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ABSTRACT

There is a rich body of literature on measuring and optimizing
nearly every aspect of the web, including characterizing the struc-
ture and content of web pages, devising new techniques to load
pages quickly, and evaluating such techniques. Virtually all of this
prior work used a single page, namely the landing page (i.e., root
document, “/”), of each web site as the representative of all pages
on that site. In this paper, we characterize the differences between
landing and internal (i.e., non-root) pages of 1000 web sites to
demonstrate that the structure and content of internal pages differ
substantially from those of landing pages, as well as from one an-
other. We review more than a hundred studies published at top-tier
networking conferences between 2015 and 2019, and highlight how,
in light of these differences, the insights and claims of nearly two-
thirds of the relevant studies would need to be revised for them to
apply to internal pages.

Going forward, we urge the networking community to include
internal pages for measuring and optimizing the web. This recom-
mendation, however, poses a non-trivial challenge: How do we
select a set of representative internal web pages from a web site?
To address the challenge, we have developed Hispar, a “top list” of
100,000 pages updated weekly comprising both the landing pages
and internal pages of around 2000 web sites. We make Hispar and
the tools to recreate or customize it publicly available.

CCS CONCEPTS

« Networks — Network measurement; - Information systems
— World Wide Web;

KEYWORDS
Web page performance, PLT, Speed Index, QoE, top lists

ACM Reference Format:

Wagqar Ageel, Balakrishnan Chandrasekaran, Anja Feldmann, and Bruce M.
Maggs. 2020. On Landing and Internal Web Pages: The Strange Case of Jekyll
and Hyde in Web Performance Measurement. In ACM Internet Measurement
Conference (IMC °20), October 27-29, 2020, Virtual Event, USA. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3419394.3423626

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IMC 20, October 27-29, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8138-3/20/10...$15.00
https://doi.org/10.1145/3419394.3423626

Balakrishnan Chandrasekaran
Max-Planck-Institut fiir Informatik

Bruce M. Maggs
Duke University, Emerald Innovations, & M.LT.

1 INTRODUCTION

Any attempt to quantify a characteristic of a web site raises the
following question: What page or pages of the site should be used
for the quantification? A cursory review of a decade’s worth of
literature on web performance measurement and optimization (ab-
breviated, henceforth, as web-perf.) reveals that, until now, the
implicit answer to that question has been the landing page. The
landing page (i.e., root document, “/”) of a web site is quite impor-
tant. It serves as the primary gateway through which users discover
content on the site. But internal pages (i.e., non-root documents)
are often equally important. For example, the content consumed
by users (e.g., articles on news web sites and posts from friends on
social media platforms) are typically served on internal pages. This
importance is also reflected, for instance, in the attention paid to
internal pages in search engine optimization, which helps publish-
ers in monetizing their content by driving traffic to their web sites
from search engines [41]. Why, then, is it the case that almost all
prior web-perf. studies ignore the internal pages and focus only on
the landing pages of web sites?

Prior work implicitly assumes that the performance measures
and optimizations of landing pages generalize to most, if not all,
internal pages. We use the term “web performance study,” to refer
loosely to a broad range of efforts: characterizing one or more as-
pects of web pages (e.g., distribution of different types of objects,
prevalence of ads and trackers, and adoption of specific security
features), estimating and improving the load and display times of
pages, and evaluating novel optimizations to reduce the page-load
times. To measure or optimize web page performance, studies typi-
cally use one or more rank-ordered lists or top lists of web sites, e.g.,
Alexa [6] and Quantcast [87]. The top lists provide only the domain
name of a web site, such as nytimes.com or www.wikipedia.org.
After choosing a web site from a top list, researchers typically use
the landing page of that site in their experiments. Every aspect of
these web-perf. studies—metrics, optimizations, evaluation tech-
niques, and even characteristics of top lists—has faced extensive
scrutiny [67, 84, 93], except one: the exclusion of internal pages.

The exclusion of internal pages might have been intentional. The
rationale might be that the differences between landing and internal
pages, if any, are random—a simple statistical problem remedied by
measuring a large number of landing pages. It may also be that the
page-type differences are common knowledge and the studies are
page-type agnostic. This paper casts doubt on both rationales.

We compare the landing page of a web site with several internal
pages of that site and repeat the analyses for 20,000 pages from
around 1000 web sites. We show that internal pages differ sub-
stantially in content and performance from landing pages; internal
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pages also vary significantly from one another. The differences be-
tween the two page types also vary based on the popularity rankings
of web sites. We manually review more than a hundred web-perf.
studies published at top-tier networking venues and demonstrate
that a significant fraction of them are affected by the exclusion of
internal pages: to apply to internal pages, more than two-thirds of
the relevant studies would have to revise their claims to avoid over-
generalized insights or assertions. Hence we urge that all future
web-perf. work analyze both landing pages and internal pages.

While there is no ambiguity in choosing landing pages, since
there is only one per web site, the recommendation that all web-perf.
studies should include internal pages poses a non-trivial challenge:
How can we select a set of “representative” pages from the available
internal pages of a web site? To address this challenge, we exploit
the key objective behind web perf. studies—improving users’ brows-
ing experience. Given this intent, it is only logical to select internal
pages visited by real users. Thus, we use search engines to find
“popular,” or frequently visited internal pages of web sites; we as-
sume that these pages are representative of the typical internal
pages that users visit at these sites. To this end, we created Hispar
(H), a new top list that includes landing as well as internal pages
of different web sites. Unlike current top lists, which provide only
the domain names of web sites, Hispar comprises complete URLs
of both landing pages and a subset of internal web pages. We use
Hispar to characterize the differences between landing and internal
pages of web sites and ascertain their impact on prior work.

We summarize our contributions as follows.

* We create Hispar with around 1000 highest-ranked web sites
(Hik) from the Alexa Top 1M, selecting for each the landing page
and at most 19 frequently visited internal pages. Hispar uses search
engine results for discovering internal pages. Our experiments
against Hk reveal that internal pages of a web site not only differ
substantially from the landing page, but also from one another. We
release our data set for use by other researchers [50].

* We describe the page-type differences in detail and highlight
the implications of each for prior work. For the latter, we review
more than a hundred web-perf. measurement and optimization
studies published at five premier networking conferences over the
past five years, from 2015 to 2019, and show that two-thirds of the
relevant publications would require some revision for the results
to apply to internal pages.

* We expand H;g to generate a much larger list, Hg, that
includes about 2000 web sites, with one landing and at most 49
internal web page URLs for each web site. We release H,x and
the tools for recreating or customizing Hispar as open source arti-
facts [50]. We discuss the stability of Hispar, present the economic
feasibility of our approach, and outline alternative approaches for
creating the list.

We hope that our findings and recommendations serve as a “call
to arms” to the networking community to include internal pages
when measuring and optimizing the web.

2 IMPACT ON PREVIOUS STUDIES

We conducted a brief survey of research on web performance mea-
surement and optimization published at top-tier conferences and
focused on answering two questions: (a) How prevalent is the use of
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Figure 1: Nearly two-thirds of the web-perf. studies that use
a top list and were published between 2015 and 2019 at 5 top-
tier networking venues would require some revision for them
to apply to internal pages.

#usin, Revision Score
Venue | Pubs. ' 0p list Maj. | Min. | No
IMC | 214 56 9 23 24
PAM | 117 27 7. 10 10
NSDI | 222 11 6 4 1
SIGCOMM | 187 9 1, 6 2
CoNEXT | 180 16 70 5 4

internal pages in such prior studies? (b) For studies that focus only
on landing pages, would the inclusion of internal pages impact their
claims or insights?

We reviewed papers published from 2015 to 2019 at five pre-
mier networking venues, namely ACM Internet Measurement Con-
ference (IMC), Passive and Active Measurement Conference (PAM),
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI), ACM Special Interest Group on Data Communications
(SIGCOMM), and ACM Conference on emerging Networking EXperi-
ments and Technologies (CONEXT). We collected 920 papers in total
and programmatically searched the PDF-versions of these papers
for terms related to the five widely used top lists in the literature,
viz., Alexa [5], Majestic [69], Umbrella [100], Quantcast [88], and
Tranco [84]. We then manually inspected the papers with one or
more matching terms to weed out false positives, e.g., papers that
mention “Alexa” Echo Dot and have nothing to do with the “Alexa”
top list, and those that mention a top list only when discussing
prior work. After eliminating these false positives, we were left
with 119 papers that used at least one of the top lists.

