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ARTICLE INFO ABSTRACT

Keywords: Southern Great Plains (SGP) of the United States, comprising the states Kansas, Oklahoma, and Texas, spans
Forest diverse climatic regions. In recent decades, woody plant continues to expand and form forest (above 2 m in
Evergreen forest height) across the SGP. However, our knowledge of the forest amount and distribution in this region is very
‘S/\(I)?Egzrﬂlgi:tngﬁfs}lmm limited. This study aims to map forest, especially evergreen forest (above 2 m in height) in the SGP for the time
ALOS-2 PALSAR-2 period of 2015-2017. Annual mosaic data of HH and HV polarization backscattering (25 m) from Phased Arrayed
Landsat L-band Synthetic Aperture Radar-2 (PALSAR-2) aboard Advanced Land Observing Satellite-2 (ALOS-2), along
Google Earth Engine with their difference (HH-HV) and ratio (HH/HV) were utilized. With the four bands (HH, HV, difference, ratio)
of 2017, decision rules of forest were developed based on 30 randomly selected forest plots (as of 2017) across
the study area. With the decision rules, a PALSAR-2 based forest map was created for each year from 2015 to
2017. Then an annual maximum normalized difference vegetation index (NDVI) threshold of 0.5, derived from
Landsat 8 data of 2017 and the 30 forest plots, was used to filter potential commission error of rough surface and
building in each PALSAR-2 based forest map. After that, a forest map circa 2016 was generated, in which each
forest pixel was identified as such at least twice during 2015 and 2017. Lastly, a threshold of seasonal NDVI
change (0.3) was derived to extract evergreen forest out of the forest map circa 2016. Accuracy assessment for
the result forest map suggests a user’s accuracy of 99.2% and a producer’s accuracy of 88.7% for forest. Accuracy
assessment for the evergreen forest map suggests a user’s accuracy of 97.3% and a producer’s accuracy of 90.5%
for evergreen forest. The result forest map, especially the evergreen forest map, paves the way for follow-up
studies on forest resource and woody plant encroachment in the SGP.

1. Introduction herbaceous species loss (Alofs and Fowler 2010, 2013). In addition, the

rapid expansion of junipers across Oklahoma and Kansas in recent de-

Forest cover and its distribution are very important indicators of
biodiversity, climate change, carbon and water cycles at regional to
global scale (Foley et al. 2005; Hansen et al., 2016). As for the southern
Great Plains (SGP) of the United States, which comprises the three states
Kansas, Oklahoma, and Texas, forest area has been expanding mainly
due to the long-term woody plant encroachment (Barger et al. 2011;
Wine and Zou 2012). Juniper (Juniperus), oak (Quercus), and mesquite
(Prosopis glandulosa) are the primary encroaching species in the SGP.
The increase of mesquite and oak trees across Texas and the concomitant
formation of closed-canopy largely lowered biodiversity (Ansley et al.
2001; Diamond and True 2008). The encroachment of junipers in the
Edwards Plateau of central Texas caused habitat fragmentation and
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cades severely threatened the present prairies in terms of forage and
livestock productivity (Knapp et al. 2008; Twidwell et al. 2016).

The above recognized encroachment and consequence further un-
derscore the necessity of forest map for the SGP, not only for forest
resource inventarisation but also for pertinent encroachment manage-
ment strategy (Bucini and Hanan 2007). It has to be noted that much of
the forest in the SGP does not reach 5 m high (Scholtz et al. 2018), a
criterion adopted by the widely applied forest definition of the United
Nations Food and Agriculture Organization (FAO) (FAO Statistics 2010).
One reason is because many of the encroaching trees in the SGP are at
early life stages (e.g. juvenile) (Hughes et al. 2006). The other reason is
that the stature of a lot of trees, especially in southwest SGP, is limited by
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the climate, fire, soil type and tree species (Simpson 1999; Scholtz et al.
2018). As such, this study adopts the Australian forest definition of an
area with tree height above 2 m and tree crown cover over 20% (Hnatiuk
et al. 2003). However, the existing forest products covering the SGP such
as Landsat-based global forest map (Hansen et al. 2013) and radar-based
global forest/non-forest maps (Shimada et al. 2014) are targeted at trees
above 5 m in height, which makes them unsuitable to track forest area in
the SGP. Therefore, the first objective of this study is to develop a forest
map for the SGP, following the Australian forest definition.

Different methods have been developed with optical remote sensing
data for local- to regional-scale woody plant mapping, which mainly
take advantage of the phenological discrepancy between woody plant
and herbaceous vegetation (Yang 2019). Brandt et al. (2016) mapped
woody plants by identifying their photosynthetic activity through sea-
sonal metrics of fraction of absorbed photosynthetically active radiation
(FAPAR) in the Sahelian drylands of Africa. Higginbottom et al. (2018)
proved that the Landsat metrics of dry season are most useful in mapping
woody cover in semi-arid savannahs of South Africa. The phenology of
woody plants in these study areas is relatively uniform and distinctive
from that of herbaceous vegetation. This prerequisite, however, does not
hold on in the SGP, where phenophases of trees vary considerably be-
tween evergreen and deciduous species, and differ a lot from the
southern-most subtropical climate to northern-most mild temperate
climate (Wilcox et al. 2018). Other than that, optical remote sensing
data of medium to coarse resolution has very limited capability in
capturing sparse tree cover (Hansen et al. 2005; Montesano et al. 2009;
Yang and Crews 2019).

The increasing availability of synthetic aperture radar (SAR) data
provides us an alternative means to map forest in the SGP (Woodhouse
2017; Qin et al. 2021). While microwaves from SAR sensors can pene-
trate cloud and interact with different parts of trees (e.g. leaves,
branches, trunks) according to their wavelength, polarization and inci-
dence angle, these emitted signals are much less responsive to non-
woody vegetation (Lucas et al. 2004; Urbazaev et al. 2015). The recor-
ded SAR backscatter intensity, mainly determined by tree canopy
structure and moisture, can therefore be utilized to identify forest out of
other land cover types (Raney, 1998). Among various SAR data, those of
longer wavelength such as L- and P-band (>15 cm) have greater pene-
tration into trees and more interaction with branches and trunks, and are
consequently preferred for woody plant structure modeling (e.g. woody
cover, aboveground biomass) (Lucas et al. 2004; Naidoo et al. 2016; Liu
et al. 2021).

The L-band of Advanced Land Observation Satellites’ Phased Array
L-band Synthetic Aperture Radar-1/2 (ALOS-1/2 PALSAR-1/2) is
featured by a wavelength of 23.6 cm and four possible polarizations
(HH, HV, VH, VV) (Rosenqvist et al. 2007). It has been very popular in
large scale forest mapping (trees taller than 5 m). Dong et al. (2012)
generated a forest map for Mainland Southeast Asia with three layers
(HV, HH-HV, HH/HV) derived from PALSAR-1 data of 2009. Shimada
et al. (2014) created annual global forest maps of 2007 to 2010, with
PALSAR-1 data and region-specific thresholds of HV gamma-naught
(yo). Reiche et al. (2018) incorporated PALSAR-2 data in forest defor-
estation monitoring in tropical area. On the other side, the PALSAR data
has been successfully applied in mapping woody plant shorter than 5 m
in savannas. Urbazaev et al. (2015) demonstrated strong sensitivity of
PALSAR-1 L-band signal to woody cover in southern African savannas.
Naidoo et al. (2016) proved the advantage of PALSAR-1 L-band over
Landsat 5 data in retrieving savanna woody cover. As such, the PALSAR
data shows promising capability in identifying trees both above and
below 5 m in height. Nevertheless, it has been rarely used to map trees
both taller and shorter than 5 m simultaneously. Given so, this study will
explore its potential to capture the forest above 2 m in height in the SGP.

