
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=utas20

The American Statistician

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/utas20

A Review of Adversarial Attack and Defense for
Classification Methods

Yao Li, Minhao Cheng, Cho-Jui Hsieh & Thomas C. M. Lee

To cite this article: Yao Li, Minhao Cheng, Cho-Jui Hsieh & Thomas C. M. Lee (2022): A Review
of Adversarial Attack and Defense for Classification Methods, The American Statistician, DOI:
10.1080/00031305.2021.2006781

To link to this article: https://doi.org/10.1080/00031305.2021.2006781

Published online: 04 Jan 2022.

Submit your article to this journal

Article views: 358

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=utas20
https://www.tandfonline.com/loi/utas20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00031305.2021.2006781
https://doi.org/10.1080/00031305.2021.2006781
https://www.tandfonline.com/action/authorSubmission?journalCode=utas20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=utas20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00031305.2021.2006781
https://www.tandfonline.com/doi/mlt/10.1080/00031305.2021.2006781
http://crossmark.crossref.org/dialog/?doi=10.1080/00031305.2021.2006781&domain=pdf&date_stamp=2022-01-04
http://crossmark.crossref.org/dialog/?doi=10.1080/00031305.2021.2006781&domain=pdf&date_stamp=2022-01-04

THE AMERICAN STATISTICIAN
2022, VOL. 00, NO. 0, 1–17: General
https://doi.org/10.1080/00031305.2021.2006781

A Review of Adversarial Attack and Defense for Classification Methods

Yao Lia, Minhao Chengb, Cho-Jui Hsiehb, and Thomas C. M. Leec

aDepartment of Statistics & Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC; bDepartment of Computer Science, University
of California at Los Angeles, Los Angeles, CA; cDepartment of Statistics, University of California at Davis, Davis, CA

ABSTRACT
Despite the efficiency and scalability of machine learning systems, recent studies have demonstrated
that many classification methods, especially Deep Neural Networks (DNNs), are vulnerable to adversarial
examples; that is, examples that are carefully crafted to fool a well-trained classification model while being
indistinguishable from natural data to human. This makes it potentially unsafe to apply DNNs or related
methods in security-critical areas. Since this issue was first identified by Biggio et al. and Szegedy et al., much
work has been done in this field, including the development of attack methods to generate adversarial
examples and the construction of defense techniques to guard against such examples. This article aims
to introduce this topic and its latest developments to the statistical community, primarily focusing on the
generation and guarding of adversarial examples. Computing codes (in Python and R) used in the numerical
experiments are publicly available for readers to explore the surveyed methods. It is the hope of the authors
that this article will encourage more statisticians to work on this important and exciting field of generating
and defending against adversarial examples.

ARTICLE HISTORY
Received August 2021
Accepted November 2021

KEYWORDS
Adversarial examples;
Adversarial training; Deep
neural networks; Defense
robustness

1. Introduction

Machine learning systems achieve state-of-the-art performance
in various tasks in artificial intelligence, such as image classi-
fication, speech recognition, machine translation and game-
playing (e.g., Simonyan and Zisserman 2014; Silver et al.
2016; Devlin et al. 2019). Despite their tremendous successes,
machine learning models have been shown to be vulnerable to
adversarial examples. By adding imperceptible perturbations
to the original inputs, the attacker can produce adversarial
examples to fool a learned classifier (e.g., Szegedy et al. 2014;
Goodfellow, Shlens, and Szegedy 2015). Adversarial examples
are indistinguishable from the original inputs to human, but are
misclassified by the classifier. For an illustration, consider the
following images in Figure 1.

To humans, the two images appear to be the same—the vision
system of human will identify each image as a bagel. The image
on the left side is an ordinary image of a bagel (the original
image). However, the image on the right side is generated by
adding a small and imperceptible perturbation that forces a par-
ticular classifier to classify it as a piano. The example in Figure 1
was generated to fool a deep neural network (DNN) based
classifier. However, an adversarial example is not an isolated
case that happens only to some neural networks, but a general
case for most of the practically used neural networks. Besides,
recent works have shown that linear models and many other
general statistical learning models, such as logistic regression
and tree-based models, are also vulnerable to adversarial exam-
ples (Chen et al. 2019). With the wide application of machine
learning models, this causes serious concerns about the safety

CONTACT Thomas C. M. Lee tcmlee@ucdavis.edu Department of Statistics, University of California at Davis, Statistics, 4118 One Shields Ave, Davis, CA 95616.

of machine learning systems in security sensitive areas, such as
self-driving cars, flight control systems, healthcare systems, and
so on. Therefore, studies on adversarial examples have attracted
much attention in recent years.

Most of the studies on adversarial examples can be generally
classified into two categories: works on how to efficiently gener-
ate adversarial examples (i.e., attack), and works on how to guard
against such adversarial examples (i.e., defense). This article
reviews the latest research on adversarial attack and defense,
and compares the state-of-the-art attack and defense meth-
ods on benchmark datasets. We illustrate the main concepts
via an image classification task with a continuous input space.
However, we also note that there have been research activities
on adversarial robustness for other applications with discrete
input data, such as natural language processing (NLP), discrete
models, and nearest neighbor classifiers (e.g., Jia and Liang 2017;
Samanta and Mehta 2017; Gao et al. 2018; Cheng et al. 2020b;
Yang et al. 2020b).

With this article, it is our hope that more statisticians will
be engaged in this important and exciting field of attacking
and defending classification methods. As to be demonstrated
below, many problems from this field are statistical in nature,
and statistical methodologies and principles can be adopted to
improve existing methods or even to develop new methods.
R codes that demonstrate how to attack a logistic regression
model are provided for statisticians who are interested in this
problem to experiment with. Finally, we note that there are
other review articles in related topics that might be of interest to
the reader; for example, Serban, Poll, and Visser (2020) reviewed
adversarial phenomenon in the field of object detection, while

© 2022 American Statistical Association

https://doi.org/10.1080/00031305.2021.2006781
https://crossmark.crossref.org/dialog/?doi=10.1080/00031305.2021.2006781&domain=pdf&date_stamp=2021-12-30
mailto:tcmlee@ucdavis.edu

2 Y. LI ET AL.

Figure 1. An example of adversarial example, taken from Chen et al. (2017).

other authors (e.g., Qiu et al. 2019; Yuan et al. 2019; Ren et al.
2020; Xu et al. 2020) provided reviews of adversarial examples
with emphasis in computer vision and natural language pro-
cessing from the perspective of computer science. These authors
categorized the methods in a different manner when compared
to ours.

1.1. Notation

In this article, all the vectors are denoted as bold symbols. The
input to the classifier is represented by x and the label associated
with the input is represented by y. Thus, one observation is a
pair (x, y). The classifier is denoted as f (·) and f (x) represents
the output vector of the classifier. The dimension of f (x) is
equal to the number of classes of the dataset. Let f (x)i denote
the score of predicting x with label i. We caution that, in some
works in the literature, f (x)i is taken as the “probability” that
sample x corresponds to label i, but very often these f (x)i’s are
not probabilities. The prediction of the classifier is denoted as
c(x) = argmax

i
f (x)i; that is, the predicted label is the one with

the highest prediction score. We use the �∞ and �2 distortion
metrics to measure similarity between inputs and report the �∞
distance in the normalized [0, 1] space, and the �2 distance as
the total root-mean-square distortion normalized by the total
number of dimensions.

The rest of this article is organized as follows. Section 2 pro-
vides a quick summary of DNNs. This section can be omitted if
the reader has a good understanding of the classification task, by
treating a DNN as a black-box classifer. Then Section 3 describes
the latest developments for attacking classification methods,
while Section 4 presents defense methods for defending against
such attacks. Lastly, numerical comparisons are given in Sec-
tion 5 while concluding remarks, including future directions for
statistical research, are offered in Section 6.

2. Deep Neural Networks

Deep Neural Networks (DNNs) have become one of the most
prominent technologies of our time, as they achieve state-of-
the-art performance in many machine learning tasks, including
but not limited to image classification, text mining, and speech
processing. A brief introduction to DNNs is given in this section
to help readers understand attack and defense methods. More
details of DNNs can be found, for example, in Goodfellow,

Bengio, and Courville (2016). To speed up the pace, the readers
may skip this section (and come back later), which will not affect
understanding the concepts behind those attack and defense
methods. It is because the DNNs described below can be viewed
as black-box classifiers and their details are not crucial for the
comprehension of such concepts. However, for readers who are
interested in the robustness of DNNs and not familiar with their
architectures, this section would be helpful.

A DNN consists of a large class of models and learning
methods. Here we describe a general form of DNN classifier,
that is, widely applied in image classification. For a DNN model
f (·) with L layers, each layer is parameterized by a weight
matrix θ i, which holds the knowledge of the DNN model and is
updated during the training process. Each neuron of the DNN
has an activation function φi, which is usually used to introduce
nonlinearity into the output of a neuron. Each function φi for
i ∈ {1, . . . , L} is modeled using a layer of neurons, where the
function φi takes the output of the previous layer (hi−1) as
input and produces hi as the output of the current layer. The
function φi is usually chosen to be ReLU (rectified linear unit)
φ(v) = max(0, v), but there are also many other choices. In fully
connected neural networks, the output of each layer is generated
by multiplying a weight matrix with the previous layer output
and adding a bias term. However, there could be other designs
for the weights. For example, in a convolutional neural network
(CNN), the weight θ i is a kernel matrix. The kernel matrix scans
over the input matrix, from left to right and from top to bottom,
and each one of the values within the kernel is multiplied by the
input value on the same position to generate the output matrix;
see Figure 2 for an example. More details of convolutional neural
network design can be found in LeCun et al. (1998). In general,
a DNN can be expressed as:

f (x) = φL(θL, φL−1(θL−1, . . . φ2(θ2, φ1(θ1, x)))).

As illustrated in Figure 3, a deep classifier is a machine
learning model that uses a hierarchical composition of L para-
metric functions to model an input x. Depending on the loss
applied to the final layer, a neural network can easily handle
both regression and classification tasks. For regression, there is
only one output unit at the end of the network. For multi-class
classification, there are K output units, where K is the number
of classes.

THE AMERICAN STATISTICIAN 3

Figure 2. Convolutional operation with stride (step size) equals to 1.

Figure 3. DNN Classifier: the model takes an image of a handwritten digit as input and predicts the probability of it being in one of the K = 10 classes for digits 0 to
9 (Papernot et al. 2017).

For the classification task, the cross-entropy loss is widely
used:

�(x, y) = −
K∑

i=1
�{i=y} log(f (x)i).