We manually reviewed each of these 119 papers to determine
whether they used internal pages. We found that only 15 (12.6%)
of the papers implicitly or explicitly use internal pages in their
experiments. Seven papers, for example, analyzed web-browsing
traces of users, and we assume that the URLSs in these traces include
both landing and internal pages of different web sites. Another set
of eight papers, involving active measurements, took measures to
include internal pages, either by recursively crawling a web site
or monkey testing (e.g., randomly clicking buttons and links, and
typing text to trigger navigation). The remaining 104 (87.4%) papers
ignored internal pages in their studies.

We evaluated the remaining 104 papers to ascertain how their
claims and insights might change had they included internal pages
in their experiments. We captured the extent of this change via a
revision score (refer Tab. 1) that takes one of three values, viz., No
revision, Minor revision, and Major revision, on an ordinal scale.

No revision implies that the differences between page types
are irrelevant for the study. We assign this label to a study if, for
example, it is a trace-based study and uses a top list only to rank
the web sites in the trace [9] or uses landing pages from a top list,
but mixes in data from other sources to compose their data set [42].

Minor revision implies that although a given study uses a top
list, its insights are not based solely on landing pages. Berger et
al. [14], for example, uses landing pages to evaluate their system,
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but they also conduct three other types of evaluation that are inde-
pendent of or agnostic to page types. Similarly, one of the evaluation
methods in [94] uses only landing pages from a top list to measure
the performance overhead of their system.

Major revision implies that a given research work focuses chiefly
on web page performance but excludes internal pages, or uses only
landing pages to evaluate their proposals. Netravali et al. [76], for
instance, proposes a web page delivery optimization and uses only
landing pages to measure the improvement in page-load times
brought about by the optimization. Bashir et al. [12] report on how
tracking companies use WebSockets for circumventing ad blockers,
but measure the prevalence of this practice only on landing pages.

From the 119 publications we review, we label 41 (34.5%) papers
as requiring no revision, 48 (40.3%) as requiring a minor revision,
and 30 (25.2%) papers as requiring a major revision. In short, the
claims and insights of nearly two-thirds of all web-perf. publications
published in the last five years in these five venues would need at
least a minor revision in order to apply to internal pages. We also
find that most papers do not comment on whether results derived
from the analysis of landing pages also apply to internal pages.
Caveats.  Our survey is limited to five venues, but these are top-
tier conferences with a high bar for research quality. Although the
majority of web-perf. studies published at these venues ignored
internal pages in their experiments, it is hard to generalize our
findings to other venues without further investigation. Lastly, while
the revision scores are coarse and subjective, they are instructive
for understanding the ramifications of this work.

3 THE HISPAR TOP LIST

To determine whether landing and internal pages of web sites
differ significantly, ascertain how they differ, and investigate any
implications for web performance measurement and optimization,
we created a new top list, called Hispar (H). Unlike typical top lists,
Hispar consists of a list of URL sets, one for each web site. The URL
set for a site comprises the landing page as well as a subset of the
site’s internal pages.

We bootstrap Hispar from a top-ranked subset of the Alexa Top
1 million [5] list (A 151) by replacing each domain in the latter with
the landing page as well as a set of internal pages from the corre-
sponding web site. While obtaining the landing-page URL for each
web site in Ay is straightforward, retrieving the internal-pages’
URLs introduces several challenges. It is infeasible to exhaustively
crawl] all internal pages of all web sites. Performing an exhaustive
crawl even on a small scale may be unethical. It may introduce
fake page visits or ad impressions, distort the statistics that the web
site collects, increase the load on the web server, and cost the web
site money by creating bandwidth costs. We limit, hence, the set of
internal pages per web site to at most N pages.

In the absence of a content provider’s support in selecting a set of
representative internal pages from their web site, we turn to search
engines. Specifically, we use the Google Search Engine API [47] to
discover a set of at most N internal pages for each web site. We
opted for search-engine results as they are biased towards what
people search for and click on [70]. The measurements conducted
and optimizations tested on such internal pages are, hence, likely
to reflect and improve the browsing experience of real users. Prior
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work has used search-engine queries with satisfactory results [78],
and this method allows us to avoid exhaustive crawls.

Starting with the most popular site listed in Ay, we examine
the sites one-by-one until Hispar has enough pages. For each web
site w, we used the Google Search Engine API for the term “site:w”
We fix the user’s location for the search queries to the United States,
and limit the search results to pages in the English language. We
restrict our searches to web page URLs and filter out files such
as PDF and Word documents. We drop any w for which there are
fewer than 10 results, which is typically the case with international
web sites that have very few pages in English. We collect the top
N unique web-page URLs (including the landing page) from the
search results for each w.

Using the above methodology, we generated Hispar containing
100,000 web page URLs. Referred to as Hyg, the list contains at
least 2000 URL sets of size N = 50, one for each web site. Each
URL set contains one landing and at most 49 internal pages. We
refresh Hx once every week, and make the lists publicly available
for researchers. The size and refresh rate are limited to reduce the
cost of publishing this (free) list. We release the tools and artifacts
required for regenerating or customizing the lists [50].

We think the list size is sufficient as 93% of studies that received
a major revision score in our survey (in §2), i.e. studies that would
benefit most from this list, measured 100,000 or fewer pages. We
refresh Hyg every Thursday at 11AM UTC. We avoid weekends,
since weekly patterns in Internet traffic affect the Ay list [93],
which we use for bootstrapping Hzx. We also do not randomize
the day of the week to keep the frequency of updates static.

Why “Alexa” and not others?  The choice of using the Alexa top
list to bootstrap Hispar is somewhat arbitrary. Alternatives include
Cisco Umbrella [100], Majestic million [69], Quantcast [88], and
Tranco [84]. Cisco Umbrella ranks web sites based on the volume of
DNS queries issued for the domains as well as the number of unique
client IP addresses requesting a domain’s resolution [54]. The fully
qualified domain names (FQDNss) in the list, as a consequence, do
not necessarily reflect end-user browsing behavior: on 2019-06-15,
4 of the top 5 entries, for instance, were Netflix domains. Majestic
ranks web sites by the number of unique IP subnets hosting servers
that serve pages containing links to a domain, which is more of
a measure of quality than traffic [68]. Tranco combines four lists
including Umbrella and Majestic [84], which we did not want to
use. Between Alexa and Quantcast, we chose Alexa because of its
popularity: only 10 (or 8.4%) out of 119 papers in our survey (§2)
use a top list other than Alexa. The justification notwithstanding,
our study is agnostic to which top list is used for bootstrapping
Hispar, since none of the top lists include internal pages.

Why use search engine results?  Alternative ways of discovering a
web site’s internal pages include, for instance, exhaustively crawl-
ing the web site, collecting links posted on blogs and/or social
media, and gathering frequently visited internal pages from site-
traffic metrics maintained by web sites or reported by browsers.
We preferred search engine results as they combine all three of
the above approaches: Search engines routinely crawl web sites
exhaustively (except pages disallowed via robots.txt [60]), col-
lect links posted on other web sites to rank results (e.g., Google’s
PageRank [91]), and track internal pages frequently searched and
visited by users [70]. Also, more than two-thirds of “trackable” web
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traffic comes from search engines [19], where trackable implies
that the user reached the concerned web page from another web
site (as opposed to entering the page’s URL directly in the browser
or clicking a bookmark). Additionally, search engine results have
empirically proven to be fairly stable, and stability is a desirable
property of a top list [67].

On the stability of Hk

Hk is different from existing top lists in that it has a two-level
structure: web sites at the top and the web pages (or URL sets) of
those sites at the bottom. The top level will inherit, naturally, the
stability (or churn) of the top list used for bootstrapping—#A js in
this case. We observe, for instance, a 20% mean weekly change in the
web sites that appear in Hk. This change is directly inherited from
the Alexa top 5K list, a subset of Ay, that was used to bootstrap
H k. Prior work also observes that the Alexa Top 5K list experiences
about 10% daily change [93].

