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Abstract

Data augmentation has become a de facto component
for training high-performance deep image classifiers, but
its potential is under-explored for object detection. Not-
ing that most state-of-the-art object detectors benefit from
fine-tuning a pre-trained classifier, we first study how the
classifiers’ gains from various data augmentations trans-
fer to object detection. The results are discouraging; the
gains diminish after fine-tuning in terms of either accuracy
or robustness. This work instead augments the fine-tuning
stage for object detectors by exploring adversarial exam-
ples, which can be viewed as a model-dependent data aug-
mentation. Our method dynamically selects the stronger
adversarial images sourced from a detector’s classification
and localization branches and evolves with the detector to
ensure the augmentation policy stays current and relevant.
This model-dependent augmentation generalizes to different
object detectors better than AutoAugment, a model-agnostic
augmentation policy searched based on one particular de-
tector. Our approach boosts the performance of state-of-
the-art EfficientDets by +1.1 mAP on the COCO object de-
tection benchmark. It also improves the detectors’ robust-
ness against natural distortions by +3.8 mAP and against
domain shift by +1.3 mAP.

1. Introduction

Deep neural networks (DNN5s) are powerful tools for vi-
sual representation learning. As the training data grows in
size and diversity, DNNs keep up the pace and achieve un-
precedented performance on a wide range of benchmarked
tasks [13, 31, 30, 24, 12, 29]. The learned representa-
tions also demonstrate good transferability to downstream
tasks for which there is often a small amount of curated
data. This pre-training and then fine-tuning paradigm is
one of the crucial enablers for state-of-the-art object de-
tectors [32, 11, 30, 20, 22]. In this paper, we aim to en-
hance this learning paradigm for training not only accurate
but also robust object detectors.
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Figure 1. Top: Det-AdvProp improves object detectors’ accuracy
on clean images. Our model correctly detects some objects (e.g.,
“spoon” and “knife”) missed by the vanilla detector trained with-
out Det-AdvProp. Middle: Det-AdvProp improves the detectors’
robustness against natural corruption. The vanilla detector misses
“bowl” and “oven” and produces a false positive for “person” af-
ter the image is corrupted by motion blur. Bottom: Det-AdvProp
improves robustness against cross-dataset domain shift. We can
successfully detect the “potted plants” behind the “cat” from an
image out of the dataset for training. (best viewed in color).

We first revisit the role of pre-training in object detec-
tion, given He et al.’s study [ 1] about vanilla ImageNet [5]
pre-training and yet the new advances in data-augmented
ImageNet pre-training [36, 34]. We examine both the ac-
curacy and robustness of the detectors. In the study with
the top-performing EfficientDet detectors [33], we find that
the performance gains for ImageNet classification, brought
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by advanced data augmentation methods in pre-training, di-
minish after fine-tuning regardless of the detectors’ accu-
racy or robustness. This observation motivates us instead to
investigate fine-tuning, the second stage in the paradigm for
training object detectors.

Our high-level idea is to reposition the recently devel-
oped data augmentations from the pre-training stage to fine-
tuning. We first study AutoAugment [43] in the object de-
tector fine-tuning because its policy is purposely searched
for augmenting object detectors’ training. However, exper-
iments reveal that AutoAugment fails to provide consistent
improvements to the detectors we studied, probably because
it was searched based on only one object detector and one
dataset, limiting its generalization ability.

In light of the lessons above, we switch to the model-
dependent data augmentation of AdvProp [34] for fine-
tuning object detectors. AdvProp uses adversarial exam-
ples to improve image classification models. It employs
separate batch normalization layers for the clean training
images and the adversarial examples to accommodate their
distinct statistics. Unlike AutoAugment or many other aug-
mentation methods, AdvProp can dynamically evolve with
the primary model during training to ensure the augmenta-
tion is up to date.

We improve AdvProp to fit it into the object detection
fine-tuning (denoted by Det-AdvProp). Previous works
show that detectors benefit from shape cues [8], and adver-
sarial examples help CNNs learn shape-related representa-
tions [40]. There are two sources to generate adversarial
examples using a detector: its classification head and its
localization head. We conduct a local comparison at each
training iteration to identify the source that is more “adver-
sarial” than the other, which is then selected to augment the
training data. We show that this local comparison is crucial.
Straightforwardly aggregating the two sources gives rise to
weak adversarial examples because some of the adversarial
gradients mutually conflict [38]. Another alternative, keep-
ing both and separating them to different batch normaliza-
tion layers, incurs a too strong regularization to the detector,
leading to low accuracy, albeit high robustness.

We report the following main findings in this paper. Al-
though the pre-training stage remains more effective for ob-
ject detection than random initialization under a reasonable
computing budget (we run the fine-tuning for up to 300
epochs on the COCO object detection dataset [21]), the
performance gain at the pre-training-stage diminishes after
fine-tuning, regardless of any strong data augmentations for
the pre-trained backbone. Instead, we demonstrate that it
is more promising to incorporate advanced data augmen-
tations into fine-tuning. Our Det-AdvProp boosts state-of-
the-art EfficientDets’ accuracy by 0.3—1.1 mAP, robustness
to natural corruption by 0.8-3.8 mAP, and robustness to do-
main shift by 0.2-1.3 mAP (illustrated in Figure 1). Fi-

nally, we see that our model-dependent Det-AdvProp sub-
stantially outperforms the model-agnostic AutoAugment in
object detection under various settings.