Given a dataset with many known input-label pairs (x, y), the
DNN will adjust its parameters ({θ1, . . . , θn}) to reduce the
prediction error between the prediction and the correct label.
The generic approach to minimize the prediction loss is gradient
descent, called back-propagation in this setting (Hecht-Nielsen
1992). Because of the compositional form of the model, the error
gradient is derived using the chain rule for differentiation. The
gradient is computed by a two-pass algorithm, where a forward
pass is used to compute the loss and a backward pass is carried
out to derive the gradient. In backward pass, error gradients with
respect to network parameters are successively propagated from
the network’s output layer to its input layer. For large datasets,
stochastic gradient descent is usually applied, where the gradient
descent is done on a random subset of data.

At the testing stage, the DNN with fixed parameters is
used to predict the label of unseen input. The output of the
DNN is a probability vector f (x), and the prediction is c(x) =
argmax

i
f (x)i.

DNNs achieve state-of-the-art performance in the task of
image classification. For example, an vision transformer net-
work (Dosovitskiy et al. 2021) can achieve over 99% accuracy
when classifying natural images from the benchmark dataset
CIFAR10 (Krizhevsky and Hinton 2009). Ideally, we expect the
deep classifier to generalize well, making accurate predictions
for inputs outside of the domain explored during training. How-
ever, recent studies on adversarial attack show that carefully
crafted adversarial examples can easily fool the model.

3. Attack

Adversarial attacks are processes to generate an adversarial
example based on a given natural sample and the victim
model. Figure 4 illustrates this process of generating adversarial

4 Y. LI ET AL.

Figure 4. Illustration of adversarial attacks.

examples. Here x0 denotes the natural input, and the DNN
can correctly predict its label y0. An adversarial attack aims to
find a small perturbation δ such that the adversarial example
x∗ = x0 + δ, which looks similar to x0 to humans, will be
misclassified by the victim model.

Multiple attack methods have been introduced for the craft-
ing of adversarial examples to attack various DNNs. In general,
there are two kinds of attack goals: targeted and untargeted. For
untargeted attack, the attack is successful if the input is predicted
with any wrong label. Take Figure 1 as example. As long as the
bagel image is not classified as bagel, the attack is successful. For
targeted attack, the attack is successful only when the adversarial
example is classified as the target class. In this example, if the
target class is piano, the attack is successful only when the right
side image is labeled as piano by the victim classifier.

Based on the information needed, the attack methods can
be grouped into three categories: (1) gradient-based, (2) score-
based, and (3) decision-based. Most of these methods can per-
form both targeted and untargeted attacks. In general, one attack
method belongs to one of the three categories, while recently it
has been shown that an ensemble of attacks from multiple cate-
gories can potentially lead to a stronger attack (Croce and Hein
2020). If all the information of the victim model, such as model
structure, parameters and so on, is revealed to the attacker, the
scenario is called white box setting. If only the predicted scores
are available, the scenario is called soft-label black box setting.
If only the predicted labels are revealed, the scenario is called
hard-label black box setting. There are also gray box settings,
where part of the model information is available. Notice that
the part of the model information, that is, available/unavailable
is problem dependent. For example, Yang et al. (2020a) defined
the gray box as the scenario where the attacker has access to the
classifier but not the design of the adversarial example detector.
We will thus focus on white-box and black-box attacks in this
article. The next three sections present representative examples
and deeper discussions of the three categories of attack methods.

3.1. Gradient-Based Attack

Many existing attack methods fall in this category. These
methods leverage the gradients of the loss w.r.t. the input to

form adversarial examples. For instance, the Fast Gradient
Sign Method (FGSM) (Goodfellow, Shlens, and Szegedy 2015)
generates adversarial examples based on the sign of gradients,
and uses a step size to control the �∞ norm of perturbation. The
Basic Iterative Method (BIM) (Kurakin, Goodfellow, and Bengio
2016) and Projected Gradient Descent Attack (PGD) (Madry
et al. 2018) can be viewed as iterative versions of FGSM. PGD
crafts adversarial examples by running FGSM for a fixed number
of iterations or until misclassification is achieved. The most
effective gradient-based adversarial attack methods to date
are C&W (Carlini and Wagner 2017b) and PGD. Both C&W
attack and PGD have been frequently used to benchmark the
defense algorithms due to their effectiveness (Athalye, Carlini,
and Wagner 2018). Since gradient information is required to
perform attack, gradient-based attack is mainly for the white-
box setting. The process of crafting adversarial examples can
be formulated as an optimization problem. Depending on the
optimization formulations of the attack methods, gradient-
based attack methods can be further divided into two sub-
categories.

3.1.1. Constraint-Optimization Formulation Based
Methods

The first sub-category consists of constraint-optimization for-
mulation based methods. Given a model with a fixed parameter
θ and an input pair (x0, y0), the process of generating adversarial
examples x∗ can be described by the following optimization
problem:

x∗ = x0 + δ with δ = arg max
δ∈S

L(θ , x0 + δ, y0), (1)

where L is the loss function, δ is the adversarial perturbation,
and S ∈ R

d is the set of allowed perturbations, usually chosen
to be S = {δ|‖δ‖∞ ≤ ε} for some ε.

The optimization goal is to search for the adversarial pertur-
bation that leads to wrong classification. Therefore, for untar-
geted attack, the loss function L can be the loss function used to
train the classifier, while for targeted attack, other loss functions
designed for the target class should be used. By maximizing (1),
the attacker is forcing the classifier to err on the classification
task. To guarantee that the perturbation is not too large so that

THE AMERICAN STATISTICIAN 5

x0 and x∗ are indistinguishable to human, the search space is
restricted to be within the ε-ball around the input.

The optimization problem defined in (1) can be reformulated
as

arg max
δ∈S

L(θ , x0 + δ, y0) = argmax
‖δ‖∞≤ε

L(θ , x0 + δ, y0), (2)

which can be solved by gradient descent. Projected-Gradient
Descent Attack (PGD) crafts adversarial examples by solving
this optimization problem with the projected gradient descent
method. It is proposed by Madry et al. (2018), which finds
adversarial examples in an ε-ball of the input. The PGD attack
updates in the direction that decreases the probability of the
original class most, then projects the result back to the ε-ball
of the input. The updating equation of the PGD attack is:

xt+1 = �ε

{
xt + α · sign

(
∇xL(θ , xt , y)

)
, x0

}
, (3)

where x0 is the original input, xt is the updated input in step
t, ε controls the maximum distortion, α is the step size and
∇xL(θ , xt , y) represents the gradient of classification loss L(·)
w.r.t. input xt . Basically, PGD attack constructs an adversarial
example by adding or subtracting a small error term, α, to
each input dimension. The decision of adding or subtracting
an error term depends on whether the sign of the gradient
for an input dimension is positive or negative. Then the result
from previous step is projected to the ε-ball around the original
input. If (3) is run for only one step, it is equivalent to the
Fast Gradient Sign Method (FGSM) (Goodfellow, Shlens, and
Szegedy 2015). If it is run for multiple steps, it is the PGD attack
or the Basic Iterative Method (BIM) (Kurakin, Goodfellow,
and Bengio 2016). Recently, Croce and Hein (2020) introduced
a new attack method called Autoattack, which combines two
extensions of PGD and a decision-based attack to automatically
evaluate defense methods without parameter tuning.

3.1.2. Regularization-Optimization Formulation Based
Methods

The second sub-category consists of regularization-optimization
formulation based methods. The C&W attack proposed
by Carlini and Wagner (2017a) is a representative one, and is
by far one of the strongest attack methods. It can perform both
targeted and untargeted attacks, which are formulated as the
following optimization problem:

x∗ = argmin
x

{‖x − x0‖2
2 + cg(x)

}
, (4)

where the first term enforces small distortion of the original
input and the second term is the loss function that measures the
success of the attack. The parameter c > 0 controls the trade-off
between distortion and attack success.

If it is for untargeted attack, which means the attacker only
wants the classifier to make a mistake and does not care the
predicted label of the adversarial example, then g(x) is defined
as:

g(x) = max{f (x)y0 − max
i �=y0

f (x)i, 0},

where y0 denotes the true label of input x0, f (x)y0 represents the
score of predicting input x with label y0, and f (x)i represents

the score of predicting input x with label i. Minimizing g(x)

will make the prediction score of true class y0 smaller than
the prediction scores of classes other than y0. Therefore, the
adversarial example x∗ will be classified to a wrong class.

If the attacker wants the adversarial example to be classified
into a specific target class with label t, where t �= y0, then g(x)

is defined as:

g(x) = max{max
i �=t

f (x)i − f (x)t , 0}.

The above targeted attack loss function will push the prediction
score of the target class t to be higher than those of other
classes. Carlini and Wagner (2017a) showed that their attack can
successfully bypass 10 different defense methods designed for
detecting adversarial examples.

Inspired by an elastic-net method proposed by Zou and
Hastie (2005), Chen et al. (2018) proposed the elastic-net
attack (EAD), which also belongs to this sub-category of
regularization-optimization formulation based methods. EAD
formulates the process of generating adversarial examples as
an elastic-net regularized optimization problem, which can
be viewed as extended version of the C&W Attack. Their
formulation of elastic-net attacks to DNNs for crafting an
adversarial example with respect to a labeled sample is as
follows:

x∗ = argmin
x

{‖x − x0‖2
2 + β‖x − x0‖1 + cg(x)

}
,

where g(x) is the same as the one defined in C&W attack. The
authors showed that EAD can improve attack transferability and
complement adversarial training.

We note that most gradient-based attack methods fall into
the above two sub-categories, but there are also other kinds of
gradient-based attack methods, such as Jacobian-based Saliency
Map Attack (Papernot et al. 2016), Deepfool (Moosavi-Dezfooli,
Fawzi, and Frossard 2016), Network for Adversary Genera-
tion (Mopuri et al. 2018) and Adversarial Transformation Net-
works (Baluja and Fischer 2018). All of these methods perform
adversarial attacks based on the gradient information.

3.1.3. Choice of Perturbation Set in Adversarial Attacks
Both constraint and regularization optimization based formu-
lations require a distance measurement to quantify the differ-
ence between the original example and the perturbed example.
Despite �∞ norm being used for PGD-based attacks (1) and the
�2 norm being widely used in C&W based attacks (4), in general
we can use any �p norm for both constraint and regularization
based formulations. For example, �1 norm and a mixed of
different norms have been used in (Chen et al. 2018). Further,
recently it has been recognized that �p norm based attacks may
not be realistic, so researchers have started to explore more flex-
ible perturbation sets. For instance, Wong, Schmidt, and Kolter
(2019) uses Wasserstein distance to measure the perturbation
strength, and Wong and Kolter (2020) proposed learning the
perturbation sets based on human perception.