Additionally, H,x may also experience a churn at the bottom
level: The set of N (internal-page) URLs, selected from search results,
in each URL set at the bottom level may change over time. We
estimate the weekly churn as the fraction of (internal-page) URLs
present in the list on week i, but not on week i + 1 for web sites
present on both weeks. In computing this churn, we assume no
ordering among the pages at the bottom level; although the search
results are ranked, we advise against assigning any meaning to the
ordering of the URLs in a URL set.! We use this weekly churn to
characterize the stability of Hok.

Across a 10-week period starting in February 2020, Hyg expe-
riences a 30% weekly churn in the internal pages at the bottom
level. It is not surprising that inclusion of internal pages introduces
additional churn: nytimes. com consistently remains a popular web
site, but its news headlines change multiple times in a day. Perhaps
the churn in internal pages is even desired as the list should ideally
reflect the changing internal states of the web sites it is representing.
By comparison, a subset of Ajys of the same size as Hyg, Alexa
top 100K, experiences a mean weekly change of 41% in web sites
over the same period. The higher churn in A ;s has not been a
hindrance to using it in web-perf. studies. If the churn in internal
pages in H is deemed too high, we can improve the list’s stability
by using the same techniques that are used to improve the stability
of top lists—averaging the results over longer periods of time as
Pochat et al. suggest [84].

3.1 The 7’(1[(, 7"{t30, ?{t100’ and 7'{1,100 Lists

For the purposes of this study, we created a smaller version of
Hispar, namely H g, with 1000 web sites. We bootstrapped Hx
using the Ay list downloaded on March 12, 2020. The URL set for
each web site in H g consists of one landing page and at most 19
internal pages, comprising 20,000 web pages in aggregate; if the
search for internal pages on a site revealed less than 5 results, we
dropped that site. In addition to making the measurements more
tractable, the smaller top list makes our experiments similar to that
of studies that received a “major” revision score in our survey: 60%
of such studies use 1000 or fewer web sites, and 77% use 20,000 or

ISearch engines do not reveal the exact metric by which the search results are rank
ordered.
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fewer web pages. To demonstrate how the differences between the
landing and internal pages change based on the popularity ranking
of web sites, we also use three different subsets of H;x: The lists
Hi30 and Hyygp consist of the URL sets of the top 30 and 100 web
sites, respectively, of H;g, while the Hj ;9 contains those of the
bottom 100 web sites of H k.

We fetched web pages in H;x by automating the Mozilla Firefox
browser (version 74.0), using the tools from Enghardt et al. [38]. We
performed the page fetches from an Ubuntu 18.04 server with an
Intel 8-core i7 processor and 32 GB of RAM. We shuffled the set of all
landing pages, iterated over this set 10 times, and fetched each page
with an empty cache and new user profile. We then shuffled and
fetched the internal pages in a similar manner, except we fetched
the internal pages for each web site only once.

After each web-page visit using the automated browser, we col-
lected the HTTP Archive (HAR) files [104] from the browser and
data from the Navigation Timing (NT) API [105]. The HAR files
provide various details (e.g., response size and time) about resources
fetched when loading a page, while the NT data provides perfor-
mance measures of the web page fetch and load. To compare and
contrast different characteristic features of internal pages with
those of landing pages, we typically compute the cumulative dis-
tribution function (CDF) of each such feature for each of the two
page types and compare these CDFs. The “landing” CDF is com-
puted over 10,000 values, while the “internal” CDF is computed
over 19,000 values. For each such comparison, we also present the
p-values (D) from a two-sample Kolmogorov-Smirnov test [85],
with the null hypothesis of the test being that the CDFs are not
significantly different (i.e., they have both been drawn from the
same underlying distribution). A low D value, hence, indicates a
high statistical significance, i.e., it is less likely that the samples
were drawn from the same distribution.

Ethical considerations. ~Our measurements do not involve real
users or include any personally identifiable information. When
gathering these measurements, we avoided exhaustive crawls of
web sites to induce minimal load on the web servers and infrastruc-
ture. Measurements over H;x involve 30 page fetches per web site,
spread over 5 days. For the limited-exhaustive-crawl experiments
in §4, we fetched 500 pages each for 5 web sites. These fetches were
also spread out such that there was at least a 5-second gap between
consecutive page fetches. In the unlikely scenario where our web-
page fetches impose undue load on a web server, we took measures
to facilitate web-site owners or administrators to opt out of our ex-
periments. To this end, we modified the HTTP User-Agent header
of our automated browser to include a URL pointing to our project
web page. The project web page describes who we are, the intent
behind the crawl, and a procedure to opt out of the crawls. We did
not, however, receive any opt-out requests, presumably because
our crawl volumes were negligible for an Alexa-ranked web site.

Limitations.  First, our methodology has a sample bias of selecting
the top roughly 2000 web sites from the A, list. We also note that
the magnitude of the differences we observe may not generalize
well to less popular web sites. Second, we do not measure internal
pages that are behind a user log-in, such as the Facebook news feed.

2Qur intent is to compare the observations in two categories—landing and internal
pages. The number of individual samples in the latter suffices to capture the variance
in observations, making it unnecessary to repeat the fetches.
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Figure 2: Overview of differences between landing (L) and internal (I) pages: For web sites in Hik (Hso), (a) 65% (54%) have
landing pages that are larger than the median size of their internal pages; (b) landing pages of 68% (57%) have more objects; and

(c) page-load times of landing pages are smaller for 56% (77%).

Such pages may drastically differ from the landing page as well
as other internal pages. Third, we measure all pages with a “cold”
browser cache, which means that objects fetched while loading the
landing page of a web site do not affect the loading times of internal
pages that may also host a subset of these objects. Lastly, whether
most users navigate to internal pages through the landing page, or
through direct links on search engine results and other web sites,
remains unknown to us.

4 OVERVIEW OF DIFFERENCES

While two arbitrary web pages from the same web site may share
some common objects and resources, they may have also significant
differences in structure, size, and content. In this section, we present
the high-level differences between landing and internal pages that
we discovered.

Differences in size and object count

We begin with a focus on two questions: (a) Are landing and internal
pages similar in size, on average? and (b) Do landing and internal
pages have similar structure, on average?

We defined the size of a web page as the aggregate size of the
constituent objects (i.e., the sum of sizes of all entries in the cor-
responding HAR file) comprising that page. For each web site w
in H;g, we measured the difference in size between the landing
page (i.e., the median size observed across 10 page loads) and the
median size of the internal pages. The CDF of these differences, in
Fig. 2a, indicates that for 35% of the sites, the landing pages are
smaller in size (the shaded region) than the internal pages. For 5%
of the web sites, the median sizes of internal pages are at least 2 MB
larger than the landing pages, while for another 20% they are at
least 2 MB smaller than the landing pages. The geometric mean of
the ratios of page sizes of landing to internal pages reveals that
landing pages are, on average, 34% larger than internal pages. The
size differences also vary substantially with the rank of web sites
(see Fig. 9b in Appendix A).

We used the number of objects in a web page (i.e., the number
of entries in the corresponding HAR file) as a crude approxima-
tion of its structure. Then, to estimate the structural differences
between the two page types, we computed the difference between
the number of objects on the landing page and the median number
of objects across internal pages for each web site in Hk. Fig. 2b

shows the CDF of these differences, indicating that the two page
types are significantly different from one another. For 32% of the
sites, landing pages have fewer objects (the shaded region) than
internal pages. Comparing the shaded region of this plot with that
of Fig. 2a reveals that for 5% of the web sites, the landing pages,
despite having fewer objects, are larger than their corresponding
internal pages. The geometric mean of the ratios of object counts
of landing to internal pages indicates that landing pages have 24%
more objects, on average, than internal pages. The differences in
object count, as with size, vary with web site rank: In H;39, 57% of
web sites have landing pages with higher object count than inter-
nal pages, but that number jumps to 68% in Hp ;g (see Fig. 9c in
Appendix A).

