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Abstract

Robustness and counterfactual bias are usually
evaluated on a test dataset. However, are
these evaluations robust? If the test dataset is
perturbed slightly, will the evaluation results
keep the same? In this paper, we propose a
“double perturbation” framework to uncover
model weaknesses beyond the test dataset.
The framework first perturbs the test dataset
to construct abundant natural sentences
similar to the test data, and then diagnoses
the prediction change regarding a single-word
substitution. We apply this framework to
study two perturbation-based approaches
that are used to analyze models’ robustness
and counterfactual bias in English. (1) For
robustness, we focus on synonym substitu-
tions and identify vulnerable examples where
prediction can be altered. Our proposed attack
attains high success rates (96.0%-99.8%)
in finding vulnerable examples on both
original and robustly trained CNNs and
Transformers. (2) For counterfactual bias,
we focus on substituting demographic tokens
(e.g., gender, race) and measure the shift of
the expected prediction among constructed
sentences. Our method is able to reveal
the hidden model biases not directly shown
in the test dataset. Our code is available
at https://github.com/chong-z/
nlp-second-order—attack.

1 Introduction

Recent studies show that NLP models are vulner-
able to adversarial perturbations. A seemingly
“invariance transformation” (a.k.a. adversarial per-
turbation) such as synonym substitutions (Alzantot
et al., 2018; Zang et al., 2020) or syntax-guided
paraphrasing (Iyyer et al., 2018; Huang and Chang,
2021) can alter the prediction. To mitigate the
model vulnerability, robust training methods have
been proposed and shown effective (Miyato et al.,
2017; Jia et al., 2019; Huang et al., 2019; Zhou
et al., 2020).
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xo ="a deep and meaningful film (movie)."
| 999 positive | (99% positive)

Zo ="a short and moving film (movie)."
| 73% positive | (70% negative)

Figure 1: A vulnerable example beyond the test dataset.
Numbers on the bottom right are the sentiment predic-
tions for £ilm and movie. Blue xy comes from the
test dataset and its prediction cannot be altered by the
substitution £ilm — movie (robust). exam-
ple Z is slightly perturbed but remains natural. Its pre-
diction can be altered by the substitution (vulnerable).

In most studies, model robustness is evaluated
based on a given test dataset or synthetic sentences
constructed from templates (Ribeiro et al., 2020).
Specifically, the robustness of a model is often eval-
uated by the ratio of test examples where the model
prediction cannot be altered by semantic-invariant
perturbation. We refer to this type of evaluations
as the first-order robustness evaluation. However,
even if a model is first-order robust on an input sen-
tence x, it is possible that the model is not robust
on a natural sentence I that is slightly modified
from x(. In that case, adversarial examples still
exist even if first-order attacks cannot find any of
them from the given test dataset. Throughout this
paper, we call Zg a vulnerable example. The ex-
istence of such examples exposes weaknesses in
models’ understanding and presents challenges for
model deployment. Fig. 1 illustrates an example.

In this paper, we propose the double perturba-
tion framework for evaluating a stronger notion
of second-order robustness. Given a test dataset,
we consider a model to be second-order robust if
there is no vulnerable example that can be iden-
tified in the neighborhood of given test instances

3899

Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 3899-3916
June 6-11, 2021. ©2021 Association for Computational Linguistics


https://github.com/chong-z/nlp-second-order-attack
https://github.com/chong-z/nlp-second-order-attack

(§2.2). In particular, our framework first perturbs
the test set to construct the neighborhood, and then
diagnoses the robustness regarding a single-word
synonym substitution. Taking Fig. 2 as an example,
the model is first-order robust on the input sentence
xo (the prediction cannot be altered), but it is not
second-order robust due to the existence of the vul-
nerable example zo. Our framework is designed to
identify zg.

We apply the proposed framework and quantify
second-order robustness through two second-order
attacks (§3). We experiment with English senti-
ment classification on the SST-2 dataset (Socher
et al., 2013) across various model architectures.
Surprisingly, although robustly trained CNN (Jia
et al., 2019) and Transformer (Xu et al., 2020)
can achieve high robustness under strong at-
tacks (Alzantot et al., 2018; Garg and Ramakr-
ishnan, 2020) (23.0%—71.6% success rates), for
around 96.0% of the test examples our attacks can
find a vulnerable example by perturbing 1.3 words
on average. This finding indicates that these ro-
bustly trained models, despite being first-order ro-
bust, are not second-order robust.

Furthermore, we extend the double perturbation
framework to evaluate counterfactual biases (Kus-
ner et al., 2017) (§4) in English. When the test
dataset is small, our framework can help improve
the evaluation robustness by revealing the hidden
biases not directly shown in the test dataset. In-
tuitively, a fair model should make the same pre-
diction for nearly identical examples referencing
different groups (Garg et al., 2019) with different
protected attributes (e.g., gender, race). In our eval-
uation, we consider a model biased if substituting
tokens associated with protected attributes changes
the expected prediction, which is the average pre-
diction among all examples within the neighbor-
hood. For instance, a toxicity classifier is biased
if it tends to increase the toxicity if we substitute
straight — gay in an input sentence (Dixon
etal., 2018). In the experiments, we evaluate the ex-
pected sentiment predictions on pairs of protected
tokens (e.g., (he, she), (gay, straight)), and
demonstrate that our method is able to reveal the
hidden model biases.

Our main contributions are: (1) We propose the
double perturbation framework to diagnose the ro-
bustness of existing robustness and fairness evalu-
ation methods. (2) We propose two second-order
attacks to quantify the stronger notion of second-

Figure 2: An illustration of the decision boundary. Dia-
mond area denotes invariance transformations. Blue x
is a robust input example (the entire diamond is green).
Z¢ is a vulnerable example in the neighborhood
of xo. Red &, is an adversarial example to Zo. Note:
I, is not an adversarial example to x( since they have
different meanings to human (outside the diamond).

order robustness and reveal the models’ vulnerabil-
ities that cannot be identified by previous attacks.
(3) We propose a counterfactual bias evaluation
method to reveal the hidden model bias based on
our double perturbation framework.

2 The Double Perturbation Framework

In this section, we describe the double perturbation
framework which focuses on identifying vulnerable
examples within a small neighborhood of the test
dataset. The framework consists of a neighborhood
perturbation and a word substitution. We start with
defining word substitutions.

2.1 Existing Word Substitution Strategy

We focus our study on word-level substitution,
where existing works evaluate robustness and coun-
terfactual bias by directly perturbing the test dataset.
For instance, adversarial attacks alter the prediction
by making synonym substitutions, and the fairness
literature evaluates counterfactual fairness by sub-
stituting protected tokens. We integrate the word
substitution strategy into our framework as the com-
ponent for evaluating robustness and fairness.