3.2. Score-Based Attack

In reality, detailed model information, such as the gradient, may
not be available to the attackers. The score-based attack methods

6 Y. LI ET AL.

do not require access to gradients. They perform adversarial
attacks based on the output scores f (x)i’s of the victim classifier.
For example, Chen et al. (2017) proposed a method to estimate
the gradient with score information and craft adversarial exam-
ples with the estimated gradient. Ilyas et al. (2018) introduced
a method which leverages natural evolutionary strategy to esti-
mate the gradient and generate adversarial examples. In general,
score-based attacks can be divided into two sub-categories.

3.2.1. Gradient-Approximation Based Methods
The first sub-category are gradient-approximation based meth-
ods. As the name suggests, these methods first approximate the
gradients or the signs of the gradients, then generate adversarial
examples using the approximated information.

Zeroth Order Optimization Based Attack (ZOO) proposed
by Chen et al. (2017) uses a finite difference method to approx-
imate the gradient of the loss w.r.t. the input. Then the C&W
attack is applied to generate an adversarial example. It uses the
following formula to estimate the gradient:

∂f (x)

∂x(i)
≈ f (x + hei) − f (x − hei)

2h
,

where h is a small constant and ei is a standard basis vector
with only the ith component as 1, and i ranges from 1 to the
dimension of input. The time used to estimate the gradients
grows with the dimension. When the dimension of the input is
large, the authors introduced several techniques to scale-up the
estimation, making it possible for the method to craft adversarial
examples in reasonable time for large DNNs trained on large
datasets, such as ImageNet (Deng et al. 2009).

Many other methods are introduced to efficiently approxi-
mate the gradient and generate adversarial examples based on it,
such as NES attack (Ilyas et al. 2018) and Bandits Attack (Ilyas,
Engstrom, and Madry 2019). NES attack uses natural evolution-
ary strategies (hence, the acronym NES) to estimate the gradient
of loss w.r.t. the input then generates adversarial examples based
on the estimated gradient:

1
σn

n∑
i=1

δif (x + σδi),

where n is the number of searches to estimate gradient, δi is
random direction sampled from N (0, I) and σ is the standard
deviation of the search step. The authors also extended the
method to a partial-information setting, where only part of the
scores or top-k sorted labels are given.

In fact, the most important information for adversarial attack
is the sign of the gradient, which provides the direction of opti-
mization. Many methods are proposed to estimate the sign of the
gradient and use that information to craft adversarial examples;
notable examples include SignSGD (Liu et al. 2018a) and Sign
hunter (Al-Dujaili and O’Reilly 2020). To further improve the
efficiency of gradient approximation or sign estimation, some
researchers propose using a substitute model, which is a model
trained with the same data as the victim model and performs
similarly to the victim model. Representative examples include
Subspace attack (Guo, Yan, and Zhang 2019b) and Transfer-
based prior (Cheng et al. 2019a). Also, Wang et al. (2020a) shows

how to exploit the data distribution to identify importance sub-
space for black-box attacks. These attack methods also belong
to the gradient-approximation based category since their key
element is to approximate gradient information efficiently.

3.2.2. Other Methods
The second sub-category of score-based methods consists of
methods that do not approximate gradient related information
to generate adversarial examples. For example, Li et al. (2019)
proposed the Gaussian black-box adversarial attack (Nattack),
which searches the adversarial examples by modeling the adver-
sarial population with a Gaussian distribution. The intuition
comes from the fact that one can find various adversarial exam-
ples for the same input using different attack methods, which
suggests there is a population of adversarial examples. Other
methods that fall into this sub-category include the GenAt-
tack (Alzantot et al. 2018), the Simple Black-Box Attack (Guo
et al. 2019a) and Square attack (Andriushchenko et al. 2020).

3.3. Decision-Based Attack

In many practical situations, the attacker has access only
to the predicted labels of the model, but not any gradient
or score information. When only the predicted label c(x)

is available, both gradient-based and score-based methods
do not work. Papernot et al. (2017) introduced a transfer
attack method which requires only the observations of the
labels predicted by the model. The main idea is to train a
substitute model which is similar to the target model and
attack the substitute model instead. Boundary Attack was
subsequently proposed by Brendel, Rauber, and Bethge (2018),
which searches for adversarial examples based on random-walk
on the decision boundary. Many extensions of Boundary Attack
have been proposed to improve the efficiency and performance
of it (Brunner et al. 2019; Chen and Jordan 2019; Chen, Jordan,
and Wainwright 2020; Guo, Frank, and Weinberger 2020). There
are also decision-based attack methods that are neither transfer-
based nor random-walk based (Ilyas et al. 2018; Cheng et al.
2020a; Guo, Yan, and Zhang 2019b). In general, the goal of
decision-based attack is to generate adversarial examples with
the predicted labels returned by the victim model. Decision-
based attack methods can be divided into three sub-categories.

3.3.1. Transfer-Based Attacks
The first category consists of transfer-based attack methods.
Various researchers have observed that, if two DNNs are
trained with similar data, even though the two models may
have very different structures, adversarial examples generated
on one model can be used to fool another one. Based on
this observation, Papernot et al. (2017) proposed to train a
substitute model based on a small amount of training data
and generate adversarial examples based on the substitute
model. They showed that the adversarial examples generated
on the substitute model can also fool the target classifier. The
proposed method does not require too many samples to train
the substitute model and can achieve relatively high success
rate in untargeted task. However, the method does not work
well in targeted task. Liu et al. (2017) proposed an ensemble-

THE AMERICAN STATISTICIAN 7

Figure 5. An illustration of Boundary Attack. In essence the Boundary Attack
performs rejection sampling along the boundary between adversarial and non-
adversarial images (Brendel, Rauber, and Bethge 2018).

based approach to generating transferable adversarial examples.
This ensemble approach increases the proportion of target
adversarial examples transferring with their target labels.

3.3.2. Random-Walk Based Attacks
The second category consists of methods that are based on
random walk on the boundary. Brendel, Rauber, and Bethge
(2018) proposed Boundary Attack, a method that does not rely
on the gradient of loss w.r.t. the input and performs well under
both targeted and untargeted settings. The method starts with
a sample categorized in the targeted class and seeks to mini-
mize the perturbation while staying adversarial. The process of
boundary attack is shown in Figure 5 and details of the method
are described in Algorithm 1.

Algorithm 1 Boundary Attack
1: Input: decision model c(·), original input x
2: Output: xadv

3: Initialization: t = 0, x̃0 ∼ U(0, 1) s.t. c(x̃0) =target class
4: while t < T do
5: t = t + 1
6: draw random perturbation from proposal distribution

ηt ∼ P(x̃t−1)
7: if c(x̃t−1 + ηt) =target class then
8: set x̃t = x̃t−1 + ηt

9: else
10: set x̃t = x̃t−1

11: end if
12: end while
13: Return x̃T

Note that c(x) is the label assigned to the input x by the classifier,
and T is the maximum number of iterations.

Define input space as D, the process of drawing ηt from the
proposal distribution is as follows:

• Draw ηt ∼ N (0, I).
• Rescale and clip ηt to make sure x̃t−1 + ηt ∈ D and

‖ηt‖2 = δ · d(x, x̃t−1), where d(·, ·) represents distance

function between two samples and δ is a hyperparameter that
controls the scale of the perturbation.

• Orthogonal perturbation: project ηt onto a sphere around the
original input x such that d(x, x̃t−1 + ηt) = d(x, x̃t−1).

• Move towards the original input such that x̃t−1 +ηt ∈ D and
d(x, x̃t−1)−d(x, x̃t−1 +ηt) = ε ·d(x, x̃t−1) both hold, where
ε controls the step size of the movement.

Boundary Attack achieves performance comparable to state-
of-the-art white-box attacks on DNNs trained for classification.
Chen and Jordan (2019) introduced Boundary Attack++, using
binary information at the decision boundary to estimate gradi-
ent direction. They showed that Boundary Attack++ requires
significantly fewer model queries than Boundary Attack. Guo,
Frank, and Weinberger (2020) proposed a decision-based black-
box attack, which improves the query-efficiency of Boundary
Attack by restricting the search for adversarial examples to a low
frequency domain. There are many other methods belong to this
category, such as Guessing Smart (Brunner et al. 2019).

3.3.3. Optimization-Based Attacks
Instead of conducting random walks, a process which does
not have any convergence guarantees, more recently researchers
have found that attacks in the decision-based setting can also
be formulated as solving a zeroth order optimization prob-
lem (Cheng et al. 2019b). They showed that both PGD and C&W
loss are ill-defined in the decision-based setting, and instead we
need to redefine the problem as finding the best direction θ of
adversarial examples. Given x0, a function g(·) that measures the
distance between x0 and the decision boundary along direction
θ can be defined as

g(θ) = arg min
λ>0

(
f (x0 + λ

θ

‖θ‖) �= y0
)
. (5)

The attack problem can then be posed as

θ∗ = arg min
θ

g(θ), (6)

and the adversarial example, that is, closest to x0 is x∗ =
x0 + g(θ∗) θ

‖θ‖ . Although the gradient of g(θ) cannot be directly
computed, the function value of g(θ) can be computed by binary
search, thus standard zeroth order optimization solvers can be
applied for solving (6). In OPT attack (Cheng et al. 2019a), Ran-
domized Gradient-Free (RGF) method (Nesterov and Spokoiny
2017) is used to address the problem. Later, Cheng et al. (2020a)
showed that the gradient sign of (6) can be computed in a
more query-efficient way, leading to an improved attack called
Sign-OPT. On the other hand, Chen, Jordan, and Wainwright
(2020) proposed another optimization-based formulation, lead-
ing to yet another query-efficient algorithm called HotSkipJump
Attack. Recently, Chen and Gu (2020) proposed RayS, which
reformulates the continuous optimization problem in Cheng
et al. (2019a) into a discrete one for �∞ norm attack.

4. Defense

There has been extensive research on improving the robustness
of DNNs for defending against adversarial examples. In general,
methods that aim to increase model robustness fall into the

8 Y. LI ET AL.

following four main categories: (1) augmenting the training data
with adversarial examples, (2) leveraging randomness to defend
against adversarial attacks, (3) removing adversarial perturba-
tions with projection, and (4) detecting the adversarial examples
instead of classifying them correctly.

4.1. Adversarial Training

To improve the robustness of a classifier against adversarial
examples, one natural idea is to train the model with adversarial
examples. Goodfellow, Shlens, and Szegedy (2015) proposed
generating adversarial examples with FGSM attack and adding
them back to the training dataset to improve the robustness
of the model. Later Kurakin, Goodfellow, and Bengio (2016)
suggested using a multi-step FGSM to further improve the
adversarial robustness.

Madry et al. (2018) introduced a min-max formulation,
which iteratively generates adversarial examples with PGD
attack while training the model. Athalye, Carlini, and Wagner
(2018) showed that Madry’s adversarial training can survive
strong attacks while many other state-of-the-art defense
methods cannot. Instead of minimizing the original loss
function L(θ , x, y), the following min-max objective function
is used:

min
θ

max
δ∈S

L(θ , x + δ, y).

