Research Data Management Track Paper

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

MB2: Decomposed Behavior Modeling for
Self-Driving Database Management Systems

Lin Ma, William Zhang, Jie Jiao, Wuwen Wang, Matthew Butrovich

Wan Shen Lim, Prashanth Menon, Andrew Pavlo
Carnegie Mellon University
{lin.ma,mbutrovi, wanshenl,pmenon,pavlo}@cs.cmu.edu,{wz2,jiejiao, wuwenw}@andrew.cmu.edu

ABSTRACT

Database management systems (DBMSs) are notoriously difficult to
deploy and administer. The goal of a self-driving DBMS is to remove
these impediments by managing itself automatically. However, a
critical problem in achieving full autonomy is how to predict the
DBMS’s runtime behavior and resource consumption. These pre-
dictions guide a self-driving DBMS’s decision-making components
to tune and optimize all aspects of the system.

We present the ModelBot2 end-to-end framework for construct-
ing and maintaining prediction models using machine learning
(ML) in self-driving DBMSs. Our approach decomposes a DBMS’s
architecture into fine-grained operating units that make it easier
to estimate the system’s behavior for configurations that it has
never seen before. ModelBot2 then provides an offline execution
environment to exercise the system to produce the training data
used to train its models. We integrated ModelBot2 in an in-memory
DBMS and measured its ability to predict its performance for OLTP
and OLAP workloads running in dynamic environments. We also
compare ModelBot2 against state-of-the-art ML models and show
that our models are up to 25X more accurate in multiple scenarios.

ACM Reference Format:

Lin Ma, William Zhang, Jie Jiao, Wuwen Wang, Matthew Butrovich and Wan
Shen Lim, Prashanth Menon, Andrew Pavlo . 2021. MB2: Decomposed
Behavior Modeling for Self-Driving Database Management Systems. In
Proceedings of the 2021 International Conference on Management of Data
(SIGMOD °21), June 20-25, 2021, Virtual Event, China. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3448016.3457276

1 INTRODUCTION

A self-driving DBMS can configure, tune, and optimize itself with-
out human intervention, even as the application’s workload, dataset,
and operating environment evolve [50]. Such automation seeks to
remove the complications and costs involved with DBMS deploy-
ments. The core component that underlies a self-driving DBMS’s
decision-making is behavior models [51]. These models estimate and
explain how the system’s performance changes due to a potential
action (e.g., changing knobs, creating an index). This is similar to
how self-driving vehicles use physical models to guide their au-
tonomous planning [49]. But existing DBMSs do not contain the

Ce

This work is licensed under a Creative Commons Attribution International 4.0 License.

SIGMOD 21, June 20-25, 2021, Virtual Event, China.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8343-1/21/06.
https://doi.org/10.1145/3448016.3457276

1248

embedded low-level models for self-driving operations, nor do they
support generating the training data needed to build such models.

Techniques for constructing database behavior models fall under
two categories: (1) “white-box” analytical methods and (2) ML meth-
ods. Analytical models use a human-devised formula to describe
a DBMS component’s behavior, such as the buffer pool or lock
manager [42, 45, 74]. These models are customized per DBMS and
version. They are difficult to migrate to a new DBMS and require
redesign under system updates or reconfiguration. Recent works
on using ML methods to construct models have shown that they
are more adaptable and scalable than white-box approaches, but
they have several limitations. These works mostly target isolated
query execution [9, 17, 20, 34, 40]. The models that support con-
current queries focus on real-time settings where the interleaving
of queries is known [16, 68, 72], but a self-driving DBMS needs to
plan for future workloads without such accurate information [37].
Many ML-based models also rely on dataset or workload-dependent
information [16, 40, 58]; thus, a DBMS cannot deploy these models
in new environments without expensive retraining.

Given this, we present a framework, called ModelBot2 (MB2),
that generates behavior models that estimate the performance of
a self-driving DBMS’s components and their interference during
concurrent execution. This enables the DBMS’s planning compo-
nents to reason about the expected benefit and the impact of actions.
For example, suppose the self-driving DBMS plans to create a new
index. In that case, MB2’s models can answer how long the index
creation is, how the index creation impacts the system performance,
and how the new index accelerates the workload’s queries.

The main idea of MB2 is to decompose a DBMS’s internal archi-
tecture into small, independent operating units (OUs) (e.g., building
a hash table, flushing log records). MB2 then uses ML methods
to train an OU-model for each OU that predicts its runtime and
resource consumption for the current DBMS state. Compared to
a single monolithic model for the entire DBMS, these OU-models
have smaller input dimensions, require less training time, and pro-
vide performance insight to each DBMS component [22]. During
inference, MB2 combines OU-models to predict the DBMS’s per-
formance for the future workload (which we assume is provided
by workload forecasting techniques [37]) and the system state. To
support multi-core environments with concurrent threads, MB2
also estimates the interference between OUs by defining the OU-
models’ outputs as a set of measurable performance metrics that
summarizes each OU’s behavior. MB2 then builds interference mod-
els for concurrent OUs based on these metrics. MB2 also provides a
principled method for data generation and training for self-driving
DBMSs: developers create offline runners that exercise the system’s

https://doi.org/10.1145/3448016.3457276
https://doi.org/10.1145/3448016.3457276
https://creativecommons.org/licenses/by/4.0/

Research Data Management Track Paper

OUs under various conditions, and MB2 uses the runner-produced
data to train a set of workload and dataset independent OU-models.

To evaluate our approach, we implement our framework into the
NoisePage DBMS [1] and measure its ability to model its runtime
components and predict its behavior using workload forecasts. We
also compare against a state-of-the-art external modeling approach
based on deep learning [40]. Our results show that our models
support OLTP and OLAP workloads with a minimal loss of accuracy.

2 BACKGROUND AND MOTIVATION

A self-driving DBMS’s architecture shares similar inspirations from
self-driving cars. The commonly adopted self-driving car archi-
tecture (simplified for demonstration) consists of (1) a perception
system, (2) mobility models, and (3) a decision-making system [49].
The perception system observes the vehicle’s surrounding environ-
ment and estimates the potential state, such as other vehicles’ move-
ments. The mobility models approximate a vehicle’s behavior in
response to control actions in relevant operating conditions. Lastly,
the decision-making system uses the perception and the models’
estimates to select actions to accomplish the driving objectives.

The above components have analogs in a self-driving DBMS: (1)
forecasting, (2) behavior models, and (3) planning system [51]. The
forecasting system is how the DBMS observes and predicts the appli-
cation’s future workload [37]. The DBMS then uses these forecasts
with its behavior models to predict its runtime behavior relative to
the target objective function (e.g., latency, throughput). The DBMS’s
planning system selects actions that improve this objective function.

Behavior models are the foundation for building a self-driving
DBMS since high-fidelity models form the basis of robust planning
and control. We now provide an overview of the salient aspects of
modeling for self-driving DBMSs. We then discuss the limitations
and unsolved challenges with existing approaches.

2.1 Behavior Modeling

Given an action, a self-driving DBMS’s behavior models estimate
(1) how long the action takes, (2) how much resource the action
consumes, (3) how applying the action impacts the system per-
formance, and (4) how the action impacts the system once it is
deployed. Such models can also provide explanations about the
self-driving DBMS’s decisions and debug potential issues.
Analytical models use a human-devised formula to describe a
DBMS component’s behavior, such as the buffer pool or the lock
manager [42, 45, 74]. The unknown variables in the formula gener-
ally come from a workload specification. The models (formulas) are
disparate for different DBMSs, components, and algorithms. For
example, these works have devised drastically different I/O formu-
las for MySQL and SQL Server [42, 45]. Thus, it is challenging and
onerous to revise these models for new DBMSs or DBMS updates.
Recent works show promising results using ML to model query
execution in analytical workloads [17, 34, 40]. These ML-based
models use query plan information (e.g., cardinality estimates) as
input features to estimate system performance metrics (e.g., query
latency). Although ML-based models’ are potentially easier to trans-
fer to new environments, they still require feature adjustments, data

1249

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

© 1500

us,

Start Index Creation !

Nﬁf\/ﬂ@‘\[‘/\/\/«/\M,

—— 4 Create Index Threads
8 Create Index Threads

1000

Index Created
with 4 Threads

Index Created
with 8 Threads
e

o
=3
S

AAG DNy

o

Average Query Latency

25 50 75 100

Time (s)

125 150 175 200

Figure 1: Index Build Example — TPC-C query latency running on
NoisePage. The DBMS begins index building after 60s using 4 or 8 threads.

remaking, and retraining. Existing models also do not support trans-
actional workloads, nor do they consider the effects of the DBMS’s
maintenance operations (e.g., garbage collection).

Some methods also support concurrent queries when the arrival
time of each query is known. They derive the concrete interleaving
of queries as the input for their analytical or ML models [16, 68, 72].
This is insufficient for a self-driving DBMS because it must account
for unknown future workloads when planning expensive actions.

To illustrate the difficulties inherent in self-driving DBMS model-
ing, consider the scenario of when a DBMS must decide whether to
build an index. For this example, we use the TPC-C benchmark run-
ning on NoisePage; we provide our experimental details in Sec. 8.
The results in Fig. 1 show the query latency for the TPC-C work-
load when we remove a secondary index on the CUSTOMER table.
After 60s, the DBMS begins adding that index back to improve the
latency. However, before it can start, the DBMS’s planning compo-
nent uses behavior models to identify what benefit (if any) adding
that index would provide. The planning component also must select
how many threads to use to build the index; using more threads
will decrease the build time but degrade the system’s performance.
For example, Fig. 1 shows that building with four threads only
degrades performance by 25%, but it takes 80s to finish, whereas
using eight threads degrades performance by 32% but completes
in 40s. A DBMS needs this information to determine which action
deployment to choose based on the environment and constraints.

2.2 Challenges

Despite the advantages of using ML to build models, there are
several challenges in using them in a self-driving DBMS.

High Dimensionality: One approach for behavior modeling is to
build a monolithic model that captures all aspects of the DBMS,
including its workload, configuration, and actions. Although this is
conceptually clean, it incurs the “curse of dimensionality” problem
where an ML model’s predictive power decreases as the number of
dimensions or features increases [62]. Even if the model only targets
query execution, a modern DBMS will still have hundreds of plan
operator features [9, 40]. Naively concatenating these features into
the model will lead to sparse input and weak predictive efficacy.
Partially because of this, modeling techniques target individual
operators instead of the entire query plan [34, 40]. A self-driving
DBMS must also consider its runtime state (e.g., database contents,
knob configurations), interactions with other components (e.g.,
garbage collection), and other autonomous actions (e.g., building
indexes), which further increases dimensionality.