For simplicity, we consider a single-word substi-
tution and denote it with the operator . Let X C
V! be the input space where V is the vocabulary and
[ is the sentence length, p = (p(l),p(z)) € V? be
a pair of synonyms (called patch words), Xp, C X
denotes sentences with a single occurrence of p(!)
(for simplicity we skip other sentences), zg € &)
be an input sentence, then o & p means “substitute
p1) = p@) in 2. The result after substitution is:

T = 10 D P.
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Taking Fig. 1 as an example, where p = (£ilm,
movie) and 9 = a deep and meaning-
ful film, the perturbed sentence is z(, = a
deep and meaningful movie. Now we in-
troduce other components in our framework.

2.2 Proposed Neighborhood Perturbation

Instead of applying the aforementioned word sub-
stitutions directly to the original test dataset, our
framework perturbs the test dataset within a small
neighborhood to construct similar natural sen-
tences. This is to identify vulnerable examples
with respect to the model. Note that examples in
the neighborhood are not required to have the same
meaning as the original example, since we only
study the prediction difference caused by applying
synonym substitution p (§2.1).

Constraints on the neighborhood. We limit the
neighborhood sentences within a small £; norm
ball (regarding the test instance) to ensure syntactic
similarity, and empirically ensure the naturalness
through a language model. The neighborhood of
an input sentence xg € X is:

Neighbor, (o) C Ballg(xo) N Xatural» (D)

where Bally(zo) = {z | ||z — 20|, < k,z € X'}
is the £p norm ball around x¢ (i.e., at most k differ-
ent tokens), and X, a1 denotes natural sentences
that satisfy a certain language model score which
will be discussed next.

Construction with masked language model.
We construct neighborhood sentences from zg by
substituting at most k tokens. As shown in Al-
gorithm 1, the construction employs a recursive
approach and replaces one token at a time. For
each recursion, the algorithm first masks each to-
ken of the input sentence (may be the original zq or
the & from last recursion) separately and predicts
likely replacements with a masked language model
(e.g., DistilBERT, Sanh et al. 2019). To ensure the
naturalness, we keep the top 20 tokens for each
mask with the largest logit (subject to a threshold,
Line 9). Then, the algorithm constructs neighbor-
hood sentences by replacing the mask with found
tokens. We use the notation z in the following sec-
tions to denote the constructed sentences within the
neighborhood.

Algorithm 1: Neighborhood construction

Data: Input sentence xo, masked language model
LM, max distance k.
1 Function Neighbory (xo):
2 if & = 0 then return {zo} ;
3 if £ > 2 then

4 return UiENeiuhborl (zg) Neighbork—l (‘%)’
5 Xneighbor —
6 fori < 0,...,len(zo) — 1 do

T, L <+ LM fillmask(zo,);
> Mask 4., token and return candidate

tokens and corresponding logits.

8 L + SortDecreasing(L);
9 Inin + max{L", L© —§};
> L) denotes the ity element. We
empirically set Kk < 20 and § < 3.
10 Thew <+ {t | > lmim (t,l) eT x L},
11 Xnew {-TO | -T(()Z) —t, te Tnew};

> Construct new sentences by
replacing the 4.y token.

12 Xneighb(yr <~ Xneighbor U Xnew;

13 return Xcighbor;

3 Evaluating Second-Order Robustness

With the proposed double perturbation framework,
we design two black-box attacks' to identify vul-
nerable examples within the neighborhood of the
test set. We aim at evaluating the robustness for
inputs beyond the test set.

3.1 Previous First-Order Attacks

Adversarial attacks search for small and invariant
perturbations on the model input that can alter the
prediction. To simplify the discussion, in the fol-
lowing, we take a binary classifier f(z) : X —
{0,1} as an example to describe our framework.
Let x( be the sentence from the test set with label
10, then the smallest perturbation §* under £y norm
distance is:?

0" = arg;nin 10]lg s-t. f(zo® ) # yo.

Here § = p1 & - - - @ p; denotes a series of substi-
tutions. In contrast, our second-order attacks fix
6 = p and search for the vulnerable x.

3.2 Proposed Second-Order Attacks

Second-order attacks study the prediction differ-
ence caused by applying p. For notation conve-
nience we define the prediction difference F'(x; p) :

'Black-box attacks only observe the model outputs and do
not know the model parameters or the gradient.

%For simplicity, we use £o norm distance to measure the
similarity, but other distance metrics can be applied.
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Find p for z,.

Find vulnerable example

p alters the prediction.

through beam search.

| 2o = a deep and meaningful film.

fool, silly

x (i=1) Frote(z) N Zo ="a short and moving film (movie)."
a deep and disturbing film (movie). .990 (.989)
a deep and moving film (movie). 999 (.999) | 73% positive| (70% negative)

a dramatic and meaningful film (movie). .999 (.999)

- J

______ v (=) fe() )

i ashort and moving film (movie). _ ___.730(.303)!
a slow and moving film (movie). 519 (.151)
a dramatic or meaningful film (movie). 487 (.168)

... y

Figure 3: The attack flow for SO-Beam (Algorithm 2). Blue xg is the input sentence and

T is our con-

structed vulnerable example (the prediction can be altered by substituting £i1m — movie). Green boxes in the
middle show intermediate sentences, and fyo(2) denotes the probability outputs for £i1m and movie.

X xV? - {-1,0,1} by:?

F(z;p) = [(x @ p) - [(2). (2)

Taking Fig. 1 as an example, the prediction differ-
ence for o on p is F(Zo;p) = f(...moving
movie.)— f(...moving film.)= —1.

Given an input sentence xp, we want to find
patch words p and a vulnerable example Z( such
that f(Zo @ p) # f(Zo). Follow Alzantot et al.
(2018), we choose p from a predefined list of
counter-fitted synonyms (MrkSi¢ et al., 2016) that
maximizes | fuor (p2)) — fooni(pD)]. Here fuof(x)
X — [0,1] denotes probability output (e.g., af-
ter the softmax layer but before the final argmax),
f soft(p(l)) and fsoft(p(z)) denote the predictions for
the single word, and we enumerate through all pos-
sible p for zy. Let k be the neighborhood distance,
then the attack is equivalent to solving:

Zo= argmax |F(z;p)l. 3)

x€Neighbor,, (zo)

Brute-force attack (SO-Enum). A naive ap-
proach for solving Eq. (3) is to enumerate through
Neighbor, (x¢). The enumeration finds the small-
est perturbation, but is only applicable for small k&
(e.g., k < 2) given the exponential complexity.
Beam-search attack (SO-Beam). The efficiency
can be improved by utilizing the probability output,
where we solve Eq. (3) by minimizing the cross-
entropy loss with regard to 2 € Neighbor,, (zo):

£(ac;p) = log(l - fmin) - 10g<fmax)a “)

where fmin and fiax are the smaller and the larger
output probability between fiof(z) and foon(z @

3We assume a binary classification task, but our framework
is general and can be extended to multi-class classification.

p), respectively. Minimizing Eq. (4) effectively
leads to fiin — 0 and fi.x — 1, and we use a
beam search to find the best . At each iteration,
we construct sentences through Neighbor, (=) and
only keep the top 20 sentences with the smallest
L(x;p). We run at most k iterations, and stop
earlier if we find a vulnerable example. We provide
the detailed implementation in Algorithm 2 and a
flowchart in Fig. 3.