Differences in page load and render times

Now, we turn our attention to two widely used performance metrics
and ask, “Is the time to load and render a page, on average, similar
between landing and internal pages?”

We define the page-load time (PLT) of a web page as the time
elapsed between when the browser begins navigation (i.e., when the
navigationStart event fires) and when it renders the first pixel
(i.e., when the firstPaint event fires). Then, we estimated the
performance difference between the two page types, for each web
site in Hk, using the difference between the PLT of the landing
page and the median PLT of the internal pages. Landing pages in
H i are heavier (Fig. 2a) and have more objects (Fig. 2b). Since these
parameters have implications for PLT [25], we expect landing pages
to have higher PLTs than internal pages. We observe, nevertheless,
the opposite: Landing pages load faster than internal pages for 56%
of the web sites (Fig. 2c). These differences also vary significantly
based on the web site rank: 77% of web sites in H;3p have faster
landing pages than internal pages, but that percentage drops to 59%
in Hp 90 (Fig. 92 in §A). One reason that landing pages load faster
than internal pages could be that resources in landing pages are
more likely to be cached at a CDN (see §5.1), since they are also
likely to be relatively more popular (i.e., more frequently requested
by users). It could also be that web developers optimize the landing-
page design more meticulously than the internal pages, to avoid
frustrating or distracting end users with a slowly loading landing
page. We explore these questions in §5.
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Figure 3: (a) Content on landing pages displays, in the median, 14% faster than that on internal pages (D=0.01). Limited exhaus-
tive crawls of five web sites, Wikipedia (WP), Twitter (TW), New York Times (NY), HowStuff Works (HS) and an academic web site
(AC), show that internal pages differ from landing pages and from each other in (b) number objects and (c) page size.

To address the well-known shortcomings in PLT [34, 38], we also
measured the SpeedIndex (SI) scores [46, 110] of the two page types
using Google’s PageSpeed Insights API [44]. The SI score measures
how quickly the content on a web page is visually populated [110].
A low SI score indicates that the page loads quickly. For each web
site in H;39, we computed the median SI scores of the page types as
follows. We derived the SI scores ten times for the landing page and
computed the median. For internal pages, we derived the score once
for each of the 19 pages, and computed the median of all pages.
Fig. 3a shows that content on internal pages visually loads 14%
more slowly than that on landing pages in the median.

Limited exhaustive crawl

We supplemented the above experiments with an exhaustive crawl
of five web sites. We selected wikipedia.org (WP), twitter.com (TW),
nytimes.com (NY), howstuffworks.com (HS), and csail.mit.edu (AC),
with Alexa ranks 13, 36, 67, 2014, and “unranked” respectively. We
crawled the landing page of each web site and followed links to
internal pages recursively until we obtained at least 5000 unique
URLs for each domain. We fetched the landing pages ten times and
computed the medians of relevant metrics. We randomly sampled
500 URLs from the discovered internal pages, and fetched them
once. The internal pages of these web sites show a large variation
in object counts (Fig. 3b) and page sizes (Fig. 3c). Per these figures,
internal pages differ substantially not only from landing pages, but
also from one another. The distribution of object counts and page
sizes shows that our inferences would not change significantly for
a random subset of 19 internal pages; as such a random selection
would likely not change the median values. Analyzing only 19
internal pages and using the median values of object counts, page
sizes, and PLTs, only limits the magnitude of these differences.

In summary, the differences between landing and internal pages
of a web site are not random. Averaging the results of an analysis
over a large number of landing pages is unlikely to eliminate the
inherent bias in the differences; besides, these differences vary
across popularity ranks. These differences narrow the scope of
studies that rely only on landing pages; virtually all such studies
would have to revise their claims and insights to generalize to all
web pages and not just landing pages. We delve deeper into the
differences between the landing and internal pages and highlight
how they affect prior web-perf. studies in §5 and §6.

5 CONTENT AND DELIVERY

In this section, we analyze the differences between landing and
internal pages in content and in optimizations used for deliver-
ing content quickly. When discussing these differences we also
highlight the implications for select prior web-perf. studies.

5.1 Cacheability

Caching is the most commonly used technique to improve web page
performance. Rather than serving content to users from origin (i.e.,
publisher’s) servers, caching attempts to serve them from servers
in close proximity to the users. The round-trip time (RTTs) of the
network path between the end points in case of the latter is typically
shorter than that of the former. The majority of web content today
is delivered via content delivery networks (CDNs) [31], which often
act as intermediate caches along the path between users and origin
servers. The number of cacheable objects constituting a web page
and the volume of data delivered through a CDN, hence, have a
large impact on web page performance.

To count the cacheable objects in landing as well as internal pages
we analyzed the HAR files generated after fetching a given web page.
We used the HTTP request method and response code to check
whether an object is cacheable [71]. While we cleared the web-
browser cache prior to every page fetch, the state of intermediate
caches (i.e., along the cache hierarchy between the browser and
the server of the content provider) could change depending on the
cacheability of objects. Where the objects of a web page are served
from—the content provider or an intermediate cache—does not,
however, affect the count of (non-)cacheable objects.

Fig. 4a plots the CDF of the number of non-cacheable objects:
Landing pages in H;x have, in the median, 40% more non-cacheable
objects than internal pages. If we measure cacheability, however,
as the fraction of cacheable bytes to the total bytes in the page,
both landing and internal pages have similar cacheability. Landing
pages, hence, have more (non-)cacheable objects by virtue of simply
having more objects in general. The lower PLTs of landing pages
compared to internal pages (refer Fig. 2c), therefore, are not due
to the former having more cacheable content than the latter. This
differential between landing and internal page cacheability also
implies that the effectiveness of a performance optimization such
as caching cannot be generalized to all pages; internal pages might
not benefit as much from caching (or CDNs) as landing pages.
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Figure 4: For web sites in Hik: (a) 66% have landing (L) pages with more non-cacheable objects than their internal (I) pages (10%
more in the median); and (b) landing pages of 57% have a higher fraction of bytes delivered via CDNs (13% more in the median).
Internal pages have, in the median, 10% more JS bytes as a fraction of total bytes, 36% less image bytes, and 22% more HTML/CSS
bytes than landing pages (D < 0.00001 for HTML/CSS, image, and JS bytes)

To determine whether a particular HTTP request was served
through a CDN, we used multiple heuristics (e.g., domain-name
patterns, HTTP headers, DNS CNAMEs, and reverse DNS lookup).
We obtained these heuristics from [99]. Although these heuristics
are neither exhaustive nor necessarily accurate, simply ascertaining
whether the object was delivered by a well-known CDN suffices
for this study. In the web-page-fetch experiments with H g, we
identified more than 40 different CDNs using these heuristics. Then,
we measured the ratio of bytes delivered by CDNs to the total size
of the page.

We observe that in the median, the fraction of bytes delivered
via CDNs for internal pages is 13% lower than for landing pages.
Whether a given object (request) experienced a cache “hit” or “miss”
at the CDN does not have any implications for the above obser-
vation, but it affects the performance (or load times) of the pages.
We suspect that landing pages have more “popular” (i.e., frequently
requested by users) objects, which might lead to a higher cache
hit ratio at the CDN. Measuring whether an object request experi-
enced a cache hit presents, unfortunately, several challenges: Our
measurements are not spread over a long time period; We only
measure from a single vantage point, so our visibility is limited to
the CDN site closest to the vantage point at the time of measure-
ment; and, lastly, the mechanism through which CDNs report a
cache hit or miss is not standardized. We used, nevertheless, the
HTTP X-Cache header (used by at least two major CDNs [3, 39]),
to identify whether a request experienced a cache hit or miss. For
web sites in H;g, we found that cache hits for landing-page objects
are 16% higher than those for internal-page objects, suggesting that
internal pages do not benefit as much from CDNs as landing pages.
Implications for prior work. ~ Vesuna et al. showed that PLTs of web
pages on mobile devices do not benefit as much from improvements
to cache hit ratios as desktop devices [103]. Using 400 landing pages
selected uniformly at random from the Alexa Top 2K list, they show
that a perfect cache hit ratio, compared to no caching, would reduce
PLT by 34% for desktop devices, but only 13% for mobile devices.
We find that landing pages of sites in {;x have more non-cacheable
objects than internal pages; the differences are also not uniform
over the popularity ranks of web sites in H;x (refer §A). Depending
upon the particular random subset of 400 landing pages selected,
Vesuna et al. could underestimate to various degrees the effect

of caching on PLT for those web sites. Similarly, Narayanan et al.
evaluate a new cache-placement algorithm for CDNs using only the
landing pages of 83 randomly chosen web sites from the Alexa Top
1K (40%) and Alexa Top 1M (60%) lists [86]. They report that their
algorithm can reduce PLT by 100 ms or more for 30% of the web
pages. Per Fig. 4b, internal pages have 13% less content delivered via
CDNs than landing pages, and such content will, naturally, draw no
benefits from Narayanan et al.’s placement algorithm. They perhaps
overestimate the PLT decrease, since they did not consider internal
pages in their evaluation.

