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Abstract—We study the problem of extracting random
bits from weak sources that are sampled by algorithms
with limited memory. This model of small-space sources
was introduced by Kamp, Rao, Vadhan and Zuckerman
(STOC’06), and falls into a line of research initiated by
Trevisan and Vadhan (FOCS’00) on extracting randomness
from weak sources that are sampled by computationally
bounded algorithms. Our main results are the following.

1) We obtain near-optimal extractors for small-space
sources in the polynomial error regime. For space
s sources over n bits, our extractors require just
k > s - polylog(n) entropy. This is an exponential
improvement over the previous best result, which
required entropy k > st - glog” i n (Chattopadhyay
and Li, STOC’16).

2) We obtain improved extractors for small-space
sources in the negligible error regime. For space s
sources over n bits, our extractors require entropy
k > pt/2te . 51/2_5, whereas the previous best
result required k& > n?/3+% . s1/37% (Chattopadhyay,
Goodman, Goyal and Li, STOC’20).

To obtain our first result, the key ingredient is a
new reduction from small-space sources to affine sources,
allowing us to simply apply a good affine extractor.

To obtain our second result, we must develop some
new machinery, since we do not have low-error affine
extractors that work for low entropy. Our main tool is
a significantly improved extractor for adversarial sources,
which is built via a simple framework that makes novel use
of a certain kind of leakage-resilient extractors (known as
cylinder intersection extractors), by combining them with
a general type of extremal designs. Our key ingredient
is the first derandomization of these designs, which we
obtain using new connections to coding theory and additive
combinatorics.

Index Terms—adversarial sources; affine sources; de-
signs; explicit constructions; extremal hypergraphs; ran-
domness extractors; small-space sources

I. INTRODUCTION

Randomness is a powerful computational resource that
has found beautiful applications in algorithm design,
cryptography, and combinatorics (see [1] for an excellent
survey). Unfortunately, such applications require access
to uniform bits, but randomness harvested from natural
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phenomena (e.g., radioactive decay, atmospheric noise)
rarely looks so pure. Such motivates the study of ran-
domness extractors, which are algorithms that convert
these weak sources of randomness into distributions that
are close to uniform:

Definition I.1 (Randomness extractor). Let X be a
family of distributions over {0,1}". A function Ext :
{0,1}™ — {0,1}™ is an extractor for X with error € if
for every X € X,

IExt(X) — Up| < e,

where U, is the uniform distribution over {0,1}™, and
| - | denotes statistical distance.

Beyond purifying natural sources of randomness, ex-
tractors have found deep connections to complexity
theory, cryptography, coding theory, and combinatorics
(see, e.g., [11, [2]). Constructing these objects has thus
produced a fruitful line of research over the past 30
years, where various distribution families X and errors
€ have been considered depending on the motivating
application.

In order for extraction to be possible, each source X €
X must have some randomness. In this field, it is stan-
dard to measure the randomness content of X as its min-
entropy, defined as H.(X) := min, log(1/Pr[X =
x]). Unfortunately, it turns out that a min-entropy re-
quirement alone is not enough to enable extraction.
Indeed, an easy folklore argument shows that even if
every source X € X has min-entropy £ > n — 1,
there cannot exist an extractor Ext for X’ that achieves
nontrivial error € < 1/2.

To circumvent this impossibility result, researchers
have considered two main directions. In the first di-
rection, one assumes that each source X € X comes
with a uniform seed U, , which can be used to extract
uniform bits from the rest of the source, which has some
min-entropy guarantee. Extractors in this setting are
called seeded extractors, and near-optimal constructions
of these objects are now known [3]-[5]. In this paper, we
focus on the second direction, where one assumes each
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source X € X has some additional structure beyond its
min-entropy guarantee.

a) Samplable sources: One natural way to equip
each distribution X € X with some additional structure
is to assume that it can be sampled efficiently, i.e.,
generated by an algorithm that has limited computational
resources. Such sources were introduced by Trevisan
and Vadhan [6], under the suggestion that they are a
good model for distributions that would actually arise in
nature. In [6], and the follow-up works of Viola [7] and
Li [8], the authors consider circuit sources: distributions
that can be sampled by small circuits. Such sources can
be thought of as distributions sampled by algorithms with
limited time.