Algorithm 2: Beam-search attack (SO-
Beam)
Data: Input sentence o, synonyms P, model
functions F' and fof, loss £, max distance k.
1 Function SO-Beamg (x¢) :
p < argmax |fsoft(p(2>) - fsoﬂ(p(l))|;
PEP st. xgEXp
Abeam {Io};
fori<1,...,kdo
Xew = Uze ay,,, Neighbor, (Z);
To ¢ argmax,cy |F(x;p)l;
if F(Zo;p) # O then return Zo;
Xoew < SortIncreasing(Xoew, £);
9 Npeam — {lee?x?a ceey Xn(eévil)};
> Keep the best beam. We set [ < 20.
10 return None;

»

® N wn AW

3.3 Experimental Results

In this section, we evaluate the second-order ro-
bustness of existing models and show the quality
of our constructed vulnerable examples.

3.3.1 Setup

We follow the setup from the robust training lit-
erature (Jia et al., 2019; Xu et al., 2020) and ex-
periment with both the base (non-robust) and ro-
bustly trained models. We train the binary senti-
ment classifiers on the SST-2 dataset with bag-of-
words (BoW), CNN, LSTM, and attention-based
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Original: 70% Negative
Input Example:

in its best moments , resembles a bad high school production of grease , without benefit of song .

Genetic: 56% Positive
Adversarial Example:

in its best moment , recalling a naughty high school production of lubrication , unless benefit of song .

BAE: 56% Positive
Adversarial Example:

in its best moments , resembles a great high school production of grease , without benefit of song .

SO-Enum and SO-Beam (ours): 60% Negative
Vulnerable Example:

(67% Positive)

in its best moments , resembles a bad (unhealthy) high school production of musicals , without benefit of song .

Table 1: Sampled attack results on the robust BoW. For Genetic and BAE the goal is to find an adversarial example
that alters the original prediction, whereas for SO-Enum and SO-Beam the goal is to find a vulnerable example
beyond the test set such that the prediction can be altered by substituting bad — unhealthy.

models.

Base models. For BoW, CNN, and LSTM, all
models use pre-trained GloVe embeddings (Pen-
nington et al., 2014), and have one hidden layer
of the corresponding type with 100 hidden size.
Similar to the baseline performance reported in
GLUE (Wang et al., 2019), our trained models
have an evaluation accuracy of 81.4%, 82.5%, and
81.7%, respectively. For attention-based models,
we train a 3-layer Transformer (the largest size in
Shi et al. 2020) and fine-tune a pre-trained bert -
base-uncased from HuggingFace (Wolf et al.,
2020). The Transformer uses 4 attention heads
and 64 hidden size, and obtains 82.1% accuracy.
The BERT-base uses the default configuration and
obtains 92.7% accuracy.

Robust models (first-order). With the same
setup as base models, we apply robust training
methods to improve the resistance to word substitu-
tion attacks. Jia et al. (2019) provide a provably ro-
bust training method through Interval Bound Prop-
agation (IBP, Dvijotham et al. 2018) for all word
substitutions on BoW, CNN and LSTM. Xu et al.
(2020) provide a provably robust training method
on general computational graphs through a combi-
nation of forward and backward linear bound prop-
agation, and the resulting 3-layer Transformer is
robust to up to 6 word substitutions. For both works
we use the same set of counter-fitted synonyms pro-
vided in Jia et al. (2019). We skip BERT-base due
to the lack of an effective robust training method.

Attack success rate (first-order). We quantify
first-order robustness through attack success rate,
which measures the ratio of test examples that an
adversarial example can be found. We use first-
order attacks as a reference due to the lack of a
direct baseline. We experiment with two black-box
attacks: (1) The Genetic attack (Alzantot et al.,
2018; Jia et al., 2019) uses a population-based op-

timization algorithm that generates both syntacti-
cally and semantically similar adversarial exam-
ples, by replacing words within the list of counter-
fitted synonyms. (2) The BAE attack (Garg and
Ramakrishnan, 2020) generates coherent adversar-
ial examples by masking and replacing words using
BERT. For both methods we use the implementa-
tion provided by TextAttack (Morris et al., 2020).

Attack success rate (second-order). We also
quantify second-order robustness through attack
success rate, which measures the ratio of test ex-
amples that a vulnerable example can be found.
To evaluate the impact of neighborhood size, we
experiment with two configurations: (1) For the
small neighborhood (£ = 2), we use SO-Enum
that finds the most similar vulnerable example. (2)
For the large neighborhood (k = 6), SO-Enum is
not applicable and we use SO-Beam to find vul-
nerable examples. We consider the most challeng-
ing setup and use patch words p from the same
set of counter-fitted synonyms as robust models
(they are provably robust to these synonyms on
the test set). We also provide a random baseline
to validate the effectiveness of minimizing Eq. (4)
(Appendix A.1).

Quality metrics (perplexity and similarity).
We quantify the quality of our constructed vulnera-
ble examples through two metrics: (1) GPT-2 (Rad-
ford et al., 2019) perplexity quantifies the natural-
ness of a sentence (smaller is better). We report
the perplexity for both the original input exam-
ples and the constructed vulnerable examples. (2)
{o norm distance quantifies the disparity between
two sentences (smaller is better). We report the
distance between the input and the vulnerable ex-
ample. Note that first-order attacks have different
objectives and thus cannot be compared directly.
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Attack Success Rate (%)

Genetic BAE | SO-Enum SO-Beam

Base Models:

BoW 57.0 69.7 95.3 99.7
CNN 62.0 71.0 95.3 99.8
LSTM 60.0 68.3 95.8 99.5
Transformer 73.0 74.3 954 98.0
BERT-base 41.0 61.5 94.3 98.7
Robust Models:

BoW 28.0 63.1 81.5 88.4
CNN 23.0 64.4 91.0 96.0
LSTM 24.0 61.0 62.9 71.5
Transformer 56.0 71.6 91.2 96.2

Table 2: The average rates over 872 examples (100 for
Genetic due to long running time). Second-order at-
tacks achieve higher successful rate since they are able
to search beyond the test set.

3.3.2 Results

We experiment with the validation split (872 exam-
ples) on a single RTX 3090. The average running
time per example (in seconds) on base LSTM is
31.9 for Genetic, 1.1 for BAE, 7.0 for SO-Enum
(k = 2), and 1.9 for SO-Beam (k = 6). We provide
additional running time results in Appendix A.3.
Table 1 provides an example of the attack result
where all attacks are successful (additional exam-
ples in Appendix A.5). As shown, our second-
order attacks find a vulnerable example by replac-
ing grease — musicals, and the vulnerable
example has different predictions for bad and un-
healthy. Note that, Genetic and BAE have dif-
ferent objectives from second-order attacks and
focus on finding the adversarial example. Next we
discuss the results from two perspectives.