5.2 Content Mix

The discussion on cacheable objects leads to a broader and a more
general question: Do the landing and internal pages differ substan-
tially in terms of the distribution of the different types of objects
they comprise?

To estimate the distribution of different types of objects consti-
tuting the web pages in Hg, we gathered the MIME types [106] of
objects from the HAR files. We collapsed them into nine categories
(audio, data, font, HTML/CSS, image, JavaScript, JSON, video,
and unkown) to simplify the analyses. We then measured, for each
web site, the relative size of content (i.e., as a fraction of total page
size) in each category. Fig. 4c shows the distribution of the relative
size of content in three different categories. The other six categories
combined only contribute 6% (7%) of the bytes for landing (internal)
pages, and, hence, we omitted them for clarity.

Landing and internal pages of web sites in Hk, per Fig. 4c,
differ substantially in terms of HTML and Cascading Style Sheets
(HTM/CSS), JavaScript (JS), and image (IMG) contents. Internal
pages, in the median, have 50% ]S content (“I: JS”) while landing
pages have 45%—a 10% change. Landing pages also have 22% less
HTML/CSS content than internal pages as a fraction of total bytes.
Conversely, landing pages’ fraction of image bytes (‘I IMG”) is 36%
higher than that of internal pages. These differences could partly
be due to landing pages typically having a few large images (e.g.,
banners) or many small images (e.g., thumbnails of photos related
to various stories on a news web site). The smaller JS content of
landing pages could be due to web-designers intending to keep them
simpler (i.e., fewer computations to be processed by the browser),
thereby helping them load faster than internal pages. Internal pages,
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in contrast, by virtue of containing more JavaScript might load
slower than landing pages, even if they each have the same number
of objects and page size as the corresponding landing page. The
significant differences in contents between landing and internal
pages highlight, once again, that techniques for optimizing landing
pages (which were the focus of virtually all prior work on web
performance optimization) might not be effective, or even feasible,
for internal pages.

Implications for prior work. Butkiewicz et al. conducted a large-
scale measurement study to analyze the complexity of web pages
and investigate the implications for performance measurement [25].
They tested the landing pages of 2000 web sites randomly selected
from the Alexa Top 20K list, and reported that, in the median,
JavaScript constituted 25% of the page size. We find (in Fig. 4c)
that JavaScript contributes, in the median, to 45% of a landing
page’s size,” but that contribution increases to 50% in internal pages.
Therefore, ignoring internal pages in measurement studies such
as [25] would underestimate the amount of JavaScript on the web
and overestimate the amount of multimedia (e.g., images, audio, and
video) content. Performance optimization efforts that rely on such
measurement studies could in turn propose misleading guidelines
for performance improvements.

5.3 Multi-Origin Content

We refer to the content on a web page served from two
or more domains as multi-origin content. The landing
page of www.nytimes.com uses, for instance, the domain
static@1.nyt.com for serving images, cdnjs.cloudflare.com
for objects delivered by the Cloudflare CDN, use. typekit.net and
fonts.gstatic.com for fonts, ad.doubleclick.net for placing
ads via Google DoubleClick, and www.google-analytics.com
for serving scripts for analytics, to name a few. The request to
load such a page will, if the browser’s DNS cache is empty, result
in the browser issuing many DNS queries, one for each unique
domain. Discrepancies in the prevalence of multi-origin content
between landing and internal pages may have implications for
their performance (e.g., PLTs).

We estimated the prevalence of multi-origin content in web pages
in Hig by counting, for each page fetch, the number of unique
domains encountered across all requests issued by the browser to
load that page’s contents. Multi-origin content is more prevalent in
landing pages in H g than in internal pages (Fig. 5): The former has
29% more unique domain names, in the median, than the latter. The
magnitude of these differences also varies over web site popularity
ranks (see §A).

The difference in the number of DNS queries issued between
landing and internal pages, owing to the discrepancies in the preva-
lence of multi-origin content, might, however, be masked by the
local resolver if the DNS responses for the domains queried are
usually found in the local resolver’s cache. Therefore we estimated
the “hit” rate of a resolver’s cache as follows. We picked the top
5K most popular (i.e., most frequently observed) domains from the
Cisco Umbrella list [54], and issued two consecutive queries to our
local (ISP’s) resolver as well as to Google’s public DNS resolver.

3The increase is roughly in line with the increase in JavaScript bytes that HTTP
Archive reports since 2011 [53].
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Figure 5: For web sites in Hik, 67% have landing pages that
fetch content from more origins (29% more in the median).

For each resolver, if the response time for the second query was
significantly lower than the first, we label the first as a cache “miss”
at that resolver; otherwise, we mark the first response as a cache
“hit” For the most popular 5K domains on the Internet, we observed
a hit rate of only about 30% at our local resolver and about 20% at
Google’s public resolver. The low cache hit rates we observe are in
line with previous studies [1, 4], and are mostly explained by the
practice of setting low time-to-live values for request routing [73]
and cache fragmentation at the Google resolver [49]. Caching at
DNS resolvers, hence, does not completely mask the performance
impact of multi-origin content.

Implications for prior work.  Bottger et al. explored the perfor-
mance cost of using DNS over HTTPS (DoH) [52] for web brows-
ing [17]. They crawled the landing pages of Alexa Top 100K web
sites, recorded the number of DNS requests required to fetch each
page, measured the overhead incurred by DoH with respect to the
traditional DNS over UDP, and measured the difference in PLT
resulting from those overheads. They observe, in the median, 20
DNS requests per landing page for web sites in the Alexa Top 100K.
We observe, however, that for most sites in H;x landing pages fetch
content from more origins than internal pages. This difference also
varies over web site popularity ranks. If Bottger et al.’s study was
generalized to internal pages, it would overestimate the count of
DNS requests per page, and consequently miscalculate the cost of
switching over to DoH.

5.4 Inter-Object Dependencies

Downloading and rendering the objects on a web page often re-
quires the web browser to handle complex dependencies between
the objects. A browser might have to fetch, for instance, two objects—
say, a JavaScript and a CSS file—and parse them before fetching
a third object (say, an image). Such relationships between objects
are encoded typically in a data structure called the dependency
graph [66, 76, 108]. Nodes in the graph represent the objects and
the directed edges encode the dependencies between them. We
define the depth of an object as the shortest path from the root
document to that object. Every internal node on this path is an-
other object, which must be downloaded before the download of
the concerned object begins, slowing down the page load process.
On any given page, there is only one object at depth 0—the root
HTML. All object fetches that the root HTML triggers lie at depth
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Figure 6: (a) Landing pages have more objects at each level of depth than internal pages do. In the median, landing pages have
38% more objects at depth 2. (b) 69% of landing pages use at least one HTML5 resource hint, whereas 45% of internal pages have
no hints (D < 0.00001). In the median, (c) landing pages perform 25% more handshakes than internal pages do (D < 0.00001)