2. Related Work

Data Augmentation. By applying label-preserving trans-
formation to images, data augmentation has become a stan-
dard paradigm for training an image classifier [3, 4, 34, 37,

, 19, 41, 18]. Most of them are model agnostic policy.
In comparison, AdvProp [34] augments the training data
by adversarial attack, its augmentation policy is unique to
model and data. For the downstream object detection task,
there are much fewer works specifically crafted for the fine-
tuning process [42, 43]. One representative work - Au-
toAugement [43] searches based on RetinaNet [20] and a
subset of COCO dataset [21], containing operations like ro-
tation and bbox-only-translation.

Attacks and Adversarial Training for Object Detectors.
Many effective attacks crafted for object detectors have
been proposed recently. Most of them generate adversar-
ial examples solely based on one individual loss (classifica-
tion or localization loss) of the detection task [35, 2, 7, 25].
For instance, DAG [35] optimizes over a loss function that
misleads the detectors to produce incorrect classification re-
sults. Some other works [17, 23] simultaneously attacks
both the bounding box regression and classification to dis-
able their predictions. To defend those attacks, Zhang et
al. [38] extend adversarial training [26] to the scenario of
object detection by leveraging the attacks sourced from both
classification and localization domains. Our proposed Det-
AdvProp can largely outperform their adversarial training in
terms of both clean accuracy and robustness (Appendix B).

3. Motivation

Data augmentation is an effective way to improve im-
age classification models [3, 37, 4, 36]. For example, Ad-
vProp [34] uses adversarial images to boost the accuracy
of EfficientNets [32] by up to 0.6% on ImageNet [5] ac-
curacy, and Noisy Student [36] trained with noise and data
as augmentation surpasses the vanilla models by over 1%
on ImageNet. When it comes to object detection, which is
arguably more complex than image classification, there are
two natural choices to augment a detector: (i) Borrow an
already augmented model from the upstream classification
task and then fine-tune it for object detection. (ii) Directly
augment the detector during training.

We first examine the first choice (i). We follow the com-
mon practice to fine-tune pre-trained ImageNet classifiers
using the MS COCO object detection dataset [21]. Specifi-
cally, we initialize three sets of EfficientDets [33] (each set
contains a small-scale detector D2 and a large-scale detec-
tor DS) by three ImageNet models, which are respectively
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Figure 2. Results of EfficientDet-D2 and D5 on COCO and
COCO-C with vanilla, AdvProp [34], and Noisy Student [36] pre-
trained backbones. Fine-tuning substantially attenuates the effect
of these data augmentation methods applied to pre-training.

pre-trained with no strong augmentation, AdvProp [34], and
Noisy Student [36]. We fine-tune the networks up to 300
epochs to ensure they converge.

Figure 2 shows the comparison results on the valida-
tion sets of MS COCO [21] and COCO-C [27], respec-
tively. The COCO-C dataset provides natural corruption
to the COCO images aiming to test a detector’s robustness
to the real-world adversary. Although the checkpoints pro-
duced by AdvProp and Noisy Student surpass their vanilla
counterparts (e.g., for BS, AdvProp +0.6% accuracy on
ImageNet and -6.1% mean corruption error on ImageNet-
C [14]), their advantages do not transfer to the object de-
tection. The detectors built upon them perform similarly
and sometimes even worse on COCO than the detector fine-
tuned from the vanilla checkpoint. A similar observation
holds on COCO-C. Our study is in the same vein as [11],
but we examine the detectors’ robustness in addition to their
accuracy.

Since the fine-tuning attenuates the performance gains
by strong data augmentation in the upstream classification
task, we shift to the second option, augmenting during fine-
tuning for harvesting data augmentation to improve a detec-
tor’s accuracy and robustness. It is nontrivial to kill accu-
racy and robustness with one stone. Our first trial is with
AutoAugment [43], which is searched based on the Reti-
naNet object detector [20] over COCO. However, it does
not generalize well to other detectors (EfficientDets in this
work), albeit still on the same COCO dataset (see Tables 1,
3, 5 for the results).

In light of these challenges, we develop a model-
dependent augmentation for object detection via adversar-
ial learning, given AdvProp’s promising results [34]. Our
method enables a detector to model adversarial images
sourced from both object classification and localization, en-
forcing the detector to learn from its own weaknesses with-
out the need for policy search as in AutoAugment [43].

4. Approach

This section describes our main approach to improving
the object detectors’ robustness and accuracy. We start by
reviewing AdvProp for classification [34] and then tailor it
for object detection.

4.1. AdvProp for Classification Revisited

Prior works that jointly train with clean and adversarial
examples meet with performance degradation on clean im-
ages despite the improvement of robustness (e.g., against
adversarial attacks) [26, 15, 39]. Most recently, Xie et
al. manage to leverage the adversarial examples to im-
prove image classifiers’ accuracy, besides robustness, by a
new training paradigm named Adversarial Propagation (Ad-
vProp) [34]. Intuitively, they argue that the clean and ad-
versarial images are drawn from distinct distributions, mak-
ing it suboptimal to share the same statistical estimation in
batch normalization (batchnorm) layers. To disentangle the
two underlying distributions, AdvProp introduces auxiliary
running mean and running variance for the adversarial im-
ages, leaving the main batchnorm layers to serve solely for
the clean images. In particular, in every epoch, they first
generate adversarial images based on the auxiliary batch-
norm. Then they forward the clean and adversarial mini-
batches into the network, each with their exclusive batch-
norm, followed by standard backpropagation to optimize
the total loss.