Second-order robustness. We observe that ex-
isting robustly trained models are not second-order
robust. As shown in Table 2, our second-order
attacks attain high success rates not only on the
base models but also on the robustly trained mod-
els. For instance, on the robustly trained CNN
and Transformer, SO-Beam finds vulnerable ex-
amples within a small neighborhood for around
96.0% of the test examples, even though these mod-
els have improved resistance to strong first-order
attacks (success rates drop from 62.0%—-74.3% to
23.0%—-71.6% for Genetic and BAE).* This phe-
nomenon can be explained by the fact that both first-
order attacks and robust training methods focus on
synonym substitutions on the test set, whereas our
attacks, due to their second-order nature, find vul-

“BAE is more effective on robust models as it may use
replacement words outside the counter-fitted synonyms.

SO-Enum SO-Beam
Original Perturb , Original Perturb ,

PPL PPL o  pPL PPL 0
Base Models:
BoW 168 202 1.1 166 202 1.2
CNN 170 204 1.1 166 201 1.2
LSTM 168 204 1.1 166 204 1.2
Transformer 165 193 1.0 165 195 1.1
BERT-base 170 229 1.3 168 222 1.4
Robust Models:
BoW 170 212 1.2 171 222 1.4
CNN 166 209 1.2 168 210 1.3
LSTM 194 251 1.3 185 260 1.8
Transformer 170 213 1.2 165 208 1.3

Table 3: The quality metrics for second-order meth-
ods. We report the median perplexity (PPL) and av-
erage /o norm distance. The original PPL may differ
across models since we only count successful attacks.

nerable examples beyond the test set, and the search
is not required to maintain semantic similarity. Our
methods provide a way to further investigate the
robustness (or find vulnerable and adversarial ex-
amples) even when the model is robust to the test
set.
Quality of constructed vulnerable examples.
As shown in Table 3, second-order attacks are able
to construct vulnerable examples by perturbing 1.3
words on average, with a slightly increased per-
plexity. For instance, on the robustly trained CNN
and Transformer, SO-Beam constructs vulnerable
examples by perturbing 1.3 words on average, with
the median® perplexity increased from around 165
to around 210. We provide metrics for first-order
attacks in Appendix A.5 as they have different ob-
jectives and are not directly comparable.
Furthermore, applying existing attacks on the
vulnerable examples constructed by our method
will lead to much smaller perturbations. As a refer-
ence, on the robustly trained CNN, Genetic attack
constructs adversarial examples by perturbing 2.7
words on average (starting from the input exam-
ples). However, if Genetic starts from our vulnera-
ble examples, it would only need to perturb a single
word (i.e., the patch words p) to alter the predic-
tion. These results demonstrate the weakness of
the models (even robustly trained) for those inputs
beyond the test set.

3.3.3 Human Evaluation

We perform human evaluation on the examples con-
structed by SO-Beam. Specifically, we randomly
>We report median due to the unreasonably large perplexity

on certain sentences. e.g., 395 for that’s a cheat. but
6740 for that proves perfect cheat.
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Naturalness (1-5) Semantic Similarity (%)
Original Perturb  Original Perturb

3.87 3.63 85 71

Table 4: The quality metrics from human evaluation.

select 100 successful attacks and evaluate both the
original examples and the vulnerable examples. To
evaluate the naturalness of the constructed exam-
ples, we ask the annotators to score the likelihood
(on a Likert scale of 1-5, 5 to be the most likely) of
being an original example based on the grammar
correctness. To evaluate the semantic similarity af-
ter applying the synonym substitution p, we ask the
annotators to predict the sentiment of each example,
and calculate the ratio of examples that maintain
the same sentiment prediction after the synonym
substitution. For both metrics, we take the median
from 3 independent annotations. We use US-based
annotators on Amazon’s Mechanical Turk® and pay
$0.03 per annotation, and expect each annotation to
take 10 seconds on average (effectively, the hourly
rate is about $11). See Appendix A.2 for more
details.

As shown in Table 4, the naturalness score only
drop slightly after the perturbation, indicating that
our constructed vulnerable examples have similar
naturalness as the original examples. As for the
semantic similarity, we observe that 85% of the
original examples maintain the same meaning after
the synonym substitution, and the corresponding
ratio is 71% for vulnerable examples. This indi-
cates that the synonym substitution is an invariance
transformation for most examples.

4 Evaluating Counterfactual Bias

In addition to evaluating second-order robustness,
we further extend the double perturbation frame-
work (§2) to evaluate counterfactual biases by set-
ting p to pairs of protected tokens. We show that
our method can reveal the hidden model bias.

4.1 Counterfactual Bias

In contrast to second-order robustness, where we
consider the model vulnerable as long as there ex-
ists one vulnerable example, counterfactual bias
focuses on the expected prediction, which is the
average prediction among all examples within the
neighborhood. We consider a model biased if the

*https://www.mturk.com

r Tdp T xDOp
OO0 o0
o® il o ©
e o e o
Figure 4: An illustration of an unbiased model vs. a
biased model. Green and gray indicate the probability
of positive and negative predictions, respectively. Left:
An unbiased model where the (z, 2 & p) pair ( -
red dots) is relatively parallel to the decision boundary.

Right: A biased model where the predictions for x & p
(red) are usually more negative (gray) than x ( ).

expected predictions for protected groups are dif-
ferent (assuming the model is not intended to dis-
criminate between these groups). For instance, a
sentiment classifier is biased if the expected predic-
tion for inputs containing woman is more positive
(or negative) than inputs containing man. Such bias
is harmful as they may make unfair decisions based
on protected attributes, for example in situations
such as hiring and college admission.
Counterfactual token bias. We study a narrow
case of counterfactual bias, where counterfactual
examples are constructed by substituting protected
tokens in the input. A naive approach of measuring
this bias is to construct counterfactual examples
directly from the test set, however such evaluation
may not be robust since test examples are only a
small subset of natural sentences. Formally, let p
be a pair of protected tokens such as (he, she) or
(Asian, American), Xeg C X be a test set (as
in §2.1), we define counterfactual token bias by:

Bp,k = E
xENeighbory, (Xiest)

Fsoft(x; p)‘ (5)

We calculate Eq. (5) through an enumeration across
all natural sentences within the neighborhood.’
Here Neighbor (Xest) = U,cx,, Neighbor, ()
denotes the union of neighborhood examples (of
distance k) around the test set, and Fyof(2;p) :
X x V? — [~1,1] denotes the difference between
probability outputs fss (similar to Eq. (2)):

F‘soft(xSP) = fsoft(x S p) - fsoft(x)- (6)

"For gender bias, we employ a blacklist to avoid adding
gendered tokens during the neighborhood construction. This
is to avoid semantic shift when, for example, p = (he, she)
such that it may refer to different tokens after the substitution.
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Patch Words  # Original # Perturbed
he,she 5 325,401
his,her 4 255,245
him,her 4 233,803
men,women 3 192,504
man,woman 3 222,981
actor,actress 2 141,780
Total 34 2,317,635

Table 5: The number of original examples (k = 0) and
the number of perturbed examples (k = 3) in X

The model is unbiased on p if By, = 0, whereas
a positive or negative By, ;. indicates that the model
shows preference or against to p@, respectively.
Fig. 4 illustrates the distribution of (z,z @ p) for
both an unbiased model and a biased model.