Research Data Management Track Paper

OU-Model Generation Interference

; Model Generation
) I
1) 1
i -"::"\- i1 ‘
' E y L I ET 1
: é Index Sequantial Join Hash | |Log Record 3 g :
' :. Build Scan Table Build Flush ' 1 g 5 TPC-C 1
i O| OU-Runner 1 OU-Runner 2 OU-Runner 3 OU-Runner 4 i ' 80: TPC-H '
' ! !
! L |
: C Training Data Collection ! ! C 1
Operating Unit Behavior @ Metrics /9,

| Translator @ Tracker :@ Collector & °

i N4 A
' i i
' g :
' - !
] S =

-] OO '
] 5T !
1= nE2 :
' 3| OU-Model1 OU-Model 2 OU-Model 3 OU-Model 4 |11 & !
0 o g |

Figure 2: System Architecture — MB2 trains OU-models for each OU
with the data generated by OU-runners and builds interference models for
concurrent OUs based on system resource utilization.

Concurrent Operations: Since queries and DBMS components
that run simultaneously will interfere with each other, a self-driving
DBMS needs to model such interference in dynamic environments.
A simple approach is to duplicate the input features by the max-
imum degree of concurrency (e.g., number of threads). This mul-
tiplicatively increases feature dimensionality and exponentially
increases the possible input features for the models. For example, a
workload with 10 different queries running on a 20 core machine
has 1129 possible input feature combinations. Queries may also
incur interference that is not easily identifiable solely on plan fea-
tures, such as the resource contention between concurrent queries.

Training, Generalizability, and Explainability: Collecting suf-
ficient training data to build ML models for DBMSs is non-trivial
when there are many features with large domains. Part of this
difficulty is because some DBMS operations take a long time to
complete. Thus, collecting this data is expensive, which is a key
problem for many ML methods [52]. For example, building indexes
can take hours [12], limiting the amount of training data that a
DBMS can collect. Most of the previous work on using ML to pre-
dict query execution times rely on synthetic benchmarks for train-
ing [34, 38, 40, 63]. Although their models perform well for the
same workload used for training, they have high prediction errors
on different workloads. The behavior models should also be explain-
able and debuggable to facilitate their practical application [30].

3 OVERVIEW

MB2 is an embedded behavior modeling framework for self-driving
DBMSs. There are two key design considerations: (1) since collect-
ing training data, building models, and diagnosing problems are
expensive and time-consuming, MB2 generates models offline in a
dataset and workload independent manner. The DBMS then uses
the same set of models to estimate the runtime actions’ impact on
any workload or dataset. (2) MB2’s models are debuggable, explain-
able, and adaptable. These qualities reduce development complexity
and provide a view of why the DBMS chooses specific actions.
Fig. 2 provides an overview of MB2’s modeling architecture. The
main idea is to decompose the DBMS into independent operating

1250

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Candidate Action

Forecasted Workload

: Input ou1l ou2 : : :
: Action Index Build [: :
: Query 1 | Sequential Scan | JHT Build ¢ @ :
1| Transaction | Log Record Garbage | g g ; |
o1e2 Flush Collection H '
' ' '
' ' '

Workload Performance

<

INSERT ...

UPDATE ...

SELECT ...

CPU Memory Disk

Resource
Utilization

DELETE ...
Workload

Time Resource Consumption Latency

Figure 3: MB2 Inference Procedure — Given the forecasted workload
and a self-driving action, MB2 records the OUs for all input tasks, and uses
the OU-models and interference models to predict the DBMS’s behavior.

units (OUs). An OU represents a step that the DBMS performs to
complete a specific task. These tasks include query execution steps
(e.g., building join hash tables (JHTs)) and internal maintenance
steps (e.g., garbage collection). DBMS developers are responsible for
creating OUs and deciding their boundaries based on the system’s
implementation. We decompose NoisePage naturally following the
system’s source code organization. For example, NoisePage defines
an OU for the function that builds a hash table.

MB2 pairs each OU with an OU-runner that exercises the OU’s
corresponding DBMS component by sweeping the component’s
input parameter space. MB2 then provides a lightweight data col-
lection layer to transform these OU-runners’ inputs to OU features
and track the OU’s behavior metrics (e.g., runtime, CPU utilization).
For each OU, MB2 automatically searches, trains, and validates an
OU-model using the data collected from the related OU-runner.

To orchestrate data collection across all OUs and to simulate
concurrent environments, MB2 uses concurrent runners to execute
end-to-end workloads (e.g., benchmarks, query traces) with mul-
tiple threads. MB2 uses its training data collectors to build inter-
ference models that estimate the impact of resource competition,
cache locality, and internal contention among concurrent OUs.

With OU-models trained for the entire system, a self-driving
DBMS can use them as a simulator to approximate its runtime
behavior. Fig. 3 shows how a DBMS uses MB2’s models for inference.
The inputs for MB2 are the forecasted workload and a potential
action. Employing the same translator infrastructure for training
data collection, MB2 first extracts the OUs from the inputs and
generates their model features. It then uses OU-models to predict
the behavior of each OU, and uses the interference models to adjust
the OU-model’s prediction to account for the impact of concurrent
OUs. Finally, MB2 sums OU’s prediction to derive information that
guides the DBMS’s planning system, such as how long the action
takes and its impacts on the forecasted workload’s performance.

Returning to our example from Sec. 2.1, before a self-driving
DBMS chooses the action to build the index, it can use MB2’s models
to estimate the time and consumed resources (e.g., CPU, memory)

Research Data Management Track Paper

for the action’s OUs. MB2 also estimates the effect of building the
index on the regular workload by converting its queries into OUs
and predicting their performance. The DBMS’s planning system
then decides whether to build this index and provides explanations
for its decision based on these detailed predictions.

Assumptions and Limitations: We now clarify MB2’s capabili-
ties on what it can and cannot do. Foremost is that we assume the
framework uses a forecasting system to generate estimations for fu-

ture workload arrival rates in fixed intervals (e.g., a minute/hour) [37].

The workload forecasting system cannot predict ad-hoc queries it
has never seen before. Thus, we assume the DBMS executes queries
with a cached query plan except for the initial invocation.

We assume that the target system is an in-memory DBMS; MB2
does not support disk-oriented DBMSs with buffer pools. This as-
sumption simplifies MB2’s behavior models since it does not have
to consider what pages could be in memory for each query. Estimat-
ing cache contents is difficult enough for a single query. It is more
challenging when evaluating a sequence of forecasted queries.

MB2 supports both OLTP and OLAP workloads, as well as mixed
workloads. Assuming an in-memory DBMS makes it easier to model
OLAP workloads since each query’s performance is affected by
aspects of the system that are observable by MB2: (1) database con-
tents, (2) configuration, and (3) operating environment. Modeling
OLTP queries poses additional challenges due to higher variance
with short query execution times. Supporting transactions also
means that MB2 must consider logical contention (e.g., transac-
tions updating the same record) as well as physical contention for
hardware resources. We assume that the DBMS uses MVCC [71]
and MB2 supports capturing lock contention. MB2 does not, how-
ever, model transaction aborts due to data conflicts because it is
challenging to get precise forecasts of overlapping queries.

MB2’s OU-models’ input features contain the cardinality esti-
mation from the DBMS optimizer, which is known to be error-
prone [32]. Our evaluation shows that MB2’s prediction is insensi-
tive against cardinality estimation errors within a reasonable range
(30%). There are recent works that use ML to improve an optimizer’s
cardinality estimations [18, 27, 66, 67, 73], which MB2 may leverage.

Lastly, while MB2 supports hardware context in its models (see
Sec. 4.2), we defer the investigation on what features to include
for different hardware (e.g., CPU, disk) and environments (e.g.,
bare-metal, container) as future work.

4 OU-MODELS

We now discuss how to create a DBMS’s OU-models with MB2. The
goal of these models is to estimate the time and resources that the
DBMS will consume to execute a query or action. A self-driving
DBMS can make proper planning decisions by combining these
estimates from multiple queries in a workload forecast interval. In
addition to accuracy, these models need to have three properties
that are important for self-driving operations: (1) they provide
explanations of the DBMS’s behavior, (2) they support any dataset
and workload, and (3) they adapt to DBMS software updates.

4.1 Principles

Developers use MB2 to decompose the DBMS into OUs to build
explainable, adaptable, and workload independent behavior models.

1251

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Operating Unit | Features | Knobs Type
Sequential Scan 7 1 Singular
Index Scan 7 1 Singular
Join Hash Table Build 7 1 Singular
Join Hash Table Probe 7 1 Singular
- Agg. Hash Table Build 7 1 Singular
E Agg. Hash Table Probe 7 1 Singular
2 Sort Build 7 1 Singular
] Sort Iterate 7 1 Singular
= Insert Tuple 7 1 Singular
Update Tuple 7 1 Singular
Delete Tuple 7 1 Singular
Arithmetic or Filter 2 1 Singular
= Garbage Collection 3 1 Batch
= Index Build 5 1 Contending
= Log Record Serialize 4 1 Batch
£ Log Record Flush 3 1 Batch
2 Transaction Begin 2 0 Contending
& Transaction Commit 2 0 Contending
E Output Result 7 1 Singular

Table 1: Operating Unit - Property Summary of OUs in NoisePage.

The first step is to understand the principles for dividing the DBMS’s
internal components into these OUs. For this discussion, we use
examples from NoisePage’s OUs shown in Table 1:

Independent: The runtime behavior of an OU must be indepen-
dent of other OUs. Thus, changes to one OU do not directly affect
another unrelated OU. For example, if the DBMS changes the knob
that controls the join hash table size then this does not change
the resource consumption of the DBMS’s WAL component or the
resource consumption of sequential scans for the same queries.

Low-dimensional: An OU is a basic operation in the DBMS with
a small number of input features. That is, the DBMS can construct
a model that predicts the behavior of that part of the system with
as few features as possible. We have found that it is best to limit the
number of features to at most ten, which includes any hardware
and database state contexts. If an OU requires more than this, then
one should attempt to divide the OU into sub-OUs. This limit may
increase as ML algorithms and hardware improve over time. Re-
stricting the number of features per OU improves the framework’s
ability to collect sufficient training data to support any workload.