The inner maximization problem aims to find an adversarial
perturbation of a given data point x within the perturbation
set S that achieves a high loss. Indeed, this is precisely the
problem of attacking any given neural network. On the other
hand, the goal of the outer minimization problem is to find the
model parameters that minimize the “adversarial loss” given by
the inner attack problem. Therefore, the model is trained with
the adversarial example in the ε-ball of the original sample.
Recently, it has been shown that such min-max optimization is
guaranteed to converge under certain assumptions (Gao et al.
2019).

Many defense methods based on Madry’s adversarial training
have been proposed to further improve its efficiency and
performance. For example, Zhang et al. (2019b) proposed
TRADES, a theoretically driven upper bound minimization
algorithm that achieved the top-1 rank in the NeurIPS 2018
defense competition.

In other methods, researchers treated misclassified examples
and correctly classified examples as the same when performing
adversarial training. Ding et al. (2020) noticed the importance
of misclassified examples and improved the performance of
adversarial training by combining the usual cross-entropy loss
with a margin maximization loss term applied to the correctly
classified examples. Wang et al. (2020b) found that misclassified
examples have more impact on the final robustness than cor-
rectly classified examples and incorporate mis-classified exam-
ples in adversarial training as a regularizer.

Other than just adding adversarial examples into the training
process, Wang et al. (2019) studied the convergence quality
of adversarial examples found in the inner maximization and
proposed a dynamic adversarial training method that changes
adversarial strength in inner maximization according to conver-

gence quality. The convergence of adversarial training has also
been studied in many other works (e.g., Gao et al. 2019).

Adversarial training performs well against attacks but gener-
ating adversarial examples during training could be expensive.
Consequently, various researchers have developed methods for
reducing the computational overhead brought by adversarial
training (Shafahi et al. 2019; Zhang et al. 2019a; Wong, Rice,
and Kolter 2020). Many extensions of adversarial training have
also been proposed to improve the performance of adversarial
training (Carmon et al. 2020; Zhang et al. 2019b; Gowal et al.
2020; Wu, Xia, and Wang 2020; Pang et al. 2020, 2021).

4.2. Randomization

Another group of effective defense methods leverages random-
ness to defend against adversarial examples. Adversarial pertur-
bation can be viewed as noise, and various methods have been
proposed to improve the robustness of DNNs by incorporating
random components into the model. The randomness can be
introduced to:

• the input; that is, randomizing the input of a neural network
to remove the potential adversarial perturbation (e.g., Xie
et al. 2018; Cohen, Rosenfeld, and Kolter 2019),

• the hidden layer output; that is, adding Gaussian noise to the
input and hidden output (e.g., Liu et al. 2018b) and introduc-
ing pruning methods to randomize the network output (e.g.,
Dhillon et al. 2018), or

• the parameters of the classifier; that is, leveraging a Bayesian
component to add randomness to the weights of the
model (e.g., Liu et al. 2019).

The robustness of neural networks against random noise has
been analyzed both theoretically (Fawzi, Moosavi-Dezfooli, and
Frossard 2016; Franceschi, Fawzi and Fawzi 2018) and empiri-
cally (Dodge and Karam 2017).

Xie et al. (2018) introduced a simple preprocessing method
to randomize the input of neural networks, hoping to remove
the potential adversarial perturbation. During the testing phase,
the input is randomly resized to several sizes, then around
each of the resized inputs, zeros are randomly padded. The
authors demonstrated that this simple method can be applied
to large-scale datasets, such as Imagenet. Similarly, Zantedeschi,
Nicolae, and Rawat (2017) showed that, by using a modified
ReLU activation layer (called BReLU) and adding noise to the
origin input to augment the training data, the learned model
will gain some stability to adversarial examples. However, other
researchers have found that this defense method is not robust
against strong white-box attack, such as PGD and C&W (Carlini
and Wagner 2017b).

Instead of adding random components to the input space, Liu
et al. (2018b) proposed a “noise layer” to introduce randomness
to both the input and the hidden layer output. In this “noise
layer,” randomly generated Gaussian noise is added to the input:

x ← x + ε, ε ∼ N (0, σ 2I),
where σ is a hyperparameter. Larger values of σ lead to better
robustness but worse prediction accuracy, while smaller values
of σ result in better prediction accuracy but deteriorated robust-
ness. The noise layer is applied in both training and testing

THE AMERICAN STATISTICIAN 9

phases, so the prediction accuracy will not be largely affected.
The authors showed that Random Self-Ensemble (RSE) is equiv-
alent to an ensemble possessing an infinite number of noisy
models without any additional memory overhead. However, the
experiments demonstrated that, although RSE can increase the
robustness of DNNs, it also sacrifices a nonnegligible amount
of accuracy. Later, Liu et al. (2019) introduced a new min-max
formulation to combine adversarial training with Bayesian Neu-
ral Networks (BNNs). All weights in a Bayesian neural network
are represented by probability distributions over possible values,
rather than having a single fixed value. The proposed frame-
work, called Adv-BNN, combines adversarial training with ran-
domness, is shown to have significant improvement over previ-
ous approaches including RSE and Madry’s adversarial training.

Although these methods demonstrate improvement of
robustness against adversarial examples, they typically lack
theoretical guarantee for their performances. Lecuyer et al.
(2019); Li et al. (2018a); Cohen, Rosenfeld, and Kolter (2019)
introduced a method called Randomized Smoothing and
proved a tight robustness guarantee in the �2 norm. The details
of Randomized Smoothing are summarized below:

• Training stage:

1. Train the base classifier with Gaussian data augmentation
with variance σ 2. That is, the base classifier is trained
on the natural examples and noisy examples, where the
noisy examples are generated by adding Gaussian noise to
natural examples.

2. The trained base classifier is denoted as f .

• Testing stage: for a given input testing sample x:

1. Generate n noise corrupted samples by adding Gaussian
noise with variance σ 2 to the input x.

2. Feed the n noise corrupted samples into the trained
base classifier f and obtain the top-2 frequent predicted
classes from the predictions. The top-2 frequent classes
are denoted as ĉA, ĉB and the corresponding frequencies
are denoted as nA, nB.

3. If BINOMPVALUE(nA, nA + nB, 0.5) ≤ α, the final
predicted class is ĉA, otherwise abstain. The function
BINOMPVALUE(nA, nA + nB, p) returns the p-value of
the two-sided hypothesis test that nA ∼Binomial(nA +
nB, p) and α is the abstention threshold generated based
on Hung and Fithiane (2019).

They also provided a process to generate certificated radius
around the input. Theoretical analysis was provided to show
that the classifier is robust around the input within the found
�2 radius.

4.3. Projection

The development of generative models, such as auto-encoders
and generative adversarial networks, gives rise to another line of
research, which removes adversarial noise by fitting generative
models on the training data (Jalal et al. 2017; Meng and Chen
2017; Li et al. 2018b; Samangouei, Kabkab, and Chellappa 2018).
These defense mechanisms employ the power of generative

models to combat the threat from adversarial examples. The
input to the classifier is first fed into the generative model and
then classified. Since the generative model is trained on natural
examples, adversarial examples will be projected to the man-
ifold learned by the generative model. Furthermore, “project-
ing” the adversarial examples onto the range of the generative
model can have the desirable effect of reducing the adversarial
perturbation.

Meng and Chen (2017) introduced MagNet as a robust
framework against adversarial examples. It trains multiple auto-
encoders to move adversarial examples closer to the manifold of
natural examples. An auto-encoder is a type of neural network
that consists of two major parts: the encoder that maps the input
to a low-dimensional space and the decoder that recovers the
input from the low-dimensional embedding. The auto-encoder
is usually trained on the reconstruction loss w.r.t. the input.
Therefore, the high-dimensional data is summarized by the
low-dimensional embedding through the training process. In
MagNet, one auto-encoder is chosen at random at testing time to
filter the input samples, and thus adversarial perturbation could
potentially be removed through this encoding and decoding
process.

Instead of using auto-encoders, Samangouei, Kabkab, and
Chellappa (2018) proposed to train a Generative Adversarial
Networks (GAN) (Goodfellow, Shlens, and Szegedy 2015) to
fit the training data distribution and help remove adversarial
noise. It first trains a GAN to model the distribution of the
training data. Then, at inference time, it finds an output of the
GAN, that is, close to the input, and feeds that output into the
classifier. This process “projects” input samples onto the range
of the GAN’s generator, which can potentially help remove the
effect of adversarial perturbations. Here the GAN is proposed to
estimate the generative model through an adversarial process, in
which two major parts are simultaneously trained: a generative
model G that captures the data distribution, and a discriminative
model D that estimates the probability that a sample came from
the training data rather than G. The objective of training a GAN
is:

min
G

max
D

{
Ex∼pdata(x)

[
log D(x)

] + Ez∼pz(z)
[
log(1 − D(G(z)))

]}
,

where pdata(x) represents the data distribution and pz(z) repre-
sents a prior distribution, that is, predefined. Therefore, D and
G together play a two-player min-max game to recover the data
distribution.

Defense-GAN is similar to MagNet as both of these methods
aim to filter out the adversarial noise by using a generative
model. Samangouei, Kabkab, and Chellappa (2018) showed that
Defense-GAN is more robust than MagNet on several bench-
mark datasets. There are some other works also follow similar
patterns (Jalal et al. 2017; Song et al. 2018).

All of the above methods train a separate generative model
to perform the adversarial noise filtering. Li et al. (2018b)
proposed a different defense framework, termed ER-Classifier,
which combines the process of filtering and classification in
one framework. In fact, any deep classifier can be viewed as
a combination of these two parts as illustrated in Figure 6: an
encoder part to extract useful features from the input data and

10 Y. LI ET AL.

Figure 6. A deep classifier.

a classifier part to perform classification based on the extracted
features. Both the encoder and the classifier are neural networks.

ER-Classifier is similar to a regular deep classifier, which first
projects the input to a low-dimensional space with an encoder
G, then performs classification based on the low-dimensional
embedding with an classifier C. The novelty is that at the train-
ing stage, the low-dimensional embedding of ER-Classifier is
stabilized with a discriminator D by minimizing the dispersion
between the distribution of the embedding and the distribution
of a selected prior. The goal of the discriminator is to separate
the true code sampled from a prior and the “fake” code pro-
duced by the encoder, while the encoder will try to produce
generated code, that is, similar to the true one. The result of
this competition is that the distribution of the embedding space
will be pushed toward the prior distribution. Therefore, it is
expected that this regularization process can help remove the
effects of any adversarial distortion and push the adversarial
examples back to the natural data manifold. Another difference
is that the embedding space dimension is much smaller for
the ER-classifier, when compared with a general deep classifier,
making it easier for the training process to converge. Details
of the framework are illustrated in Figure 7. Li et al. (2018b)
showed that ER-Classifier achieves state-of-the-art performance
against strong adversarial attack methods on several benchmark
datasets.