The second objective of this study is to extract evergreen forest out of
the result forest map. The consideration is double fold. Firstly, evergreen
forest differs a lot from other forests in terms of carbon storage, water
use efficiency, and climate adaptability (Wu et al. 2015). And evergreen
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Fig. 1. The study area of southern Great Plains of the United States, displayed
with false color composite (HH, HV, HH-HV) of 2016 ALOS-2 PALSAR-2 data.
Forest tends to be greenish in the composite image. The red lines are state

boundaries of Kansas, Oklahoma and Texas.

forest (e.g. junipers, pine trees) is a crucial component in the SGP (Lyons
et al. 2009; Wang et al. 2018; Yang and Crews 2020). Secondly, ever-
green forest (e.g. junipers) has been expanding rapidly across the SGP,
especially northward in recent decades (Twidwell et al. 2016). An ac-
curate evergreen forest map can help disentangle the complex
encroachment pattern.

Various approaches have been developed to map evergreen forest.
Xiao et al. (2006, 2009) compared the intra-annual profile of land sur-
face water index (LSWI) and enhanced vegetation index (EVI) of
different land cover types. It was found that the LSWI of evergreen forest
stays above zero throughout the whole year, while EVI of evergreen
forest is always greater than 0.2 (Wu et al. 2009). This criterion has been
widely applied in generating evergreen forest map (Sheldon et al. 2012;
Qin et al. 2019). Wang et al. (2017, 2018) analyzed the inter-annual
profile of EVI, LSWI, and NDVI for evergreen forest (junipers) and
non-evergreen forests (oak, bottomland hardwood). It was concluded
that mean NDVI value of winter season (December, January, and
February) can best separate the evergreen forest from non-evergreen
forests. In this study, we will develop and test a new approach to iden-
tify evergreen forest out of the result forest map, in the hope of enriching
the literature on evergreen forest mapping.

2. Materials and methods
2.1. Study area

The SGP of the United States comprises the three states Kansas,
Oklahoma and Texas (Fig. 1). This region is featured by various transi-
tional regimes (Bagley et al. 2017). Along the south-north direction, it
ranges from subtropical climate to mild temperate climate (Scholtz et al.
2018). Mean annual precipitation (MAP) increases from 242 mm in the
west to 1814 mm in the east (Fig. S1a). Following the MAP trend, surface
soil moisture ranges from 2.9 mm to 25.4 mm (Fig. S1b). The elevation
rises from sea level in the southeast to 2463 m in the west (Fig. S1c).
From northeast to southwest, mean daytime land surface temperature
increases from 287 K to 313 K (Fig. S1d). According to US Level III
Ecoregions, the SGP covers a wide variety of ecoregions, such as
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Fig. 2. Methodological flowchart of this study.

Chihuahuan Deserts in the western endpoint of Texas, Cross Timbers
crossing northern Texas and central Oklahoma, and Flint Hills in eastern
Kansas (Omernik and Griffith 2014).

Woody plant encroachment in the SGP started with overgrazing and
fire suppression during the middle to late 1800 s that came along with
the European settlement (Walker and Janssen 2002). Other secondary
factors such as tree seed spreading by livestock, rising atmospheric CO5
level, and increased precipitation intensity accelerated the encroach-
ment (Kulmatiski and Beard 2013; Archer et al. 2017). As a result, much
of the original grassland and open savanna is now occupied by woodland
and forest (Barger et al. 2011). Nevertheless, the trajectory of woody
plant encroachment and human intervention differs across the SGP.

The encroachment in Kansas and Oklahoma was more recent than in
Texas (Box 1967). This is probably due to the widespread cultivation in
Kansas and Oklahoma following the European settlement (Wilcox et al.
2018). While much of the cultivated land was later returned to grassland
for sustainability reason, a lot of cropland still exist in these two states.
In terms of encroachment management, prescribed fire has long been a
popular tool in the Tallgrass Prairie. In other parts of the SGP, however,
people are just getting used to prescribed fire along with its recent
success in addressing the more and more severe encroachment (Taylor
et al. 2012; Twidwell et al. 2013). These discrepancies in the
encroachment and management history resulted in a complex mosaic of
landscapes with nonuniform encroachment stage and tree stature
(Hughes et al. 2006; Scholtz et al. 2018).

As mentioned in the introduction section, the adverse effect of the
encroachment is evident across the SGP. More importantly, the
encroachment (especially junipers) is continuing, since the vast majority
of this region does not reach the upper bound of woody plant cover
imposed by climatic conditions (Yang et al. 2016, 2020; Scholtz et al.
2018). Therefore, detailed forest map, especially evergreen forest map

of the SGP, is in urgent need for forest resource investigation, targeted
restoration effort, identification and conservation of remnant
grasslands.

2.2. Data and preprocessing

2.2.1. ALOS-2 PALSAR-2 data

Three annual mosaics (2015-2017) of ALOS-2 PALSAR-2 L-band
data available in Google Earth Engine data catalog were utilized in this
study. Each mosaic contains a co-polarized wave of HH and a cross-
polarized wave of HV, both having a spatial resolution of 25 m. While
the HH signal is mainly indicative of double bounce scattering associ-
ated with tree trunks, buildings or inundated vegetation, the HV signal is
primarily a reflection of volume scattering related to tree leaves and
branches (Watanabe et al. 2006). These global ortho-rectificatied mo-
saics were clipped to the SGP (Fig. 1). The digital number (DN) stored in
the two polarization bands was respectively converted to backscatter
gamma-naught (yo) value (unit: decibel) for further analysis. The
following Eq. (1) was applied in Google Earth Engine (Shimada et al.
2009).

y® =10 x logyo(DN?) — 83 (€]
2.2.2. Landsat 7/8 data

The atmospherically corrected and orthorectified surface reflectance
data from Landsat 7 ETM+ and Landsat 8 OLI sensors were used. Both
sensors have a revisit cycle of 16 days and acquire reflectance data of
earth surface at broad wavebands of blue, green, red, near-infrared and
shortwave infrared. Specifically, the surface reflectance data of the SGP
from 2015 to 2017 were accessed from Google Earth Engine. Bad-quality
observations of the two sensors due to cloud, cloud shadow and snow
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Fig. 3. Probability density graphs of HH, HV, HH-HV, and HH/HV of the sample forest sites.

were masked out by functions cloudMaskL457 and maskL8sr respec-
tively, with pixel quality band (pixel qa).

2.2.3. NLCD2016 and CDL2016

The National Land Cover Database 2016 (NLCD2016) was developed
by the U.S. Geological Survey (USGS) to keep the NLCD products (1992,
2001, 2006, and 2011) up-to-date (Yang et al. 2018). It provides reliable
land cover information (e.g. developed, wetlands) at 30 m resolution for
the entire United States. This product has been widely applied in land
cover studies (Homer et al. 2020). In this study, NLCD2016 was used as a
reference to check the result forest map, particularly the classification
result in non-forest area (e.g. planted/cultivated). The Cropland Data
Layer (CDL) provides crop-specific land cover information at moderate
resolution (e.g. 56 m), for the continental United States (USDA NASS
2016). It is developed on an annual basis by National Agricultural Sta-
tistics Service (NASS) of United States Department of Agriculture
(USDA). The CDL2016 of 30 m resolution was used to check possible
commission error of cropland in the result forest map.

2.2.4. Validation data

A comprehensive and representative set of validation data was pre-
pared for accuracy assessment of the result forest map and evergreen
forest map. Firstly, the study area was divided into 1794 grid cells of a
quarter degree by a quarter degree (0.25°x0.25°) (Fig. S2a). Secondly,
in each grid cell, the footprints of one to three Landsat pixels of typical
land cover types were randomly selected. The selection was in reference
to time-series high resolution imagery in Google Earth and digital
orthophoto (1 m) of National Agriculture Imagery Program (NAIP) in
Google Earth Engine. The presence (amount) of forest (evergreen/de-
ciduous) validation pixels in each grid cell mainly depends on the
occurrence (abundance) of forest (evergreen forest).