Comprehensive: Lastly, the framework must have OUs that en-
compass all DBMS operations which consume resources. Thus, for
any workload, the OUs cover the entire DBMS, including back-
ground maintenance tasks (e.g., garbage collection) and self-driving
actions that the DBMS may deploy on its own (e.g., index creation).

A DBMS will have multiple OU decompositions according to
these principles, which allows for flexible implementation choices.
Adding more OUs may lead to smaller models with finer-grained
predictions and less required training data for each model. But
additional OUs may also increase the inference time, model mainte-
nance cost, and stacking of prediction errors. We defer the problem
of deriving the optimal OU set for a DBMS as future work.

4.2 Input Features

After deciding which OUs to implement, DBMS developers then
specify the OU-models’ input features based on their degree of
freedom [14]. These features may contain (1) the amount of work for
a single OU invocation or multiple OU invocations in a batch (e.g.,

Research Data Management Track Paper

Input
P [# rows[# columns[key size [] [# rows[# columns[key size []
Features
()
(=
[
S
@ | OU-Models @n @n
[)
'g Join-Hash-Table-Build Index-Build
s OU-Model OU-Model
3 ______________________________________
[Jcrpu [Jyo [[JMemory []Time
OU-Model = Bl [k Mem-[Elapsed] [inst]BI K] [Vem-[Elapsed
P nstru- oc! em-|Elapsed| {Instru- locl lem-|Elapse
Prediction ctions s Written|™"| ory | Time ctions Gyt Written| ™ ory | Time
= = Jb
% Additional y istics of Sum Variance
8 Input OU-Model Predictions
& Features for Concurrent OUs |.CPY [/0 [Memory[Time [CPUT /0 [viemony] Time |
S 2 L IR 1
°
2
o |Interference g;z)ply l% elach l<jnrig_mexl |
o -model prediction separately
§ Model (indicated by § or §)
e $ &
5 |Interference
€ Model [tAdjusted 1 Adjusted 1 Adjusted TAdjusted
= Prediction Instructions | " | " | " | Elapsed Time | [Instructions | ** | " | " | Elapsed Time

Figure 4: OU and Interference Models - MB2 uses OU-specific input
features to predict their resource consumption and elapsed time. The inter-
ference model uses the summary predictions for concurrent OUs.

the number of tuples to process), (2) the parallel invocation status of
an OU (e.g., number of threads to create an index), and (3) the DBMS
configuration knobs (e.g., the execution mode). Although humans
select the features for each OU-model, the features’ values are
generated automatically by the DBMS based on the workload and
actions. Some features are generic and will be the same across many
DBMSs, whereas others are specific to a DBMS’s implementation.
We categorize OUs into three types based on their behavior pattern,
which impacts what information the input features have.

Singular OUs: The first type of OUs have input features that rep-
resent the amount of work and resource consumption for a single
invocation. These include NoisePage’s execution category OUs in
Table 1. Almost all its execution OUs have the same seven input
features. The first six features are related to the relational operator
that the OU belongs to: (1) number of input tuples, (2) number of
columns of input tuples, (3) average input tuple size, (4) estimated
key cardinality (e.g., sorting, joins), (5) payload size (e.g., hash table
entry size for hash joins), and (6) number of loops (only for index
nested loop joins). The first three features indicate the tuple volume
that the OU will process as an estimate of the amount of work it
will perform. Likewise, the fourth and fifth features approximate
the expected output, which helps determine the intermediate state
that the OU maintains during execution. The sixth feature indicates
whether the OUs is repeatedly executed in a loop, which helps
capture short OUs’ caching effect. Lastly, the seventh feature is an
execution mode flag that is specific to NoisePage; this indicates
whether the DBMS executes a query with its interpreter or as JIT-
compiled [29, 41]. NoisePage’s networking OU also belongs to this
type since network communication is discrete amount of work.

Batch OUs: The second type of OUs have input features that repre-
sent a batch of work across multiple OU invocations. It is challeng-
ing to derive features for these OUs since a single invocation may
span multiple queries based on when those queries arrive and the
invocation interval. For example, the OU for log flushes will write

1252

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

the log records generated from queries since the last invocation,
the timing of which is unknown. To address this, we define the log
flush OU’s input features to represent the total amount of records
generated by the set of queries predicted to arrive in a workload
forecasting interval: (1) the total number of bytes, (2) the total num-
ber of log buffers, and (3) the log flush interval. These features are
independent of what plans the DBMS chooses for each query.

Contending OUs: The last type of OUs are for operations that may
incur contention in parallel invocations. For example, the DBMS
can use multiple threads to build an index, but the threads have to
acquire latches in the data structure. We include the contention in-
formation into these OUs input features. For the index build OU, its
input features include: (1) number of tuples, (2) number of keys, (3)
size of keys, (4) estimated cardinality of the keys, and (5) the num-
ber of parallel threads, which indicates the contention!. Similarly,
the OUs related to starting and ending transactions also contain in-
formation about transactions’ arrival rates in the workload forecast
interval. The internal contention is orthogonal to the concurrent
impact that MB2’s interference model captures based on resource
consumption that we will discuss in Sec. 5.

A self-driving DBMS must also predict how changes to its con-
figuration knobs impact its OUs. We categorize these tunable knobs
into behavior knobs and resource knobs. The former affects the inter-
nal behavior of one or more OUs, such as the execution mode and
log flushing interval. As shown in these examples, MB2 appends
behavior knobs to the impacted OUs’ features. Thus, the OU-models
can predict the OU behavior when changing these knobs. MB2 can
also append the hardware context to the OU features to general-
ize the OU-models across hardware. We demonstrate such ability
by extending the OU features with one hardware feature, i.e., the
CPU frequency (Sec. 8.6). We leave a thorough investigation for the
proper hardware context features as future work.

4.3 Output Labels

Every OU-model produces the same output labels. They are a vector
of commonly available hardware metrics (Sec. 6.1) that approxi-
mate the OU’s behavior per invocation (i.e., for a single set of input
features): (1) elapsed time, (2) CPU time, (3) CPU cycles, (4) CPU
instructions, (5) CPU cache references, (6) CPU cache misses, (7)
disk block reads, (8) disk block writes (for logging), and (9) memory
consumption. These metrics explain what work an OU does inde-
pendent of which OU it is. Using the same labels enables MB2 to
combine them together to predict the interference among concur-
rent OUs. They also help the self-driving DBMS estimate the impact
of knobs for resource allocation. For example, the OU-models can
predict each query’s memory consumption by predicting the mem-
ory consumption for all the OUs related to the query. A self-driving
DBMS evaluates what queries can execute under the knob that
limits the working memory for each query, and then sets that knob
according to its memory budget. Similarly, CPU usage predictions
help a self-driving DBMS evaluate whether it has assigned enough
CPU resources for queries or its internal components.

!For parallel OUs, including the index build, MB2 uses the max (instead of the sum)
predicted elapsed time among each single-threaded invocation as the elapsed time.

Research Data Management Track Paper

Output Label Normalization: We now discuss how MB2 nor-
malizes OU-models’ output labels by tuple counts to improve their
accuracy and efficiency. DBMSs can execute queries that range from
accessing a single tuple (i.e., OLTP workloads) to scanning billions
of tuples (i.e., OLAP workloads). The former is fast to replicate with
OU-runners, but the latter is expensive and time-consuming. To
overcome this issue, MB2 employs a normalization method inspired
by a previous approach for scaling query execution modeling [34].
We observe that many OUs have a known complexity based on the
number of tuples processed, which we denote as n. For example, if
we fix all the input features except for n, the time and resources
required to build a hash table for a join are O(n). Likewise, the time
and resources required to build buffers for sorting are O(nlogn).
We have found in our evaluations with NoisePage that with typi-
cally less than a million tuples, the output labels converge to the
OU’s asymptotic complexity multiplied by a constant factor.

Given this, for OU-models that have the number of processed
tuples/records as an input feature, MB2 normalizes the outputs.
It divides the outputs by the related OU’s complexity based on
the number of tuples, while the inputs remain intact. A special
case is the memory consumption label for building hash tables:
NoisePage uses different hash table implementations for joins and
aggregations. The hash table pre-allocates memory for joins based
on the number of tuples; for aggregations, the hash table grows
with more inserted unique keys. Thus, to normalize this label, MB2
divides it by the number of input tuples for the join hash table OU
and by the cardinality feature for the aggregation hash table OU.

With such normalization, MB2 only needs to collect training data
for OU-models with the number of tuples up to the convergence
point. Although previous work on analytical DBMS models also
leverages similar database domain knowledge [42, 45], MB2’s nor-
malization to OU-models is simple to implement regardless of the
OU’s implementation and is easy to adapt when there are system
updates (Sec. 7). We demonstrate in Sec. 8 that MB2 generalizes to
datasets with orders of magnitude higher number of tuples than
what exists in the training data using this approach.

5 INTERFERENCE MODEL

The OU-models capture the internal contention on data structures
or latches within an OU (Sec. 4.2). But there can also be interference
among OUs due to resource competition, such as CPU, I/O, and
memory.> MB2 builds a common interference model to capture
such interference since it may impact any OU.

As shown in Fig. 4, MB2 first extracts all OUs from the forecasted
workload and the planned action before using OU-models to esti-
mate their output labels. It then applies the interference model to
each OU separately to adjust the OU-model’s output labels based
on the workload forecast’s concurrency information and the OU-
model predictions for other OUs. Building such an interference
model has two challenges: (1) there are an exponential number of
concurrent OU combinations, and (2) self-driving DBMSs need to
plan actions ahead of time [50], but predicting queries’ exact future
arrival times and concurrent interleavings is arguably impossible.

2We observe that in corner cases, there can also be resource sharing among OUs, such
as the cache locality across consecutively running OUs. MB2 does not model such
interference since it has little impact on our evaluation.

1253

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

To address these challenges, we formulate a model based on
summary statistics [14] of the unified behavior metrics estimated by
the OU-models. Given that all the OU-models have the same output
labels, the interference model uses a fixed set of input features that
summarize the OU-model predictions regardless of the underlying
OUs. Furthermore, the summary statistics aggregate the behavior
information of the OUs forecasted to run in an interval, which does
not require the exact arrival time of each query. Fig. 4 illustrates
the formulation of the resource competition interference model.