Under such a training scheme, the separate batchnorms
take care of the distribution shift between clean and adver-
sarial examples, jointly giving rise to higher performance
than learning only with the clean images. Another bene-
fit is robustness. The models trained by AdvProp is more
robust against image distortions, probably because they are
immune to the adversarially distorted examples by training.
Inspired by their success in image classification, we pro-
pose Det-AdvProp to build accurate and robust detectors as
object detection plays a crucial role in many real-world ap-
plications such as autonomous driving.

4.2. Det-AdvProp

One-stage object detectors take an image x as input and
predict a set of objects {(y,b)}, each includes a vector ¥
representing the probabilities over all possible classes and
4-dimensional bounding box coordinates b. During train-
ing, the objective function is usually formulated as follows:

inn EXND;y,bNB(X) Ldet (X7 Y, ba 9), (1)
Ldet (Xv Y, b’ 9) :Lcls (Xa Y; 9) +w- Lloc(x’ b’ 0)’ (2)

where D is the set of training images, B(x) collects all the
class y and bounding box b labels of the objects in image x,
6 is the model parameter, and w is the weight to balance the
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classification loss L5 (e.g., focal loss [20]) and the local-
ization loss L;,. (e.g., Huber loss).

Equation (2) essentially defines a multi-task learning
problem, so possible attacks on object detectors can emerge
from two heterogeneous domains for classification and lo-
calization, respectively. In some sense, it is easier to at-
tack object detectors than image classifiers. Many existing
methods have successfully fooled popular object detectors
by attacking an individual loss in equation (2) [35, 2, 7].

It is a double-edged sword to have the adversarial exam-
ples of heterogeneous domains for object detectors. On the
one hand, they may be viewed as versatile augmentations
to the training data, potentially improving the detectors’ ac-
curacy on clean test data. On the other hand, the detectors
need to be enhanced against both domains of adversarial
examples to achieve robustness.

AdvProp over L;.;. Due to the multi-task nature of the
detectors, a straightforward application of AdvProp to ob-
ject detection, i.e., by attacking the total loss Lg.; and ded-
icating two batchnorms, does not work well (see Table 8).
Its performance is about the same or worse than attacking
the single-task classification loss L.;s. We can further un-
derstand this observation following [38], which finds that
the two gradients, VyL.;s and VyL;,. which are generated
when we attack the overall detection loss Lg.;, have dis-
tinct value ranges and inconsistent directions. They reduce
the augmentation effect of the resultant adversarial exam-
ples and even mutually cancel out.

AdvProp over L., and L;,.. Another plausible ap-
proach is to model the clean images and the attacks sourced
from classification and localization as three distinct do-
mains. To disentangle them, we use three batchnorms. One
reserved for clean images, another accounting for the ad-
versarial examples generated by attacking the classification
loss, and the last for the localization-sourced adversarial ex-
amples. However, this method hurts the detectors’ perfor-
mance on clean images though it yields the highest robust-
ness on corrupted images (see Table 8). We conjecture the
two auxiliary batchnorms are overly strong regularization
during training, leading to the detector’s under-fitting to the
clean training set.

Det-AdvProp. Learning from the two lessons above,
we develop the following training scheme named Det-
AdvProp. Similar to the AdvProp over L4, we still use
one, not two, auxiliary batchnorm to take account of the ad-
versarial examples. Similar to the AdvProp over L5 and
Lo, we generate two adversarial examples for each input
by attacking the two losses separately. However, we keep
only one of them to avoid the potential conflict between the
adversarial gradients of the classification loss and the local-
ization loss by a max-max rule first proposed in [38].

Algorithm 1: Det-AdvProp

Input: Object detection dataset D
Output: Learned network parameter 6
1: for each training epoch do
2: Sample a random batch {x’, {y*,b'}} ~ D
3. Generate X_,, based on L (x’, y*) using
auxiliary batchnorm
4:  Generate X],, based on L;,.(x’, b") using
auxiliary batchnorm
5. Select X’ based on Eq (5)
6:  Compute Lge;(x*, {y?, b'}) with main batchnorm
7. Compute Lge: (X', {,b'}) with auxiliary
batchnorm
8:  Perform a step of gradient descent w.r.t. 0
min Lges (X, 5%, b*) + Lo (X', 4%, bY)
9: end for

More concretely, we use the FGSM algorithm [10] with
non-targeted attack to explain Det-AdvProp without loss of
generality. Given an input image x and a bounding box b
over an object of class y, FGSM produces the adversarial
examples by a one-step projected gradient descent:

f(cls = P(X +e€- Sign(vchls(X7 Y3 9)))a (3)
f(loc = 'P(X +€- Sign(vxLloc(X7b; 9)))’ (4)
X = arg max Ldet (Xa Y, b7 9)3 (5)

