well-characterized obsidian specimens.
Source / publication Zr Sr Rb Fe
NIST SRM 278: Obsidian, Newberry Caldera, Oregon
This study 272 + 4 70 + 123 + 2 13,070 + 290
NIST values (Reed, 1992) 64 + 1 127 + 1 14,280 + 140
Published means (Frahm & Brody, 2019) 292 + 21 65 + 128 + 2 14,360 + 660
USGS RGM-1: Obsidian, Glass Mountain, California
This study 203 + 4 117 + 2 146 + 2 11,710 + 270
USGS values (Smith, 1995) 220 + 20 110 + 10 150 + 8 13,000 + 300
Recommended values (Frahm, 2019) 222 + 4 108 + 2 150 + 3 12,930 + 290
MURR GBORO1.: Little Glass Buttes, Oregon
This study 86 + 3 77 + 3 95 + 4 5940 + 120
MURR values (Glascock & Ferguson, 2012) 96 69 94 6180
Published means (Frahm & Brody, 2019) 99 + 8 70 + 7 99 + 8 6550 + 610
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Fig. 6. Matrix of elemental scatterplots for Rb, Sr, Zr, and Fe for the Hatis geological specimens.

poor toolstone due to differences in its emplacement conditions.
Therefore, while small quantities of alpha obsidian occur on the north-
eastern side, the southern slopes have markedly more and better
obsidian, and in turn, they were considerably more likely to have served
as a location for toolstone acquisition. It must also be noted that out-
crops on the southern slopes are so abundant that our loci here are not

exhaustive. Instead, our focus in the field was identifying boundaries
between chemically different types. Fig. 12 combines the analytical data
and our field survey notes with satellite imagery to delineate the
obsidian outcrops as well as the approximate distributions of these
obsidian types at Hatis volcano.
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4.3. Geological interpretation

The geological mechanism of these four obsidian types, which fall
along a clear geochemical trend, remains uncertain. Given the un-
certainties and inconsistencies in dating (Section 2), there is currently no
convincing evidence that the four types of obsidian erupted at different
times, certainly not hundreds of millennia apart. As shown by the
matching elemental data in Table 1, Lebedev et al. (2013) dated the
same chemical type of obsidian (i.e., our alpha), despite yielding dates of
740 + 250 and 480 + 50 ka, thereby suggesting that their Phases I and II
are only a product of the 250-ka error range. Recall that seeking two
phases of obsidian-producing volcanism at Hatis dates as far back as
Komarov et al. (1972), who simply noted the mismatching ages from FT
and “°K-*°Ar dating. Hence, it appears to be that seeking two long-
separated phases is a wild goose chase.

Despite these unresolved chronological issues, we can propose two
basic hypotheses about the formation of these four obsidian types, as
simplified and illustrated in Fig. 13. One possibility, as shown in
Fig. 13a, is that the four types reflect a series of closely timed eruptions
and/or intrusions between which the magma slightly changed, yielding
four overall similar but still somewhat distinct lavas stacked atop one
other. A second possibility, as shown in Fig. 13b, is that the magma
chamber was chemically zoned such that, during one voluminous
eruption, the lava changed in composition as it erupted. Under such a
scenario, during emplacement, the zoned and highly viscous lava folded
over onto itself, yielding four discrete geochemical steps, rather than
continuous variation, exposed at the surface. That is, the lava could have
exhibited continuous chemical variation as it erupted, but only small
segments of that variation remain accessible at or near the surface.