5.1 Input Features

The interference model’s inputs are the OU-model’s output labels
for the OU to predict and summary statistics of the OUs forecasted
to run in the same interval (e.g., one minute). MB2 adds the OU-
models’ output labels for the OUs assigned to run on each thread
separately and uses the sum and variance for each thread’s total
labels as the summary. Although MB2 can include other summaries,
such as percentiles of concurrent OUs’ OU-model predictions, we
find the above summary effective in our evaluation. MB2 also nor-
malizes the interference model’s inputs by dividing them by the
target OU-model’s estimated elapsed time to help generalization.

5.2 Output Labels

The interference model generates the same set of outputs as the
OU-models. Instead of estimating the absolute values of the output
metrics, the model predicts the element-wise ratios between the
actual metrics and the OU-model’s prediction. These ratios are
always greater than or equal to one since OUs run the fastest in
isolation. We observe that under the same concurrent environment,
OUs with similar per-time-unit OU-model estimation (part of the
interference model’s inputs) experience similar impacts and have
similar output ratios regardless of the absolute elapsed time. Thus,
the combination of normalizing the inputs by the elapsed time and
using the ratios as the outputs helps the model generalize to OUs
with various elapsed times.

6 DATA GENERATION AND TRAINING

MB2 is an end-to-end solution that enables self-driving DBMSs to
generate training data from OUs and then build accurate models
that predict their behavior. We now describe how MB2 facilitates
this data collection and model training. We begin with discussing
MB2’s internal components that developers must integrate into
their DBMS. We then present our OU- and concurrent-runner in-
frastructure that exercises the system to produce training data.
We again emphasize that this training data collection process
uses the DBMS in an offline manner. That is, developers run the
system in non-production environments. We defer the problem
of how to collect this training data for an online system without
incurring observable performance degradation as future work.

6.1 Data Collection Infrastructure

MB2 provides a lightweight data collection framework that system
developers integrate into their DBMS. We first describe how to
set up the system to collect the behavior data of OUs (i.e., input
features, output labels). We then describe the runtime mechanisms
that MB2 uses for tracking each OU’s resource consumption. Lastly,

Research Data Management Track Paper

we discuss how the framework retrieves this data for model training.

OU Translator: This component extracts OUs from query and
action plans and then generates their corresponding input features.
MB2 uses the same translator infrastructure for both offline training
data collection and runtime inference.

Resource Tracker: Next, MB2’s tracker records the elapsed time
and resource consumption metrics (i.e., output labels) during OUs
execution. The framework also uses this method for the interfer-
ence model data since it uses the same output labels to adjust the
OU-models’ outputs. MB2 enables this resource tracking right be-
fore the invocation of an OU, and then disables it after the OU
completes. The tracker uses a combination of user- and kernel-level
primitives for recording a OU’s actions during execution. For exam-
ple, it uses C++11’s std: : chrono high-resolution clock to record
the elapsed time of the OU. To retrieve hardware counter infor-
mation, MB2’s uses the Linux perf library and the rusage syscall.
Although these tracking methods do not require the DBMS to run
with root privileges to collect the data, they do add some amount
of runtime overhead to the system. Investigating more customized
and lightweight methods for resource tracking is future work [2, 6].

Metrics Collector: The challenges with collecting training data
are that (1) multiple threads produce metrics and thus require co-
ordination, and (2) resource tracker can incur a noticeable cost. It
is important for MB2 to support low-overhead metrics collection
to reduce the cost of accumulating training data and interference
with the behavior of OUs, especially in concurrent environments.

MB2 uses a decentralized metrics collector to address the first
issue. When the DBMS executes in training mode, a worker thread
records the features and metrics for each OU that it encounters in
its thread-local memory. MB2 then uses a dedicated aggregator to
periodically gather this data from the threads and store it in the
DBMS’s training data repository. To address the second challenge,
MB2 supports resource tracking only for a subset of queries or
DBMS components. For example, when MB2 collects training data
for the OUs in the execution engine, the DBMS can turn off the
tracker and metrics collector for other components.

6.2 OU-Runners

An OU-runner is a specialized microbenchmark in MB2 that ex-
ercises a single OU. The goal of each OU-runner is to reproduce
situations that an OU could encounter when the DBMS executes
a real application’s workload. The OU-runners sweep the input
feature space (i.e., number of rows, columns, and column types)
for each OU with fixed-length and exponential step sizes, which
is similar to the grid search optimization [11]. For example, with
singular OUs related to query execution, the OU-runner would
evaluate different combinations of tuple sizes and column types.
Although it not possible to exercise every possible variation for
some OU’s, MB2’s output label normalization technique (Sec. 4.3)
reduces the OU-runners’ need to consider large data sets.

There are two ways to implement OU-runners: (1) low-level
execution code that uses the DBMS’s internal API and (2) high-
level SQL statements. We chose the latter for NoisePage because it
requires less upfront engineering effort to implement them, and has
little to no maintenance costs if the DBMS’s internal API changes.

1254

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

MB?2 supports modeling OLTP and OLAP workloads. To the best
of our knowledge, we are the first to support both workload- and
data-independent modeling for OLTP query execution. Prior work
either focused on modeling OLAP workloads [34, 40, 68] or assumes
a fixed set of queries/stored procedures in the workload [42, 45].
Modeling the query execution in OLTP workloads is challenging
for in-memory DBMSs: since OLTP queries access a small number
of tuples in a short amount of time, spikes in hardware performance
(e.g., CPU scaling), background noise (e.g., OS kernel tasks), and
the precision of the resource trackers (e.g., hardware counters) can
inflict large variance on query performance. Furthermore, DBMSs
typically execute repeated OLTP queries as prepared statements.

To address the first challenge on variability, MB2 executes the
OU-runners for the OUs in the execution engine with sufficient
repetitions (10X) and applies robust statistics [25] to derive a reliable
measurement of the OU’s behavior. Robust statistics can handle a
high proportion of outliers in the dataset before giving an incorrect
(e.g., arbitrarily large) result, where such proportion is called the
breakdown point. MB2 uses the 20% trimmed mean statistics [57],
which has a high breakdown point (i.e., 0.4), to derive the label from
the repeated measurements. To address the second challenge, MB2
executes each query for five warm-up iterations before taking mea-
surements for the query’s OUs, with all executions of a given query
using the same query template. MB2 starts a new transaction for
each execution to avoid the data residing in CPU caches. For queries
that modify the DBMS state, MB2 reverts the query’s changes using
transaction rollbacks. We find the labels insensitive to the trimmed
mean percentage and the number of warm-up iterations.

6.3 Concurrent Runners

Since OU-runners invoke their SQL queries one at a time, MB2 also
provides concurrent runners that execute end-to-end benchmarks
(e.g., TPC-C, TPC-H). These concurrent runners provide MB2 with
the necessary data to train its interference model (Sec. 5).

To generate training data with diverse concurrent execution pro-
files, each concurrent runner executes their workload by varying
three parameters: (1) the subsets of queries in the benchmark to exe-
cute, (2) the number of concurrent threads that the DBMS uses, and
(3) the workload submission rate. The concurrent runners execute
their workload with each parameter combination for a brief period
of time (e.g., 30s) in correspondence to the short-term prediction
intervals used by the DBMS’s workload forecasting framework [37].
As discussed in Sec. 5.2, MB2’s interference model is agnostic to the
ouU elapsed time, so the concurrent runners do not need to execute
the workloads at different interval lengths.

6.4 Model Training

Lastly, we discuss how MB2 trains its behavior models using the
runner-generated data. Since OUs have different input features and
behaviors, they may require using different ML algorithms that are
better at handling their unique properties and assumptions about
their behavior. For example, Huber regression (a variant of linear
regression) is simple enough to model the filter OUs with arithmetic
operations. In contrast, sorting and hash join OUs require more
complex models, such as random forests, to support their behaviors
under different key number, key size, and cardinality combinations.

Research Data Management Track Paper

Model Type ‘ Runner Time ‘ Data Size ‘ Training Time ‘ Model Size

OUs 514 min 38 MB 338 MB
Interference 82 min 236 MB 66 KB

18 min
21 min

Table 2: MB2 Overhead - Behavior Model Computation and Storage Cost

MB2 trains multiple models per OU and then automatically se-
lects the one with the best accuracy for each OU. MB2 currently sup-
ports seven ML algorithms for its models: (1) linear regression [54],
(2) Huber regression [25], (3) support vector machine [56], (4) ker-
nel regression [43], (5) random forest [35], (6) gradient boosting
machine [19], and (7) deep neural network [53]. For each OU, MB2
first trains an ML model using each algorithm under the common
80/20% train/test data split and then uses cross-validation to deter-
mine the best ML algorithm to use [28]. MB2 then trains a final
OU-model with all the available training data using the best ML
algorithm determined previously. Thus, MB2 utilizes all the data
that the runners collect to build the models. MB2 uses this same
procedure to train its interference models.

7 HANDLING SOFTWARE UPDATES

DBMSs with an active install base likely have software updates to
fix bugs, improve performance, and add new features. If its behavior
models cannot keep up with these changes, the DBMS will be unable
to adjust itself correctly . To handle software updates, MB2 only
needs to run the OU-runners for the affected OUs. This restricted
retraining is possible because the OUs are independent of each
other. The OU-runners issue SQL queries to the DBMS to exercise
the OUs, which means that developers do not need to update them
unless there are changes to the DBMS’s SQL syntax. Furthermore,
MB?2 does not need to retrain its interference models in most cases
because resource competition is not specific to any OU.

If a DBMS update contains changes that introduces new OU
behaviors (e.g., adding a new DBMS component), then MB2 re-
runs the concurrent runners to generate the interference models.
In NoisePage, we currently use a heuristic for MB2 to retrain the
interference models when a DBMS update affects at least five OUs.

8 EXPERIMENTAL EVALUATION

We now discuss our evaluation of MB2 using the NoisePage DBMS.
We deployed the DBMS on a Ubuntu 18.04 LTS machine with two
10-core Intel Xeon E5-2630v4 CPUs, 128GB of DRAM, and Intel
Optane DC P4800X SSD.