In this paper, we consider distributions that can be
sampled by algorithms with limited memory. Known
as small-space sources, this family of distributions was
introduced by Kamp, Rao, Vadhan, and Zuckerman
[9], and further studied in recent work [10], [11]. To
define this class of sources formally, one uses branching
programs to model the evolution of state in the small-
space algorithm. A branching program of width w and
length n is a directed acyclic graph with n + 1 layers,
where the first layer has one node, the remaining layers
have w nodes each, and every edge starting in layer ¢
terminates in layer ¢ + 1. Small-space sources are then
defined as follows.

Definition 1.2 (Small-space source). A distribution X
over {0,1}™ is a space s source if it is generated by a
random walk starting on the first layer of a branching
program of width 2° and length n, where each edge is
labeled with an output bit and transition probability.

Beyond their motivation in modeling distributions that
one might actually find in nature, small-space sources
are powerful enough to capture several other well-
studied models. As noted in [9], small-space sources
can simulate: von Neumann’s model of a coin with
unknown bias [12]; the finite Markov chain model of
Blum [13]; the space-bounded models of Vazirani [14]
and Koenig and Maurer [15], [16]; and the popular
models of oblivious bit-fixing and symbol-fixing sources
[17], [18] and independent sources [19]. In fact, it is
suggested in [9] that the only model of sources that
appears unrelated to small-space sources is the class of
affine sources [20].

A. Summary of our results

In this paper, we explicitly construct two significantly
improved extractors for small-space sources. Along the
way, we prove a new structural result for small-space
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sources, and provide new explicit constructions of sev-
eral related pseudorandom objects. Our extractors follow
easily from these new key ingredients, which may be
of independent interest. We formally state these results,
below.

1) Small-space extractors for polylogarithmic en-
tropy: In our first main theorem, we construct near-
optimal extractors for small-space sources in the poly-
nomial error regime.

Theorem 1. There exists a universal constant C > (
such that for all n,k,s € N satisfying k > s - log® (n),
there exists an explicit extractor Ext : {0,1}" —
{0,1}™ for space s sources with min-entropy k, which
has output length m = (k/s)*") and error € = n=(),

Thus, our extractor requires min-entropy k > s -
logc(n), which is an exponential improvement over the
previous best requirement [10] of k > sb-1 . 2loe” ' (n),
In particular, in the natural setting of sources sampled
by s = polylog(n) space algorithms, our extractor is the
first construction that works for polylogarithmic entropy.
Non-constructively, it is known that small-space extrac-
tors exist for min-entropy k > O(s + logn + log(1/€)),
and thus our result is nearly optimal when the desired
error is at most polynomially small.

The key ingredient we use to prove Theorem 1 is
a new structural result, which establishes a connection
between small-space sources and affine sources. An
affine source X over n bits with min-entropy k is a
distribution that is uniform over some (unknown) k-
dimensional affine subspace of F5. A long line of work
has considered the problem of constructing extractors for
affine sources [8], [20]-[26], and in this work we show
that such extractors can also extract from small-space
sources. In particular, we prove the following.

Theorem 2. Let X be a space s source over {0,1}™ with
min-entropy k. Then X is 2=2%) _close to a convex com-
bination of affine sources with min-entropy Q(W)

By combining this structural result with the explicit
affine extractor of Li [8], which works for polylog(n)
min-entropy and has polynomially small error, we im-
mediately obtain Theorem 1. Furthermore, if we are only
interested in outputting one bit with constant error, we
can use the recent affine extractor of Chattopadhyay,
Goodman, and Liao [26] to extract from small-space
sources with min-entropy & > s - log>"° (n).

2) Small-space extractors with exponentially small
error: While polynomially small error suffices for many
applications, it is sometimes important to achieve neg-
ligible error in applications such as cryptography [27].
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However, since the best low-error affine extractors re-
quire entropy k > Q(n/v/loglogn) [22]-[24], Theo-
rem 2 does not yield any new result in the negligible
error setting.

In our next main result, we develop some new machin-
ery in order to obtain improved low-error extractors for
small-space sources. Until recently, the best extractors
for such sources [9] required entropy k > Cn'=7s7,
where v > 0 is some tiny constant and C' is a large
one. In [11], the entropy requirement was improved to
k > Cn?/3t951/3=9 We reduce this entropy require-
ment further, and prove the following.