There are examples of both hypothesized models elsewhere, although
the best-documented cases come from the American Pacific Northwest. As
noted in the Introduction, this region is not an ideal analog for volcanism
within the Armenian Highlands; however, Dixon (1976) noted that some
parts of the Pacific Northwest are roughly analogous to this region. The
analog for the first scenario (Fig. 13a) comes from Newberry National
Volcanic Monument in Oregon (Fig. 14). The caldera of Newberry Vol-
cano (~7-8 km in diameter) contains several Holocene obsidian-bearing
lava flows, including (as shown in Fig. 14b) Big Obsidian Flow, East Lake
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Obsidian Flows, Buried Obsidian Flow, and Game Hut Obsidian Flow.
Obsidian specimens from these four flows were measured using NAA
(Ambroz, 1997), and Fig. 14a is a scatterplot of the Rb vs. Mn measure-
ments, establishing that these obsidian flows are chemically similar but
still distinct. Ambroz’s (1997) use of NAA restricts those elements in
common with our pXRF measurements, but comparing Fig. 14a for
Newberry and Fig. 6 for Hatis yields tantalizing similarities. Big Obsidian
Flow is the best dated based, in large part, on radiocarbon dating of a tree
caught up in the eruption (USGS 755: 1340 + 60 uncalibrated BP). After
calibration, the eruption occurred ~1200-1300 years ago. The other
flows are not as well dated. Obsidian hydration offers some constraints
(Friedman, 1977) and yield rough ages of ~3500 years for the East Lake
Obsidian Flows and ~6700 years for the Game Hut Flow. Consequently,
this entire eruptive sequence might have occurred in five millennia. One
key challenge of testing this model at Hatis volcano is clear: the error
ranges for the **Ar—>°Ar ages (e.g., 480 + 50 ka, Lebedev et al., 2013) are
greater than the potential eruption intervals in such a scenario.

An analog for the second scenario (Fig. 13b) comes from the Borax
Lake rhyolitic lava dome in northern California (Fig. 15). Bowman et al.
(1972), Bowman et al. (1973a), Bowman et al. (1973b) recognized that
obsidian from the Borax Lake dome exhibited a continuous range of
compositions, as demonstrated in Fig. 15a. The likeliest mechanism,
they propose, is mixing of two magmas with distinct compositions in
different proportions. Nevertheless, obsidian sourcing was still possible
because the chemical pattern “is just as definitive as it would be if the
flow were extremely homogeneous” (Bowman et al., 1973b: 123). USGS
geologists mapped the Borax Lake dome as a single rhyolitic eruption
circa 91 + 13 ka (facies “rb” in Fig. 15b—c), but Hearn et al. (1995) note
the potential for mixing with a dacite (facies “dcpk™) and/or basaltic
andesite (“bar”). Hence, the Borax Lake dome appears to be a rare
example of clear chemical variation within a single obsidian source, but
studies are complicated by the construction of a neighborhood directly
atop this dome. Although artifacts have been attributed to the Borax
Lake source (e.g., Ericson and Berger, 1974), a lack of published data
means that it is difficult to predict what effect human exploitation might
have on observable elemental patterns in artifacts, not just geological
specimens. For example, Jackson (1989:87) notes the variable qualities
of Borax Lake obsidian (i.e., “... from pumiceous material to a relatively
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Fig. 8. Scatterplot of a discriminant function (based on Rb, Sr, and Zr) vs. outcrop elevation, showing the differences in the obsidian chemical types with height on

the volcano.

dense glass” that “ranges from a dark gray-black to a gray ‘frothy’
appearance”). It remains unclear if past knappers’ selection of the best
toolstone could yield a narrower range of chemical compositions than
reported in specimens tested at Lawrence Berkeley National Laboratory
(Bowman et al., 1972, 1973a, 1973b).

Distinguishing between these two scenarios represents a consider-
able challenge for future research. The published dating uncertainties, at
present, are 40 to 50 thousand years; however, the timing between
separate eruptions could be a few millennia (or even shorter). In addi-
tion, research drilling, such as the 150-m-deep core taken from Obsidian
Dome in eastern California (Eichelberger et al., 1984), might be neces-
sary to better understand the internal structure of Hatis. Ultimately, for
now, the timing and relationships of these Hatis obsidian flows are open
issues due, in large part, to the rarity of the above examples, meaning
characteristic trends remain elusive.

5. Archaeological example: NG1

The site of NG1 lies just 12 km from Hatis volcano, and its lithic
assemblage consists entirely of obsidian from numerous volcanoes
across the Armenian Highlands. Between 2012 and 2017, we analyzed
2351 obsidian artifacts from NG1 using pXRF (this number was only 316
as of Adler et al., 2014). Of these, 40 artifacts (1.70%) originated from
the obsidian flows of Hatis.
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5.1. NGI: The site and its excavations