The aforementioned neighborhood construction
does not introduce additional bias. For instance,
let xo be a sentence containing he, even though
it is possible for Neighbor, (z¢) to contain many
stereotyping sentences (e.g., contains tokens such
as doctor and driving) that affect the distri-
bution of fyf(x), but it does not bias Eq. (6) as
we only care about the prediction difference of re-
placing he — she. The construction has no infor-
mation about the model objective, thus it would be
difficult to bias fsor () and feor(x @ p) differently.

4.2 Experimental Results

In this section, we use gender bias as a running
example, and demonstrate the effectiveness of our
method by revealing the hidden model bias. We
provide additional results in Appendix A.4.

4.2.1 Setup

We evaluate counterfactual token bias on the SST-2
dataset with both the base and debiased models.
We focus on binary gender bias and set p to pairs
of gendered pronouns from Zhao et al. (2018a).
Base Model. We train a single layer LSTM with
pre-trained GloVe embeddings and 75 hidden size
(from TextAttack, Morris et al. 2020). The model
has 82.9% accuracy similar to the baseline perfor-
mance reported in GLUE.

Debiased Model. Data-augmentation with gen-
der swapping has been shown effective in mitigat-
ing gender bias (Zhao et al., 2018a, 2019). We
augment the training split by swapping all male
entities with the corresponding female entities and
vice-versa. We use the same setup as the base
LSTM and attain 82.45% accuracy.

x10-2Base Model (Xy;j,;) Debiased Model (Xf;jy,r)

2]
% original X original
14 perturbed perturbed
2]
8 ¥
ﬂo_ * X X 5 X 5 X ¥ X
X ¥ X X ’
X X X
-11
HEACOAVDNCSES DO Y UECHOHHVOACH AT AR E D
PR E S PR EC R PR T e ER Y
LETCESQESESSEE RS SLESESC AL ES TEE ST
COOEETLRPCEFUCRE LUFECOWELTRoHE3URES
SESDESESEEZETRIRE S TESESCRZSEERREESD
SRS S Eg:ﬁgogcﬁ ’g“-?%wig,g dgésxsg‘ﬁ =
PRI ] =% g 0.5 QY T HEby 8%
2S5 E SL2 TTE 5§29 25g E8STR 58 &
EE 2gE T cE <SE° EEg FgZE g °F
= g% <~ = &

Figure 5: Our proposed B, , measured on Xfjer. Here
“original” is equivalent to k = 0, “perturbed” is equiva-
lent to k = 3, p is in the form of (male, female).

Metrics. We evaluate model bias through the
proposed B, . for k = 0, ..., 3. Here the bias for
k = 0 is effectively measured on the original test
set, and the bias for £ > 1 is measured on our
constructed neighborhood. We randomly sample a
subset of constructed examples when k£ = 3 due to
the exponential complexity.

Filtered test set. To investigate whether our
method is able to reveal model bias that was hidden
in the test set, we construct a filtered test set on
which the bias cannot be observed directly. Let
Xtest be the original validation split, we construct
Xiier by the equation below and empirically set
e = 0.005. We provide statistics in Table 5.

Xitter 1= {CL‘ ’ ’Fsoft(w§p)‘ <€ T € Xtest}-

4.2.2 Results

Our method is able to reveal the hidden model
bias on Xfjer, Which is not visible with naive mea-
surements. In Fig. 5, the naive approach (k = 0)
observes very small biases on most tokens (as con-
structed). In contrast, when evaluated by our dou-
ble perturbation framework (k = 3), we are able to
observe noticeable bias, where most p has a pos-
itive bias on the base model. This observed bias
is in line with the measurements on the original
Xest (Appendix A.4), indicating that we reveal the
correct model bias. Furthermore, we observe miti-
gated biases in the debiased model, which demon-
strates the effectiveness of data augmentation.

To demonstrate how our method reveals hidden
bias, we conduct a case study with p = (actor,
actress) and show the relationship between the
bias By, and the neighborhood distance k. We
present the histograms for Fyoq(z; p) in Fig. 6 and
plot the corresponding By, ;; vs. k in the right-most
panel. Surprisingly, for the base model, the bias is
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Figure 6: Left and Middle: Histograms for Fy.p (x; p) (x-axis) with p = (actor,actress). Right: The plot
for the average Fyon(x;p) (i-e., counterfactual token bias) vs. neighborhood distance k. Results show that the
counterfactual bias on p can be revealed when increasing k.

negative when k£ = 0, but becomes positive when
k = 3. This is because the naive approach only has
two test examples (Table 5) thus the measurement
is not robust. In contrast, our method is able to
construct 141,780 similar natural sentences when
k = 3 and shifts the distribution to the right (posi-
tive). As shown in the right-most panel, the bias is
small when k£ = 1, and becomes more significant
as k increases (larger neighborhood). As discussed
in §4.1, the neighborhood construction does not
introduce additional bias, and these results demon-
strate the effectiveness of our method in revealing
hidden model bias.

5 Related Work

First-order robustness evaluation. A line
of work has been proposed to study the wvul-
nerability of natural language models, through
transformations such as character-level perturba-
tions (Ebrahimi et al., 2018), word-level pertur-
bations (Jin et al., 2019; Ren et al., 2019; Yang
et al., 2020; Hsieh et al., 2019; Cheng et al., 2020;
Li et al., 2020), prepending or appending a se-
quence (Jia and Liang, 2017; Wallace et al., 2019a),
and generative models (Zhao et al., 2018b). They
focus on constructing adversarial examples from
the test set that alter the prediction, whereas our
methods focus on finding vulnerable examples be-
yond the test set whose prediction can be altered.

Robustness beyond the test set. Several works
have studied model robustness beyond test sets but
mostly focused on computer vision tasks. Zhang
et al. (2019) demonstrate that a robustly trained
model could still be vulnerable to small perturba-
tions if the input comes from a distribution only
slightly different than a normal test set (e.g., im-
ages with slightly different contrasts). Hendrycks
and Dietterich (2019) study more sources of com-
mon corruptions such as brightness, motion blur
and fog. Unlike in computer vision where simple

image transformations can be used, in our natural
language setting, generating a valid example be-
yond test set is more challenging because language
semantics and grammar must be maintained.