We use the OLTP-Bench [13] testbed as an end-to-end workload
generator for the SmallBank [10], TATP [47], TPC-C [60], and TPC-
H [61] benchmarks. SmallBank is an OLTP workload that consists of
three tables and five transactions that models customers interacting
with a bank branch. TATP is an OLTP workload with four tables
and seven transactions for a cellphone registration service. TPC-
C is a more complex OLTP benchmark with nine tables and five
transactions that models back-end warehouses fulfilling orders
for a merchant. Lastly, TPC-H is an OLAP benchmark with eight
tables and queries that model a business analytics workload. We use
numactl to fix the DBMS and OLTP-Bench processes on separate
CPU sockets. We also set the Xeon CPUs’ power governor setting to
“performance” mode to reduce the variance in our measurements.

1255

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

We use two evaluation metrics. For OLAP workloads, we use
the average relative error (lActual-bredicily yged i similar prediction
tasks in previous work [34, 40]. Since OLTP queries have short
run-times with high variance, their relative errors are too noisy to
have a meaningful interpretation. Thus, we use the average absolute
error (|Actual — Predict|) per OLTP query template.

We implemented MB2’s models with scikit-1learn [7]. We use
the default hyperparameters except for random forest with 50 esti-
mators, neural network with 2 layers with 25 neurons, and gradient
boosting machine with 20 depth and 1000 leaves. We also imple-
mented MB2’s OU-runners using Google’s Benchmark library [3]
with 1ibpgxx [4] to connect to NoisePage.

8.1 Data Collection and Training

We first discuss MB2’s data collection and model training. The
results in Table 2 show a breakdown between the time that MB2
spends generating data versus the time that it spends training its
models. We generated ~1M unique data points for NoisePage’s 19
OUs. Exercising the OU-runners is the most costly step because (1)
OU-runners enumerate a wide range of feature combinations, and
(2) certain data points are expensive to collect (e.g., building a hash
table with 1m tuples). The model training step does not take too
much time because we designed each OU-model to have a small
number of features. Table 2 also shows that the concurrent runners
produce a larger data set than the OU-runners because they execute
multiple OUs at the same time. The model is much smaller since,
unlike OU-models with one model for each OU, MB2 generated a
single interference model that is not specific to any OU.

In our experiments, OU translator and OU-model inference for a
single query (may contain multiple OUs) on average take 10us and
0.5ms. Each resource tracker invocation on average takes 20ys.

8.2 OU-Model Accuracy

We next evaluate the accuracy of MB2’s OU-models, which are
the foundation of the self-driving DBMS behavior models. Recall
from Sec. 6.4 that we split the data of each OU-runner into 80/20%
train/test and build models with seven ML algorithms. From the
test result, MB2 selects the best algorithm for each OU and trains
the final OU-model using all available OU-runner data. Due to
space limitations, we only demonstrate the results for a few more-
representative and better-performing ML algorithms.

Fig. 5 shows the OU-model test relative error averaged across
all output labels. More than 80% of the OU-models have an average
prediction error less than 20%, which demonstrates the effective-
ness of the OU-models. The transaction OU models have higher
relative error because most cases have short elapsed times (< 10us)
unless the system is under heavy contention. Similarly, probing an
aggregation hash table takes less than 10us in most cases enumer-
ated by the OU-runner. Thus, for these short-running tasks, small
perturbations in the predictions can lead to high relative error.

For most OUs, random forest and gradient boosting machine are
the best-performing ML algorithms with sufficient generalizability.
Neural networks have higher errors in comparison because they
are prone to overfitting given the OU-models’ low dimensionality.
For simple OUs (e.g., arithmetics), less complex models like Huber
regression achieve competitive accuracy and are cheaper to train.

Research Data Management Track Paper SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Bl Random Forest B Huber Regression
0.8 EZ3 Neural Network SN Gradient Boosting Machine

LOG FLUSH OUTPUT SEQ.SCAN IDX_SCAN SORT BUILD HASHJOIN BUILD AGG BUILD SORT.ITER HASHJOIN_PROBE AGG PROBE INSERT UPDATE DELETE INDEX BUILD GC LOG SERIALIZE TXN.BEGIN TXN.COMMIT ARITHMETICS
Operating Unit

Figure 5: OU-model Accuracy (OU) - Test relative error for each OU averaging across all OU-model output labels. OU-models are trained with four ML
algorithms: (1) random forest, (2) neural network, (3) Huber regression, and (4) gradient boosting machine.

1.0
EEE Random Forest without Normalization B Random Forest

_08 E==3 Neural Network without Normalization =R Neural Network
g EEE Huber Regression without Normalization B Huber Regression
% 0.6 I Gradient Boosting Machine without Normalization Bl Gradient Boosting Machine
504

0.2

0.0

CPU_CYCLE INSTRUCTION CACHE_REF CACHE_MISS CPU_TIME BLOCK‘,READ BLOCK‘,WRITE MEMORY B ELAPSED US
Target Metric

Figure 6: OU-model Accuracy (Output Labels) - Test relative error for each output label averaging across all OUs. OU-models are trained with four ML
algorithms with and without output label normalization: (1) random forest, (2) neural network, (3) Huber regression, and (4) gradient boosting machine.

60— structural information. It outperforms other recent models on pre-
- EEE QPPNet I QPPNet o g . . P
5 BEN VB2 wio Normalization | 5% 9| EEEl MB2wio Normalization dicting query runtime [9, 34, 69], especially when generalizing the
& 4% - 82 Gy | ez trained model to different workloads (e.g., changing dataset sizes).
% %?sf Since NoisePage is an in-memory DBMS with a fused-operator JIT
s i% query engine [46], we remove any disk-oriented features from QPP-
é ;5‘{:’ 31 Net’s inputs and adapt its operator-level tree structure to support
= pipelines. But such adaptation requires QPPNet’s training data to
TIPCHO01G TPCHIG TPCH 10 R TATP SmallBank contain all the operator combinations in the test data pipelines to
(a) OLAP Query Runtime Prediction (b) OLTP Query Runtime Prediction do inference with the proper tree structure. Thus, we can only train
Figure 7: OU-Model Generalization - Query runtime estimations on QPPNet on more complex workloads (e.g., TPC-C) and test on the
different datasets and workloads. same or simpler workloads (e.g., SmallBank).

We evaluate MB2 and QPPNet on the (1) TPC-H OLAP workload
In Fig. 6, we show the predictive accuracy of the OU-models for and (2) TPC-C, TATP, and SmallBank OLTP workloads. To evaluate
each output label, averaging across all OUs. Most labels have an generalizability, we first train a QPPNet model with query metrics
average error of less than 20%, where the highest error is on the from a 1 GB TPC-H dataset and evaluate it on two other dataset
cache miss label. Accurately estimating the cache misses for OUs is sizes (i.e., 0.1 GB, 10 GB). We then train another QPPNet model
challenging because the metrics depend on the real-time contents with data collected from the TPC-C workload (one warehouse) and
of the CPU cache. Despite the higher cache miss error, MB2’s in- evaluate it on the OLTP workloads. For MB2, we use the same

terference model still captures the interference among concurrent OU-models only trained once (Sec. 8.2) for all the workloads.
OUs (see Sec. 8.4) because the interference model extracts informa- The results in Fig. 7a show that QPPNet achieves competitive
tion from all the output labels. The results in Fig. 6 also show the prediction accuracy on the 1 GB TPC-H workload since it is the
OU-model errors without output label normalization optimization same as its training dataset. But QPPNet has larger errors for TPC-H
from Sec. 4.3. From this, we see that normalization has minimal on other scale factors. The authors of QPPNet also observed similar
impact on OU-model accuracy while enabling generalizability. generalization challenges for their models despite it outperform-

ing the baselines [40]. In contrast, MB2 achieves up to 25X better
accuracy than QPPNet and has more stable predictions across all
the workload sizes. We attribute this difference to how (1) MB2 de-

8.3 OU-Model Generalization composes the DBMS into fine-grained OUs and the corresponding
We now evaluate the OU-models’ ability to predict query runtime OU-runner enumerates various input features that cover a range of
and generalize across workloads. Accurate query runtime predic- workloads, and (2) MB2’s output label normalization technique fur-
tion is crucial since many self-driving DBMSs’ optimization ob- ther bolsters OU-models” generalizability. Even though the 10 GB
jectives are focused on reducing query latency [51]. As discussed TPC-H workload has tables up to 60m tuples, which is 60x larger
in Sec. 3, MB2 extracts all OUs from a query plan and sums the than the largest table considered by MB2’s OU-runners, MB2 is still
predicted labels for all OUs as the final prediction. able to generalize with minimal loss of accuracy. MB2 without the

For a state-of-the-art baseline, we compare against the QPP- output normalization has much worse accuracy on large datasets.
Net ML model for query performance prediction [26, 40]. QPPNet Similarly, Fig. 7b shows that while MB2 has 4x higher prediction
uses a tree-structured neural network to capture a query plan’s error compared to QPPNet on TPC-C workload where QPPNet is

1256

Research Data Management Track Paper

=3 Actual
B Interference Model Estimated
0.86

=3 Actual
B nterference Model Estimated

o
w

Average Query Runtime Increment
o
o

Average Query Runtime Increment

16 "~ TPC-HO.1G

8 TPC-H 10G
Number of Concurrent Threads

Dataset Sizes

(a) Varying Concurrent Threads (b) Varying Dataset Sizes

Figure 8: Interference Model Accuracy — Model trained with 1 GB TPC-
H dataset and odd thread numbers generalizes to other scenarios.

trained, MB2 achieves 1.8X and 10X better accuracy when gener-
alizing to TATP and SmallBank workloads. Such generalizability
is essential for the real-world deployment of MB2 for self-driving
DBMSs. Since these OLTP queries access a small number of tuples,
output normalization has little impact on the model accuracy.

8.4 Interference Model Accuracy

We next measure the ability of MB2’s interference model to capture
the impact of resource competition on concurrent OUs. We run the
concurrent runner with the 1 GB TPC-H benchmark since it con-
tains a diverse set of OUs. The concurrent runner enumerates three
parameters: (1) subsets of TPC-H queries, (2) number of concurrent
threads, and (3) query arrival rate. Since the interference model
is not specific to any OU or DBMS configuration, the concurrent
runner does not need to exercise all OU-model inputs or knobs. For
example, with the knob that controls the number of threads, we only
generate training data for odd-numbered settings (ie., 1, 3, 5, ... 19)
and then test on even-numbered settings. The concurrent runner
executes each query setup for 20s. To reduce the evaluation time,
we assume the average query arrival rate per query template per
10s is given to the model. In practice, this interval can be larger [37].
Neural network performs the best for this model given its capacity
to consume the summary statistics of OU-model output labels.