4.4. Detection

Methods in this fourth category aim to detect the existence of
adversarial examples, rather than trying to classify them into the
correct classes. The main assumption behind these methods is
that the adversarial examples came from a different distribution
when comparing to those from the natural data. In other words,
adversarial examples do not lie on the data manifold, and DNNs
classify correctly only the samples near the manifold of training
data (Tanay and Griffin 2016). Therefore, adversarial examples
may be detected with carefully designed detectors.

A straightforward way toward adversarial example detection
is to build a simple binary classifier separating the adversar-
ial examples apart from the clean data (Gong, Wang, and Ku
2017). The advantage is that it serves as a preprocessing step
without imposing any assumptions on the model it protects.
However, this method suffers from a generalization limitation.

In a similar method, a small “detector” subnetwork is trained
as an augmentation of DNNs on the binary classification task
to distinguish true data from adversarial perturbations (Metzen
et al. 2017), where the inputs (to this detector) are taken from
intermediate layers of the classification network. Alternatively,
a cascade classifier may be built on the outputs from the con-
volutional layers (Li and Li 2017) to efficiently detect adver-
sarial examples. Zheng and Hong (2018) proposed modeling
the output of a classifier with Gaussian mixture models and
performing hypothesis testing to detect adversarial examples.
Roth, Kilcher, and Hofmann (2019) showed that adversarial
examples exist in cone-like regions in very specific directions
from their corresponding natural inputs and proposed a new
test statistic to detect adversarial examples with the findings. In
a recent work, Yang et al. (2020a) studied the feature attributions
of adversarial examples and proposed a detection method based
on feature attribution scores.

Instead of building a detector based on input or output of
the network, another line of research proposes to study the
characteristics of adversarial examples and build detectors based
on such features (Feinman et al. 2017; Grosse et al. 2017; Lee
et al. 2018; Ma et al. 2018; Raghuram et al. 2020). In order to
detect adversarial examples that lie far from the data manifold,
Feinman et al. (2017) proposed KD-Detection to perform den-
sity estimation on the training data in the feature space of the
last hidden layer to help detect adversarial examples.

Kernel density estimation is used to measure how far a sam-
ple is from the provided data manifold. Suppose that x1, . . . , xn
are training samples drawn from an unknown probability den-
sity pX(x). Given x, we can use the following function to estimate
the density score at x:

p̂X(x) = 1
n

n∑
i=1

Kσ (x, xi),

where Kσ (·, ·) is a kernel function. In the KD-Detection frame-
work, one kernel density model is fitted for each class. Therefore,
if x is predicted with label y, the samples {xi}n

i=1 used to do the
estimation are training samples from class y. After the kernel
density is fitted, both natural examples and adversarial examples
are fed into the model and density function to generate density
scores. A logistic regression model is then fitted on the kernel
density scores to detect whether the input is adversarial or not.

THE AMERICAN STATISTICIAN 11

Figure 7. Overview of ER-Classifier framework.

Many recent works fall into this category, studying the prop-
erties of adversarial examples and detecting them with hidden
layer features. Ma et al. (2018) observed Local Intrinsic Dimen-
sion (LID) of hidden-layer outputs differ between the origi-
nal and adversarial examples, and leveraged these characteris-
tics to detect adversarial examples. In another work, Lee et al.
(2018) generated the class conditional Gaussian distributions
with respect to hidden layer output of the DNN under Gaussian
discriminant analysis, which result in a confidence score based
on the Mahalanobis distance (MAHA), followed by a logistic
regression model on the confidence scores to detect adversarial
examples. Recently, a joint statistical test pooling information
from multiple layers is proposed in Raghuram et al. (2020) to
detect adversarial examples.

5. Numerical Experiments

In this section, we show how the attack methods fool various
classifiers, including classical models like logistic regression and
more recent models like DNNs. In the first part, the results
of attacking a logistic regression model with projected gradi-
ent descent attack are shown. In the second part, we select
representative attack methods from each category (gradient-
based, score-based, and decision-based) and compare their per-
formances. In the last part, we select one defense method from
each category (adversarial training, randomization, projection,
and detection) and compare their performances. The following
benchmark datasets are used in our experiments:

• MNIST (LeCun 1998): a handwritten digit dataset that consi-
sts of 60,000 training images and 10,000 testing images. These
are 28 × 28 black and white images in 10 different classes.

• CIFAR10 (Krizhevsky and Hinton 2009): a natural image
dataset that contains 50,000 training images and 10,000
testing images with 10 different classes. These are low
resolution 32 × 32 color images.

The input image is stored in RGB format with three channels,
where the pixel values of each channel range from 0 to 256.
We use the �∞ and �2 distortion metrics to measure similar-
ity between images and report the �∞ distance in the nor-
malized [0, 1] space (e.g., a distortion of 0.031 corresponds
to 8/256), and the �2 distance as the total root-mean-square
distortion normalized by the total number of pixels. Computing
codes for carrying out the following numerical experiments can
be downloaded at https://github.com/reviewadvexample/revew_
adv_defense.

5.1. Attacking Logistic Regression Model

We train a logistic regression model to perform binary classi-
fication on two handwritten digits, zero and one. The model
is trained on all the images with label 0 or 1 in the training
dataset and tested on all the images with label 0 or 1 in the testing
dataset. Therefore, the training and testing sets are subsets of the
training and testing sets of MNIST. There are 5923 handwritten-
zero images and 6742 handwritten-one images in the training
set. For testing set, there are 980 handwritten-zero images and
1135 handwritten-one images.

The loss function of the logistic regression model used is

f (w) =
n∑

i=1
log(1 + exp(−yiwTxi)), (7)

https://github.com/reviewadvexample/revew_adv_defense
https://github.com/reviewadvexample/revew_adv_defense

12 Y. LI ET AL.

Figure 8. Four examples of attack results on a logistic regression model. In each pair of images, the left shows the original handwritten image and the right shows the
adversarial image, which is classified incorrectly by the logistic regression model.

where w ∈ R
784 is the weight, x1, x2, . . . , xn ∈ R

784 are input
images vectorized from the original 28 × 28 pixel space dimen-
sion, and y1, y2, . . . , yn ∈ {−1, 1} are labels with −1 correspond-
ing to handwritten-zero and 1 corresponding to handwritten-
one.

The projected gradient descent (PGD) method attacks the
model using gradient information. The gradient of the loss w.r.t.
a certain input image xi is:

∇f (xi) = − yi
1 + exp(yiwTxi)

w.

PGD attacks the model by repeating the following updating
equation:

xt+1 = �ε

{
xt + α · sign

(∇f (xi)
)

, xi
}

.

In our experiment, we set α = 1, ε = 8, which reflects 0.031 in
[0, 1] scale since 8

256 ≈ 0.031, and run the updates for 40 steps.
The prediction accuracy under no attack is 99.95%. Under

PGD attack, the prediction accuracy drops to 72.96%. In
Figure 8, we visualize four attack results, where in each pair
the image on the left side is the original image and the image on
the right side is the adversarial example based on the left one. We
observe that the adversarial examples look remarkably similar
to the original images but the predictions on these examples are
altered by some invisible adversarial noise.

5.2. Comparison of Different Attack Methods

In this section we compare the performances of several attack
methods including gradient-based, score-based and decision-
based. The gradient-based attacks are compared on all samples
from the test sets of the two benchmark datasets described
above. Due to the slow speed of generating adversarial examples
with score-based and decision-based approaches, the corre-
sponding methods are evaluated on 300 random samples from
each of the test sets.

For the dataset MNIST, we train a network consisting of two
convolutional layers with, respectively, 20 and 50 filters with
kernel size 5, each followed by 2 × 2 max-pooling, and a fully
connected layer of size 500. For CIFAR10, we use the standard
VGG-16 structure (Simonyan and Zisserman 2014) with batch
normalization.

The attack methods tested are:

• Gradient-based: FGSM (Goodfellow, Shlens, and Szegedy
2015) and PGD (Madry et al. 2018).

• Score-based: ZOO (Chen et al. 2017) and Square attack
(Andriushchenko et al. 2020).

• Decision-based: Boundary attack (Brendel, Rauber, and
Bethge 2018), OPT attack (Cheng et al. 2019a) and Sign-
OPT (Cheng et al. 2020a).

THE AMERICAN STATISTICIAN 13

Table 1. Accuracy on MNIST and CIFAR10 under gradient-based attack.

Method MNIST CIFAR10

Clean Acc ε = 0.1 ε = 0.2 ε = 0.3 Clean Acc ε = 0.01 ε = 0.02 ε = 0.03

FGSM 98.58% 75.98% 17.66% 2.63% 93.34% 56.46% 50.85% 47.61%
PGD 98.58% 69.42% 6.47% 0.02% 93.34% 5.71% 0.12% 0.01%

Table 2. Accuracy on MNIST and CIFAR10 under score-based attack.

Method Clean Acc Max.iter= 100 Max.iter= 200 Max.iter= 500

MNIST ZOO 99.33% 99.33% 99.33% 99.00%
Square 99.33% 73.33% 34.00% 16.67%

CIFAR10 ZOO 93.67% 93.67% 90.33% 76.67%
Square 93.67% 84.67% 70.67% 54.33%

5.2.1. Results on Gradient-Based Attack
The results of attacking the two classification models on MNIST
and CIFAR10 with gradient-based methods are shown in
Table 1. The strength of attack is represented by ε, which
controls the maximum distortion level. The larger the value
of ε, the stronger the attack. It is easy to see that PGD is stronger
than FGSM since PGD runs the optimization process with
Equation (3) multiple times to search for adversarial examples,
while FGSM runs the optimization for only one step.

5.2.2. Results on Score-Based Attack
The results of score-based attacks on MNIST and CIFAR10 are
shown in Table 2. For ZOO (Chen et al. 2017), the maximum
number of iterations (Max.iter) limits the number of searches
used to perform gradient estimation. The larger the value, the
better the approximation. Therefore, a large quantity of maxi-
mum number of iterations usually results in better performance.
Similarly, for Square attack (Andriushchenko et al. 2020), the
maximum number of iterations controls the number of random-
walk steps to search for adversarial examples. Therefore, a large
value usually leads to better performance. The authors of Square
attack studied the property of adversarial distortion and lever-
aged it to perform the attack. The method achieves better per-
formances with the same maximum number of iterations when
compared to the ZOO.