Counterfactual fairness. Kusner et al. (2017)
propose counterfactual fairness and consider a
model fair if changing the protected attributes does
not affect the distribution of prediction. We fol-
low the definition and focus on evaluating the
counterfactual bias between pairs of protected to-
kens. Existing literature quantifies fairness on a
test dataset or through templates (Feldman et al.,
2015; Kiritchenko and Mohammad, 2018; May
et al., 2019; Huang et al., 2020). For instance,
Garg et al. (2019) quantify the absolute counter-
factual token fairness gap on the test set; Prab-
hakaran et al. (2019) study perturbation sensitivity
for named entities on a given set of corpus. Wallace
et al. (2019b); Sheng et al. (2019, 2020) study how
language generation models respond differently to
prompt sentences containing mentions of different
demographic groups. In contrast, our method quan-
tifies the bias on the constructed neighborhood.

6 Conclusion

This work proposes the double perturbation frame-
work to identify model weaknesses beyond the test
dataset, and study a stronger notion of robustness
and counterfactual bias. We hope that our work
can stimulate the research on further improving the
robustness and fairness of natural language models.
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Ethical Considerations

Intended use. One primary goal of NLP models
is the generalization to real-world inputs. However,
existing test datasets and templates are often not
comprehensive, and thus it is difficult to evaluate
real-world performance (Recht et al., 2019; Ribeiro
et al., 2020). Our work sheds a light on quantifying
performance for inputs beyond the test dataset and
help uncover model weaknesses prior to the real-
world deployment.

Misuse potential. Similar to other existing adver-
sarial attack methods (Ebrahimi et al., 2018; Jin
et al., 2019; Zhao et al., 2018b), our second-order
attacks can be used for finding vulnerable exam-
ples to a NLP system. Therefore, it is essential
to study how to improve the robustness of NLP
models against second-order attacks.

Limitations. While the core idea about the dou-
ble perturbation framework is general, in §4, we
consider only binary gender in the analysis of coun-
terfactual fairness due to the restriction of the En-
glish corpus we used, which only have words asso-
ciated with binary gender such as he /she, wait—
er/waitress, etc.
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A Supplemental Material

A.1 Random Baseline

To validate the effectiveness of minimizing Eq. (4),
we also experiment on a second-order baseline that
constructs vulnerable examples by randomly re-
placing up to 6 words. We use the same masked
language model and threshold as SO-Beam such
that they share a similar neighborhood. We per-
form the attack on the same models as Table 2, and
the attack success rates on robustly trained BoW,
CNN, LSTM, and Transformers are 18.8%, 22.3%,
15.2%, and 25.1%, respectively. Despite being a
second-order attack, the random baseline has low
attack success rates thus demonstrates the effective-
ness of SO-Beam.

A.2 Human Evaluation

We randomly select 100 successful attacks from
SO-Beam and consider four types of examples (for
a total of 400 examples): The original examples
with and without synonym substitution p, and the
vulnerable examples with and without synonym
substitution p. For each example, we annotate the
naturalness and sentiment separately as described
below.

Naturalness of vulnerable examples. We ask
the annotators to score the likelihood of being an
original example (i.e., not altered by computer)
based on grammar correctness and naturalness,
with a Likert scale of 1-5: (1) Sure adversarial
example. (2) Likely an adversarial example. (3)
Neutral. (4) Likely an original example. (5) Sure
original example.

Semantic similarity after the synonym substitu-
tion. We first ask the annotators to predict the
sentiment on a Likert scale of 1-5, and then map
the prediction to three categories: negative, neutral,
and positive. We consider two examples to have
the same semantic meaning if and only if they are
both positive or negative.

A.3 Running Time

We experiment with the validation split on a single
RTX 3090, and measure the average running time
per example. As shown in Table 6, SO-Beam runs
faster than SO-Enum since it utilizes the probability
output. The running time may increase if the model
has improved second-order robustness.

Running Time (seconds)
Genetic BAE ‘ SO-Enum SO-Beam

Base Models:

BoW 31.6 0.9 6.2 1.8
CNN 28.8 1.0 59 1.7
LSTM 31.9 1.1 7.0 1.9
Transformer 51.9 0.5 6.5 2.5
BERT-base 65.6 1.1 354 7.1
Robust Models:

BoW 103.9 1.0 8.0 3.5
CNN 129.4 1.0 6.7 2.6
LSTM 116.4 1.1 10.7 53
Transformer 66.4 0.5 5.9 2.6

Table 6: The average running time over 872 examples
(100 for Genetic due to long running time).

A.4 Additional Results on Protected Tokens

Fig. 7 presents the experimental results with ad-
ditional protected tokens such as nationality, reli-
gion, and sexual orientation (from Ribeiro et al.
(2020)). We use the same base LSTM as de-
scribed in §4.2. One interesting observation is
when p = (gay,straight) where the bias is
negative, indicating that the sentiment classifier
tends to give more negative prediction when sub-
stituting gay — straight in the input. This
phenomenon is opposite to the behavior of toxi-
city classifiers (Dixon et al., 2018), and we hy-
pothesize that it may be caused by the different
distribution of training data. To verify the hypoth-
esis, we count the number of training examples
containing each word, and observe that we have
far more negative examples than positive examples
among those containing st raight (Table 7). Af-
ter looking into the training set, it turns out that
straight to video is a common phrase to
criticize a film, thus the classifier incorrectly cor-
relates st raight with negative sentiment. This
also reveals the limitation of our method on polyse-
mous words.

# Negative # Positive
gay 37 20
straight 71 18

Table 7: Number of negative and positive examples
containing gay and straight in the training set.

In Fig. 8, we measure the bias on X and ob-
serve positive bias on most tokens for both £ = 0
and k = 3, which indicates that the model “tends”
to make more positive predictions for examples
containing certain female pronouns than male pro-
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Figure 7: Additional counterfactual token bias mea-
sured on the original validation split with base LSTM.

nouns. Notice that even though gender swap miti-
gates the bias to some extent, it is still difficult to
fully eliminate the bias. This is probably caused
by tuples like (him, his, her) which cannot be
swapped perfectly, and requires additional process-
ing such as part-of-speech resolving (Zhao et al.,
2018a).
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Figure 8: Full results for gendered tokens measured on
the original validation split.

To help evaluate the naturalness of our con-
structed examples used in §4, we provide sample
sentences in Table 9 and Table 10. Bold words are
the corresponding patch words p, taken from the
predefined list of gendered pronouns.

A.5 Additional Results on Robustness

Table 8 provides the quality metrics for first-order
attacks, where we measure the GPT-2 perplexity
and ¢y norm distance between the input and the
adversarial example. For BAE we evaluate on 872
validation examples, and for Genetic we evaluate
on 100 validation examples due to the long running
time.