To evaluate the model’s generalizability, the concurrent runner
executes queries only in the DBMS’s interpretive mode (execution
knob discussed in Sec. 4.2), but we test the model under JIT com-
pilation mode. We also evaluate the model with thread numbers
and workload sizes that are different from those used by MB2’s
concurrent runners. To isolate the interference model’s estimation,
we execute the queries in both single-thread and concurrent envi-
ronments and compare the true adjustment factors (the concurrent
interference impact) against the predicted adjustment factors.

Fig. 8 shows the actual and interference model-estimated average
query run times under concurrent environments. The interference
model has less than 20% error in all cases. It generalizes to these
environments because (1) it leverages summary statistics of the
OU-model output labels that are agnostic to specific OUs and (2)
the elapsed time-based input normalization and ratio-based output
labels help the model generalize across various scenarios. We also
observe that generalizing the interference model to small data sizes
result in the highest error (shown under TPC-H 0.1 GB in Fig. 8b)
since the queries are shorter with potentially higher variance in
the interference, especially since the model only has the average
query arrival information in an interval as an input feature.

1257

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

w
o

268 0.40
EZA1 1/100 Sleep Model B Accurate Cardinality
S 2.44 == 1/1000 Sleep Model 50.32 CZ3J Noisy Cardinality
i N No Sleep Model &
- 0.25 026
Q 1 (]
Z18 2 0.241
s g 020 0.20 0191
4 o
o 1.2 ©0.16
& &
13 o
Z 0.6+ Z0.08
0.0 0.00-
1/100 Sleep 1/1000 Sleep No Sleep TPC-H0.1G TPC-H 1G TPC-H 10G

Join Hash Table Build Sleep Frequency Dataset Sizes

(a) DBMS Updates (TPC-H 1 G)

(b) Noisy Cardinality Estimation

Figure 9: Model Adaptation and Robustness — Changes in MB2’s model
accuracy under DBMS updates and noisy cardinality estimation.

8.5 Model Adaptation and Robustness

We now evaluate MB2’s behavior models’ adaptivity under DBMS
software updates and robustness against DBMS estimation errors.
For the former, we use a case study where we simulate a series
of incremental improvements to the join hash table algorithm. To
control the amount of change, we inject sleeps (1us) during the
hash table creation with different frequencies: no sleep (fastest),
sleep once with every 1000 inserted tuples, and sleep once with
every 100 inserted tuples (slowest). This change does not affect
the behavior of other OUs, such as sequential scans or sorts. Thus,
without modifying any other OU-models, we only rerun MB2’s
OU-runner for hash join and retrain the corresponding OU-model,
which takes less than 23 minutes. This is 24x faster than rerunning
MB2’s entire training process. Fig. 9a shows the prediction errors
for the TPC-H 1 GB workload with the old and updated models.
The new models only updated with the join-hash-table-build OU
have significantly better accuracy compared to the old models prior
to the system update. This demonstrates MB2’s ability to quickly
adapt its models in response to updates. QPPNet, on the other hand,
needs full data remaking and model retraining.

Since the OU-models in NoisePage’s execution engine use car-
dinality estimates as input features, we also evaluate the models’
sensitivity to noisy estimations. We introduce a Gaussian white
noise [14] with 0 mean and 30% variance of the actual value to the
tuple number and cardinality features for OUs impacted by cardi-
nality estimation (e.g., joins). Fig. 9b shows the model’s predictive
accuracy under accurate and noisy cardinalities with different TPC-
H dataset sizes. The models have minimal accuracy loss (< 2%) due
to the noise because (1) they are insensitive to moderate noise in the
features, and (2) there are many TPC-H queries with high selectivity
that reduces the impact of wrong cardinality estimation when exe-
cuting joins or sorts. Improving the model accuracy by leveraging
learned cardinality estimation is left as future work [24, 73].

8.6 Hardware Context

Since MB2 generates models offline, their predictions may be inac-
curate when the hardware used for training data generation and
production differs. Thus, we evaluate MB2’s ability to extend the
OU-model features to include the hardware context and generalize
the models across hardware. We also use a case study where we
change the CPU frequency through its power governor. We append
the frequency to the end of all the OU-models’ input features. We
compare the OU-models trained with either only the CPU’s base

Research Data Management Track Paper

B Train with 2.2 GHz I Train with 1.2, 1.8, 2.2, 2.6, and 3.1 GHz

10

o
n

Average Relative Error
Normalized Average Absolute
Error per Query Template

- 0
1.6 GHz 1.6 GHz

20GHz 2.4GHz
CPU Frequency

(a) TPC-H 1 G Query Runtime Prediction

2.8 GHz 20GHz 24 GHz

CPU Frequency
(b) TPC-C Query Runtime Prediction

2.8 GHz

Figure 10: Hardware Context - Extend MB2’s OU-models’ input features
to include the CPU frequency to generalize to different CPU frequencies.

frequency (2.2 GHz) or a range of frequencies (1.2-3.1 GHz), and
test the model generalization on a different set of frequencies.

Fig. 10 shows that extending the OU-model with hardware con-
text improves the prediction in most cases since the context captures
the hardware performance differences. A special case where includ-
ing the hardware context performs notably worse is for the TPC-C
workload under 2.0 GHz CPU frequency (Fig. 10b). This is because
the models generally over-predict the TPC-C query runtime for a
given frequency, and slightly slowing the CPU frequency (2.2 GHz
to 2.0 GHz) falsely improves the prediction of the model trained
under 2.2 GHz. The results show promise to extend MB2’s models
with hardware context to generalize across hardware.

8.7 End-to-End Self-Driving Execution

Lastly, we demonstrate MB2’s behavior models’ application for a
self-driving DBMS’s planning components and show how it enables
interpretation of its decision-making process. We assume that the
DBMS has (1) workload forecasting information of average query
arrival rate per query template in each 10s forecasting interval, simi-
lar to Sec. 8.4, and (2) an “oracle” planner that makes decisions using
predictions from behavior models. We assume a perfect workload
forecast to isolate MB2’s prediction error.

We simulate a daily transactional-analytical workload cycle by al-
ternating the execution of TPC-C and TPC-H workloads on NoiseP-
age. We use the TPC-C workload with 20 warehouses and adjust
the number of customers per district to 50,000 to make the choice
of indexes more important. For TPC-H, we use a dataset size of
1 GB. We execute both workloads with 10 concurrent threads under
the maximum supported query arrival rate.

After the DBMS loads the dataset, we execute the workload in
NoisePage using its interpretive mode, which is a sub-optimal knob
configuration for long-running TPC-H queries. We also remove a
secondary index on the CUSTOMER table for the (C_W_ID, C_D_ID,
C_LAST) columns, which inhibits the performance of TPC-C. We
then let the DBMS choose actions based on the forecasted workload
and the behavior model estimations from MB2.

Fig. 11a shows the actual and estimated average query runtime
per 3s interval across the entire evaluation session. We normalized
the query runtime against the average runtime under the default
configuration to keep metrics within the same scale. The workload
starts as TPC-C and switches to TPC-H after 30s. During the first
55s, the DBMS does not plan any actions. Then it plans to change the
execution mode from interpretive to compiled with MB2 estimating

1258

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

o TPCH Start Build Index
£ TPC-C Start with 8 Threads
5151 Index Built
o Change Execution and
> Mode Knob TPC-C Start
)
G 1.0
2
<
B
8057 ! Index Built
T Actual Query Runtime (Estimated)
5 —— Estimated Query Runtime
200 :
’ 20 40 60 80 100 120
Time (s)

(a) Knob Changing and Index Creation (Eight Create Index Threads)

°
@

»

—e— Actual Query on CUSTOMER.c last
Estimated Query on CUSTOMER:.c last

—<— Actual Index Build

—=— Estimated Index Build

CPU Utilization
(Relative to the DBMS)
o

o
Ld

o
=)

60 80 100 1

Time (s)
(b) CPU Utilization Prediction (Eight Create Index Threads)

20 40

=}

TPC-H Start Change Execution

Mode Knob

TPC-C Start

G

Index Built
and
TPC-C Start

Build Index
with 4 Threads

2

-

100 1

°
il

Index Built
(Estimated)

Actual Query Runtime

—4— Estimated Query Runtime

Normalized Avg. Query Runtime

o
=]

20 40 60

Time (s)
(c) Knob Changing and Index Creation (Four Create Index Threads)

80

Figure 11: End-to-End Self-Driving Execution — An example scenario
where NoisePage uses MB2’s OU-models to predict the effects of two actions
in a changing workload. The first action is to change the DBMS’s execution
mode. The DBMS then builds an index with either eight or four threads.

a 38% average query runtime reduction. The average query runtime
drops by 30% after updating this knob, which reflects the models’
estimation. After 72s, the DBMS builds the above secondary index
on CUSTOMER with eight threads before the next time that the TPC-
C workload starts. Both the estimated and the actual query runtime
increase by more than 25% because of resource competition; and the
contention lasts for 27s during the index build with the estimated
build time being 26s. After 99s the workload switches back to TPC-
C with 73% (60% estimated) faster average query runtime because of
the secondary index built by the self-driving DBMS 3. This example
demonstrates that MB2’s behavior models accurately estimate the
cost, impact, and benefit of actions for self-driving DBMSs ahead of
time given the workload forecasting, which is a foundational step
towards building a self-driving DBMS [50].

We next show how MB2’s behavior models help explain the self-
driving DBMS’s decision. Fig. 11b shows the actual and estimated
CPU utilization for the queries associated with the secondary index
on the CUSTOMER and the index build action. Both the actual and
estimated CPU utilization for the queries on CUSTOMER drop signif-
icantly as the TPC-C workload starts for the second time, which is
the main reason for the average query runtime reduction. Similarly,

3The DBMS does not change the execution mode for TPC-C to isolate the action effect.

Research Data Management Track Paper

the high CPU utilization of index creation, which MB2 successfully
predicts, is also the main reason for the query runtime increment
between 72s to 99s. MB2’s decomposed modeling of each OU is the
crucial feature that enables such explainability.