The selected footprints of Landsat pixels cover seven land cover types
across the SGP, including forest (evergreen/deciduous), shrubland,
cropland, grassland, barren land, building, and water. To minimize the
effect of geometric accuracy of remote sensing data, each footprint was
located within a homogeneous land cover patch (e.g. 3-pixel x 3-pixel
window). The corresponding land cover type of each selected Landsat

pixel was consistent across the study period of 2015 to 2017. A total of
2339 footprints were obtained, of which 1270 are forest and 1069 are
non-forest (Fig. S2b). Among the 1270 forest footprints, 559 are ever-
green forest, 484 are deciduous forest, and 227 are either mixed or
unknown-type forest due to the lack winter season imagery.

2.3. Workflow of this study

The methodological flowchart of this study is displayed in Fig. 2. The
workflow consists of four major steps. First, thresholds of HH, HV, HH/
HV, HH-HV were derived for forest (above 2 m in height) in the SGP,
resulting in annual PALSAR-2 based forest maps from 2015 to 2017.
Second, threshold of annual maximum NDVI was calculated for forest,
which was used to filter potential commission error of building and
rough surface in the PALSAR-2 based forest maps. Third, a final forest
map circa 2016 was generated by compositing the three annual forest
maps. Fourth, threshold of seasonal NDVI change of evergreen forest
was quantified to identify evergreen forest out of the forest map circa
2016.

2.4. Development of forest map

2.4.1. PALSAR-2 based decision rules for forest

Previous research suggests that PALSAR backscatter from forest of a
given region is generally consistent and constrained within a certain
range (Shimada et al. 2014; Qin et al. 2015, 2017). This study seeks to
establish backscatter thresholds for forest over 2 m high in the SGP, in
order to generate forest map for this region. A total of 30 typical forest
sites (including both evergreen forest and deciduous forest) were
randomly selected across the SGP for the threshold derivation (Fig. S3).
They are all hand-drawn quadrilaterals in reference to the very high
spatial resolution imagery (2017) available in Google Earth. Their sizes
vary according to the corresponding homogeneous forest patches but are
generally over 250 m by 250 m. These 30 forest sites consist of 9015
PALSAR-2 pixels.

As shown in Fig. 3, the probability density of the four variables (HH,
HV, HH-HV, HH/HV) is examined respectively for the 9015 PALSAR-2
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Fig. 4. Probability density of NDVI,,x (2017) for the 30 forest training sites.

pixels of forest. It is evident that all the four variables are close to normal
distribution. Following Dong et al. (2012), we applied 95% confidence
interval and calculated 2.5% and 97.5% percentiles as the thresholds of
each variable for forest. The rounded threshold values (Table 1) were
used to generate annual forest maps of 2015 to 2017 based on PALSAR-2
data for the SGP.

2.4.2. Annual NDVI,, threshold

Some other land cover types like barren and developed land (e.g.
rough surface, building) could have similar SAR backscattering as forest
(Meyer 2019). Therefore, the above PALSAR-2 based decision rules may
result in misclassification of rough surface and building as forest.
Fortunately, forest tends to have significantly higher annual maximum
NDVI (NDVI,x) than rough surface and building (Defries and Town-
shend 1994). This sharp difference has been utilized to filter the po-
tential commission error (Qin et al. 2015, 2016). But the applied annual
NDVIax threshold varies with observation scale and study area. While
Qin et al. (2015) applied a threshold of 0.5 at MODIS scale in China, Qin
et al. (2016) used a threshold of 0.7 at Landsat scale in Oklahoma, USA.

To obtain the optimum annual NDVI,, threshold for this study in
the SGP, we analyzed the probability density of annual NDVI;, .4 values
(2017) for the aforementioned 30 forest training sites. First, an annual
NDVI,a layer was generated for the SGP with Landsat 8 data of 2017 (a
total of 1471 Landsat 8 scenes) in Google Earth Engine. Second, the
annual NDVI,x values were extracted for the training sites, which
consist of 6237 Landsat pixels. Third, the probability density graph of
the annual NDVI,x values was plotted for the training sites (Fig. 4).
Thereafter, we calculated 1% percentile (0.50) as the threshold annual
NDVIpax value, in order to mask out the potential commission error of
rough surface and building in the PALSAR-2 based forest maps. To do so,
each PALSAR-2 based forest map (25 m) was resampled to the spatial
resolution of annual NDVI,« layer (30 m) by nearest neighbor method.
Annual NDVI,,. layers of 2015 and 2016 were also created, with a total
of 1357 and 1470 Landsat 8 scenes respectively.

2.5. Identification of evergreen forest out of the result forest map

We take advantage of the different seasonal NDVI change (NDVI-
change) between evergreen forest and deciduous forest to identify

International Journal of Applied Earth Observation and Geoinformation 104 (2021) 102578

=
-~ [ B Deciduous
i B Evergreen
o — [
= b
B, T o ' A
= ; !
i | W= I \
) \
h \
o~ — ] \
£ % /\J
O p—_1 ¥ gV VN ey e i P S iy

O 0 04, OiE . 08
Novlmgx_ NDVIW}nler

Fig. 5. Probability density graphs of evergreen forest and deciduous forest
sample sites.

evergreen forest out of the result forest map. As demonstrated by Wang
etal. (2017, 2018), deciduous forest has very high NDVI value (>0.8) in
summer season, but it drops quite a lot by winter season (<0.4). As for
evergreen forest, however, the NDVI value is relatively stable across
different seasons (around 0.6) and the seasonal change is much smaller.
Given so, it is possible to separate evergreen forest and deciduous forest
by a threshold value of seasonal NDVI change. To derive the threshold
value, we randomly sampled 26 evergreen forest sites and 20 deciduous
forest sites across the SGP (Fig. S4), followed by below steps.

First, a NDVI o4 layer was generated for the SGP, with Landsat 7 and
Landsat 8 data of 2015 to 2017 (a total of 8009 Landsat scenes) available
in Google Earth Engine. Second, a winter mean NDVI (NDVIyin¢er) layer
was created with Landsat 7/8 data of January and February of the three
years (a total of 1231 Landsat scenes). To achieve the best separability,
December Landsat 7/8 data was not included in the NDVIyjnter calcu-
lation. This is because according to our observation, some deciduous
trees still hold leaves with varying degrees of senescence over December
in this region, especially in the southern state Texas. Third, a seasonal
NDVI change layer was derived as the difference between the NDVIax
layer and NDVIyiner layer. Fourth, seasonal NDVI change values were
extracted for the evergreen forest and deciduous forest sample sites,
which consist of 4321 and 5955 Landsat pixels respectively.

As shown in Fig. 5, the probability density curves of seasonal NDVI
change for evergreen forest and deciduous forest have very little over-
lap. The upper and lower percentiles were respectively calculated for the
two forest types. The 97%, 98%, and 99% percentiles of evergreen forest
are 0.29, 0.31, and 0.337, while the 1%, 2%, 3% percentiles of decid-
uous forest are 0.338, 035 and 0.36. It is clear that the seasonal NDVI
change of evergreen forest is statistically and significantly lower than
that of deciduous forest. In this study, we choose the rounded value of
0.3 as the threshold value of seasonal NDVI change. Forest pixels with
seasonal NDVI change below 0.3 were classified as evergreen forest in
the SGP.

3. Results
3.1. PALSAR-2/Landsat 8 based annual forest maps

The PALSAR-2/Landsat 8 based annual forest maps are displayed in
Fig. 6. In each forest map, green color represents forest. Red color rep-
resents the commission error of rough surface and building introduced
by the PALSAR-2 based algorithm but masked out by the annual
NDVI, . threshold. These maps show a forest area of 301,092 km? in
2015, 330,000 km? in 2016, and 309,655 km? in 2017. It is evident that
most forest distributes in southeast SGP, while most PALSAR-2 related
commission error occurs in southwest Texas. There is also significant
commission error in the metropolitan areas of Oklahoma City, Dallas-
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Fort Worth, and Houston.