5.2.3. Results on Decision-Based Attack
The results of decision-based experiments, in which only
the predicted labels are available to the attacks, are shown
in Figure 9. Under this setting, only limited information is
available, making it harder to craft adversarial examples. In
Figure 9, we compare Boundary (Brendel, Rauber, and Bethge
2018), OPT attack (Cheng et al. 2019a) and Sign-OPT (Cheng
et al. 2020a) by visualizing the relationship between the number
of queries required versus distortion. Boundary attack is an
example of random-walk based attacks and the other two are
examples of optimization based attacks. The horizontal axis
of each figure represents number of times the victim model
is called to generate adversarial example. The vertical axis
represents distortion level; that is, the �2 norm Euclidean
distance between adversarial example and the original input.
We observe that, under the same distortion level, Sign-OPT and
OPT attacks require much fewer number of searches to craft

adversarial examples than Boundary attack, and Sign-OPT is
more efficient than OPT attack.

5.3. Comparison of Different Defense Methods

We first compare defense methods from the first three categories
(adversarial training, randomization and projection) and delay
the last category (detection) toward the end of this section. It is
because detection methods are based on a different philosophy
when comparing with the first three categories: they aim to
detect the adversarial examples rather than to classify them
correctly. In other words, they are not directly comparable with
other defense methods. As before, we compare these methods
with the same two benchmark datasets.

The following methods from the first three categories are
selected for comparison:

• No defense: Model without any defense method.
• Adversarial training: Madry’s Adv (Madry et al. 2018) and

TRADES (Zhang et al. 2019b).
• Randomization: RSE (Liu et al. 2018b) and Ran.Smooth

(Cohen, Rosenfeld, and Kolter 2019).
• Projection: ER-CLA (Li et al. 2018b).

The comparison results of the first three categories of defense
methods are shown in Figure 10. In the plot, the horizontal axis
represents ε, the strength of the PGD attack. The larger the ε, the
stronger the attack. The vertical axis represents the testing accu-
racy under the PGD attack. For all models, the accuracy drops as
the attack strength increases except for Ran.Smooth on MNIST
when the attack strength increases from 0 to 0.05. We observe
that TRADES and Ran.Smooth perform better on MNIST and
CIFAR10. On CIFAR10, RSE and Madry’s adversarial training
perform similarly, while TRADES performs best when attack is
strong. Another point to notice is that, when there is no attack,
all the other methods perform worse than ER-Classifier. In fact,
ER-Classifier and adversarial training methods can be combined
together to further improve the results. In Li et al. (2018b),
the authors showed that combing ER-Classifier with adversarial
training methods outperform both Madry’s adversarial training
and TRADES. All five defense methods perform much better
than the model without any defense method.

Now we compare defense methods from the detection cate-
gory. The methods are:

• KD: Kernel Density detection (Feinman et al. 2017).
• LID: Local Ontrinsic Dimensionality detection (Ma et al.

2018).
• ODD: Odds are odd detection (Roth, Kilcher, and Hofmann

2019).
• ReBeL: Reading Between the Layers (Raghuram et al. 2020).

We report area under the curve (AUC) of the ROC curve as
the performance evaluation criterion, as well as the true positive
rates (TPR) by thresholding false positive rates (FPR) at 0.01,
0.05, and 0.1, as it is practical to keep misclassified natural
data at a low proportion. Note that TPR represents the propor-
tion of adversarial examples correctly classified as adversarial,
while FPR represents the proportion of natural data incor-
rectly misclassified as adversarial. Before calculating the perfor-

14 Y. LI ET AL.

Figure 9. Performances of decision-based attacks. Number of queries represents the number of times victim model is called.

Figure 10. Comparison of Different Defense Methods on MNIST and CIFAR10.

Table 3. Performance of detection methods against strong attacks.

Data Metric C&W FGSM PGD

KD LID ODD ReBeL KD LID ODD ReBeL KD LID ODD ReBeL

CIFAR10 AUC 0.945 0.947 0.955 0.968 0.873 0.957 0.968 0.990 0.791 0.777 0.963 0.962
TPR(FPR@0.01) 0.068 0.220 0.591 0.309 0.136 0.385 0.224 0.698 0.018 0.093 0.059 0.191
TPR(FPR@0.05) 0.464 0.668 0.839 0.726 0.401 0.753 0.709 0.974 0.148 0.317 0.819 0.789
TPR(FPR@0.10) 0.911 0.856 0.901 0.954 0.572 0.875 1.000 1.000 0.285 0.448 0.999 0.999

MNIST AUC 0.932 0.785 0.968 0.980 0.933 0.888 0.952 0.992 0.801 0.861 0.967 0.975
TPR(FPR@0.01) 0.196 0.079 0.212 0.630 0.421 0.152 0.898 0.885 0.062 0.170 0.607 0.382
TPR(FPR@0.05) 0.616 0.263 0.911 0.900 0.692 0.503 0.908 0.990 0.275 0.396 0.934 0.851
TPR(FPR@0.10) 0.818 0.397 1.000 0.972 0.796 0.678 0.917 1.000 0.429 0.552 0.945 0.956

NOTE: Best results are in bolded.

mance metrics, all the samples that can be classified correctly
by the model are removed. The results are reported in Table 3.
ODD (Roth, Kilcher, and Hofmann 2019) and ReBeL (Raghu-
ram et al. 2020) show superior or comparable performance over
the other detection methods across the two benchmark datasets.

6. Concluding Remarks

In this article, we described the attack and defense problems
in classification. We provided a taxonomy of these methods,

explained the main ideas behind them, and numerically com-
pared their performances. As mentioned before, it is our hope
that this article can spark statisticians’ interest in this exciting
area of research, as we firmly believe that statisticians are well
suited to provide unique and significant contributions to the
field. One successful example is the EAD attack of Chen et al.
(2018), where the elastic-net penalty of Zou and Hastie (2005)
was a key component of the method. Another successful exam-
ple is the ER-Classifer of Li et al. (2018b), where the method
of Levina and Bickel (2005) was used to estimate the intrinsic

THE AMERICAN STATISTICIAN 15

dimension of the data, and achieve dimension reduction. We
conclude this article with some future work directions that are
particularly suited for statisticians to tackle.

6.1. Statistical Properties of Adversarial Examples

It is important and useful to study the statistical properties of
adversarial examples, as these can provide useful insights and
guidelines for building stronger attack and defense methods. So
far work in this area is rather sparse. Some notable exceptions
include the study of the hidden layer output distribution of
adversarial examples (Lee et al. 2018), the variance of the hidden
output (Raghuram et al. 2020), and the input space feature
attribution (Yang et al. 2020a).

6.2. Efficient Modeling for Improved Decision-Based
Attacks

In reality, many classification systems are blackboxes to the
outsiders, and therefore gradient-based and score-based attack
methods cannot be applied. Also, these classification systems
typically limit the number of queries any outsider can make, and
hence many of the current decision-based attack methods will
fail. The problem of developing a strong decision-based attack
method can be viewed as estimating (or modeling) a black-box
classification model with a limited number of carefully chosen
“design points” (most likely in a sequential manner) as input to
the classifier.

6.3. Theoretical Guarantee for Robust Defense Methods

With the ever increasing size and complexity of datasets and
applications, there will always be a demand for more reliable
and efficient defense methods that are scalable. So far the trend
is that many defense methods were shown to have excellent
empirical properties at the time of their creation, but then very
often they were soon beaten by newer attack methods (Athalye,
Carlini, and Wagner 2018). This suggests that defense methods
cannot be blindly trusted. One ambitious project is to formally
define the notion of robustness in this attack and defense con-
text, which includes attaching a robust score to any defense
method; that is, the higher the score, the more reliable the
method. This is similar to the use of breakdown point in classical
robust statistics. It is likely that there will be different reasonable
definitions for robustness, each designed for one type of attacks.
If a new method achieves high scores for different robustness
definitions, then we have strong confidence that this method will
work well.

Acknowledgments

The authors are most grateful to the reviewers, the associate editor and the
editor for their most helpful comments. The work of Hsieh was partially
supported by the National Science Foundation under grants CCF-1934568,
IIS-1901527 and IIS-2008173. The work of Lee was partially supported
by the National Science Foundation under grants CCF-1934568, DMS-
1811405, DMS-1811661, DMS-1916125 and DMS-2113605.

References

Al-Dujaili, A., and O’Reilly, U.-M. (2020), “Sign Bits Are All You Need for
Black-Box Attacks,” in International Conference on Learning Representa-
tions. [6]

Alzantot, M., Sharma, Y., Chakraborty, S., and Srivastava, M. (2018),
“Genattack: Practical Black-Box Attacks With Gradient-Free Optimiza-
tion,” arXiv preprint arXiv:1805.11090. [6]

Andriushchenko, M., Croce, F., Flammarion, N., and Hein, M. (2020),
“Square Attack: A Query-Efficient Black-Box Adversarial Attack via
Random Search,” in European Conference on Computer Vision, 484–501.
[6,12,13]

Athalye, A., Carlini, N., and Wagner, D. (2018), “Obfuscated Gradients
Give a False Sense of Security: Circumventing Defenses to Adversarial
Examples,” in International Conference on Machine Learning, 274–283.
[4,8,15]

Baluja, S., and Fischer, I. (2018), “Learning to Attack: Adversarial Transfor-
mation Networks,” in Proceedings of AAAI-2018. [5]

Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N., Laskov, P., Giac-
into, G., and Roli, F. (2013), “Evasion Attacks Against Machine Learning
at Test Time,” in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, 387–402.