The open-air site of NG1 (40.34679° N, 44.59706° E, 1400 m asl)
over a length of ~135 m in the western wall of a gorge cut by the
Hrazdan River (Fig. 16). Attempted road construction exposed a section
of fine- and coarse-grained fluvial sediments and paleosols, forming in
both floodplain and channel environments. Obsidian artifacts were
found throughout the sequence. They are likely in situ in the floodplain
deposits and palaeosols but reworked in the channel sands and gravels
(Adler et al., 2014; Sherriff et al., 2019). The fluvial sediments are
bounded above (“Lava 1” of Adler et al. 2014, “HGW-VI” of Sherriff
et al., 2019) and below (“Lava 7”7, “HGW-IV”) by lava flows emanating
from the Gegham range (Adler et al., 2014; Sherriff et al., 2019), and
were deposited in floodplain and channel environments (Sherriff et al.,
2019). Lava 1 and Lava 7 flows have been “°Ar/3°Ar dated to 197 + 7
and 441 =+ 6 ka, respectively (Adler et al., 2014), while sanidine grains
among volcanic tephra in the top fine-grained alluvial unit were also
dated by “°Ar/*°Ar to 308 + 3 ka, revealing a stratigraphic unconfor-
mity between the sedimentary sequence and the capping lava. Thus,
artifacts contained in these sediments date between ~310 and ~440 ka,
representing behaviors between MIS 11 (~424-374 ka) and 9
(~337-300 ka). After its discovery in 2008, NG1 was excavated by the
Hrazdan Gorge Palaeolithic Project until 2017 (Adler et al., 2012, 2014).
Excavations from 2008 to 2013 focused on the northern portion of the
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Fig. 9. A topographic map of Hatis volcano illustrates the locations and elevations of our 80 sampling loci and the corresponding obsidian type at each one. Village

names are italicized.

site, where artifacts attributed to MIS 9e (~335-325 ka) exhibit the
earliest evidence of the Mode 2 to 3 (i.e., Acheulian to Levallois) tech-
nological transition (Adler et al., 2014). In particular, the same strati-
graphic layer contains Levallois cores and flakes as well as Acheulian
bifaces, including some reused as hierarchical cores. Archaeological and
geochronological work is ongoing for the site’s southern portion, which
was excavated from 2015 to 2017; however, it can be reported that the
lithic artifacts from this part of the site reflect bifacial technology
without hierarchical core reduction techniques. Both NG1 and the
Pleistocene stratigraphy of the Hrazdan River valley have previously
been discussed in the literature (see Adler et al., 2014; Sherriff et al.,
2019, respectively), to which readers are referred for greater detail.

5.2. pXRF methods

The artifacts from NG1 were analyzed in Armenia between in 2012
and 2017, and thus, the instrument model changed as pXRF technology
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advanced. In 2012, we analyzed obsidian artifacts in the Hrazdan Gorge
Palaeolithic Project’s field laboratory in Yerevan using a Thermo Niton
XL2 500 pXRF instrument. This model had a Si P-N diode detector with a
resolution < 180 eV in practice, and it produced X-rays using a 2-W tube
(Ag anode, 45 kV maximum voltage, 80 pA maximum current). The
elements of interest were measured using the “main” filter and its cor-
responding analytical conditions (voltage: 45 kV, current: <44 pA) for
40-80 s. Between 2014 and 2017, artifacts from NG1 were analyzed in
Armenia using the same Niton 950 XL3t GOLDD+ instrument described
in Section 4.1. In addition, these instruments used FP correction and the
same set of obsidian specimens for calibration.

5.3. Sourcing results
Appling the DFA from Fig. 8 to the 40 NG1 artifacts results in their

attribution to the alpha, beta, gamma, and delta types of Hatis obsidian.
In Fig. 17, the NG1 artifacts are plotted individually, whereas a box-
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Fig. 11. Large outcrops of alpha obsidian (a) occur on the southern slopes of Hatis volcano, while (b) the northeastern flanks have only small nodules and lamellae of
largely perlitic obsidian.
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Fig. 12. A satellite image of Hatis volcano, when combined with our analytical data and field notes, delineates the approximate distributions of the four obsidian

types on the landscape. Satellite image courtesy of DigitalGlobe Foundation.

percentile plot (Esty and Banfield, 2003) illustrates the distribution of
the elemental data for the geological specimens. This plot establishes
that each of the four Hatis obsidian types is present among the sourced
NG1 assemblage, despite the fact that the outcrops span more than 500
m in elevation on the volcanic slopes.