3.2. Forest map circa 2016

As stated above, there are variations among the three annual forest
maps in terms of forest area and distribution. Examination of the
discrepancy forest regions, in reference to time-series high resolution
imagery in Google Earth, suggests that almost all the variations are just
uncertainty rather than forest gain or loss. To minimize these variations,
a forest map circa 2016 was generated, in which each forest pixel is
identified as such at least twice in the three annual forest maps of 2015
to 2017. The result forest map circa 2016 is displayed in Fig. 7a, which
shows a forest area of 308,827 km?. A check of this forest map with
National Land Cover Database 2016 (NLCD2016) indicates some com-
mission error of cropland in northwest and southern-most SGP, and
some commission error of emergent herbaceous wetland in southeast
SGP. Thereafter, these two types of commission error were masked out
with NLCD2016 layer, leading to a final forest map circa 2016 (Fig. 7b)

Table 2
Confusion matrix for the forest map circa 2016.

Reference\Classification Forest Non-forest Total Producer’s accuracy
Forest 1126 144 1270 88.7%
Non-forest 9 1060 1069 99.2%
Total 1135 1204 2339

User’s accuracy 99.2% 88.0% Overall: 93.5%

that exhibits a forest area of 293,648 km?.

3.3. Validation of the forest map circa 2016

The whole validation dataset from Section 2.2.4 (1270 forest and
1069 non-forest Landsat pixels) was used to assess the accuracy of the
final forest map circa 2016 (Fig. 7b). The result confusion matrix is
displayed in Table 2. The final forest map circa 2016 has a user’s ac-
curacy of 99.2% and a producer’s accuracy of 88.7% for forest. As for
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Fig. 8. Map of evergreen forest (green color) circa 2016, overlaid with
county boundaries.

Table 3

Confusion matrix for the evergreen forest map circa 2016.
Reference Evergreen Other land Total  Producer’s
\Classification forest cover types accuracy
Evergreen forest 506 53 559 90.5%
Other land cover 14 1539 1553 99.1%

types

Total 520 1592 2112
User’s accuracy 97.3% 96.7% Overall: 96.8%

non-forest land cover types, it has a user’s accuracy of 88.0% and a
producer’s accuracy of 99.2%. The overall accuracy is 93.5%. The Kappa
coefficient of 0.87 also suggests a perfect agreement between the
reference and classification data.

3.4. Evergreen forest map circa 2016

The result evergreen forest map circa 2016 is displayed in Fig. 8,
based on the aforementioned approach (Section 2.5) and the final forest
map circa 2016 (Section 3.2). It shows an evergreen forest area of
113,861 km?, accounting for 38.8% of the total forest area (293,648
kmz) in the SGP. It is clear that most of the evergreen forest distributes in
central and east Texas. There is also a large patch of evergreen forest in
southeast Oklahoma. Some small patches of evergreen forest are scat-
tered across the rest of Oklahoma and eastern half of Kansas.

3.5. Validation of the evergreen forest map circa 2016

The reference data of 1069 non-forest Landsat pixels, 559 evergreen
forest pixels, 484 deciduous forest pixels (Section 2.2.4) was used to
assess the accuracy of the result evergreen forest map circa 2016 (Fig. 8).
The confusion matrix is displayed in Table 3. As it is shown, the ever-
green forest map has a user’s accuracy of 97.3% and a producer’s ac-
curacy of 90.5% for evergreen forest. For land cover types other than
evergreen forest, it has a user’s accuracy of 96.7% and a producer’s
accuracy of 99.1%. The overall accuracy of the evergreen forest map is
96.8%. The Kappa coefficient of 0.92 also suggests excellent accuracy of

International Journal of Applied Earth Observation and Geoinformation 104 (2021) 102578
the evergreen forest map.
4. Discussion
4.1. Distribution of forest and evergreen forest in the SGP

The distribution of forest in the SGP is the result of the combined
force of climate, land use, and woody plant encroachment. As shown in
Fig. 7b, the vast majority of forest distributes in southeast SGP. This
subregion tends to have higher precipitation and higher surface soil
moisture, which to some degree could be associated with the opposite
terrain pattern (Fig. S1) (Gu et al. 2021). This coincidence is a reflection
of the critical role of precipitation in forest distribution at broad scale
(Staver et al. 2011; Hansen et al. 2013). Nevertheless, the forest distri-
bution does not strictly follow the precipitation pattern. The factor of
land use (e.g. urban development, pasture) may explain low forest area
in some places of southeast Texas. The widespread presence of culti-
vated cropland and grassland in central Kansas and west Oklahoma can
account for the very sparse forest area there to a considerable degree
(Fischer et al. 2014). The third factor to consider is woody plant
encroachment history. Central Texas has medium level precipitation but
dense forest, while east Kansas has high precipitation but low forest
area. This is largely because the encroachment in Texas dates back to
early twentieth century, while it starts more recently in Kansas (Box
1967; Engle et al. 2008; Twidwell et al. 2016).

As for evergreen forest, there are three major clusters located
respectively in central Texas, east Texas, and southeast Oklahoma
(Fig. 8). The cluster of evergreen forest in central Texas agrees very well
with the reported distribution of junipers (Lyons et al. 2009). The
presence of this cluster is mainly caused by long-term encroachment.
The other two clusters of evergreen forest in east Texas and southeast
Oklahoma are primarily cultivated pine trees (Weng et al. 2018; Shep-
hard et al. 2021). They are generally managed through plantation and
are an important source of commercial softwood production in the USA
(Edgar et al., 2014; Oswalt et al. 2019). Other than that, small patches of
evergreen forest can be found northward in the SGP, due to the steady
expansion of junipers (Ratajczak et al. 2016; Twidwell et al. 2016; Wang
et al. 2018).

The result forest map and evergreen forest map can meet a range of
needs for follow-up research and application. Firstly, forest cover is an
important parameter in forest biomass modeling (Matasci et al. 2018). It
could also be involved in assessing the impact of woody plant
encroachment on climate, evapotranspiration and soil moisture (Cui
et al. 2020, 2021; Wang et al. 2021). Other than that, the result ever-
green forest map can be used as a baseline to develop historical ever-
green forest maps, and consequently to some extent trace the trend of
woody plant encroachment across the SGP (Wang et al. 2017, 2018).

4.2. Complementarity of PALSAR-2 and Landsat 8 data in forest mapping

This study exhibits the complementarity of PALSAR-2 and Landsat 8
data in regional scale forest mapping (Lehmann et al. 2015). While the
structure-sensitive SAR data (PALSAR-2) indiscriminately identifies
both forest (above 2 m in height) and other land cover types with similar
backscatter signal as forest, the phenology-sensitive optical data
(Landsat 8) can filter out the non-forest land cover types (Qin et al. 2015,
2016, 2017; Li et al. 2021). In this study, those masked non-forest land
cover types are represented by red color in Fig. 6. Most of them occurs
with the rocky surface scattered with sparse shrub in southwest Texas
(Fig. S5). The additional occurs in the metropolitan areas of Oklahoma
City, Dallas-Fort Worth, and Houston, which are featured by dense
building.

The PALSAR-2/Landsat 8 based forest map (Fig. 7a) contains certain
amount of commission error from cropland and emergent herbaceous
wetland, by reference to NLCD2016 data. These two types of commis-
sion error occupy an area of 15,179 km2, accounting for 4.9% of the
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Table 4
Forest area and evergreen forest area from different datasets (unit: km?).
This study NLCD2016 FNF2016
Forest Evergreen Forest Evergreen Forest Evergreen
Kansas 21,362 535 12,297 59 13,278 N/A
Oklahoma 64,118 8,519 48,957 7,101 51,697 N/A
Texas 208,168 104,807 84,489 43,305 143,902 N/A
Total 293,648 113,861 145,743 50,465 208,877 N/A

mapped forest area (308,827 km?). According to Cropland Data Layer
2016, the misclassified cropland is primarily corn in northwest SGP and
sugarcane in southern-most SGP. These misclassification is probably
because that the high density of the crop and herbaceous vegetation
results in high biomass level at pixel scale (25 m) comparable to that of
forest, and the L-band backscatter is strongly correlated with above-
ground biomass (Carreiras et al. 2012; Nesha et al. 2020). At the same
time, these two land cover types are supposed to have high annual
NDVIax values (>0.5). This study relied on the ancillary data of
NLCD2016 to minimize these two types of commission error, to produce
the final forest map circa 2016 (Fig. 7b). It highlights the utility of
NLCD2016 in land cover mapping study. Whereas it is our plan to
develop independent algorithms to address these commission issues in
future.