Theorem 3. For any fixed § € (0,1/2] there is a
constant C' > 0 such that for all n,k,s € N satisfying
k > Cn'/?%051/2=0 there exists an explicit extractor
Ext : {0,1}™ — {0,1}™ for space s sources of min-
entropy g{c(,l)with output length m = n®*Y and error
e=2"" .

Observe that the line of improvements described above
(from [9] to [11] to Theorem 3) is strict, since we always
have s < n (or else the bounds are trivial). In particular,
note that for, say s = n’ space, the entropy requirement
has dropped from k > O(n'~7) to k > O(n?/3+%) to
k > O(n1/2+5).

To prove Theorem 3, we start with the standard
approach [9] of reducing small-space sources to the class
of adversarial sources [11]. Informally, an adversarial
source X consists of many independent sources, where
only a few of them are guaranteed to be “good” (i.e.,
contain some min-entropy). Formally, an (N, K, n,k)-
adversarial source X consists of N independent sources
X4,...,Xy, each over n bits, with the guarantee that
at least K of them have min-entropy at least k. Such
sources have applications in generating a (cryptographic)
common random string in the presence of adversaries,
and in harvesting randomness from unreliable sources.

To prove Theorem 3, we explicitly construct signifi-
cantly improved extractors for adversarial sources:

Theorem 4. There is a universal constant C > 0
such that for any fixed 0 > 0 and all sufficiently large
N,K,n,k € N satisfying k > logcn and K > N?,
there exists an explicit extractor Ext : ({0,1}")N —
{0,1}™ for (N, K,n, k)-adversarial sources, with out-
put length m = k%Y and error € = 9~k

Previously, the best extractor for this setting [11]
required K > NO95te(1) good sources, and our im-
provement to K > N? is crucial in obtaining better
extractors for small-space sources. An added bonus is
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that our extractor construction is arguably much simpler
compared to [11].

To prove Theorem 4, we develop a simple new
framework for extracting from adversarial sources by
combining (i) a general type of combinatorial design;
and (ii) a specific kind of leakage-resilient extractor
[28], [29]. While such leakage-resilient extractors were
recently constructed explicitly in [29], the only known
construction of such designs is probabilistic [30].

Thus, the key ingredient we use to prove Theo-
rem 4, and subsequently Theorem 3, is the first ex-
plicit construction of such designs. In more detail,
an (n,r,s)-design is an r-uniform hypergraph over n
vertices with pairwise hyperedge intersections of size
< s. To instantiate our framework, we need explicit
(n,r,s)-designs with small independence number' o.
Previously, Chattopadhyay, Goodman, Goyal and Li [11]
constructed (n, 3, 2)-designs with independence number
a < 0(n%923). To obtain our improved extractors in
Theorems 3 and 4, we need designs with much smaller
independence number. Our final main theorem constructs
exactly such designs.

Theorem 5. For all constants v > s € N with r
even, there exist explicit (n,r, s)-designs (G )nen with
independence number

a(Gp) < O ™).

Theorem 5 gives the first derandomization of a result
by Rédl and Sinajova [30], and our explicit designs are
optimal up to a factor of 2 in the power. We show that
it is easy to extend Theorem 5 to also work for odd r
(up to a small loss in parameters), and we also show
that our construction remains explicit for most super-
constant r,s. We refer the reader to the full version of
the paper for more details.

Finally, we can combine our explicit designs with
the leakage-resilient extractors from [29] to obtain our
improved adversarial sources (Theorem 4), which imme-
diately yields our improved extractors for small-space
sources (Theorem 3). It is known that the technique of
reducing small-space sources to adversarial sources has a
barrier at min-entropy +/n. Thus, the result in Theorem 3
has almost the best parameters one can hope to achieve
using this technique.

II. OVERVIEW OF TECHNIQUES

We use this section to sketch the explicit constructions
of our small-space extractors. We start with our low-error

IRecall that an independent set in a hypergraph is a subset of
vertices that contain no hyperedge, and the independence number of a
hypergraph is the size of its largest independent set.
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small space extractors (Theorem 3) and the ingredients
that go into it (Theorems 4 and 5). Then, we sketch
the construction of our small-space extractor for poly-
logarithmic entropy (Theorem 1) and its key ingredient
(Theorem 2).