XE{Xets Xioe }

where € is the attack strength and P denotes the projection
onto the norm ball {X | ||X — X||oo < €}. We first generate
two adversarial examples by maximizing the single task loss
and then choose the one that maximizes the total loss of the
detection task. Equation (5) is the max-max rule to keep the
adversarial example (out of two) that maximizes the total
detection loss Lg.;. The inner “max” in the max-max rule
refers to the adversarial examples that maximize L.;s and
Lioc, respectively, and the outer “max” indicates we take
the one that maximizes the total detection loss Lge:. The
overall training objective is given below:

mgin EXND;y,bNB(x)Ldet(Xa Y, b; 9) + Laet (f(’ Yy, b; 9) (6)

Intuitively, this max-max scheme lets the stronger one
survive between the two adversarial examples X5 and X;oc.
By separately attacking the classification and localization
branches, we avoid the gradient misalignment problem.
Since we only produce one adversarial example per clean
image, coupled with one auxiliary batchnorm, the training
does not suffer from the excessive regularization problem
mentioned earlier.

Algorithm 1 describes Det-AdvProp in detail. Note that
we can safely discard the auxiliary batchnorm after training
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Model [ mAP AP50 APT5 API APm APs
EfficientDet-D0 343 524 36.6 53.8 40.0 3.1
+ AutoAugment 34.4 (+0.1) | 52.8 (+0.4) | 36.7 (+0.1) | 53.1(-0.7) | 40.2 (+0.2) | 13.9 (+0.8)
+ Det-AdvProp (ours) | 34.7 (+0.4) | 52.9 (+0.5) | 37.2 (+0.6) | 54.1 (+0.3) | 40.6 (+0.6) | 13.9 (+0.8)
EfficientDet-D1 402 58.8 238 57.7 459 21.2
+ AutoAugment 40.1 (-0.1) | 59.2 (+0.4) | 43.2 (+0.4) | 57.9 (+0.2) | 45.7(-0.2) | 19.9 (-1.2)
+ Det-AdvProp (ours) | 40.5 (+0.3) | 59.2 (+0.4) | 43.3 (+0.5) | 58.8 (+1.1) | 46.2 (+0.3) | 20.6 (-0.6)
EfficientDet-D2 435 62.5 471 60.9 486 237
+ AutoAugment 435 (+0.0) | 62.8 (+0.3) | 46.6(-0.5) | 59.8 (-1.1) | 48.7 (+0.1) | 23.9 (+0.2)
+ Det-AdvProp (ours) | 43.8 (+0.3) | 62.6 (+0.1) | 47.3 (+0.2) | 61.0 (+0.1) | 49.6 (+1.0) | 25.6 (+1.9)
EfficientDet-D3 46.8 65.3 50.6 62.8 51.6 29.8
+ AutoAugment 47.0 (+0.2) | 66.0 (+0.7) | 50.8 (+0.2) | 63.0 (+0.2) | 51.7 (+0.1) | 29.8 (+0.0)
+ Det-AdvProp (ours) | 47.6 (+0.8) | 66.3 (+1.0) | 51.4 (+0.8) | 64.0 (+1.2) | 52.2 (+0.6) | 30.2 (+0.4)
EfficientDet-D4 493 68.2 533 63.7 53.6 33.0
+ AutoAugment 495 (+0.2) | 68.7 (+0.5) | 53.7 (+0.4) | 64.9 (+1.2) | 54.0 (+0.4) | 31.9 (-1.1)
+ Det-AdvProp (ours) | 49.8 (+0.5) | 68.6 (+0.4) | 54.2 (+0.9) | 65.2 (+1.5) | 54.2 (+0.6) | 32.4 (-0.6)
EfficientDet-D5 51.3 70.1 55.8 65.1 55.1 35.9
+ AutoAugment 51.5(+0.2) | 70.4 (+0.3) | 56.0 (+0.2) | 65.2 (+0.1) | 56.1 (+1.0) | 35.4 (-0.5)
+ Det-AdvProp (ours) | 51.8 (+0.5) | 70.7 (+0.6) | 56.3 (+0.5) | 66.1 (+1.0) | 56.2 (+1.1) | 36.2 (+0.3)

Table 1. Comparison of vanilla training, AutoAugment [

], and Det-AdvProp on MS COCO [

]. Our proposed Det-AdvProp consistently

outperforms vanilla training for different detectors, and it performs better than AutoAugment on all object sizes.

and use the main batchnorm for inference. The object de-
tectors trained by Det-AdvProp have the same parameters
and latency as those obtained by vanilla training.

5. Experiments
5.1. Setups

We select EfficientDet [33] of various scales as
the default object detectors, including the lightweight
EfficientDet-D0 model with fewer than 4M parameters and
the large-scale EfficientDet-D5 detector that achieves over
50 mAP on COCO [21]. We train the detectors using the
COCO 2017 object detection dataset [21] for 300 epochs
and evaluate them on COCO’s validation set to obtain the
so called clean accuracy. We also test the detectors’ robust-
ness to natural corruptions on the COCO-C dataset [27],
including 15 types of corruption each with 5 severity levels.
Finally, we apply the detectors to the PASCAL VOC 2012
dataset [0] to evaluate robustness under domain shift. Please
refer to Appendix D for details and training complexity.