Table 11 shows additional attack results from

Genetic BAE
Original  Perturb ‘ Original  Perturb ’

PPL pPL "  PPL ppL °
Base Models:
BoW 145 258 33 192 268 1.6
CNN 146 282 3.0 186 254 1.5
LSTM 131 238 29 190 263 1.6
Transformer 137 232 2.8 185 254 1.4
BERT-base 201 342 34 189 277 1.6
Robust Models:
BoW 132 177 2.4 214 269 1.5
CNN 136 236 2.7 211 279 1.5
LSTM 163 267 2.5 220 302 1.6
Transformer 118 200 2.8 196 261 14

Table 8: The quality metrics for first-order attacks from
successful attacks. We compare median perplexities
(PPL) and average ¢, norm distances.

SO-Beam on base LSTM, and Table 12 shows addi-
tional attack results from SO-Beam on robust CNN.
Bold words are the corresponding patch words p,
taken from the predefined list of counter-fitted syn-

onyms.
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Type Predictions Text
Original 95% Negative 94% Negative it s hampered by a lifetime-channel kind of plot and a lead actor (ac-
tress) who is out of their depth .
Distance k =1 97% Negative (97% Negative) it ’s hampered by a lifetime-channel kind of plot and lone lead actor
(actress) who is out of their depth .
56% Negative (55% Positive ) it s hampered by a lifetime-channel kind of plot and a lead actor (ac-
tress) who is out of creative depth .
89% Negative (84% Negative) it ’s hampered by a lifetime-channel kind of plot and a lead actor (ac-
tress) who talks out of their depth .
98% Negative (98% Negative) it ’s hampered by a lifetime-channel kind of plot and a lead actor (ac-
tress) who is out of production depth .
96% Negative (96% Negative) it ’s hampered by a lifetime-channel kind of plot and a lead actor (ac-
tress) that is out of their depth .
Distance k =2  88% Negative (87% Negative) it ’s hampered by a lifetime-channel cast of stars and a lead actor (ac-
tress) who is out of their depth .
96% Negative (95% Negative) it ’s hampered by a simple set of plot and a lead actor (actress) who is
out of their depth .
54% Negative (54% Negative) it ’s framed about a lifetime-channel kind of plot and a lead actor (ac-
tress) who is out of their depth .
90% Negative (88% Negative) it ’s hampered by a lifetime-channel mix between plot and a lead actor
(actress) who is out of their depth .
78% Negative (68% Negative) it ’s hampered by a lifetime-channel kind of plot and a lead actor (ac-
tress) who storms out of their mind .
Distance k =3  52% Positive (64% Positive ) it ’s characterized by a lifetime-channel combination comedy plot and a
lead actor (actress) who is out of their depth .
93% Negative (93% Negative) it ’s hampered by a lifetime-channel kind of star and a lead actor (ac-
tress) who falls out of their depth .
58% Negative (57% Negative) it ’s hampered by a tough kind of singer and a lead actor (actress) who
is out of their teens .
70% Negative (52% Negative) it ’s hampered with a lifetime-channel kind of plot and a lead actor
(actress) who operates regardless of their depth .
58% Negative (53% Positive ) it ’s hampered with a lifetime-channel cast of plot and a lead actor

(actress) who is out of creative depth .

Table 9: Additional counterfactual bias examples on base LSTM with p = (actor, actress). We only present
5 examples per k due to space constrain.
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Type Predictions Text
Original 55% Positive  (67% Positive )  a hamfisted romantic comedy that makes our boy (girl) the hapless
facilitator of an extended cheap shot across the mason-dixon line .
Distance k =1  52% Positive (66% Positive )  a hamfisted romantic comedy that makes our boy (girl) the hapless
facilitator of an extended cheap shot from the mason-dixon line .
73% Positive  (79% Positive )  a hamfisted romantic comedy that makes our boy (girl) the hapless
facilitator gives an extended cheap shot across the mason-dixon line .
56% Negative (58% Positive ) a hamfisted romantic comedy that makes our boy (girl) the hapless
facilitator of an extended cheap shot across the phone line .
75% Positive  (83% Positive ) a hamfisted romantic comedy that makes our boy (girl) the hapless
facilitator of an extended chase shot across the mason-dixon line .
75% Positive  (81% Positive )  a hamfisted romantic comedy that makes our boy (girl) our hapless
facilitator of an extended cheap shot across the mason-dixon line .
Distance k =2 85% Positive  (85% Positive )  a hilarious romantic comedy that makes our boy (girl) the hapless facili-
tator of an emotionally cheap shot across the mason-dixon line .
81% Positive  (86% Positive )  a hamfisted romantic comedy romance makes our boy (girl) the hapless
facilitator of an extended cheap delivery across the mason-dixon line .
84% Positive (87% Positive )  a hamfisted romantic romance adventure makes our boy (girl) the hap-
less facilitator of an extended cheap shot across the mason-dixon line
50% Negative (62% Positive ) a hamfisted romantic comedy that makes our boy (girl) the hapless boss
of an extended cheap shot behind the mason-dixon line .
77% Negative (71% Negative) a hamfisted lesbian comedy that makes our boy (girl) the hapless facili-
tator of an extended slap shot across the mason-dixon line .
Distance k =3  97% Positive  (97% Positive )  a darkly romantic comedy romance makes our boy (girl) the hapless
facilitator delivers an extended cheap shot across the mason-dixon line .
69% Positive  (74% Positive )  a hamfisted romantic comedy film makes our boy (girl) the hapless
facilitator of an extended cheap shot across the production line .
87% Positive  (89% Positive )  a hamfisted romantic comedy that makes our boy (girl) the exclusive
focus of an extended cheap shot across the mason-dixon line .
64% Positive (76% Positive ) a hamfisted romantic comedy that makes our boy (girl) the hapless
facilitator shoots an extended flash shot across the camera line .
99% Positive  (99% Positive ) a compelling romantic comedy that makes our boy (girl) the perfect

facilitator of an extended story shot across the mason-dixon line .

Table 10: Additional counterfactual bias examples on base LSTM with p = (boy,girl). We only present 5
examples per k due to space constrain.
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Type Predictions Text

Original 99% Positive  (99% Positive ) it ’s a charming and sometimes (often) affecting journey .

Vulnerable 59% Negative (56% Positive ) it ’s a charming and sometimes (often) painful journey .

Original 99% Negative (97% Negative) unflinchingly bleak (somber) and desperate

Vulnerable 80% Negative (79% Positive ) unflinchingly bleak (somber) and mysterious

Original 99% Positive  (93% Positive ) allows us to hope that nolan is poised to embark a major career (quarry)
as a commercial yet inventive filmmaker .

Vulnerable 76% Positive  (75% Negative) allows us to hope that nolan is poised to embark a major career (quarry)
as a commercial yet amateur filmmaker .

Original 94% Positive  (68% Positive ) the acting , costumes , music , cinematography and sound are all astound-
ing (staggering) given the production ’s austere locales .

Vulnerable 87% Positive  (66% Negative) the acting , costumes , music , cinematography and sound are largely
astounding (staggering) given the production ’s austere locales .

Original 99% Positive  (97% Positive ) although laced with humor and a few fanciful touches , the film is a
refreshingly serious look at young (juvenile) women .