5.4. Archaeological interpretation
Artifacts of gamma- and delta-type obsidian occur in the NG1

assemblage but are scarce. Today, exposures of alpha and beta obsidian
are highly visible as one passes by the volcano, especially on a sunny day,
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when sunlight glistens off of the glassy fragments. Due to less tectonic
uplift, though, it is possible that such visibility was less pronounced when
NG1 was occupied. Erosion is another force to consider. Within the
confines of our proposed models (Fig. 13a-b), outcrops of the different
obsidian types might have shifted, to some extent, not only in precise
location but also the degree of exposure. Likely erosive processes at Hatis
would include volcanic and fluvial activity, freeze-thaw weathering, and
Quaternary climatic changes subsequent to the obsidian emplacement.
Such forces certainly altered those spots on the volcanic slopes where
obsidian could be collected, although they could not transpose the lower-
and higher-elevation outcrops. Today the surroundings are mountain
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Fig. 13. Simplified cross-sections of Hatis volcano to illustrate the two poten-
tial mechanisms for our observed shifts in obsidian composition: (a) the four
types reflect a series of closely timed eruptions, yielding four similar but still
distinct lavas stacked atop one other, or (b) the magma chamber was chemically
zoned such that the lava changed in composition as it erupted but folded over
onto itself, yielding four discrete geochemical steps rather than continuous
variation at the surface.
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steppe, and there is currently no tree cover at Hatis, albeit paleoenvir-
onmental data are lacking to establish how far we can extrapolate from
the current ecological conditions back into the Pleistocene, even during
interglacials when NG1 was occupied. Certainly, tree cover might affect
the visibility and accessibility of the different outcrops. In recent times,
Hatis volcano has been covered by ~50 cm of snow between December
and April (Badalyan et al., 2004), so access to obsidian outcrops is limited
seasonally, and we assume that this would have been the case in the past
as well.

Today one must bypass the lower outcrops of alpha and beta obsidian
and climb higher to encounter the gamma and delta obsidian outcrops,
and this would, in general, have been true in the past. Despite visiting
Hatis volcano multiple times, starting in 2011, we did not find the high
delta-type outcrops until 2016. We can attest that bypassing the alpha
and beta outcrops to obtain gamma and delta obsidian requires more
energy, the expenditure of which makes little sense given that there are
no discernable differences in the flaking quality (or “knappability”)
among the four types. This suggests that collection from the higher-
elevation outcrops might indicate embedded procurement, which
would be consistent with acquisition of Gutansar obsidian at NG1 re-
ported by Frahm et al. (2019). Utilizing the higher-elevation types
makes the most sense in the context of other activities, such as logistical
subsistence forays and/or wayfinding/reconnaissance (i.e., gaining a
higher view of the distribution of resources and other groups on the
landscape below).

Nevertheless, caution regarding such an interpretation is still war-
ranted. To date, no rivers are known to have transported Hatis obsidian
any great distance from its slopes, and the obsidian is not known in
secondary deposits on the plains surrounding this volcano (Badalyan
et al., 2004). The authors’ surveys of the Hrazdan basin, which included
identification and pXRF analysis of obsidian pebbles in alluvial and
floodplain deposits (Frahm et al., 2016, 2017), did not identify any
deposits of Hatis-derived obsidian. It must be recognized, however, that
much of this survey work focused on times that predate the emplace-
ment of Hatis obsidian, which undermines its direct relevance to this

Fig. 14. (a) A scatterplot of elemental data (Rb vs. Mn measured by NAA) for four different obsidian flows at Newberry volcano, extracted from Ambroz (1997) using
WebPlotDigitizer v4.4, and (b) the corresponding locations of these flows inside the volcanic caldera. The image is a cropped version of astronaut photograph
#18S063-E-70532, which was acquired on August 13, 2020, and it is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing
Unit, Johnson Space Center, which freely shares space photography for use by the public.
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Fig. 15. (a) A scatterplot of elemental data (Ti vs. Fe measured by NAA) for obsidian from the Borax Lake dome, as reported by Bowman et al. (1973b) as well as (b) a
plan and (c) cross-section view of the dome (the pink feature labeled “rb”) as mapped by USGS geologists (Hearn et al., 1995).