5.2. Det-AdvProp Improves Accuracy

Results on COCO. We train the EfficientDet detectors
with Det-AdvProp and compare them with the models out
of vanilla training and the AutoAugment searched for ob-
ject detection [43] in Table 1. As different scales of de-
tectors favor different attack manners (targeted vs. non-
targeted), which we ablate next, we first report the best
clean mAP here. See Appendix D for the corresponding
attack manners. Compared with the vanilla training base-
line, our method can consistently increase the mAP score
over all the detectors of various scales. The improvement
mainly comes from large and medium-sized objects. The
performance gain is especially notable for large-scale de-
tectors with high capacities. Det-AdvProp improves DO-
D2 by at most 0.4 mAP, but boosts D3—D5 by at least 0.5

mAP. On the contrary, AutoAugment cannot transfer well to
the EfficientDets. It even incurs performance drop for some
models (e.g., -0.1 mAP on D1). Det-AdvProp outperforms
AutoAugment not only for the overall results but also on all
the sizes of objects.

To push the limit of our method, we further combine the
two strategies by employing AutoAugment to fine-tune the
detectors obtained by Det-AdvProp. According to Figure
3a, the combined augmentation leads to even more accurate
detectors. Similar to the previous observations, the perfor-
mance gain is proportional to the model capacity. Detec-
tors larger than D3 all increase by at least 1.0 mAP. With
the combined augmentation strategy, D4 can achieve 50.4
mAP with just 21M parameters. As a comparison, Amoe-
baNet accompanied by NAS-FPN [9] and AutoAugment
[43] achieves 50.7 mAP but has 209M parameters, which
is 10x larger than D4. The analysis in Appendix C fur-
ther shows that we can achieve performance gain on most
classes and reduce various types of detection errors.

Model | DO | DI | D2 | D3 | D4 | D5
Vanilla 334 | 366 | 382 | 417 | 446 | 465
et AdvPr 339 | 379 | 400 | 438 | 462 | 482
© P | (+0.5) | +1.3) | (+1.8) | (+2.1) | (+1.6) | (+1.7)

Table 2. Performance comparison between Det-AdvProp and the
vanilla baseline without ImageNet pre-training. Det-AdvProp
gives rise to performance gains for all detectors.

Without Pre-training. In some real-world settings, the
ImageNet pre-trained backbone is not always accessible due
to various reasons. Previous work also shows that train-
ing object detectors from scratch can match the perfor-
mance with pre-training given sufficiently many training it-
erations [ 1 1]. Hence, we also report the improvement of our
method over the vanilla training baseline when Efficient-
Dets are initialized from scratch. The other training settings
are exactly the same as before. As illustrated in Table 2,
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EfficientDet-D4 achieves over 50 mAP with 21M parameters, which is 10x less than AmoebaNet+NAS with NAS-FPN [9] and AutoAug-

ment [

]. Middle: Performance gains of AutoAugment over vanilla training on COCO-C [

]. Right: Performance gains of Det-AdvProp

over vanilla training on COCO-C. The largest improvement is observed when the images are distorted by random noise and with strong

corruption strength. (best viewed in color).

the proposed Det-AdvProp’s effectiveness is magnified in
this scenario. The augmented models can be over 2.0 mAP
better than those trained via the vanilla baseline.

Single-class object detection. In certain applications,
there is only one object class of interest. They desire a de-
tector to localize that object out of the background, such as
face detection, pedestrian detection, etc. To simulate this
scenario, we choose three classes spanning different object
sizes and numbers of training instances from the COCO
dataset to test Det-AdvProp under the single-class object
detection setting. We follow exactly the same experiment
settings as before and always use the attack strength of
€ = 1. Table 3 shows the results of EfficientDet-D3, where
AutoAugment again degrades the mAP for every class. Its
policy is searched based on 80 classes and fails to adapt
well to the single-class object detection. In contrast, Det-
AdvProp enhances the detector by automatically learning
from its own weakness and thus achieves consistent im-
provement. The performance gain tends to be larger when
there are fewer training images.

Donut | Small 1,585 254 513"2) (fﬁg)
Person | Medium | 66,808 582 :gg) (f_(s)g)
Truck | Large | 6377 | 28.1 ng) (igZ)

Table 3. mAP of vanilla, AutoAugment [43], and Det-AdvProp
applied to EfficientDet-D3 under the single-class object detec-
tion setting. The AutoAugement strategy is searched based on 80
classes and fails to adapt to this setting. Det-AdvProp maintains
its effectiveness in part due to its model-dependent nature.