In the final forest map circa 2016 (Fig. 7b), 8 out of the 9 commission

Digital orthophoto This study

error are from shrubland, while the other one is from building (house
with lawn). As for shrubland, the misclassification reason should be
similar to that of cropland and emergent herbaceous wetland. For the
pixel covering house and lawn, it is probable that while the house
contributes similar PALSAR-2 backscatter signal as forest, the lawn
raises its annual NDVI,,.x above the threshold (0.5). In terms of omission
error, 62 out of the 484 (12.8%) deciduous forest validation pixels were
missed, while 50 out of 559 (8.9%) evergreen forest validation pixels
were missed. The lower omission rate of evergreen forest could be
partially credited to its relatively stable foliage, leaf water and soil
moisture throughout the year (Xiao et al. 2009), and consequently less
effect of PALSAR-2 acquisition date (season) (Fig. S6) on its backscatter
signal (Huang et al. 2021).

NLCD2016 FNF2016

Fig. 9. Comparison of forest maps from this study, NLCD2016, and FNF2016 at 4 sample sites.
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Fig. 10. Comparison of evergreen forest maps from this study and NLCD2016 at 4 sample sites.

4.3. Success of the new approach for evergreen forest and deciduous
forest separation

This study demonstrates the potential of the new approach -
threshold of seasonal NDVI change (0.3) - in identifying evergreen forest
out of forest map over the broad environmental gradients (e.g. arid,
semiarid, mesic) of the SGP (Fig. S1). Table 3 shows very good user’s,
producer’s and overall accuracy for the result evergreen forest map circa
2016 (Fig. 8). Among the very small amount of misclassifications in the
evergreen forest map, the vast majority were inherited from the forest
map (Fig. 7b). In other words, the new approach developed in this study
performed perfectly in separating evergreen forest from non-evergreen
forest.

Out of the 559 evergreen forest validation pixels, 509 were captured
by the forest map, among which 506 (99.4%) were successfully identi-
fied as evergreen forest. On the other side, out of the 484 deciduous
forest validation pixels, 422 were captured by the forest map, among
which only 8 (1.9%) were misclassified as evergreen forest. All these 8
commission error occur in central to south Texas, where the relatively
short and warm winter season is partly to blame for the misclassifica-
tion. Consequently, the development of the new approach enriches the
existing literature on evergreen forest mapping (Xiao et al. 2009; Wang
et al. 2017, 2018).

4.4. Comparison of forest area and evergreen forest area with other
products

As a comparison, a set of forest map and evergreen forest map for the
SGP was derived from NLCD2016 (Fig. S7). The Global PALSAR-2/
PALSAR Forest/Non-Forest Map of 2016 (hereinafter referred to as
FNF2016) was also clipped to the SGP (Fig. S8). The forest area and
evergreen forest area of the SGP from this study, NLCD2016, and
FNF2016 are summarized at state level in Table 4. As expected, this
study shows much higher forest area and evergreen forest area in all the
three states. The reason is because while NLCD2016 and FNF2016 apply
a forest definition of tree height above 5 m, this study adopts a more
inclusive forest definition (Australian) of tree height above 2 m. It
proves the additional value of this study’s forest map and evergreen
forest map in monitoring woody plant encroachment, since many of the
encroaching trees do not reach 5 m high. It also demonstrates the ca-
pacity of PALSAR-2 L-band in capturing trees of various heights (above
2 m) simultaneously, as well as the efficiency of the new approach in
separating evergreen forest from deciduous forest.

As a demonstration, forest maps from this study, NLCD2016, and
FNF2016 were compared at four sample sites of 1 km by 1 km, in
reference to 1 m resolution digital orthophotos from NAIP (Fig. 9). The
center coordinates of the sample sites A, B, C, and D are (30.445501,
—94.088027), (33.154271, —99.399227), (28.032242, —99.058177),
and (34.90685, —101.15419), while the acquisition dates of the corre-
sponding orthophotos are 09/21,/2016, 10/02/2016, 09/19/2016, and
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10/04/2016, respectively. Both the orthophotos and forest maps are
displayed in geographic coordinate system of World Geodetic System
(WGS) 1984.

Similarly, evergreen forest maps from this study and NLCD2016 were
examined for another four sample sites, in comparison to 1 m resolution
digital orthophotos (Fig. 10). The center coordinates of the sample sites
E, F, G, and H are (37.428547, —98.877772), (34.33655, —95.33615),
(29.643552, —100.28303), and (30.690252, —104.160151), while the
acquisition dates of the corresponding orthophotos are 07,/10/2017, 10/
01/2017, 10/11/2016, and 09/09/2016, respectively. Figs. 9 and 10
further confirmed the high accuracy of the result forest map and ever-
green forest map, as well as their inclusiveness in terms of forest height.
These two figures also to some degree explain the large discrepancy in
the amount of forest area and evergreen forest area among the three data
sources (Table 4). Location of the 8 sample sites of Figs. 9 and 10 in the
SGP can be found in Fig. SO.

5. Conclusion

In conclusion, this study generated the first map of forest, especially
evergreen forest above 2 m in height, at 30 m resolution for the southern
Great Plains. The forest distribution and underlying reason were
analyzed. The result forest map can be an important input for the
retrieval of biophysical parameters (e.g. biomass), while the evergreen
forest map can be used to trace back the encroachment pattern across
the SGP over past several decades. This study also proved the comple-
mentarity of PALSAR-2 and Landsat 8 data in mapping forest above 2 m
in height. It paves the way to develop time series forest and evergreen
maps at global scale in future, and subsequently estimate forest loss and
gain over time, as more L-band SAR data (e.g. NASA-ISRO Synthetic
Aperture Radar) and optical data (e.g. Landsat 9) are becoming avail-
able. Other than that, this study developed a simple but robust approach
to separate evergreen forest from deciduous forest over broad environ-
mental gradients.

CRediT authorship contribution statement

Xuebin Yang: Conceptualization, Methodology, Formal analysis,
Validation, Writing — original draft. Xiangming Xiao: Conceptualiza-
tion, Supervision, Funding acquisition, Writing — review & editing.
Yuanwei Qin: Writing — review & editing. Jie Wang: Writing — review
& editing. Kevin Neal: Validation.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This study is supported in part by research grants from the US Na-
tional Science Foundation EPSCoR program (IIA-1920946, IIA-
1946093).

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.jag.2021.102578.

References

Alofs, K.M., Fowler, N.L., 2010. Habitat fragmentation caused by woody plant
encroachment inhibits the spread of an invasive grass. J. Appl. Ecol. 47, 338-347.

Alofs, K.M., Fowler, N.L., 2013. Loss of native herbaceous species due to woody plant
encroachment facilitates the establishment of an invasive grass. Ecology 94,
751-760.

International Journal of Applied Earth Observation and Geoinformation 104 (2021) 102578

Ansley, R.J., Wu, X.B., Kramp, B.A., 2001. Observation: long-term increases in mesquite
canopy cover in a north Texas savanna. Rangeland Ecol. Manage./J. Range Manage.
Arch. 54, 171-176.

Archer, S.R., Andersen, E.M., Predick, K.I., Schwinning, S., Steidl, R.J., Woods, S.R.,
2017. Woody plant encroachment: causes and consequences. In: Rangeland Systems.
Springer, Cham, pp. 25-84.