Lastly, we demonstrate MB2’s estimations under an alternative
action plan of the self-driving DBMS in Fig. 11c. The DBMS plans
the same actions under the same setup as in Fig. 11a except to build
the index earlier (at 58s) with four threads to reduce the impact on
the running workload. MB2 accurately estimates the smaller query
runtime increment along with the workload being impacted for
longer. Such a trade-off between action time and workload impact
is essential information for a self-driving DBMS to plan for target
objectives (e.g., SLAs). We also observe that MB2 underestimates the
index build time under this scenario by 27% due to a combination
of OU- and interference-model errors.

9 RELATED WORK

We broadly classify the previous work in DBMS modeling into the
following categories: (1) ML models and (2) analytical models. Re-
lated to this are other methods for handling concurrent workloads.
We also discuss other efforts on building automated DBMSs and
reinforcement learning-based approaches.

Machine Learning Models: Most ML-based behavior models use
query plan information as input features for estimating system
performance. Techniques range from Ganapathi et al.’s subspace
projections [20] to Gupta et al.’s PQR hierarchical classification
of queries into latency buckets [23]. Some methods mix plan- and
operator- level models to balance between accuracy and generality,
compensating further for generalizability issues by adjusting pre-
built offline models at runtime [9] or by building additional scaling
functions [34]. QPPNet [40] predicts the latency of query execution
plans by modeling the plan tree with deep neural networks.

ML-based models still require developers to adjust features, recol-
lect data, and retrain them to generalize to new environments. Most
frameworks also train models on a small number of synthetic bench-
marks and thus have high prediction errors on different workloads.
Furthermore, these ML-based models do not support transactional
workloads and ignore the effects of internal DBMS operations. This
is in contrast to MB2 that builds a holistic model for the entire
system that accounts for internal operations, and handles software
updates with limited retraining over SQL.

Analytical Models: Researchers have also built analytical models
for DBMS components. DBSeer builds offline models that predict
the resource bottleneck and maximum throughput of concurrent
OLTP workloads, given fixed transaction types and fixed DBMS
configuration and physical design [42]. Wu et al. tunes the opti-
mizer’s cost models for better query execution time predictions
through offline profiling and online refinement of cardinality esti-
mates [69, 70]. Narasayya and Syamala provides DBAs with index
defragmentation suggestions by modeling workload I/O costs [44].

Concurrent Queries: Due to the difficulty of modeling concurrent
operations as described in Sec. 2.2, the aforementioned techniques
largely focus on performance prediction for one query at a time.
For concurrent OLAP workloads, researchers have built sampling-
based statistical models that are fixed for a known set of queries.

1259

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

The predictions have seen applications to scheduling [8], query
execution time estimation [16], and overall analytical workload
throughput prediction [17]. Wu et al. support dynamic query sets
by modeling CPU, I/O interactions, and buffer pool hit rates with
queuing networks and Markov chains [68]. More recently, GPredic-
tor predicts concurrent query performance by using a deep learning
prediction network on a graph embedding of query features [72].
But it requires the exact interleaving of queries to be known, which
is arguably impossible to forecast and thus does not apply to MB2’s
context. All of these methods also require updating their models
whenever the DBMS’s software changes.

Autonomous DBMSs: There is a long history of research on
automating DBMS deployments [51]. Weikum et al. provided a
summary of existing self-tuning DBMS techniques in the early
2000s [65]. These typically involved queuing theory applied to
models with different server types, such as applications, back-end
databases, and middleware components [21]. Microsoft Azure SQL
Database provides an auto-indexing [12] sub-system that automati-
cally recommends, implements, and validates indexes. Oracle offers
an autonomous DBaaS that runs their previous tuning tools in a
managed environment [5], which requires expensive testing of can-
didate changes (e.g., indexes) on replicas without behavior models.

Another target area on using ML for automated DBMSs has been
on knob configuration tuning. iTuned [15] and OtterTune [64] use
Gaussian Process Regression to model how a DBMS will perform
with different knob settings. CDBTune [76] and QTune [33] use
actor-critic reinforcement learning to train knob recommendation
policies. ReIM tunes memory allocation knobs for analytical systems
using Guided Bayesian Optimization [31].

Reinforcement Learning (RL) for DBMSs: Recent work ex-
plores using RL [55, 59] to enhance individual DBMS components [39,
48, 75], which are independent of MB2’s goal to build behavior
models for self-driving DBMSs that automate all the administrative
tasks. We use a modularized design (Sec. 2) for self-driving DBMSs,
which has a different methodology than RL-based approaches. We
think this approach provides better data efficiency, debuggability,
and explainability, which are essential for the system’s practical
application. All major organizations working on self-driving cars
also use a modularized approach instead of end-to-end RL [36].

10 CONCLUSION

Behavior modeling is the foundation for building a self-driving
DBMS. We propose a modeling framework ModelBot2 (MB2) that
decomposes the DBMS into operating units (OUs) and builds models
for each OU with runners that exercise OUs’ behavior. Our evalua-
tion shows that MB2’s behavior models provide the essential cost,
impact, and benefit estimations for actions of self-driving DBMSs
and generalize to various workloads and environments.

ACKNOWLEDGEMENTS

This work was supported (in part) by the National Science Founda-
tion (IIS-1846158, SPX-1822933), Google Research Grants, and the
Alfred P. Sloan Research Fellowship program. TKBM.

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1846158
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1822933
https://sloan.org/grant-detail/8638

Research Data Management Track Paper

REFERENCES

(1]
(2]
(3]

[10]

[11]
[12]

[13

[14]

[15

[16]

[17]

[18]

[19]

[20

[21

[22]

[23

[24

[25]
[26]
[27

[28]

[29]

[n.d.]. NoisePage. https://noise.page.

2020. BPF Compiler Collection (BCC). https://github.com/iovisor/bcc/.

2020. Google Benchmark Support Library. https://github.com/google/
benchmark.

2020. libpgxx — Official C++ Client API for PostgreSQL. http://pqxx.org/
development/libpgxx/.

2020. Oracle Self-Driving Database.
autonomous-database/index.html.

2020. Processor Counter Monitor (PCM). https://github.com/opecm/pem/.

2020. scikit-learn: Machine Learning in Python. https://scikit-learn.org/stable/.
Mumtaz Ahmad, Songyun Duan, Ashraf Aboulnaga, and Shivnath Babu. 2011.
Predicting completion times of batch query workloads using interaction-aware
models and simulation. In Proceedings of the 14th International Conference on
Extending Database Technology. ACM, 449-460.

Mert Akdere, Ugur Cetintemel, Matteo Riondato, Eli Upfal, and Stanley B Zdonik.
2012. Learning-based query performance modeling and prediction. In Data
Engineering (ICDE), 2012 IEEE 28th International Conference on. IEEE, 390-401.
Mohammad Alomari, Michael Cahill, Alan Fekete, and Uwe Rohm. 2008. The
Cost of Serializability on Platforms That Use Snapshot Isolation. In Proceedings of
the 2008 IEEE 24th International Conference on Data Engineering (ICDE "08). IEEE
Computer Society, 576-585.

James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. The Journal of Machine Learning Research 13, 1 (2012), 281-305.
Sudipto Das, Miroslav Grbic, Igor Ilic, Isidora Jovandic, Andrija Jovanovic, Vivek
Narasayya, Miodrag Radulovic, Maja Stikic, Gaoxiang Xu, and Surajit Chaudhuri.
2019. Automatically Indexing Millions of Databases in Microsoft Azure SQL
Database. In Proceedings of the 2017 ACM International Conference on Management
of Data. ACM, 1-14.

Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-
Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Relational
Databases. Proceedings of the VLDB Endowment 7, 4 (2013), 277-288.

Yadolah Dodge and Daniel Commenges. 2006. The Oxford dictionary of statistical
terms. Oxford University Press on Demand.

Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. 2009. Tuning database
configuration parameters with iTuned. VLDB 2 (2009), 1246-1257. Issue 1.
Jennie Duggan, Ugur Cetintemel, Olga Papaemmanouil, and Eli Upfal. 2011.
Performance prediction for concurrent database workloads. In Proceedings of
the 2011 ACM SIGMOD International Conference on Management of data. ACM,
337-348.

Jennie Duggan, Yun Chi, Hakan Hacigumus, Shenghuo Zhu, and Ugur Cetintemel.
2013. Packing light: Portable workload performance prediction for the cloud. In
Data Engineering Workshops (ICDEW), 2013 IEEE 29th International Conference on.
IEEE, 258-265.

Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek Narasayya,
and Surajit Chaudhuri. 2019. Selectivity estimation for range predicates using
lightweight models. Proceedings of the VLDB Endowment 12, 9 (2019), 1044-1057.
Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of statistics (2001), 1189-1232.

Archana Ganapathi, Harumi Kuno, Umeshwar Dayal, Janet L Wiener, Armando
Fox, Michael Jordan, and David Patterson. 2009. Predicting multiple metrics for
queries: Better decisions enabled by machine learning. In Data Engineering, 2009.
ICDE’09. IEEE 25th International Conference on. IEEE, 592-603.

Michael Gillmann, Gerhard Weikum, and Wolfgang Wonner. 2002. Workflow
management with service quality guarantees. In Proceedings of the 2002 ACM
SIGMOD international conference on Management of data. ACM, 228-239.
Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter, and
Lalana Kagal. 2018. Explaining explanations: An overview of interpretability of
machine learning. In 2018 IEEE 5th International Conference on data science and
advanced analytics (DSAA). IEEE, 80-89.

Chetan Gupta, Abhay Mehta, and Umeshwar Dayal. 2008. PQR: Predicting
query execution times for autonomous workload management. In Autonomic
Computing, 2008. ICAC’08. International Conference on. IEEE, 13-22.

Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kristian
Kersting, and Carsten Binnig. 2020. DeepDB: learn from data, not from queries!
Proceedings of the VLDB Endowment 13, 7 (2020), 992-1005.

Peter] Huber. 2004. Robust statistics. Vol. 523. John Wiley & Sons.

Jie Jao. [n.d.]. QPPNet in PyTorch. https://github.com/rabbit721/QPPNet.
Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and
Alfons Kemper. 2019. Learned Cardinalities: Estimating Correlated Joins with
Deep Learning. In CIDR 2019, 9th Biennial Conference on Innovative Data Systems
Research, Asilomar, CA, USA, January 13-16, 2019, Online Proceedings. http:
//cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf

Ron Kohavi et al. 1995. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In [jcai, Vol. 14. Montreal, Canada, 1137-1145.
André Kohn, Viktor Leis, and Thomas Neumann. 2018. Adaptive Execution of
Compiled Queries. In ICDE. 197-208.

https://www.oracle.com/database/

1260

(30]

[31

(32]

[33

(35]

[36

(37]

(39]

[40]

[41

[46]

[47]

[48

[49]

(50]

[51

[52

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Max Kuhn, Kjell Johnson, et al. 2013. Applied predictive modeling. Vol. 26.
Springer.