5.3. Det-AdvProp Improves Robustness

Results on distorted COCO-C. We further evaluate the
robustness of the detectors trained by Det-AdvProp un-
der various corruptions on COCO-C [27]. Detecting ob-

jects from COCO-C is much more difficult than that from
clean images. The popular Faster-RCNN [31] model with
ResNet50 [13] backbone achieves 36.3 mAP on clean
COCO images, while its mAP reduces to only 18.2 on
COCO-C. As shown in Table 4, Det-AdvProp can achieve
more significant improvement on distorted images than on
the clean images over the baseline. For instance, Det-
AdvProp can improve EfficientDet-D4 by 2.7 mAP on
COCO-C, which is over 5x of the improvement on clean
COCO. Compared with AutoAugment, we can consistently
double its robustness improvement on various scales of Ef-
ficientDets. To further break down the improvement into
different corruptions and severities, we visualize the per-
formance gain achieved by AutoAugment [43] and the pro-
posed Det-AdvProp in Figures 3b and 3c. Models trained
by Det-AdvProp outperform the vanilla models on all 15
corruptions, and we observe the largest improvement when
the images are distorted by random noise (e.g., +4.36 mAP
under Gaussian noise and +4.08 mAP under shot noise).
Another interesting finding is that the performance gains
tend to become larger when the corruption strengths are
stronger. Although AutoAugment can also help the models
generalize to COCO-C, it is less effective than ours against
every type of corruptions. The results of combined Det-
AdvProp and AutoAugment is shown in Appendix A, where
we achieve the largest improvement of +3.8 mAP.

Model Vanilla | AutoAugment | Det-AdvProp (ours)
EfficientDet-D0 | 214 21.8 (+0.4) 22.2 (+0.8)
EfficientDet-D1 | 244 25.1 (+0.7) 25.6 (+1.2)
EfficientDet-D2 | 26.7 27.1 (+0.4) 27.6 (+0.9)
EfficientDet-D3 | 28.8 29.6 (+0.8) 30.8 (+2.0)
EfficientDet-D4 | 30.1 31.5(+1.4) 32.8 (+2.7)
EfficientDet-D5 31.4 32.6 (+1.2) 33.7 (+2.3)

Table 4. Comparison of augmentation strategies and vanilla train-
ing on COCO-C [27]. Det-AdvProp can double the improvement
achieved by AutoAugment [43].

Results on cross-dataset generalization. Another mani-
fest of the model robustness is whether it can retain strong
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performance against domain shift. PASCAL VOC 2012 [6]
only contains 20 classes, which are much smaller than the
80 labeled classes in COCO. The underlying distributions of
the two datasets are also different in the image content or the
bounding box sizes and locations. We use the trained detec-
tors to run inference directly on the VOC dataset to test their
transferibility. We maintain the COCO evaluation metrics
in this experiment. According to Table 5, the Det-AdvProp
trained detectors always outperform those by vanilla and
AutoAugment training under every model scale and every
evaluation metric. The models obtained by AutoAugment
even substantially underperform the vanilla models. For in-
stance, AutoAugment lowers D2’s mAP by 0.6 compared
to the vanilla training baseline. We also show the results
of Det-AdvProp + AutoAugment in Appendix A, where the
largest improvement is +1.3 mAP on EfficientDet-D5.

Model mAP AP50 AP75

EfficientDet-D0 55.6 77.6 61.4
+ AutoAugment 55.7 (+0.1) | 77.7 (+0.1) | 61.8 (+0.4)
+ Det-AdvProp (ours) | 55.9 (+0.3) | 77.9 (+0.3) | 62.0 (+0.6)
EfficientDet-D1 60.8 82.0 66.7
+ AutoAugment 61.0 (+0.2) | 82.2 (+0.2) | 67.2 (+0.5)
+ Det-AdvProp (ours) | 61.2 (+0.4) | 82.3 (+0.3) | 67.4 (+0.7)
EfficientDet-D2 63.3 83.6 69.3
+ AutoAugment 62.7 (-0.6) | 83.3(-0.3) | 69.2(-0.1)
+ Det-AdvProp (ours) | 63.5 (+0.2) | 83.8 (+0.2) | 69.7 (+0.4)
EfficientDet-D3 65.7 85.3 71.8
+ AutoAugment 65.2(-0.5) | 85.1(-0.2) | 71.3 (-0.5)
+ Det-AdvProp (ours) | 66.2 (+0.5) | 85.9 (+0.6) | 72.5 (+0.7)
EfficientDet-D4 67.0 86.0 73.0
+ AutoAugment 67.0 (+0.0) | 86.3 (+0.3) | 73.5 (+0.5)
+ Det-AdvProp (ours) | 67.5 (+0.5) | 86.6 (+0.6) | 74.0 (+1.0)
EfficientDet-D5 67.4 86.9 73.8
+ AutoAugment 67.6 (+0.2) | 87.2(+0.3) | 74.2 (+0.4)
+ Det-AdvProp (ours) | 68.2 (+0.8) | 87.6 (+0.7) | 74.7 (+0.9)

Table 5. Results on PASCAL VOC 2012. The proposed Det-
AdvProp gives the highest score on every model and metric. It
largely outperforms AutoAugment [43] when facing domain shift.

5.4. Ablation Study

Det-AdvProp with targeted and non-targeted attacks.
Targeted attack aims to fool a model to recognize an image
incorrectly as a specified target label, while non-targeted at-
tack is conducted by maximizing the training loss on the
true label. We first carry out targeted attack with Det-
AdvProp. As previous works report performance improve-
ment if the object and background are treated differently
[43], we consider the following two ways to generate ran-
dom targets: (i) Randomly generate target labels for all the
predefined anchors in the detector; (ii) Only perturb the
ground-truth label for the anchors that cover objects, omit-
ting those background anchors. We find that (ii) performs
almost the same as vanilla training even when the attack
strength is very large (e = 5). It is probably because the ad-
versarial images which fool models to misidentify the back-
ground as objects contain valuable features, and the number
of object-covering anchors is considerably smaller than the
background anchors. Hence, for the targeted attack men-
tioned below, we refer to generating adversarial labels for

all anchors if not specified otherwise. For the non-targeted
attack, we simply maximize the training loss for both clas-
sification and localization branches and use the same attack
strength (e = 1) as the targeted attack for a fair comparison.