1. Below, we analyze objects at depths 2 and greater. (There are far
more objects at depth 1 than at any other depth.)

To analyze the differential between internal- and landing-page

object depths, we fetched the web pages of web sites in H;199 and
Hpy 100, and generated the dependency graph of each page using the
tool from [28]. This tool uses the Chrome DevTools Protocol [29]
to track which object triggers which other object fetches (via the
initiator parameter in the requestWillBeSent event) and build
the graph. We measured the depths of all objects, and compared
the number of objects on landing and internal pages at each depth.
Fig. 6a shows that landing pages have consistently (i.e., in the
50th, 75t and 9oth percentiles) more objects than internal pages
at depths 2 and 3; at depths 4 and beyond, even if the medians are
0, the former has more objects than the latter in the tail (90th / 95th
percentile). Landing pages, by this metric, have a more complex
page structure than internal pages.
Implications for prior work.  There exists a rich body of prior work
that employs one or more variants of the dependency graph to
determine how to improve page-load times [26, 76, 92, 109]. These
optimizations generally work by delivering objects at greater depths
of the dependency graph earlier than the browser would normally
fetch them. Complex dependency graphs present the most oppor-
tunities for these optimization efforts [76]. For evaluation, these
works use only the landing pages from some subset of the Alexa Top
1M, and ignore internal pages. We used a rudimentary approach to
building dependency graphs as the tools used in these studies were
not available. Our measurements nevertheless suggest that landing
pages have more complex dependency graphs than internal pages.
By ignoring internal pages, the aforementioned efforts, hence, may
have overestimated the impact of their optimizations.

5.5 Resource Hints

The interdependencies between objects (§5.4) and the fact that web
pages often serve objects from many different domains make it
hard for a web browser to determine how to optimize the fetch
process and load pages quickly. HTMLS5 resource hints are a recent
attempt to remedy this problem. Resource hints are primitives that
provide hints to the web browser such as which domains it should
connect to (via the dns-prefetch and preconnect primitives),
which resources it should fetch (via prefetch), and which ones to

preprocess (via prerender) in parallel [107]. These web-developer-
provided hints can, if used correctly, result in significant web page
performance improvements.

We inspected the HTML DOM of the web pages in H;g9 and
Hp100 and counted the number of resource hints used in each page.
Fig. 6b shows the CDF of the counts of resource hints used in
internal as well as landing pages. For the web sites measured, we
find that the use of resource hints is more prevalent in landing
pages than internal pages: 69% of landing pages use at least one
resource hint, whereas 45% of internal pages have no hints. This
discrepancy in resource-hint use is even larger for web sites in
Hi100: 52% of internal pages in H;jgp don’t use any hints.
Implications for prior work. ~ We did not find any large-scale study
of the implications of resource hints for page performance, but
there exists anecdotal evidence on how the use of HTML5 resource
hints reduces PLT [80]. Evidently, if a study is conducted in the
future, it would overestimate the prevalence and performance of
these hints if it only considered landing pages. The discrepancy in
resource-hint use also suggests that web developers are optimizing
landing pages more carefully. Since internal pages of more than
90% of web sites in H ;g host or serve content on more than one
domain, web developers must at the very least consider using the
dns-prefetch hint for internal pages. Future work can use our
publicly available lists to carefully evaluate which hints could help
internal pages, and to what extent.

5.6 Round-trip and Turnaround times

The number of objects on a web page correlates with its page-load
time (PLT) [25], because the browser must fetch over the network
each object that is not already in its cache. Ideally, the browser
would fetch all of these objects in parallel, and the PLT would
ultimately depend only on the time it takes to download the largest
object, or simply on bandwidth. Web pages have, however, objects
with complex inter-dependencies (see §5.4) and latency directly
affects their PLT [30]: The browser downloads and parses an object,
discovers other objects that depend on it, and only then starts to
fetch them. HTTP/2 Server Push [13] and QUIC [63] are among
the recent efforts towards increasing parallelism in fetching objects
and reducing the number of round-trips required to fetch objects,
and thus decreasing PLTs. Since the landing and internal pages of
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a web site significantly differ in structure and contents, the efficacy
of these optimizations will also vary between the two page types.

We used the HAR files from our page-fetch experiments to ana-
lyze the time spent in downloading the different objects on each
page in H k. The HAR file breaks down the time spent in download-
ing each object into seven steps: (1) blocked, (2) dns, (3) connect,
(4), ssl, (5) send, (6) wait, and (7) receive.* We treat the com-
bined times of connect and ssl as the total time spent in TCP
and TLS handshakes, and wait as server processing time. Since
the browser typically fetches many objects in parallel, the sum of
handshake times for all objects is only an approximation of the
effect of handshakes on PLT.

We observe that on average, the browser spends the same amount
of time in handshakes prior to downloading an object regardless of
page type. Also, the fraction of objects fetched over new connec-
tions, which require a handshake, is nearly the same on landing
and internal pages. However, landing pages typically have more ob-
jects (cf. §4) and multi-origin content (see §5.3) than landing pages.
As a consequence, landing pages in Hg spend 28% more time, in
the median, performing handshakes than do internal pages. They
also perform, in the median, 25% more handshakes than internal
pages do (Fig. 6¢). Per these observations, internal pages would
benefit less than landing pages from efforts that reduce the number
of round-trips involved in a handshake, such as QUIC [63], TCP
Fast Open [89], and TLS 1.3 [90]. Ignoring internal pages in the
evaluation of such optimizations could exaggerate their benefits.

In our experiments, about half of the time it takes to download
an object is, on average, spent in the wait step. A browser’s request
to fetch an object might have to spend time in wait for several
reasons, e.g., stalls or processing delays at the server, and queu-
ing delays along the route. We find that objects in internal pages
spend 20% more time, in the median, than those in landing pages
(Fig. 7). This finding combined with the earlier observation that
internal-page fetches result in more cache “misses” at the CDN
(cf. §5.1) suggests that the larger wait times are perhaps due to the
turnaround or processing times at the CDN servers. CDNs have
a complex hierarchy of servers acting as a multi-level cache to
quickly and efficiently serve objects to users. Since most objects
on a web page are rather small [63] and the connections between
different CDN servers as well as those between the CDN and origin
(or content-providers’) servers are typically persistent [96], the time
to download an object is dominated by the round-trip time between
the CDN servers or between the CDN server and the origin server.
These findings suggest that internal pages induce more back-office
web traffic than landing pages at the CDN, and are, thus, affected
more by the latency experienced in the CDN backhaul.
Implications for prior work. Research efforts over the past few
years have renewed the networking community’s interests in under-
standing and improving latency in the Internet backbone [15, 18, 95].
There have also been other efforts that focus on minimizing the
number of round-trips in the upper layers of the network-protocol
stack [13, 63, 89, 90]. None of these efforts, however, point out
how landing pages are already significantly faster than internal
pages despite the former being heavier than the latter. They do
not examine how physical-layer latency improvements or protocol

4We refer the reader to [104] for a detailed description of these steps.

W. Ageel, B. Chandrasekaran, A. Feldmann, B. M. Maggs

\

0.2 of Internal

- Landing =—=—-

0 i | i | i | i

0 40 80 120 160 200
Time spent in wait (ms)

Figure 7: Objects on internal pages spend 20% more time in
wait than those on landing pages (D < 0.00001).

optimizations would help in speeding up the slowest parts of the
web, comprising the internal pages of web sites. Recent follow ups
on measuring the performance impact of QUIC and other proto-
cols [111, 112] also ignore internal pages. Having both the design
and the evaluation parts of web performance optimization efforts
completely ignore internal pages can be dangerously misleading to
research as well as practice.

6 SECURITY AND PRIVACY

Below, we discuss how including the internal pages of web sites
could affect analyses pertaining to security and privacy of the web.
As in prior sections, we follow up our observations with implica-
tions for relevant prior work.

6.1 HTTP and Mixed Content

The use of (cleartext) HTTP for serving web sites has well-known se-
curity pitfalls, e.g., session hijacking and man-in-the-middle attacks.
Owing to a concerted effort from developers, content providers,
and web browsers, the majority of web content today is served over
(secure) HTTPS [48]. There are numerous ongoing efforts to fur-
ther improve the users’ security and privacy through technologies
like Certificate Transparency (CT) [64] and HT TP Strict Transport
Security (HSTS) [51]. In this section, we simply ask whether the
security attributes of landing pages are similar to those of internal
pages.