Vulnerable 94% Positive  (81% Negative) although laced with humor and a few fanciful touches , the film is a
moderately serious look at young (juvenile) women .

Original 99% Negative (98% Negative) a sometimes (occasionally) tedious film .

Vulnerable 62% Negative (55% Positive ) a sometimes (occasionally) disturbing film .

Original 100% Negative (100% Negative) in exactly 89 minutes , most of which passed as slowly as if i ’d been
sitting naked on an igloo , formula 51 sank from quirky (lunatic) to jerky
to utter turkey .

Vulnerable 51% Positive  (65% Negative) lasting exactly 89 minutes , most of which passed as slowly as if i ’d been
sitting naked on an igloo , but 51 ranges from quirky (lunatic) to delicious
to crisp turkey .

Original 97% Positive  (100% Positive ) the scintillating (mesmerizing) performances of the leads keep the film
grounded and keep the audience riveted .

Vulnerable 91% Negative (90% Positive ) the scintillating (mesmerizing) performances of the leads keep the film
grounded and keep the plot predictable .

Original 89% Negative (96% Negative) it takes a uncanny (strange) kind of laziness to waste the talents of robert
forster , anne meara , eugene levy , and reginald veljohnson all in the same
movie .

Vulnerable 80% Positive  (76% Negative) it takes a uncanny (strange) kind of humour to waste the talents of robert
forster , anne meara , eugene levy , and reginald veljohnson all in the same
movie .

Original 100% Negative (100% Negative) ... the film suffers from a lack of humor ( something needed to balance
(equilibrium) out the violence ) ...

Vulnerable 76% Positive  (86% Negative) . the film derives from a lot of humor ( something clever to balance
(equilibrium) out the violence ) ...

Original 55% Positive  (97% Positive ) we root for ( clara and paul ) , even like them , though perhaps it ’s an
emotion closer to pity (compassion) .

Vulnerable 89% Negative (91% Positive ) we root for ( clara and paul ) , even like them , though perhaps it ’s an
explanation closer to pity (compassion) .

Original 95% Negative (97% Negative) even horror fans (stalkers) will most likely not find what they 're seeking
with trouble every day ; the movie lacks both thrills and humor .

Vulnerable 61% Positive  (59% Negative) even horror fans (stalkers) will most likely not find what they ’re seeking
with trouble every day ; the movie has both thrills and humor .

Original 100% Positive  (100% Positive ) a gorgeous , high-spirited musical from india that exquisitely mixed
(blends) music , dance , song , and high drama .

Vulnerable 87% Negative (81% Positive ) a dark , high-spirited musical from nowhere that loosely mixed (blends)
music , dance , song , and high drama .

Original 99% Negative (94% Negative) ... the movie is just a plain old (longtime) monster .

Vulnerable 94% Negative (94% Positive ) ... the movie is just a pretty old (longtime) monster .

Table 11: Additional sentiment classification results from SO-Beam on base LSTM.
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Type Predictions Text

Original 54% Positive  (69% Positive )  for the most part , director anne-sophie birot ’s first feature is a sensitive ,
overly (extraordinarily) well-acted drama .

Vulnerable  53% Negative (62% Positive )  for the most part , director anne-sophie benoit ’s first feature is a sensitive ,
overly (extraordinarily) well-acted drama .

Original 66% Positive (72% Positive )  mr. tsai is a very original painter (artist) in his medium , and what time is it
there ?

Vulnerable  52% Negative (55% Positive ) mr. tsai is a very original painter (artist) in his medium , and what time was
it there ?

Original 80% Positive (64% Positive ) sade is an engaging (engage) look at the controversial eponymous and
fiercely atheistic hero .

Vulnerable  53% Positive (66% Negative)  sade is an engaging (engage) look at the controversial eponymous or fiercely
atheistic hero .

Original 50% Negative (57% Negative) so devoid of any kind of comprehensible (intelligible) story that it makes
films like xxx and collateral damage seem like thoughtful treatises

Vulnerable 53% Positive (54% Negative) so devoid of any kind of comprehensible (intelligible) story that it makes
films like xxx and collateral 2 seem like thoughtful treatises

Original 90% Positive (87% Positive )  a tender , heartfelt (deepest) family drama .

Vulnerable 60% Positive (61% Negative) a somber , heartfelt (deepest) funeral drama .

Original 57% Positive  (69% Positive ) ... a hollow joke (giggle) told by a cinematic gymnast having too much fun
embellishing the misanthropic tale to actually engage it .

Vulnerable 56% Negative (56% Positive ) ... a hollow joke (giggle) told by a cinematic gymnast having too much fun
embellishing the misanthropic tale cannot actually engage it .

Original 73% Negative (56% Negative) the cold (colder) turkey would ’ve been a far better title .

Vulnerable 61% Negative (62% Positive ) the cold (colder) turkey might "ve been a far better title .

Original 70% Negative (65% Negative) it ’s just disappointingly superficial — a movie that has all the elements
necessary to be a fascinating , involving character study , but never does more
than scratch the shallow (surface) .

Vulnerable  52% Negative (55% Positive ) it ’s just disappointingly short — a movie that has all the elements necessary
to be a fascinating , involving character study , but never does more than
scratch the shallow (surface) .

Original 79% Negative (72% Negative) schaeffer has to find some hook on which to hang his persistently useless
movies , and it might as well be the resuscitation (revival) of the middle-
aged character .

Vulnerable  57% Negative (57% Positive )  schaeffer has to find some hook on which to hang his persistently entertaining
movies , and it might as well be the resuscitation (revival) of the middle-
aged character .

Original 64% Positive  (58% Positive )  the primitive force of this film seems to bubble up from the vast collective
memory of the combatants (militants) .

Vulnerable  52% Positive (53% Negative)  the primitive force of this film seems to bubble down from the vast collective
memory of the combatants (militants) .

Original 64% Positive (74% Positive )  on this troublesome (tricky) topic , tadpole is very much a step in the right
direction , with its blend of frankness , civility and compassion .

Vulnerable  55% Negative (56% Positive )  on this troublesome (tricky) topic , tadpole is very much a step in the right
direction , losing its blend of frankness , civility and compassion .

Original 74% Positive  (60% Positive )  if you re hard (laborious) up for raunchy college humor , this is your ticket
right here .

Vulnerable  60% Positive (57% Negative) if you ’re hard (laborious) up for raunchy college humor , this is your ticket
holder here .

Original 94% Positive  (97% Positive )  a fast, funny , highly fun (enjoyable) movie .

Vulnerable  54% Negative (65% Positive ) a dirty , violent , highly fun (enjoyable) movie .

Original 86% Positive  (88% Positive )  good old-fashioned slash-and-hack is back (backwards) !

Vulnerable  52% Negative (55% Positive )  a old-fashioned slash-and-hack is back (backwards) !

Table 12: Additional sentiment classification results from SO-Beam on robust CNN.
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