A. Small-space extractors with exponentially small error

To construct our low-error small-space extractors, the
first step is to use a standard reduction [18] (which we
slightly optimize) from small-space sources to adversar-
ial sources. This reduction starts with the observation
of [9] that if we chop up the small space source X
into ¢ consecutive (equal-sized) chunks, and condition
on any fixing of the vertices reached at the end of each
chunk in the random walk that generates X, then these ¢
chunks become ¢ independent sources. Furthermore, if X
originally had k bits of entropy, then it follows from the
entropy chain rule that X will still have roughly k& — st
bits of entropy. A Markov argument then shows that at
least a few of the ¢ sources will have relatively high
entropy. In other words, X now looks like an adversarial
source, and we may now focus on constructing (low-
error) extractors for adversarial sources.

a) Improved low-error extractors for adversarial
sources: To construct our low-error extractors for ad-
versarial sources, we develop a new framework that
combines a certain type of leakage-resilient extractor
(LRE) with the (n,r,s)-designs discussed earlier. An
LRE for r sources offers the guarantee that its output
looks uniform even conditioned on the output of many
leakage functions, each called on up to r — 2 of the
same inputs fed to the original LRE. Furthermore, recall
that an (n, r, s)-design is an r-uniform hypergraph over
n vertices with pairwise hyperedge intersections of size
< s.

Now, given an (N, K, n, k)-adversarial source X, we
extract from it as follows, using an LRE and an (N, r, r—
1)-design G with independence number a(G) < K.
First, we identify the vertices of our design with the NV
independent sources in X. Then, for each hyperedge in
our design, we call a leakage-resilient extractor on the
r sources it contains, and finish by taking the bitwise
XOR over the outputs of the LRE calls.

This construction successfully outputs uniform bits for
the following reasons. Because a(G) < K, we are guar-
anteed that some LRE call is given only good sources. By
the extractor property of the LRE, this call will output
uniform bits. Meanwhile, the bounded intersection prop-
erty of the (N, r,r — 1)-design, paired with the leakage-
resilience property of the LRE, guarantees that these
uniform bits still look uniform even after taking their
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bitwise XOR with the outputs of all other LRE calls.
Using these ideas, we actually provide a slightly more
general framework to combine (N,r,s)-designs with
LREs of various strength. Our framework leverages the
“activation vs. fragile correlation” paradigm introduced
in [11], yet it is able to do so in a much more simple,
general, and effective way, by combining two very
general pseudorandom objects: LREs and designs.

To make our framework explicit, we will need explicit
LREs and explicit designs with small independence
number. Our explicit LREs will come from the work
of Chattopadhyay et al. [29], where they gave the first
explicit LREs that work for entropy & = o(n), and in
fact their LREs work for entropy k& > polylog(n). Thus
all that remains is to provide an explicit construction of
designs with small independence number. We provide
such a construction in this paper, and sketch it below.

b) Explicit designs with small independence num-
ber: In order to construct our (n,r,s)-designs G =
(V,E), we start with a linear code ) C F% of distance
d > 2(r — s), and then restrict it to the set @, C @ of
elements in () that have Hamming weight 7. Our design
G = (V, E) is constructed by identifying V' with [n], and
by creating a hyperedge for each = € (), in the natural
way. The distance of the code and the definition of @,
immediately guarantees that G is an (n, r, s)-design.

In order to upper bound the independence number
a(G) of our design, we observe that any independent
set in G corresponds to a subcube S C F% that contains
no vector in ) of weight r; in other words, since @ is a
linear code, this means that the subspace T* := SN Q
has no vector of Hamming weight r. If our linear code
@ had very high dimension, then even if the subcube S
was relatively small, we would have found a relatively
large subspace 7™ containing no vector of Hamming
weight r. But intuitively, it seems like as the dimension
of a subspace grows large enough, at some point it must
be guaranteed to have such a vector. It turns out this
is true, and it follows immediately from Sidorenko’s
recent bounds [31], [32] on the size of sets in [
containing no r elements that sum to zero. Thus if @
has large enough dimension, .S cannot be too large, and
thus neither can «(G). All that remains is to explicitly
construct (the weight-r vectors of) a high-dimensional
linear code @ C F with distance d > 2(r — s), which
can easily be done using BCH codes [33], [34].