Brendel, W., Rauber, J., and Bethge, M. (2018), “Decision-Based Adversarial
Attacks: Reliable Attacks Against Black-Box Machine Learning Models,”
International Conference on Learning Representations. [6,7,12,13]

Brunner, T., Diehl, F., Le, M. T., and Knoll, A. (2019), “Guessing Smart:
Biased Sampling for Efficient Black-Box Adversarial Attacks,” in Pro-
ceedings of the IEEE International Conference on Computer Vision, 4958–
4966. [6,7]

Carlini, N., and Wagner, D., (2017a), “Adversarial Examples Are Not Easily
Detected: Bypassing Ten Detection Methods,” in Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Security, 3–14. [5]

(2017b), “Towards Evaluating the Robustness of Neural Networks,”
in 2017 IEEE Symposium on Security and Privacy (SP), 39–57. [4,8]

Carmon, Y., Raghunathan, A., Schmidt, L., Liang, P., and Duchi, J. C. (2020),
“Unlabeled Data Improves Adversarial Robustness,” Advances in Neural
Information Processing Systems. [8]

Chen, H., Zhang, H., Si, S., Li, Y., Boning, D., and Hsieh, C.-J. (2019),
“Robustness Verification of Tree-Based Models,” in Advances in Neural
Information Processing Systems, Vol. 32, Curran Associates, Inc. [1]

Chen, J., and Gu, Q. (2020), “Rays: A Ray Searching Method for Hard-
Label Adversarial Attack,” in Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 1739–
1747. [7]

Chen, J., and Jordan, M. I. (2019), “Boundary Attack++: Query-Efficient
Decision-Based Adversarial Attack,” arXiv preprint arXiv:1904.02144.
[6,7]

Chen, J., Jordan, M. I., and Wainwright, M. J. (2020), “Hopskipjumpattack:
A Query-Efficient Decision-Based Attack.” In 2020 IEEE Symposium on
Security and Privacy (SP), 1277–1294. [6,7]

Chen, P.-Y., Sharma, Y., Zhang, H., Yi, J., and Hsieh, C.-J. (2018) “EAD:
Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples,”
in Thirty-Second AAAI Conference on Artificial Intelligence. [5,14]

Chen, P.-Y., Zhang, H., Sharma, Y., Yi, J., and Hsieh, C.-J. (2017), “Zoo:
Zeroth Order Optimization Based Black-Box Attacks to Deep Neu-
ral Networks Without Training Substitute Models,” in Proceedings of
the 10th ACM Workshop on Artificial Intelligence and Security, 15–26.
[2,6,12,13]

Cheng, M., Le, T., Chen, P.-Y., Zhang, H., Yi, J., and Hsieh, C.-J. (2019a),
“Query-Efficient Hard-Label Black-Box Attack: An Optimization-Based
Approach,” in International Conference on Learning Representations,
available at https://openreview.net/forum?id=rJlk6iRqKX. [6,7,12,13]

Cheng, M., Singh, S., Chen, P. H., Chen, P.-Y., Liu, S., and Hsieh, C.-J.
(2020a) “Sign-Opt: A Query-Efficient Hard-Label Adversarial Attack,”
in International Conference on Learning Representations. [6,7,12,13]

Cheng, M., Yi, J., Chen, P.-Y., Zhang, H., and Hsieh, C.-J. (2020b),
“Seq2sick: Evaluating the Robustness of Sequence-to-Sequence Models
with Adversarial Examples,” Proceedings of the AAAI Conference on
Artificial Intelligence, 34, 3601–3608. [1]

Cheng, S., Dong, Y., Pang, T., Su, H., and Zhu, J. (2019b), “Improving Black-
Box Adversarial Attacks with a Transfer-Based Prior,” in Advances in
Neural Information Processing Systems, 10932–10942. [7]

Cohen, J., Rosenfeld, E., and Kolter, Z. (2019), “Certified Adversarial
Robustness via Randomized Smoothing,” in International Conference
on Machine Learning, 1310–1320. [8,9,13]

https://openreview.net/forum?id=rJlk6iRqKX

16 Y. LI ET AL.

Croce, F., and Hein, M. (2020), “Reliable Evaluation of Adversarial Robust-
ness with an Ensemble of Diverse Parameter-Free Attacks,” in Interna-
tional Conference on Machine Learning, 2206–2216. [4,5]

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009), “Ima-
genet: A Large-Scale Hierarchical Image Database,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2009. CVPR 2009, 248–255.
[6]

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019), “BERT: Pre-
Training of Deep Bidirectional Transformers for Language Understand-
ing,” in Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), 4171–4186. Minneapolis,
MN: Association for Computational Linguistics. [1]

Dhillon, G. S., Azizzadenesheli, K., Lipton, Z. C., Bernstein, J., Kossaifi, J.,
Khanna, A., and Anandkumar, A. (2018), “Stochastic Activation Pruning
for Robust Adversarial Defense,” International Conference on Learning
Representations. [8]

Ding, G. W., Sharma, Y., Lui, K. Y. C., and Huang, R. (2020), “Mma
Training: Direct Input Space Margin Maximization Through Adversarial
Training,” in International Conference on Learning Representations. [8]

Dodge, S., and Karam, L. (2017), “A Study and Comparison of Human and
Deep Learning Recognition Performance Under Visual Distortions,” in
2017 26th International Conference on Computer Communication and
Networks (ICCCN), 1–7. [8]

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X.,
Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.
(2021) “An Image Is Worth 16x16 Words: Transformers for Image Recog-
nition at Scale,” International Conference on Learning Representations.
[3]

Fawzi, A., Moosavi-Dezfooli, S.-M., and Frossard, P. (2016), “Robustness of
Classifiers: From Adversarial to Random Noise,” in Advances in Neural
Information Processing Systems, 1632–1640. [8]

Feinman, R., Curtin, R. R., Shintre, S., and Gardner, A. B. (2017), “Detect-
ing Adversarial Samples from Artifacts,” International Conference on
Machine Learning. [10,13]

Franceschi, J.-Y., Fawzi, A., and Fawzi, O. (2018), “Robustness of Classifiers
to Uniform �p and Gaussian Noise,” in Proceedings of the Twenty-
First International Conference on Artificial Intelligence and Statistics (eds.
A. Storkey and F. Perez-Cruz), vol. 84 of Proceedings of Machine Learning
Research, 1280–1288. PMLR. [8]

Gao, J., Lanchantin, J., Soffa, M. L., and Qi, Y. (2018), “Black-Box Genera-
tion of Adversarial Text Sequences to Evade Deep Learning Classifiers,”
in 2018 IEEE Security and Privacy Workshops (SPW), 50–56. [1]

Gao, R., Cai, T., Li, H., Hsieh, C.-J., Wang, L., and Lee, J. D. (2019), “Conver-
gence of Adversarial Training in Overparametrized Neural Networks,”
Advances in Neural Information Processing Systems, 32, 13029–13040. [8]

Gong, Z., Wang, W., and Ku, W.-S. (2017), “Adversarial and Clean Data Are
Not Twins,” arXiv preprint arXiv:1704.04960. [10]

Goodfellow, I., Bengio, Y., and Courville, A. (2016), Deep Learning. Cam-
bridge, MA: MIT Press. [2]

Goodfellow, I., Shlens, J., and Szegedy, C. (2015), “Explaining and Har-
nessing Adversarial Examples,” in International Conference on Learning
Representations. [1,4,5,8,9,12]

Gowal, S., Qin, C., Uesato, J., Mann, T., and Kohli, P. (2020), “Uncovering
the Limits of Adversarial Training Against Norm-Bounded Adversarial
Examples,” arXiv preprint arXiv:2010.03593. [8]

Grosse, K., Manoharan, P., Papernot, N., Backes, M., and McDaniel, P.
(2017), “On the (Statistical) Detection of Adversarial Examples,” arXiv
preprint arXiv:1702.06280. [10]

Guo, C., Frank, J. S., and Weinberger, K. Q. (2020), “Low Frequency Adver-
sarial Perturbation,” in Proceedings of the 35th Uncertainty in Artificial
Intelligence Conference (eds. R. P. Adams and V. Gogate), vol. 115 of
Proceedings of Machine Learning Research, 1127–1137. Tel Aviv, Israel:
PMLR. [6,7]

Guo, C., Gardner, J., You, Y., Wilson, A. G., and Weinberger, K. (2019a),
“Simple Black-Box Adversarial Attacks,” in Proceedings of the 36th
International Conference on Machine Learning, eds. K. Chaudhuri and
R. Salakhutdinov, vol. 97 of Proceedings of Machine Learning Research,
2484–2493. Tel Aviv, Israel: PMLR. [6]

Guo, Y., Yan, Z., and Zhang, C. (2019b), “Subspace Attack: Exploit-
ing Promising Subspaces for Query-Efficient Black-Box Attacks,” in
Advances in Neural Information Processing Systems, eds. H. Wallach,
H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Garnett,
vol. 32, Curran Associates, Inc. [6]

Hecht-Nielsen, R. (1992), “Theory of the Backpropagation Neural Net-
work,” in Neural Networks for Perception, 65–93. Elsevier. [3]

Hung, K., and Fithian, W. (2019), “Rank Verification for Exponential Fam-
ilies,” The Annals of Statistics, 47, 758–782. [9]

Ilyas, A., Engstrom, L., Athalye, A., and Lin, J. (2018), “Black-Box Adver-
sarial Attacks with Limited Queries and Information,” in International
Conference on Machine Learning, 2137–2146. [6]

Ilyas, A., Engstrom, L., and Madry, A. (2019), “Prior Convictions: Black-
Box Adversarial Attacks with Bandits and Priors,” in International
Conference on Learning Representations. [6]

Jalal, A., Ilyas, A., Daskalakis, C., and Dimakis, A. G. (2017), “The Robust
Manifold Defense: Adversarial Training Using Generative Models,”
arXiv preprint arXiv:1712.09196. [9]

Jia, R., and Liang, P. (2017), “Adversarial Examples for Evaluating Reading
Comprehension Systems,” in Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, 2021–2031. Copen-
hagen, Denmark: Association for Computational Linguistics. [1]

Krizhevsky, A., and Hinton, G. (2009), “Learning Multiple Layers of Fea-
tures from Tiny Images,” Technical Report, Citeseer. [3,11]

Kurakin, A., Goodfellow, I., and Bengio, S. (2016), “Adversarial Examples
in the Physical World.” [4,5,8]

LeCun, Y. (1998), “The MNIST Database of Handwritten Digits,” http://
yann.lecun.com/exdb/mnist/. [11]

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998), “Gradient-Based
Learning Applied to Document Recognition,” in Proceedings of the IEEE,
86, 2278–2324. [2]

Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., and Jana, S. (2019), “Cer-
tified Robustness to Adversarial Examples with Differential Privacy,” in
2019 IEEE Symposium on Security and Privacy (SP), 656–672. [9]

Lee, K., Lee, K., Lee, H., and Shin, J. (2018), “A Simple Unified Framework
for Detecting Out-of-Distribution Samples and Adversarial Attacks,”
in Advances in Neural Information Processing Systems, 7167–7177.
[10,11,15]

Levina, E., and Bickel, P. J. (2005), “Maximum Likelihood Estimation of
Intrinsic Dimension,” in Advances in Neural Information Processing
Systems, 777–784. [14]

Li, B., Chen, C., Wang, W., and Carin, L. (2018a), “Certified Adversarial
Robustness with Additive Noise,” arXiv preprint arXiv:1809.03113. [9]

Li, X., and Li, F. (2017), “Adversarial Examples Detection in Deep Networks
with Convolutional Filter Statistics,” in 2017 IEEE International Confer-
ence on Computer Vision, 5775–5783. [10]

Li, Y., Li, L., Wang, L., Zhang, T., and Gong, B. (2019), “Nattack: Learning
the Distributions of Adversarial Examples for an Improved Black-Box
Attack on Deep Neural Networks,” in International Conference on
Machine Learning, 3866–3876. PMLR. [6]

Li, Y., Min, M. R., Yu, W., Hsieh, C.-J., Lee, T. C. M., and Kruus, E. (2018b),
“Optimal Transport Classifier: Defending Against Adversarial Attacks
by Regularized Deep Embedding,” arXiv preprint arXiv:1811.07950.
[9,10,13,14]

Liu, S., Chen, P.-Y., Chen, X., and Hong, M. (2018a), “signsgd via Zeroth-
Order Oracle,” in International Conference on Learning Representations.
[6]