The results are shown in Table 6. On clean COCO im-
ages, the adversarial examples obtained by targeted attack
consistently improve the models’ mAP, but non-targeted
attack can hurt the performance of lightweight detectors
(D0-D2), implying possibly too strong regularization. In
contrast, when it comes to larger models (D3-D5), Det-
AdvProp works better with the relatively stronger non-
targeted attack. On the COCO-C dataset, both attack meth-
ods can improve the detectors’ robustness, but the improve-
ment achieved by non-targeted attack is much larger, and
the gap is wider for the models of higher capacities. The
relative robustness achieved by non-targeted attack is also
the highest for all the detectors. Intuitively, Det-AdvProp
with non-targeted attack learns from the worse-case adver-
sarial examples than the targeted attack within the ¢ norm
ball and therefore provides stronger regularization and ro-
bustness to the detectors.

Model mAP mAP PC (%)

EfficientDet-D0 343 214 62.4
+Det-AdvProp (TG) | 34.7 (+0.4) | 22.2 (+0.8) | 64.0 (+1.6)
+ Det-AdvProp (NTG) | 34.0 (-0.3) | 22.1 (+0.7) | 65.0 (+2.6)
EfficientDet-D1 402 244 60.7
+ Det-AdvProp (TG) | 40.5 (+0.3) | 25.6 (+1.2) | 63.2 (+2.5)
+ Det-AdvProp (NTG) | 40.1 (-0.1) | 26.1 (+1.7) | 65.1 (+4.4)
EfficientDet-D2 35 26.7 614
+ Det-AdvProp (TG) | 43.8 (+0.3) | 27.6 (+0.9) | 63.0 (+1.6)
+ Det-AdvProp (NTG) | 43.4 (-0.1) | 28.0 (+1.3) | 64.5 (+3.1)
EfficientDet-D3 6.8 288 615
+ Det-AdvProp (TG) | 47.2 (+0.4) | 30.1 (+1.3) | 63.8 (+2.3)
+ Det-AdvProp (NTG) | 47.6 (+0.8) | 30.8 (+2.0) | 64.7 (+3.2)
EfficientDet-D4 493 30.1 61.1
+ Det-AdvProp (TG) | 49.6 (+0.3) | 31.8 (+1.7) | 64.1 (+3.0)
+ Det-AdvProp (NTG) | 49.8 (+0.5) | 32.8 (+2.7) | 65.9 (+4.8)
EfficientDet-D5 513 314 61.2
+Det-AdvProp (TG) | 51.5(+0.2) | 32.4 (+1.0) | 62.9 (+1.7)
+ Det-AdvProp (NTG) | 51.8 (+0.5) | 33.7 (+2.3) | 65.1 (+3.9)

Table 6. Impact of targeted (TG) and non-targeted (NTG) attacks.
All attacks are performed with strength ¢ = 1. Det-AdvProp with
non-targeted attack works better on large-scale detectors and can
produce more robust models against distortions. rPC denotes the
relative performance under corruption.

‘ COCO ‘ COCO-C ‘ Relative

Det-AdvProp with different attack strengths. Here we
ablate the effects of attack strengths represented by the ra-
dius € of the perturbation norm ball. In Table 7, we vary €
from 1 to 3 and report the corresponding mAP scores on the
COCO validation set. The attacker is set as targeted since
the non-targeted attack decreases the mAP of lightweight
models (D0-D2) even when ¢ is small as mentioned above.
Aligning with the findings in image classification [34], large
perturbation size degrades the performance of small mod-
els. EfficientDets DO-D2 work the best with ¢ = 1, and
stronger attack can cause performance degradation. On
the contrary, EfficientDets D3-D5 work the best with rel-
atively large perturbation e = 2. The clean performance of
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EfficientDet-D5 is boosted by 0.2 mAP by increasing the e
from 1 to 2. It is reasonable to conclude that stronger at-
tack strengths are desired for Det-AdvProp to better boost
the detectors with higher capacities.

DO | DI | D2 | D3 | D4 | D5
343 |1 402 | 435 | 46.8 | 493 | 513
347 | 40.5 | 43.8 | 47.2 | 49.6 | 51.5
342 | 40.0 | 435 | 47.2 | 49.7 | 51.7
34.1 | 40.0 | 434 | 47.1 | 495 | 51.6

W= O™

Table 7. Impact of attack strengths. All attacks are conducted in
the targeted manner. ¢ = 0 means vanilla training. Larger attack
strengths work better with larger model capacities.