Fig. 16. Photograph of NG1, looking toward the west from the eastern side of the Hrazdan valley, and the associated volcanic features, specifically the two dated
lava flows.

issue (Sherriff et al., 2019). At present, we do not have strong reasons to 6. Discussion

hypothesize that the NG1 occupants were able to collect Hatis obsidian

from secondary deposits a notable distance from the slopes of the vol- It remains uncertain how much of a geological oddity Hatis volcano
cano. We must, though, entertain the possibility the delta-type artifact is is and how much of its unusual character is due to its occurrence in the
aresult of erosion and gravity (i.e., a delta-type block tumbled to a lower milieu of the Armenian Highlands instead of, say, the American Pacific
elevation). Northwest. The complex tectonics and subduction of the region are

topics of active research (e.g., Avagyan et al., 2018; Hassig et al., 2019;
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Fig. 17. A discriminant function (based on Rb, Sr,

oo and Zr) separates the Hatis obsidian types in (top) the

geological specimens using a box-percentile plot (Esty
and Banfield, 2003) and (bottom) the NG1 artifacts,
which are plotted individually. Greater spread among
the artifacts is, we suggest, primarily due to analyzing
weathered, irregular artifact surfaces rather than
fresher, flatter outcrop surfaces. In this plot, the shape
width at any point is proportional to the percentile.
The median value is marked by a solid line at the
widest point, the first and third quartiles are denoted
by dashed lines, the 5th and 95th percentiles are

marked by solid lines, and the points on each side are
the maxima and minima for that particular obsidian
type.
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Halama et al., 2020; Lin et al., 2020; Sugden et al., 2020). As implied by
Shirinian and Karapetian (1964), it may well be that models of obsidian-
producing rhyolitic volcanism are based too much on observations from
the relatively geologically straightforward cases of plate subduction
along the so-called Pacific Ring of Fire. That is, common descriptions of
obsidian-bearing lava flows and domes (e.g., Fink, 1987; Hughes and
Smith, 1993; Shackley, 2005) may well be most relevant in the North
American West but less applicable to other geological settings, such as
the divergent plate boundary of the East African Rift System or rhyolitic
volcanism in the middle of a continental or an oceanic tectonic plate. On
the other hand, it might be such complexity of obsidian sources is more
common than is generally appreciated. Cobean (2012) compared the
chemical characterization of obsidian sources, at least in many parts of
the world, to the Apollo moon missions: after visits during the 1960s and
1970s to grab a few specimens of rock, scientists never returned. Given
how few specimens have often been used to define their elemental
“fingerprints,” such complexity of obsidian sources might be more
common.

For reasons that are not yet clear, Hatis volcano has a deceptively
simple appearance for an obsidian source. Connecting obsidian
composition to a location (or locations) in space is, of course, the goal of
obsidian sourcing (Neff, 1998), and one challenge of attributing an
artifact to a specific source is, as discussed by Green (1998:227),
“characterizing the size of the dot which pinpoints its supposed origin.”
As a result of the research that we document here, it is possible to more
precisely define the origins of obsidian artifacts that derived from Hatis.
It should be highlighted that this was an iterative process. We did not
follow Cobean’s (2012) “Apollo moon mission” model. In particular, we
did not simply drive to the volcanic outcrops, take a handful of obsidian
specimens, send them to a distant analytical laboratory, and never re-
turn. Instead, we propose that sampling and surveying, on one hand,
and conducting chemical analyses, on the other, are best when inte-
grated and cyclical or repeated, permitting a more nuanced under-
standing of an obsidian source. It is not a coincidence that the four
chemical types of obsidian from Hatis volcano were identified using
PXRF, an analytical technique that allowed us to integrate our field and
(traditionally) “lab” work.
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7. Conclusions

Four compositional types of obsidian occur at Hatis volcano and fall
into a clear geochemical trend as elevation increases, but the precise
geological mechanism for these different types remains unclear.
Fortunately, from an archaeological perspective, it is not essential to
understand the exact eruptive mechanisms to use the obsidian types’
different elevation ranges as an investigative tool. Our ability to
recognize and map these types was predicated on our use of pXRF in
the field instead of random transects or probabilistic sampling. This
technique also permitted us to not only analyze 2351 obsidian artifacts
from the Lower Palaeolithic site of NG1 but also recognize 40 Hatis-
derived artifacts from the site, reflecting all four obsidian chemical
types. Given that the outcrops of these chemically distinct types span
more than 500 m (from < 1600 to greater than 2100 m asl) in elevation
on the volcanic slopes, sourcing obsidian artifacts that derive from
Hatis volcano enables future studies on links between altitude and
behaviors linked to hominin toolstone acquisition.
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