B. Small-space extractors for polylogarithmic entropy

Unfortunately, it is impossible to extract from small-
space sources with entropy k < /n using a reduction
of the previous type (i.e., to adversarial sources), since
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setting ¢ > \/n will leave k — st <k —1-/n < 0 bits
of entropy after the above fixing, while setting ¢t < /n
will produce a chunk of size n/t > /n > k, which
could hold all of the entropy and thus make extraction
impossible. To circumvent this barrier, we provide a new
reduction from small-space sources to affine sources.
This reduction bypasses the \/n barrier by adaptively
choosing vertices to fix: this was not possible above,
because such adaptive fixings can produce independent
sources of unknown and varying lengths, which cannot
be captured by adversarial sources. We describe our new
reduction in more detail below.

a) A reduction from small-space sources to affine
sources: Our new reduction from small-space sources to
affine sources starts the same way as before: by fixing
t vertices in the random walk generating the space s
source X, to create ¢ independent sources with roughly
k — st bits of total entropy. The key idea now is to
use an observation of [11], which says that any source
with entropy at least 1 is a convex combination of affine
sources with entropy 1. Given this, we can say that as
long as t' of the ¢ independent sources have just one
bit of entropy, then X currently looks like a convex
combination of affine sources with min-entropy ¢'.

On the other hand, if no t’ of the ¢ independent sources
have just one bit of entropy, then the k — st remaining
bits of entropy must be very highly concentrated on the
t’ — 1 most entropic independent sources. In this case,
we can simply recursively apply the reduction on these
t’ — 1 independent sources. Because the entropy rate
increases on each recursive call, we know the recursion
must eventually stop, or else we will end up with a
source with entropy rate exceeding 1, a contradiction.
Thus, via a win-win argument, we can show that X is a
convex combination of affine sources with entropy ¢’.

We show that even if X starts with entropy just
k > polylog(n), our resulting affine source will have
almost all of the entropy of the original source; namely,
t’ will barely be smaller than k. We are able to achieve
such an efficient reduction for two reasons. First, our
use of affine sources allows an adaptive and recursive
reduction that bypasses the k > /n entropy barrier
arising from existing reductions to source types of fixed
lengths (like total-entropy sources [9] and adversarial
sources [11]). Second, our reduction to a sequence of ¢’
independent sources with entropy 1 (which we argue is
an affine source with entropy ¢’ using the observation of
[11]) results in a negligible amount of lost entropy from
each recursive step, whereas similar recursive reductions
to a constant number of sources with relatively high
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entropy [10] are forced to lose much more entropy in
each such step. As a result, we are able to bypass the
k > 2VI°e™ entropy barrier of [10].

Finally, we note that by carefully tracking the random
variables that pop up in our recursion, we are able to
describe all of the fixings that occur throughout the
recursion by the fixing of a single random variable. As
a result, we only need to apply the chain rule for min-
entropy (Lemma III.1) once, which keeps the error of
our reduction very low: 2~ compared to an error of
2=+ in the recursive reduction of [10].

b) An alternate construction of low-error extractors
for small-space sources: It turns out that in the above
reduction from small space sources to affine sources,
we are actually reducing to a special type of affine
sources known as bit block sources, which were intro-
duced in [7]. While there are currently no explicit low-
error extractors for affine sources with low entropy, we
do have such objects for bit block sources [7], [25].
As a result, the above reduction actually provides an
alternate construction of low error extractors for small
space sources. However, the entropy requirement of this
alternate construction is slightly worse than our construc-
tion that goes through explicit designs and adversarial
extractors, and furthermore it does not provide these
results (Theorems 4 and 5), which are of independent
interest, along the way. For more detail, we refer the
reader to the full version of the paper.

c) Organization: In Section III we provide several
preliminaries. In the remainder of our paper, we follow
a bottom-up strategy for presenting our main results.
In Section IV, we provide an explicit construction of
designs with small independence number, proving The-
orem 5. In Section V, we combine these designs with the
explicit leakage-resilient extractors of [29] to obtain our
improved extractors for adversarial sources, Theorem 4.
In Section VI, we observe how this immediately gives
us our small-space extractors with exponentially small
error, Theorem 3. In Section VII, we provide our new
reduction from small-space sources to affine sources
(Theorem 2) and apply the affine extractor of Li [8]
to obtain our small-space extractors for polylogarithmic
entropy, Theorem 1. We conclude with some remarks
and present some open problems in Section VIII.