We found only 36 of the 1000 web sites in Hik to serve their
landing pages over HTTP; the rest redirected to HTTPS versions.
Among the web sites with secure landing pages, we discovered
that 170 web sites had at least one HTTP internal page (Fig. 8a). In
most cases, the same domain was hosting the non-secure internal
page (e.g., http://www.fedex.com/us/international/) while in others,
a seemingly secure internal page was found redirecting to a non-
secure page on a different domain (e.g., https://www.amazon.com/
birminghamjobs redirected to a plaintext page on amazon. jobs,
which has now moved to HTTPS.) We regret such poor practices,
particularly in well-known web sites such as amazon.com, ebay.com,
and adobe.com.

We also analyzed the web sites in H g for pages hosting mixed
content. A web page served over HTTPS is called a mixed-content
page if it includes content fetched using (cleartext) HTTP. The
presence of mixed content could undermine the security of a web
page. Mixed content may, for instance, leak information about a


http://www.fedex.com/us/international/
https://www.amazon.com/birminghamjobs
https://www.amazon.com/birminghamjobs
amazon.com
ebay.com
adobe.com

On Landing and Internal Web Pages

IMC ’20, October 27-29, 2020, Virtual Event, USA

60 1 e

£ v

5 0.8 e

(o] 4

O 40 / s

w w 0.6 w K

0 =) v a

% 20 2 o4 °

a 0.2 g Internal

= H E . Landing ==<=-

0 ] i 2 2] ol 2 0 il il i 0.2 il i il i
0 5 10 15 20 1 100 1 10 100
Count of insecure internal pages Unseen third-parties Number of trackers
(@) (c)

Figure 8: For web sites in Hik, (a) 170 have secure landing pages but at least one non-secure internal page, 36 have 10 or more; (b)
internal pages collectively contact, in the median, 18 third parties that are never seen on the landing page of the same web site;
(c) at the 80th percentile, landing pages make 40% more tracking requests (D < 0.00001).

user’s browsing behavior, and expose content to man-in-the-middle
attackers. Some web browsers flag such pages by showing a visible
warning to the user and some simply refuse to load the page. We
searched for only “passive” mixed content (i.e., when images and
other static resources are served using HTTP on an HTTPS page),
since “active” mixed content (e.g., JavaScript) is blocked by default
on most browsers [27]. We found that while only 35 web sites in
H 1k have landing pages with (passive) mixed content, 194 have at
least one mixed-content internal page. Since we fetched only 19
internal pages per web site in H g, our estimates of the prevalence
of (cleartext) HTTP and mixed content are probably only the lower
bounds.

Implications for prior work. There have been numerous stud-
ies on HTTPS adoption using various data sources such as top
lists [61], DNS zone files [10], Certificate Transparency logs [102],
port scans [35], and real user traces [40]. Unfortunately, all these
data sources except for the real user traces exclude internal pages
of a web site. Felt et al. studied HTTPS adoption, using real traces
as well as other data sources, among popular web sites using top
lists [40]. Paracha et al. recently studied the prevalence of non-
secure internal pages in web sites with secure landing pages, and
content differences between HTTP and HTTPS versions [82]. We
did not find any prior work on the prevalence of HTTPS pages
redirecting to HTTP pages.

6.2 Third-Party Dependencies

Modern web pages depend on a large number of third-party content
including, but not limited to, static content served from a CDN,
analytics, and advertising. Such dependencies offer a lucrative at-
tack vector for malicious actors to, for example, take down a large
portion of the web by compromising one entity. A web page on
domain a could access third-party content on domain b, which in
turn could depend on other third-party content on domain c. These
third-party dependencies can be encoded in the dependency chain
a — b — c. Below, we investigate if the landing page sufficiently
represents the dependency chains for a web site.

The domain in the URL of an object on a page is considered a
third-party domain if it does not belong to the same second-level
domain (SLD) as the page being fetched. For example, for a web page
on www. guardian.com, cdn.akamai.comis a third-party domain,
but images. guardian. com is not. We take public (domain) suffixes

into consideration to ensure that, for instance, tesco. co.uk will
be a third-party domain for bbc.co.uk. Our method is prone to
false positives in case of the same organization owning different
domains: microsof't.comis counted as a third-party on skype. com.
Such false positives should, however, be similar for both page types,
and thus would not introduce a systemic bias.

For this study, we focused only on the unique third-parties in-

volved and ignore the dependency relationships among them. We
counted, hence, the number of unique third-party domains observed
on at least one internal page but never on the landing page. We
find that, in the median, internal pages collectively fetch content
from 18 third-party domains that are not used in the corresponding
landing pages (Fig. 8b). Also, per Fig. 8b, for 10% of the web sites
in Hjk, internal pages fetch content from 80 or more third-party
domains that are not observed on the landing pages.
Implications for prior work.  Ikram et al. fetched the landing pages
of web sites in Alexa Top 200K and built dependency chains of
resources for each web site [55]. They used an antivirus aggregator
tool and reported that 1.2% of the third-party domains are malicious.
Similarly, Yue et al. measured the amount of third-party JavaScript
on web sites using a data set comprising 6805 landing pages [113].
We find that collectively, internal pages of a web site fetch content
from a much larger number of third-parties than landing pages.
The aforementioned prior work, hence, would underestimate the
dependency structure for a web site as a whole. Urban et al. have re-
cently studied the differences in third-party dependencies of landing
and internal pages, and their results largely agree with ours [101].
There are also a few other studies that address similar problems
but include internal pages in their analyses [62, 78, 97].

6.3 Ads and Trackers

While advertisements help content providers monetize content, the
pervasive tracking, monitoring, and profiling of users purportedly
for targeted ad placements and customization has faced strong crit-
icism from both industry and end users [32, 33, 75]. The advent
of GDPR, furthermore, has led to significant changes in the use of
trackers as well as end-user-data collection practices. With signifi-
cant differences in content across landing and internal pages, we
simply ask, in this section, if the use (or the lack thereof) of ads
and trackers is consistent across the two types of pages.



IMC ’20, October 27-29, 2020, Virtual Event, USA

To detect advertisement and tracking related requests, we used
the Brave Browser Adblock library [20] coupled with Easylist [37].
Easylist is a list of over 73,000 URL patterns associated with online
ads and tracking. Popular ad blockers, such as AdBlock Plus, and
uBlock Origin use this list. We counted all HTTP requests on a web
page that would have been blocked by Brave Adblock. We label
all such blocked requests as those corresponding to trackers for
ease of exposition. The CDFs of the number of trackers per page
(in Fig. 8c) reveal that at the 80th percentile, internal pages have
20 tracking requests while landing pages have 28. Furthermore, in
about 10% of the web sites in H, internal pages have no trackers
while the corresponding landing pages do.

Header bidding (HB) is a new online advertising technology that

initiates ad auctions from the browser instead of relying on an ad
server (see [11] for detail). We used the open source tools from [11]
to analyze HB ads in H;99 and Hp ;99 Out of the 200 web sites,
we find that 17 have HB ads on landing pages. An additional 12
web sites have such ads on internal pages, but not on the landing
page. We also find that among web sites that have HB ads, internal
pages have 7 ad slots in the 80" percentile whereas landing pages
have 9. The differing use of advertisements and trackers between
landing and internal pages has implications especially for studies
measuring compliance to GDPR and privacy leakage.
Implications for prior work.  Pachilakis et al. crawled the landing
pages of the top 35K web sites, and detected 5000 that have header
bidding ads [81]. Then, they crawled these web sites daily for 34
days and report on the number of ad slots and many other metrics.
Owing to the exclusion of internal pages, this study will miss web
sites that have HB ads only on internal pages. Lerner et al. present a
seminal study of user tracking from 1996 to 2016 [65]. They use the
Wayback Machine [56] to crawl the Alexa Top 500 web sites, and
report extensive historical trends on the trackers, techniques, and
prevalence found on these web sites. Based on our observations,
this study will overestimate tracker activity on the web, since it
considers only landing pages.