Bagley, J.E., Kueppers, L.M., Billesbach, D.P., Williams, L.N., Biraud, S.C., Torn, M.S.,
2017. The influence of land cover on surface energy partitioning and evaporative
fraction regimes in the US Southern Great Plains. J. Geophys. Res.: Atmos. 122,
5793-5807.

Barger, N.N., Archer, S.R., Campbell, J.L., Huang, C., Morton, J.A., Knapp, A.K., 2011.
Woody plant proliferation in North American drylands: a synthesis of impacts on
ecosystem carbon balance. Journal of Geophysical Research. Biogeosciences 116.

Box, T.W., 1967. Range deterioration in west Texas. Southwestern Historical Quart. 71,
37-45.

Brandt, M., Hiernaux, P., Tagesson, T., Verger, A., Rasmussen, K., Diouf, A.A., Mbow, C.,
Mougin, E., Fensholt, R., 2016. Woody plant cover estimation in drylands from Earth
Observation based seasonal metrics. Remote Sens. Environ. 172, 28-38.

Bucini, G., Hanan, N.P., 2007. A continental-scale analysis of tree cover in African
savannas. Glob. Ecol. Biogeogr. 16, 593-605.

Carreiras, J.M., Vasconcelos, M.J., Lucas, R.M., 2012. Understanding the relationship
between aboveground biomass and ALOS PALSAR data in the forests of Guinea-
Bissau (West Africa). Remote Sens. Environ. 121, 426-442.

Cui, Y., Jia, L., Fan, W., 2021. Estimation of actual evapotranspiration and its
components in an irrigated area by integrating the Shuttleworth-Wallace and surface
temperature-vegetation index schemes using the particle swarm optimization
algorithm. Agric. For. Meteorol. 307, 108488.

Cui, Y., Yang, X., Chen, X., Fan, W., Zeng, C., Xiong, W., Hong, Y., 2020. A two-step
fusion framework for quality improvement of a remotely sensed soil moisture
product: A case study for the ECV product over the Tibetan Plateau. J. Hydrol. 587,
124993.

DeFries, R.S., Townshend, J.R.G., 1994. NDVI-derived land cover classifications at a
global scale. Int. J. Remote Sens. 15, 3567-3586.

Diamond, David D., True, C. Diane, 2008. Distribution of Juniperus woodlands in central
Texas in relation to general abiotic site type. In: Western North American Juniperus
Communities. Springer, New York, NY, pp. 48-57.

Dong, J., Xiao, X., Sheldon, S., Biradar, C., Duong, N.D., Hazarika, M., 2012.

A comparison of forest cover maps in Mainland Southeast Asia from multiple
sources: PALSAR, MERIS, MODIS and FRA. Remote Sens. Environ. 127, 60-73.
Edgar, C., Joshi, O., Zehnder, R., Carraway, B., Taylor, E., 2015. Harvest trends 2014.

Texas A&M Forest Service Publication: College Station, TX, USA 22.

Engle, D.M., Coppedge, B.R., Fuhlendorf, S.D., 2008. From the dust bowl to the green
glacier: human activity and environmental change in Great Plains grasslands. In:
Western North American Juniperus Communities. Springer, pp. 253-271.

Fischer, R.A., Byerlee, D., Edmeades, G., 2014. Crop yields and global food security.
ACIAR: Canberra, ACT 8-11.

Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S.,
Coe, M.T., Daily, G.C., Gibbs, H.K., 2005. Global consequences of land use. Science
309, 570-574.

Gu, W., Zhu, X., Meng, X., Qiu, X., 2021. Research on the Influence of Small-Scale Terrain
on Precipitation. Water 13, 805.

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A.,
Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., 2013. High-resolution global
maps of 21st-century forest cover change. Science 342, 850-853.

Hansen, M.C., Townshend, J.R., DeFries, R.S., Carroll, M., 2005. Estimation of tree cover
using MODIS data at global, continental and regional/local scales. Int. J. Remote
Sens. 26, 4359-4380.

Hansen, Matthew C., Krylov, Alexander, Tyukavina, Alexandra, Potapov, Peter V.,
Turubanova, Svetlana, Zutta, Bryan, Ifo, Suspense, Margono, Belinda, Stolle, Fred,
Moore, Rebecca, 2016. Humid tropical forest disturbance alerts using Landsat data.
Environ. Res. Lett. 11 (3), 034008.

Higginbottom, T.P., Symeonakis, E., Meyer, H., van der Linden, S., 2018. Mapping
fractional woody cover in semi-arid savannahs using multi-seasonal composites from
Landsat data. ISPRS J. Photogramm. Remote Sens. 139, 88-102.

Hnatiuk, R., Tickle, P., Wood, M.S., Howell, C., 2003. Defining Australian forests.
Australian Forestry 66, 176-183.

Homer, C., Dewitz, J., Jin, S., Xian, G., Costello, C., Danielson, P., Gass, L., Funk, M.,
Wickham, J., Stehman, S., 2020. Conterminous United States land cover change
patterns 2001-2016 from the 2016 national land cover database. ISPRS J.
Photogramm. Remote Sens. 162, 184-199.

Huang, X., Ziniti, B., Cosh, M.H., Reba, M., Wang, J., Torbick, N., 2021. Field-scale soil
moisture retrieval using PALSAR-2 polarimetric decomposition and machine
learning. Agronomy 11, 35.

Hughes, R.F., Archer, S.R., Asner, G.P., Wessman, C.A., McMurtry, C., Nelson, J..M.,
Ansley, R.J., 2006. Changes in aboveground primary production and carbon and
nitrogen pools accompanying woody plant encroachment in a temperate savanna.
Glob. Change Biol. 12, 1733-1747.

Knapp, A.K., Briggs, J.M., Collins, S.L., Archer, S.R., BRET-HARTE, M.S., Ewers, B.E.,
Peters, D.P., Young, D.R., Shaver, G.R., Pendall, E., 2008. Shrub encroachment in
North American grasslands: shifts in growth form dominance rapidly alters control of
ecosystem carbon inputs. Global Change Biol. 14, 615-623.

Kulmatiski, A., Beard, K.H., 2013. Woody plant encroachment facilitated by increased
precipitation intensity. Nat. Clim. Change 3, 833-837.

Lehmann, E.A., Caccetta, P., Lowell, K., Mitchell, A., Zhou, Z.-S., Held, A., Milne, T.,
Tapley, L., 2015. SAR and optical remote sensing: Assessment of complementarity


https://doi.org/10.1016/j.jag.2021.102578
https://doi.org/10.1016/j.jag.2021.102578
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0005
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0005
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0010
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0010
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0010
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0015
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0015
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0015
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0020
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0020
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0020
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0025
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0025
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0025
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0025
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0030
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0030
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0030
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0035
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0035
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0040
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0040
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0040
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0045
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0045
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0050
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0050
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0050
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0055
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0055
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0055
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0055
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0060
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0060
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0060
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0060
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0065
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0065
http://refhub.elsevier.com/S0303-2434(21)00285-3/h9005
http://refhub.elsevier.com/S0303-2434(21)00285-3/h9005
http://refhub.elsevier.com/S0303-2434(21)00285-3/h9005
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0070
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0070
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0070
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0095
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0095
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0095
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0100
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0100
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0105
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0105
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0105
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0110
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0110
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0110
http://refhub.elsevier.com/S0303-2434(21)00285-3/h9000
http://refhub.elsevier.com/S0303-2434(21)00285-3/h9000
http://refhub.elsevier.com/S0303-2434(21)00285-3/h9000
http://refhub.elsevier.com/S0303-2434(21)00285-3/h9000
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0115
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0115
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0115
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0120
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0120
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0125
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0125
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0125
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0125
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0130
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0130
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0130
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0135
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0135
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0135
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0135
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0145
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0145
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0150
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0150

X. Yang et al.

and interoperability in the context of a large-scale operational forest monitoring
system. Remote Sens. Environ. 156, 335-348.