Mayuresh Kunjir and Shivnath Babu. 2020. Black or White? How to Develop an
AutoTuner for Memory-based Analytics. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. 1667-1683.

Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How good are query optimizers, really? Proceedings of
the VLDB Endowment 9, 3 (2015), 204-215.

Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. Qtune: A query-aware
database tuning system with deep reinforcement learning. Proceedings of the
VLDB Endowment 12, 12, 2118-2130.

Jiexing Li, Arnd Christian Konig, Vivek Narasayya, and Surajit Chaudhuri. 2012.
Robust estimation of resource consumption for sql queries using statistical tech-
niques. Proceedings of the VLDB Endowment 5, 11 (2012), 1555-1566.

Andy Liaw, Matthew Wiener, et al. 2002. Classification and regression by ran-
domForest. R news 2, 3 (2002), 18-22.

Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E Haque, Lingjia
Tang, and Jason Mars. 2018. The architectural implications of autonomous driving:
Constraints and acceleration. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating
Systems. 751-766.

Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo, and
Geoffrey J Gordon. 2018. Query-based Workload Forecasting for Self-Driving
Database Management Systems. In Proceedings of the 2018 ACM International
Conference on Management of Data (SIGMOD ’18).

Lin Ma, Bailu Ding, Sudipto Das, and Adith Swaminathan. 2020. Active Learning
for ML Enhanced Database Systems. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. 175-191.

Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. Proceedings of the VLDB Endowment 12, 11 (2019).

Ryan Marcus and Olga Papaemmanouil. 2019. Plan-Structured Deep Neural
Network Models for Query Performance Prediction. Proceedings of the VLDB
Endowment 12, 11 (2019), 1733-1746.

Prashanth Menon and Andrew Pavlo Amadou Ngom, Todd C. Mowry. 2020.
Permutable Compiled Queries: Dynamically Adapting Compiled Queries without
Recompiling. Under Submission (2020).

Barzan Mozafari, Carlo Curino, Alekh Jindal, and Samuel Madden. 2013. Perfor-
mance and resource modeling in highly-concurrent OLTP workloads. In Proceed-
ings of the 2013 International Conference on Management of data. ACM, 301-312.
Kevin P Murphy. 2012. Machine learning: a probabilistic perspective. MIT press.
Vivek Narasayya and Manoj Syamala. 2010. Workload driven index defragmen-
tation. In Data Engineering (ICDE), 2010 IEEE 26th International Conference on.
IEEE, 497-508.

Dushyanth Narayanan, Eno Thereska, and Anastassia Ailamaki. 2005. Contin-
uous resource monitoring for self-predicting DBMS. In 13th IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommuni-
cation Systems. IEEE, 239-248.

Thomas Neumann. 2011. Efficiently compiling efficient query plans for modern
hardware. Proceedings of the VLDB Endowment 4, 9 (2011), 539-550.

Simo Neuvonen, Antoni Wolski, Markku Manner, and Vilho Raatikka. 2011.
Telecommunication Application Transaction Processing (TATP) Benchmark De-
scription. http://tatpbenchmark.sourceforge.net/.

Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S Sathiya Keerthi.
2018. Learning State Representations for Query Optimization with Deep Rein-
forcement Learning. In Proceedings of the Second Workshop on Data Management
for End-To-End Machine Learning. ACM, 4.

Brian Paden, Michal Cép, Sze Zheng Yong, Dmitry Yershov, and Emilio Frazzoli.
2016. A survey of motion planning and control techniques for self-driving urban
vehicles. IEEE Transactions on intelligent vehicles 1, 1 (2016), 33-55.

Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd Mowry, Matthew Perron, Ian Quah, Siddharth San-
turkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Zigi Wang, Yingjun Wu,
Ran Xian, and Tieying Zhang. 2017. Self-Driving Database Management Systems.
In CIDR 2017, Conference on Innovative Data Systems Research.

Andrew Pavlo, Matthew Butrovich, Ananya Joshi, Lin Ma, Prashanth Menon,
Dana Van Aken, Lisa Lee, and Ruslan Salakhutdinov. 2019. External vs. Internal:
An Essay on Machine Learning Agents for Autonomous Database Management
Systems. Data Engineering (2019), 31.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and
Christopher Ré. 2017. Snorkel: Rapid training data creation with weak supervision.
In Proceedings of the VLDB Endowment. International Conference on Very Large
Data Bases, Vol. 11. NIH Public Access, 269.

Frank Rosenblatt. 1958. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review 65, 6 (1958), 386.
George AF Seber and Alan J Lee. 2012. Linear regression analysis. Vol. 329. John
Wiley & Sons.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,

https://noise.page
https://github.com/iovisor/bcc/
https://github.com/google/benchmark
https://github.com/google/benchmark
http://pqxx.org/development/libpqxx/
http://pqxx.org/development/libpqxx/
https://www.oracle.com/database/autonomous-database/index.html
https://www.oracle.com/database/autonomous-database/index.html
https://github.com/opcm/pcm/
https://scikit-learn.org/stable/
https://github.com/rabbit721/QPPNet
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
http://tatpbenchmark.sourceforge.net/

Research Data Management Track Paper

et al. 2017. Mastering the game of go without human knowledge. nature 550,
7676 (2017), 354-359.

[56] Alex J Smola and Bernhard Schélkopf. 2004. A tutorial on support vector regres-
sion. Statistics and computing 14, 3 (2004), 199-222.

[57] Stephen M Stigler. 1973. The asymptotic distribution of the trimmed mean. The
Annals of Statistics (1973), 472-477.

[58] Ji Sun and Guoliang Li. 2019. An end-to-end learning-based cost estimator.
Proceedings of the VLDB Endowment 13, 3 (2019), 307-319.

[59] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[60] The Transaction Processing Council. 2010. TPC-C Benchmark (Revision 5.11.0).
http://www.tpc.org/tpee/.

[61] The Transaction Processing Council. 2013. TPC-H Benchmark (Revision 2.16.0).

http://www.tpc.org/tpch/.

Sergios Theodoridis and Konstantinos Koutroumbas. 2003. Pattern recognition.

Elsevier.

[63] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-scale Machine
Learning. In Proceedings of the 2017 ACM International Conference on Management
of Data (SIGMOD °17). 1009-1024.

[64] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-scale Machine
Learning. In Proceedings of the 2017 ACM International Conference on Management
of Data (SIGMOD °17). 1009-1024.

[65] Gerhard Weikum, Axel Moenkeberg, Christof Hasse, and Peter Zabback. 2002.

Self-tuning database technology and information services: from wishful thinking

to viable engineering. In VLDB 02: Proceedings of the 28th International Conference

on Very Large Databases. Elsevier, 20-31.

Lucas Woltmann, Claudio Hartmann, Maik Thiele, Dirk Habich, and Wolfgang

Lehner. 2019. Cardinality estimation with local deep learning models. In Pro-

ceedings of the Second International Workshop on Exploiting Artificial Intelligence

Techniques for Data Management. 1-8.

[62

(66

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi
Qiao, and Sriram Rao. 2018. Towards a learning optimizer for shared clouds.
Proceedings of the VLDB Endowment 12, 3 (2018), 210-222.

Wentao Wu, Yun Chi, Hakan Hacigiimiis, and Jeffrey F Naughton. 2013. Towards
predicting query execution time for concurrent and dynamic database workloads.
Proceedings of the VLDB Endowment 6, 10 (2013), 925-936.

Wentao Wu, Yun Chi, Shenghuo Zhu, Junichi Tatemura, Hakan Hacigiimiis, and
Jeffrey F Naughton. 2013. Predicting query execution time: Are optimizer cost
models really unusable?. In Data Engineering (ICDE), 2013 IEEE 29th International
Conference on. IEEE, 1081-1092.

Wentao Wu, Xi Wu, Hakan Hacigiimiis, and Jeffrey F Naughton. 2014. Uncertainty
aware query execution time prediction. Proceedings of the VLDB Endowment 7,
14 (2014), 1857-1868.

Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017. An em-
pirical evaluation of in-memory multi-version concurrency control. Proceedings
of the VLDB Endowment 10, 7 (2017), 781-792.

Guoliang Li Jianhua Feng Xuanhe Zhou, Ji Sun. 2020. Query Performance Pre-
diction for Concurrent Queries using Graph Embedding. In VLDB 2020.
Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi Chen,
Pieter Abbeel, Joseph M Hellerstein, Sanjay Krishnan, and Ion Stoica. 2019. Deep
unsupervised cardinality estimation. Proceedings of the VLDB Endowment 13, 3
(2019), 279-292.

Dong Young Yoon, Ning Niu, and Barzan Mozafari. 2016. Dbsherlock: A per-
formance diagnostic tool for transactional databases. In Proceedings of the 2016
International Conference on Management of Data. ACM, 1599-1614.

Xiang Yu, Guoliang Li, Chengliang Chai, and Nan Tang. 2020. Reinforcement
learning with tree-Istm for join order selection. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). IEEE, 1297-1308.

[76] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,

Yangtao Wang, Tianheng Cheng, Li Liu, et al. 2019. An end-to-end automatic
cloud database tuning system using deep reinforcement learning. In Proceedings of
the 2019 International Conference on Management of Data (SIGMOD ’19). 415-432.

http://www.tpc.org/tpcc/
http://www.tpc.org/tpch/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Behavior Modeling
	2.2 Challenges

	3 Overview
	4 OU-models
	4.1 Principles
	4.2 Input Features
	4.3 Output Labels

	5 Interference Model
	5.1 Input Features
	5.2 Output Labels

	6 Data Generation and Training
	6.1 Data Collection Infrastructure
	6.2 OU-Runners
	6.3 Concurrent Runners
	6.4 Model Training

	7 Handling Software Updates
	8 Experimental Evaluation
	8.1 Data Collection and Training
	8.2 OU-Model Accuracy
	8.3 OU-Model Generalization
	8.4 Interference Model Accuracy
	8.5 Model Adaptation and Robustness
	8.6 Hardware Context
	8.7 End-to-End Self-Driving Execution

	9 Related Work
	10 Conclusion
	References