7 ON SELECTING INTERNAL PAGES

Selecting a “representative” set of internal pages from a web site
without any traffic measurements is hard. In addressing this prob-
lem and creating Hispar, we used search engine results. Retriev-
ing search results using a search-engine API, however, is not free.
Google (Bing) charges, for instance, $5 ($3) per 1000 queries [47, 72],
although Bing is effectively cheaper because it returns more results
per query. However, we encountered some bugs in Bing’s API and
instead opted for Google. Generating a list of 100,000 URLs using
Google would require at least 10,000 queries, and under standard
pricing, would cost $50. Many queries return, however, less than
10 unique URLs; hence our cost has consistently been around $70
per list. About half of the studies that received a “major” revision
score in our review (§2) used 500 or fewer web sites. Including up
to 50 internal pages per web site for these studies would cost less
than $20. We provide, nevertheless, the weekly Hk lists of 100,000
URLSs free of charge for the community’s convenience, and to spur
future web-perf. studies to include internal pages. We now discuss
other approaches to selecting internal pages.
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Involve publishers. ~Web page performance is of paramount im-
portance to publishers since poor performance often translates to a

significant loss in revenue [2, 22]. Hence, publishers are most likely

to be interested in determining whether a given optimization (e.g.,
using a specific CDN to reduce page-load times) is representative,
i.e., whether it generalizes to the majority of the site’s pages. Pub-
lishers can either select a set of internal pages or even construct a

set of synthetic internal pages that serve as a good representation

of the internal pages on their site. These samples can be published

at a Well-Known URI [79] or through extension of mechanisms

like robots.txt [60]. This approach is similar in purpose to web-
standards compliance and browser-performance benchmarks (e.g.,
Acid3 [98], Kraken [57], and JetStream2 [21]), albeit implemented in

a more distributed way: Each publisher specifies a benchmark—the

representative internal page(s)—that we must use for any perfor-
mance measurement or optimization on their web site. Ensuring

that this set of internal pages does not go stale as the site contents

change, however, is a challenging task.

Nudge web-browser vendors. Major web-browser vendors such

as Mozilla and Google already collect anonymized user data (e.g.,
URLs of web pages visited by the end users) via projects such as

Telemetry [74] and CrUX [45], respectively. Such data can also be

gathered from Google Analytics and other user-tracking platforms

that a majority of the Alexa Top 1M web sites already use [24].
Web-perf. efforts will immensely benefit if such projects make their

anonymized data sets publicly available. Indeed, Alexa and other

top-list providers may leverage their existing vantage points to help

select internal pages in different web sites. Although web content

may significantly differ based on query parameters, session data,
cookies, location, and time, publishing at least the most popular

URLs from such data sets will be the first step towards improving

web-perf. measurement. Sharing this aggregated data does not

violate the privacy of end users.

Learn web page characteristics. ~ We could also use machine-learning
tools to learn the structure and characteristics of different web pages.
Augmented with other parameters such as the end-user’s bandwidth

and last-mile latency, the learned model can help in evaluating how

a given optimization will perform under various scenarios, each

representing a page with a distinct set of characteristics.

8 RELATED WORK

There is an extensive body of literature on web performance mea-
surement and optimization, dating all the way back to when the web
came into existence [43]. Several useful guidelines on conducting
sound Internet measurements have also been published [7, 8, 36, 83].
Nearly every aspect of web-perf. studies has also faced extensive
scrutiny [16, 23, 38, 46, 59, 67, 77, 84, 93]. Our work is orthogonal
to these studies and shines light on a heretofore neglected aspect:
the exclusion of internal pages in web-perf. studies.

Recently, Scheitle et al. showed that the choice of top lists such as
Alexa and Quantcast has implications for web-perf. studies because
of a lower than expected overlap among these lists [93]; they also
show that there is considerable churn within a given list. Pochat et
al. provide a new top list that averages four different lists over 30
days [84]. However, these efforts do not address the problem that
such top lists can only be directly used for landing pages.
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Kaizer and Gupta’s work on how the privacy-related behavior
of web sites differs based on whether the user is logged in or not is
most similar to our work. [58] To the best of our knowledge, our
work is the first one to highlight the intrinsic differences between
landing and internal pages of web sites and their impact on past
research.

9 CONCLUSION

We compared the landing page with a set of internal pages for 1000
web sites, constituting Hispar Hk, and discovered that landing
pages differ substantially from internal pages. These differences
have implications for virtually all web-perf. studies that examined
simply the landing pages. We manually reviewed more than a hun-
dred different web-perf. studies published at top-tier conferences
and found that about two-thirds of the studies would have to be
revised if they were to apply to internal pages.

We released our measurements data set and analyses scripts for
use of other researchers. We also made Hispar, including all its
weekly updates, and tools required for customizing or regenerating
the list publicly available [50].

Armed with the insights and tools from this study, we hope that
future work on web performance measurement and optimization
will start including the larger, slower, and neglected part of the
web for more sound measurements, optimizations, and evaluations.
While we provide several suggestion on selecting internal pages,
we hope that our study paves the way for a discussion concerning
the selection and curation of internal pages, and eliciting support
from content providers, search engines, and browser vendors to
generate a rich and scalable version of Hispar, or an even better
alternative.
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A TRENDS IN DIFFERENCES

In this appendix, we highlight how some of the differences between
landing and internal pages that we discussed earlier (in §4 and §5)
vary based on the popularity ranking or (Alexa) category of web
sites.

To investigate how page-type differences vary for a certain met-
ric p (e.g., page size, number of domains contacted), we calculated
the difference (Ap) between the value of u for the landing page
and the median value of y for that web site’s internal pages. We
then divided the web sites in HH;k into bins of size 100 each based
on their popularity ranks in A ys. Last, we calculated the median
values of Ay for each rank bin and plotted them as a function of
the rank bins.

We see a trend reversal in page-load time difference over pop-
ularity ranks (Fig. 9a): APLT is negative for most rank bins, i.e.,
landing pages are generally faster than internal pages. For web sites
with ranks between 400 and 600, APLT is, however, positive (up to
100 ms), implying that landing pages of these web sites are slower
than their internal pages. Although there is no reversal in trends
for page size (Fig. 9b) and object count (Fig. 9c), the magnitude of
difference varies significantly based on popularity ranks.

We also observe trend reversals for the number of non-cacheable
objects (Fig. 10a) and unique domain names (Fig. 10b) found on
landing versus internal pages. For web sites between ranks 200
and 300, landing pages have 24 more non-cacheable objects (and
11 more unique domain names) than the corresponding internal
pages. Between ranks 900 and 1000, however, landing pages have 8
fewer non-cacheable objects (and 2 fewer unique domain names)
than the corresponding internal pages.

Last, we discover a category-based reversal in page-load time
(PLT): For almost all Alexa top-level categories of web sites, the
majority of landing pages are faster than the corresponding median
internal page, but for the World category, the majority of landing
pages are slower. Fig. 10c plots the difference between the landing-
page PLT and median of internal-page PLTs for each web site in
two categories, World and Shopping. The Shopping category follows
the general trend (as in Fig. 2c): for about 77% of web sites, landing
pages are faster than internal pages. The World category bucks the
trend: For about 70% of the web sites, landing pages are slower
than internal pages. The World category contains web sites that
are popular internationally, but not in the U.S. (e.g. baidu. com).
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Figure 9: Differences between landing (L) and internal (I) pages vary significantly based on popularity ranks for (a) page-load
times, (b) total page size, and (c) number of objects. Top 100 and bottom 100 web sites by popularity rank are highlighted.
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Figure 10: Trend reversals in differences between landing (L) and internal (I) pages for (a) non-cacheable objects and (b) unique
domain names. (c) Landing pages in World category are generally slower than internal pages, whereas they are faster in Shopping.

Objects in these web sites would probably not result in cache “hits”
at the CDN if fetched from the U.S. as we did. These web sites may
not even be served from a CDN site in North America.

The differences between landing and internal pages are not uni-
form, but vary significantly based on popularity ranking of the
concerned web site. The number of objects on landing pages, for
instance, is not simply a constant multiple of the objects on internal
pages. Hence, researchers should actually measure internal pages
(in addition to landing pages) for their insights to generalize to a

whole web site.
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