Liu, X., Cheng, M., Zhang, H., and Hsieh, C.-J. (2018b), “Towards Robust
Neural Networks via Random Self-Ensemble,” in Proceedings of the
European Conference on Computer Vision (ECCV), 369–385. [8,13]

Liu, X., Li, Y., Wu, C., and Hsieh, C.-J. (2019), “Adv-BNN: Improved
Adversarial Defense Through Robust Bayesian Neural Network,” in
International Conference on Learning Representations. [8,9]

Liu, Y., Chen, X., Liu, C., and Song, D. (2017), “Delving into Transferable
Adversarial Examples and Black-Box Attacks,” International Conference
on Learning Representations. [6]

Ma, X., Li, B., Wang, Y., Erfani, S. M., Wijewickrema, S., Schoenebeck, G.,
Song, D., Houle, M. E., and Bailey, J. (2018), “Characterizing Adversarial
Subspaces Using Local Intrinsic Dimensionality,” International Confer-
ence on Learning Representations. [10,11,13]

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

THE AMERICAN STATISTICIAN 17

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2018),
“Towards Deep Learning Models Resistant to Adversarial Attacks,” in
International Conference on Learning Representations. [4,5,8,12,13]

Meng, D., and Chen, H. (2017), “Magnet: A Two-Pronged Defense Against
Adversarial Examples,” in Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, 135–147. [9]

Metzen, J. H., Genewein, T., Fischer, V., and Bischoff, B. (2017), “On Detect-
ing Adversarial Perturbations,” International Conference on Learning
Representations. [10]

Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard, P. (2016), “Deepfool:
A Simple and Accurate Method to Fool Deep Neural Networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2574–2582. [5]

Mopuri, K. R., Ojha, U., Garg, U., and Babu, R. V. (2018), “Nag: Network
for Adversary Generation,” in Proceedings of the IEEE Computer Vision
and Pattern Recognition (CVPR). [5]

Nesterov, Y., and Spokoiny, V. (2017), “Random Gradient-Free Minimiza-
tion of Convex Functions,” Foundations of Computational Mathematics,
17, 527–566. [7]

Pang, T., Yang, X., Dong, Y., Su, H., and Zhu, J. (2021), “Bag of Tricks
for Adversarial Training,” in International Conference on Learning
Representations. [8]

Pang, T., Yang, X., Dong, Y., Xu, K., Zhu, J., and Su, H. (2020), “Boosting
Adversarial Training with Hypersphere Embedding,” in Advances in
Neural Information Processing Systems, eds. H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan and H. Lin, vol. 33, 7779–7792. Curran Asso-
ciates, Inc. [8]

Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z. B., and Swami,
A. (2017), “Practical Black-Box Attacks Against Machine Learning,”
in Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, 506–519. [3,6]

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z. B., and Swami,
A. (2016), “The Limitations of Deep Learning in Adversarial Settings,”
in Security and Privacy (EuroS&P), 2016 IEEE European Symposium on,
372–387. [5]

Qiu, S., Liu, Q., Zhou, S., and Wu, C. (2019), “Review of Artificial Intelli-
gence Adversarial Attack and Defense Technologies,” Applied Sciences,
9, 909. [2]

Raghuram, J., Chandrasekaran, V., Jha, S., and Banerjee, S. (2020), “Detect-
ing Anomalous Inputs to DNN Classifiers by Joint Statistical Testing at
the Layers,” arXiv preprint arXiv:2007.15147. [10,11,13,14,15]

Ren, K., Zheng, T., Qin, Z., and Liu, X. (2020), “Adversarial Attacks and
Defenses in Deep Learning,” Engineering, 6, 346–360. [2]

Roth, K., Kilcher, Y., and Hofmann, T. (2019), “The Odds Are Odd: A
Statistical Test for Detecting Adversarial Examples,” in International
Conference on Machine Learning, 5498–5507. [10,13,14]

Samangouei, P., Kabkab, M., and Chellappa, R. (2018), “Defense-GAN:
Protecting Classifiers Against Adversarial Attacks Using Generative
Models,” in International Conference on Learning Representations. [9]

Samanta, S., and Mehta, S. (2017), “Towards Crafting Text Adversarial
Samples,” arXiv preprint arXiv:1707.02812. [1]

Serban, A., Poll, E., and Visser, J. (2020), “Adversarial Examples on Object
Recognition: A Comprehensive Survey,” ACM Computing Surveys
(CSUR), 53, 1–38. [1]

Shafahi, A., Najibi, M., Ghiasi, M. A., Xu, Z., Dickerson, J., Studer, C.,
Davis, L. S., Taylor, G., and Goldstein, T. (2019), “Adversarial Training for
Free!,” in Advances in Neural Information Processing Systems, 3353–3364.
[8]

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., and Lanctot, M.
(2016) “Mastering the Game of Go With Deep Neural Networks and Tree
Search,” Nature, 529, 484–489. [1]

Simonyan, K., and Zisserman, A. (2014), “Very Deep Convolutional
Networks for Large-Scale Image Recognition,” arXiv preprint
arXiv:1409.1556. [1,12]

Song, Y., Kim, T., Nowozin, S., Ermon, S., and Kushman, N. (2018),
“Pixeldefend: Leveraging Generative Models to Understand and Defend
Against Adversarial Examples,” in International Conference on Learning
Representations. [9]

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,
and Fergus, R. (2014), “Intriguing Properties of Neural Networks,” in
International Conference on Learning Representations. [1]

Tanay, T., and Griffin, L. (2016), “A Boundary Tilting Persepective
on the Phenomenon of Adversarial Examples,” arXiv preprint
arXiv:1608.07690. [10]

Wang, L., Zhang, H., Yi, J., Hsieh, C.-J., and Jiang, Y. (2020a), “Spanning
Attack: Reinforce Black-Box Attacks with Unlabeled Data,” Machine
Learning, 109, 2349–2368. [6]

Wang, Y., Ma, X., Bailey, J., Yi, J., Zhou, B., and Gu, Q. (2019), “On the
Convergence and Robustness of Adversarial Training,” in International
Conference on Machine Learning, 6586–6595. [8]

Wang, Y., Zou, D., Yi, J., Bailey, J., Ma, X., and Gu, Q. (2020b), “Improving
Adversarial Robustness Requires Revisiting Misclassified Examples,” in
International Conference on Learning Representations. [8]

Wong, E., and Kolter, J. Z. (2020), “Learning Perturbation Sets for Robust
Machine Learning,” arXiv preprint arXiv:2007.08450. [5]

Wong, E., Rice, L., and Kolter, J. Z. (2020), “Fast Is Better than Free:
Revisiting Adversarial Training,” in International Conference on Learning
Representations. [8]

Wong, E., Schmidt, F., and Kolter, Z. (2019), “Wasserstein Adversarial
Examples via Projected Sinkhorn Iterations,” in International Conference
on Machine Learning, 6808–6817. [5]

Wu, D., Xia, S.-T., and Wang, Y. (2020), “Adversarial Weight Perturbation
Helps Robust Generalization,” Advances in Neural Information Process-
ing Systems, 33. [8]

Xie, C., Wang, J., Zhang, Z., Ren, Z., and Yuille, A. (2018), “Mitigating
Adversarial Effects Through Randomization,” in International Confer-
ence on Learning Representations. [8]

Xu, H., Ma, Y., Liu, H.-C., Deb, D., Liu, H., Tang, J.-L., and Jain, A. K.
(2020), “Adversarial Attacks and Defenses in Images, Graphs and Text: A
Review,” International Journal of Automation and Computing, 17, 151–
178. [2]

Yang, P., Chen, J., Hsieh, C.-J., Wang, J.-L., and Jordan, M. (2020a), “Ml-
loo: Detecting Adversarial Examples with Feature Attribution,” in Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 34, 6639–6647.
[4,10,15]

Yang, P., Chen, J., Hsieh, C.-J., Wang, J.-L., and Jordan, M. I. (2020b),
“Greedy Attack and Gumbel Attack: Generating Adversarial Examples
for Discrete Data,” Journal of Machine Learning Research, 21, 1–36. [1]

Yuan, X., He, P., Zhu, Q., and Li, X. (2019), “Adversarial Examples: Attacks
and Defenses for Deep Learning,” IEEE Transactions on Neural Networks
and Learning Systems, 30, 2805–2824. [2]

Zantedeschi, V., Nicolae, M.-I., and Rawat, A. (2017), “Efficient Defenses
Against Adversarial Attacks,” in Proceedings of the 10th ACM Workshop
on Artificial Intelligence and Security, 39–49. [8]

Zhang, D., Zhang, T., Lu, Y., Zhu, Z., and Dong, B. (2019a), “You Only
Propagate Once: Accelerating Adversarial Training via Maximal Prin-
ciple,” in Advances in Neural Information Processing Systems, 227–238.
[8]

Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., and Jordan, M. (2019b),
“Theoretically Principled Trade-Off Between Robustness and Accu-
racy,” in International Conference on Machine Learning, 7472–7482.
[8,13]

Zheng, Z., and Hong, P. (2018), “Robust Detection of Adversarial Attacks
by Modeling the Intrinsic Properties of Deep Neural Networks,”
in Advances in Neural Information Processing Systems, 7913–7922.
[10]

Zou, H., and Hastie, T. (2005), “Regularization and Variable Selection via
the Elastic Net,” Journal of the Royal Statistical Society: Series B, 67, 301–
320. [5,14]

	Abstract
	1. Introduction
	1.1. Notation

	2. Deep Neural Networks
	3. Attack
	3.1. Gradient-Based Attack
	3.1.1. Constraint-Optimization Formulation Based Methods
	3.1.2. Regularization-Optimization Formulation Based Methods
	3.1.3. Choice of Perturbation Set in Adversarial Attacks

	3.2. Score-Based Attack
	3.2.1. Gradient-Approximation Based Methods
	3.2.2. Other Methods

	3.3. Decision-Based Attack
	3.3.1. Transfer-Based Attacks
	3.3.2. Random-Walk Based Attacks
	3.3.3. Optimization-Based Attacks

	4. Defense
	4.1. Adversarial Training
	4.2. Randomization
	4.3. Projection
	4.4. Detection

	5. Numerical Experiments
	5.1. Attacking Logistic Regression Model
	5.2. Comparison of Different Attack Methods
	5.2.1. Results on Gradient-Based Attack
	5.2.2. Results on Score-Based Attack
	5.2.3. Results on Decision-Based Attack

	5.3. Comparison of Different Defense Methods

	6. Concluding Remarks
	6.1. Statistical Properties of Adversarial Examples
	6.2. Efficient Modeling for Improved Decision-Based Attacks
	6.3. Theoretical Guarantee for Robust Defense Methods

	Acknowledgments
	References