Li, H., Xu, F., Li, Z., You, N., Zhou, H., Zhou, Y., Chen, B., Qin, Y., Xiao, X., Dong, J.,
2021. Forest Changes by Precipitation Zones in Northern China after the Three-
North Shelterbelt Forest Program in China. Remote Sensing 13, 543.

Liu, X., Zhang, L., Yang, X., Liao, M., Li, W., 2021. Retrieval of Tropical Forest Height and
Above-Ground Biomass Using Airborne P-and L-Band SAR Tomography. IEEE
Geosci. Remote Sens. Lett.

Lucas, R.M., Moghaddam, M., Cronin, N., 2004. Microwave scattering from mixed-
species forests, Queensland, Australia. IEEE Trans. Geosci. Remote Sens. 42,
2142-2159.

Lyons, R.K., Owens, M.K., Machen, R.V., 2009. Juniper biology and management in
Texas. Texas FARMER Collection.

Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W.,
Zald, H.S., 2018. Large-area mapping of Canadian boreal forest cover, height,
biomass and other structural attributes using Landsat composites and lidar plots.
Remote Sens. Environ. 209, 90-106.

Meyer, F., 2019. Spaceborne Synthetic Aperture Radar: Principles, data access, and basic
processing techniques. Synthetic Aperture Radar (SAR) Handbook: Comprehensive
Methodologies for Forest Monitoring and Biomass Estimation 21-64.

Montesano, P.M., Nelson, R., Sun, G., Margolis, H., Kerber, A., Ranson, K.J., 2009.
MODIS tree cover validation for the circumpolar taiga-tundra transition zone.
Remote Sens. Environ. 113, 2130-2141.

Naidoo, L., Mathieu, R., Main, R., Wessels, K., Asner, G.P., 2016. L-band Synthetic
Aperture Radar imagery performs better than optical datasets at retrieving woody
fractional cover in deciduous, dry savannahs. Int. J. Appl. Earth Obs. Geoinf. 52,
54-64.

NASS, U., 2016. USDA national agricultural statistics service cropland data layer. Publ.
Crop. data layer. URL https://nassgeodata.gmu.edu/CropScape/ (accessed 5.18. 16).

Nesha, M.K., Hussin, Y.A., van Leeuwen, L.M., Sulistioadi, Y.B., 2020. Modeling and
mapping aboveground biomass of the restored mangroves using ALOS-2 PALSAR-2
in East Kalimantan, Indonesia. Int. J. Appl. Earth Obs. Geoinf. 91, 102158.

Omernik, J.M., Griffith, G.E., 2014. Ecoregions of the conterminous United States:
evolution of a hierarchical spatial framework. Environ. Manage. 54, 1249-1266.

Oswalt, S.N., Smith, W.B., Miles, P.D., Pugh, S.A., 2019. Forest resources of the United
States, 2017: A technical document supporting the Forest Service 2020 RPA
Assessment. Gen. Tech. Rep. WO-97. US Department of Agriculture, Forest Service,
Washington Office, Washington, DC, 97.

Qin, Y., Xiao, X., Dong, J., Zhang, G., Shimada, M., Liu, J., Li, C., Kou, W., Moore III, B.,
2015. Forest cover maps of China in 2010 from multiple approaches and data
sources: PALSAR, Landsat, MODIS, FRA, and NFI. ISPRS J. Photogramm. Remote
Sens. 109, 1-16.

Qin, Y., Xiao, X., Dong, J., Zhang, Y., Wu, X., Shimabukuro, Y., Arai, E., Biradar, C.,
Wang, J., Zou, Z., 2019. Improved estimates of forest cover and loss in the Brazilian
Amazon in 2000-2017. Nat. Sustainability 2, 764-772.

Qin, Y., Xiao, X., Dong, J., Zhou, Y., Wang, J., Doughty, R.B., Chen, Y., Zou, Z.,

Moore I, B., 2017. Annual dynamics of forest areas in South America during
2007-2010 at 50-m spatial resolution. Remote Sens. Environ. 201, 73-87.

Qin, Y., Xiao, X., Wang, J., Dong, J., Ewing, K., Hoagland, B., Hough, D.J., Fagin, T.D.,
Zou, Z., Geissler, G.L., 2016. Mapping annual forest cover in sub-humid and semi-
arid regions through analysis of Landsat and PALSAR imagery. Remote Sens. 8, 933.

Qin, Y., Xiao, X., Wigneron, J.-P., Ciais, P., Canadell, J.G., Brandt, M., Li, X., Fan, L., Wu,
X., Tang, H., 2021. Annual Maps of Forests in Australia from Analyses of Microwave
and Optical Images with FAO Forest Definition. J. Remote Sens. 2021.

Raney, R.K., 1998. Radar fundamentals: technical perstective. Principals and
applications of imaging radar. Manual Remote Sens. 2, 9-130.

Ratajczak, Z., Briggs, J.M., Goodin, D.G., Luo, L., Mohler, R.L., Nippert, J.B.,
Obermeyer, B., 2016. Assessing the potential for transitions from tallgrass prairie to
woodlands: are we operating beyond critical fire thresholds? Rangeland Ecol.
Manage. 69, 280-287.

Reiche, J., Hamunyela, E., Verbesselt, J., Hoekman, D., Herold, M., 2018. Improving
near-real time deforestation monitoring in tropical dry forests by combining dense
Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2. Remote Sens. Environ.
204, 147-161.

Rosengqvist, A., Shimada, M., Ito, N., Watanabe, M., 2007. ALOS PALSAR: A pathfinder
mission for global-scale monitoring of the environment. IEEE Trans. Geosci. Remote
Sens. 45, 3307-3316.

Scholtz, R., Fuhlendorf, S.D., Archer, S.R., 2018. Climate—fire interactions constrain
potential woody plant cover and stature in North American Great Plains grasslands.
Glob. Ecol. Biogeogr. 27, 936-945.

Sheldon, S., Xiao, X., Biradar, C., 2012. Mapping evergreen forests in the Brazilian
Amazon using MODIS and PALSAR 500-m mosaic imagery. ISPRS J. Photogramm.
Remote Sens. 74, 34-40.

Shephard, N.T., Joshi, O., Meek, C.R., Will, R.E., 2021. Long-term growth effects of
simulated-drought, mid-rotation fertilization, and thinning on a loblolly pine
plantation in southeastern Oklahoma, USA. For. Ecol. Manage. 494, 119323.

11

International Journal of Applied Earth Observation and Geoinformation 104 (2021) 102578

Shimada, M., Isoguchi, O., Tadono, T., Isono, K., 2009. PALSAR radiometric and
geometric calibration. IEEE Trans. Geosci. Remote Sens. 47, 3915-3932.

Shimada, M., Itoh, T., Motooka, T., Watanabe, M., Shiraishi, T., Thapa, R., Lucas, R.,
2014. New global forest/non-forest maps from ALOS PALSAR data (2007-2010).
Remote Sens. Environ. 155, 13-31.

Simpson, B.J., 1999. A field guide to Texas trees. Taylor Trade Publishing.

Statistics, F.A.O., 2010. Food and Agriculture organization of the United Nations.
Retrieved 3, 2012.

Staver, A.C., Archibald, S., Levin, S.A., 2011. The global extent and determinants of
savanna and forest as alternative biome states. Science 334, 230-232.

Taylor Jr, C.A., Twidwell, D., Garza, N.E., Rosser, C., Hoffman, J.K., Brooks, T.D., 2012.
Long-term effects of fire, livestock herbivory removal, and weather variability in
Texas semiarid savanna. Rangeland Ecol. Manage. 65, 21-30.

Twidwell, D., Rogers, W.E., Fuhlendorf, S.D., Wonkka, C.L., Engle, D.M., Weir, J.R.,
Kreuter, U.P., Taylor Jr, C.A., 2013. The rising Great Plains fire campaign: citizens’
response to woody plant encroachment. Front. Ecol. Environ. 11, e64-e71.