Variants of Det-AdvProp. Different from image classi-
fiers, object detectors need to identify objects by their class
labels and box coordinates. They take the form of an in-
herent multi-task learning, preventing a direct application
of AdvProp to the detectors. A straightforward idea would
be generating adversarial examples by maximizing the total
training losses Lg4.¢. Another approach is to generate two
adversarial examples per clean image based on L. and
Lo separately, assuming the adversarial images sourced
from classification and localization have distinct distribu-
tions. We call the last method 3BN since it constructs three
batchnorms during training. Besides, we also ablate the
methods that attack the detectors based on an individual loss
(either L5 or L;,.). We choose non-targeted attack for this
ablation study. According to the comparison in Table 8, we
have the following observations:

e When attacking an individual task loss, choosing clas-
sification or localization does not make a big differ-
ence on clean COCO images. However, attacking L;s
performs much better than attacking L;,. on COCO-
C, implying that the performance degradation caused
by corruptions may mainly come from the classifica-
tion branch. When attacking the total loss L., the re-
sulting detectors’ performance is in between, verifying
that the adversarial gradients sourced from classifica-
tion and localization may mutually conflict [38].

* 3BN explicitly augments the detectors with both clas-
sification and localization branches, leading to the
highest relative performance on corrupted images.
However, the detectors fail to achieve high mAP on
clean images probably because the adversarial features
act as overly strong regularization. Indeed, the two
auxiliary batchnorms in 3BN may dominate the opti-
mization procedure, making the detectors under-fitting
the clean training images.

* The proposed Det-AdvProp is the best method among
all variants by consistently achieving the highest mAP
on both COCO and COCO-C for the detectors of vari-
ous scales. It uses only one auxiliary batchnorm during
training to prevent excessive regularization and sepa-
rately attacks the two branches to avoid the misalign-

ment between adversarial examples.

Model ‘ coco ‘ COCO-C ‘ Relative

mAP mAP rPC (%)
EfficientDet-D3 46.8 28.8 61.5

+ Det-AdvProp (LOC) | 47.1 (+0.3) | 30.0 (+1.2) | 63.7 (+2.2)
+ Det-AdvProp (CLS) | 47.2 (+0.4) | 30.5 (+1.7) | 64.6 (+3.1)
+ Det-AdvProp (DET) | 47.1 (+0.3) | 30.4 (+1.6) | 64.5 (+3.0)
+ Det-AdvProp (3BN) | 46.7 (-0.1) | 30.6 (+1.8) | 65.5 (+4.0)
+ Det-AdvProp 47.6 (+0.8) | 30.8 (+2.0) | 64.7 (+3.2)
EfficientDet-D4 49.3 30.1 61.1

+ Det-AdvProp (LOC) | 49.6 (+0.3) | 31.7 (+1.6) | 63.9 (+2.8)
+ Det-AdvProp (CLS) | 49.6 (+0.3) | 32.6 (+2.5) | 65.7 (+4.6)
+ Det-AdvProp (DET) | 49.6 (+0.3) | 32.7 (+2.6) | 65.9 (+4.8)
+ Det-AdvProp (3BN) | 49.2 (-0.1) | 32.5 (+2.4) | 66.1 (+5.0)
+ Det-AdvProp 49.8 (+0.5) | 32.8 (+2.8) | 65.9 (+4.8)
EfficientDet-D5 51.3 31.4 61.2

+ Det-AdvProp (LOC) | 51.6 (+0.3) | 33.1 (+1.7) | 64.1 (+2.9)
+ Det-AdvProp (CLS) | 51.7 (+0.4) | 33.6 (+2.2) | 65.0 (+3.8)
+ Det-AdvProp (DET) | 51.6 (+0.3) | 33.4 (+2.0) | 64.7 (+3.5)
+ Det-AdvProp (3BN) | 51.3 (+0.0) | 33.5 (+2.1) | 65.3 (+4.1)
+ Det-AdvProp 51.8 (+0.5) | 33.7 (+2.3) | 65.1 (+3.9)

Table 8. Comparison of several variants of Det-AdvProp. LOC,
CLS, and DET generate the adversarial images based on Lo,
Leis, and Lge: respectively. 3BN denotes the variant that gener-
ates two adversarial examples per clean image and employs three
batchnorms during training. Det-AdvProp achieves the largest per-
formance gains on both clean and corrupted images.

RetinaNet results. Apart from the state-of-the-art Effi-
cientDets, we also test Det-AdvProp on the RetinaNet ob-
ject detector [20] with a ResNet50 backbone [13]. We asso-
ciate Det-AdvProp with non-targeted attack and the attack
strength of € = 1. The other settings are the same as the
baseline method. Det-AdvProp improves the mAP of Reti-
naNet from 35.6 to 36.1 on COCO and from 17.8 to 19.7 on
COCO-C. We anticipate bigger improvements if we base
RetinaNets on the backbones of higher capacities.

6. Conclusion

In this paper, we systematically examine the data aug-

mentation strategies for object detectors. We discover that
the performance gains on ImageNet classification including
both accuracy and robustness, cannot be preserved after the
object detection fine-tuning process. Instead, the proposed
Det-AdvProp is specifically crafted for the fine-tuning pro-
cess. Det-AdvProp dynamically learns from the stronger
attack emerged from the classification and localization do-
mains, which enables its policy to evolve during fine-tuning.
This model-and-data-dependent manner is more effective
than previous model-agnostic augmentation strategies. Ex-
tensive experiments show that our methods can consistently
and substantially outperform the vanilla training and Au-
toAugment under various settings. The obtained detector
is not only more accurate, but also more robust to image
distortions and domain shift.
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