Twidwell, D., West, A.S., Hiatt, W.B., Ramirez, A.L., Winter, J.T., Engle, D.M.,
Fuhlendorf, S.D., Carlson, J.D., 2016. Plant invasions or fire policy: which has
altered fire behavior more in tallgrass prairie? Ecosystems 19, 356-368.

Urbazaev, M., Thiel, C., Mathieu, R., Naidoo, L., Levick, S.R., Smit, I.P., Asner, G.P.,
Schmullius, C., 2015. Assessment of the mapping of fractional woody cover in
southern African savannas using multi-temporal and polarimetric ALOS PALSAR L-
band images. Remote Sens. Environ. 166, 138-153.

Walker, B.H., Janssen, M.A., 2002. Rangelands, pastoralists and governments:
interlinked systems of people and nature. Philosophical Transactions of the Royal
Society of London. Series B: Biol. Sci. 357, 719-725.

Wang, J., Xiao, X., Basara, J., Wu, X., Bajgain, R., Qin, Y., Doughty, R.B., Moore III, B.,
2021. Impacts of juniper woody plant encroachment into grasslands on local climate.
Agric. For. Meteorol. 307, 108508.

Wang, J., Xiao, X., Qin, Y., Dong, J., Geissler, G., Zhang, G., Cejda, N., Alikhani, B.,
Doughty, R.B., 2017. Mapping the dynamics of eastern redcedar encroachment into
grasslands during 1984-2010 through PALSAR and time series Landsat images.
Remote Sens. Environ. 190, 233-246.

Wang, J., Xiao, X., Qin, Y., Doughty, R.B., Dong, J., Zou, Z., 2018. Characterizing the
encroachment of juniper forests into sub-humid and semi-arid prairies from 1984 to
2010 using PALSAR and Landsat data. Remote Sens. Environ. 205, 166-179.

Watanabe, M., Shimada, M., Rosengvist, A., Tadono, T., Matsuoka, M., Romshoo, S.A.,
Ohta, K., Furuta, R., Nakamura, K., Moriyama, T., 2006. Forest Structure
Dependency of the Relation Between L-Band $ sigma” 0$ and Biophysical
Parameters. IEEE Trans. Geosci. Remote Sens. 44, 3154-3165.

Weng, Y.H., Coble, D.W., Grogan, J., Stovall, J.P., 2018. Temporal Trends in Fusiform
Rust Infections and Their Relationships with Stand Structure in Pine Plantations in
East Texas. J. Forest. 116, 420-428.

Wilcox, B.P., Birt, A., Archer, S.R., Fuhlendorf, S.D., Kreuter, U.P., Sorice, M.G., van
Leeuwen, W.J., Zou, C.B., 2018. Viewing woody-plant encroachment through a
social-ecological lens. Bioscience 68, 691-705.

Wine, M.L., Zou, C.B., 2012. Long-term streamflow relations with riparian gallery forest
expansion into tallgrass prairie in the Southern Great Plains, USA. For. Ecol. Manage.
266, 170-179.

Woodhouse, I.H., 2017. Introduction to microwave remote sensing. CRC Press.

Wu, J.B., Xiao, X.M., Guan, D.X., Shi, T.T., Jin, C.J., Han, S.J., 2009. Estimation of the
gross primary production of an old-growth temperate mixed forest using eddy
covariance and remote sensing. Int. J. Remote Sens. 30, 463-479.

Wu, X., Wang, X., Wu, Y., Xia, X., Fang, J., 2015. Forest biomass is strongly shaped by
forest height across boreal to tropical forests in China. J. Plant Ecol. 8, 559-567.

Xiao, X., Biradar, C.M., Czarnecki, C., Alabi, T., Keller, M., 2009. A simple algorithm for
large-scale mapping of evergreen forests in tropical America, Africa and Asia.
Remote Sens. 1, 355-374.

Xiao, X., Hagen, S., Zhang, Q., Keller, M., Moore I, B., 2006. Detecting leaf phenology of
seasonally moist tropical forests in South America with multi-temporal MODIS
images. Remote Sens. Environ. 103, 465-473.

Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Bender, S.M., Case, A., Costello, C.,
Dewitz, J., Fry, J., 2018. A new generation of the United States National Land Cover
Database: Requirements, research priorities, design, and implementation strategies.
ISPRS J. Photogramm. Remote Sens. 146, 108-123.

Yang, X., 2019. Woody plant cover estimation in Texas savanna from MODIS products.
Earth Interact 23, 1-14.

Yang, X., Crews, K., Frazier, A.E., Kedron, P., 2020. Appropriate spatial scale for
potential woody cover observation in Texas savanna. Landscape Ecol. 35, 101-112.

Yang, X., Crews, K.A., 2019. Fractional woody cover mapping of Texas savanna at
Landsat scale. Land 8, 9.

Yang, X., Crews, K.A., 2020. The role of precipitation and woody cover deficit in juniper
encroachment in Texas savanna. J. Arid Environ. 180, 104196.

Yang, X., Crews, K.A,, Yan, B., 2016. Analysis of the pattern of potential woody cover in
Texas savanna. Int. J. Appl. Earth Obs. Geoinf. 52, 527-531.


http://refhub.elsevier.com/S0303-2434(21)00285-3/h0150
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0150
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0155
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0155
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0155
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0160
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0160
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0160
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0165
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0165
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0165
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0175
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0175
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0175
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0175
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0185
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0185
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0185
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0190
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0190
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0190
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0190
https://nassgeodata.gmu.edu/CropScape/
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0200
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0200
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0200
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0205
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0205
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0215
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0215
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0215
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0215
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0220
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0220
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0220
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0225
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0225
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0225
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0230
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0230
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0230
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0240
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0240
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0245
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0245
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0245
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0245
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0250
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0250
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0250
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0250
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0255
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0255
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0255
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0260
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0260
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0260
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0265
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0265
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0265
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0270
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0270
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0270
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0275
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0275
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0280
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0280
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0280
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0285
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0300
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0300
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0300
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0305
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0305
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0305
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0310
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0310
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0310
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0315
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0315
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0315
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0315
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0320
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0320
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0320
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0325
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0325
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0325
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0330
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0330
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0330
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0330
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0335
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0335
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0335
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0340
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0340
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0340
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0340
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0345
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0345
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0345
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0350
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0350
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0350
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0355
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0355
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0355
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0360
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0365
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0365
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0365
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0370
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0370
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0375
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0375
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0375
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0380
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0380
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0380
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0385
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0385
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0385
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0385
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0390
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0390
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0395
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0395
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0400
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0400
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0405
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0405
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0410
http://refhub.elsevier.com/S0303-2434(21)00285-3/h0410

	Mapping forest in the southern Great Plains with ALOS-2 PALSAR-2 and Landsat 7/8 data
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 Data and preprocessing
	2.2.1 ALOS-2 PALSAR-2 data
	2.2.2 Landsat 7/8 data
	2.2.3 NLCD2016 and CDL2016
	2.2.4 Validation data

	2.3 Workflow of this study
	2.4 Development of forest map
	2.4.1 PALSAR-2 based decision rules for forest
	2.4.2 Annual NDVImax threshold

	2.5 Identification of evergreen forest out of the result forest map

	3 Results
	3.1 PALSAR-2/Landsat 8 based annual forest maps
	3.2 Forest map circa 2016
	3.3 Validation of the forest map circa 2016
	3.4 Evergreen forest map circa 2016
	3.5 Validation of the evergreen forest map circa 2016

	4 Discussion
	4.1 Distribution of forest and evergreen forest in the SGP
	4.2 Complementarity of PALSAR-2 and Landsat 8 data in forest mapping
	4.3 Success of the new approach for evergreen forest and deciduous forest separation
	4.4 Comparison of forest area and evergreen forest area with other products

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary material
	References