We refer the reader to [35] for the full version of this

paper.
III. PRELIMINARIES

a) General notation: Given two strings =,y €
{0,1}"™, we let = @ y denote their bitwise XOR. For
a number n € N, [n] denotes the interval [1,n] C N. We

Authorized licensed use limited to: Cornell University Library. Downloaded on March 17,2022 at 15:57:05 UTC from IEEE Xplore. Restrictions apply.



let o denote string concatenation, and for a collection
{z; : i € I'} indexed by some finite set I, we let (x;);cs
denote the concatenation of all strings z;,¢ € I. If I
is already equipped with some total order, this is used
to determine the concatenation order; otherwise, I is
arbitrarily identified with [|I|] to induce a total ordering.
Given a domain D, and some string = € DV we let
x; € D denote the value at the i coordinate of x.
Given a subset S C [N], we let x5 := (2;);es. Even if
D =R" for some other domain R and number n € N,
the definition of zg € D!S! does not change.

b) Basic coding theory and extractor definitions:
We let Fo denote the finite field of size two, and
we let [y denote a vector space over this field. The
Hamming weight of a vector x € Ty is defined as
A(x) == #{i € [n] : z; = 1}, and the Hamming
distance between two vectors z,y € F3y is defined as
A(z,y) = A(z — y), where the subtraction is over
Fy. The standard basis vectors in F5 is the collection
E* := {ei}icn)> where e; € F3 holds a 1 at coordinate
1 and 0 everywhere else, and a subcube is a subspace
spanned by some subset of £*. An (n, k,d)-code is a
subset Q C F% of size 2% with the guarantee that any
two distinct points x,y € () have Hamming distance
A(x,y) > d. Alinear [n, k, d]-code is simply an (n, k, d)
code that is a subspace. Finally, we say that a source X
over {0,1}" is an (n,k) source if it has min-entropy
at least k, and we say that an extractor Ext an V-
source extractor for entropy k if it is an extractor for
a family of sources X, where each X € X consists of
N independent (n, k) sources.

¢) Discrete probability: In general, for a random
variable X : 2 — V, we are only concerned with the
distribution over V induced by X. We will therefore typ-
ically not define the outcome space {2, and can assume it
has any form we like (so long as the distribution induced
by X does not change). Given random variables X,Y
and any y € support(Y), we let (X | Y = y) denote
a random variable that takes value x with probability
Pr[X =z | Y = y|. Given a random variable X and a
family of random variables )/, we say that X is a convex
combination of random variables from ) if there exists
a random variable Z such that for each z € support(Z),
it holds that (X | Z = z) € ). We define the statistical
distance between two random variables X,Y over V' as

X —Y|:=max|Pr[X € V] — Pr[Y € V]
SCV

= 2 S IPX = 0] Pr[Y =]
veV
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and we say that X,Y are e-close if | X — Y| < e
Finally, we will need the following standard lemma about
conditional min-entropy.

Lemma II1.1 ([36]). Let X, Y be random variables such
that Y can take at most £ values. Then for any € > 0,
it holds that
Pr [HOO(X | Y = y) >
y~Y
Hoo(X) —log/—1log(1/e)] > 1 —e.

IV. EXPLICIT EXTREMAL DESIGNS VIA SLICING
CODES AND ZERO-SUM SETS

In this section, we will construct our explicit designs
and thereby prove Theorem 5. But before we do so, we
begin with some background and discussion on (n, r, s)-
designs.

A. Background and discussion

A combinatorial design is a special type of well-
balanced set system, where each set has the same size,
and no two sets intersect at too many points. More for-
mally, we say that an r-uniform hypergraph G = (V, E)
over n vertices is an (n,r, s)-design, or (n,r, s)-partial
Steiner system, if |e; Ney| < s for all distinct e, e € E.
Beyond the fact that they are pseudorandom objects
themselves, it turns out that (n,r, s)-designs enjoy sev-
eral interesting applications in pseudorandomness.

A notable application of designs is in the seminal
work of Nisan and Wigderson [37], where they are used
to construct pseudorandom generators (PRGs). In this
application, the authors require (and provide) explicit
designs that are extremal in the sense that they have
a large number of hyperedges. More recently, explicit
designs of a different extremal flavor have been used
in the construction of extractors: in [11], Chattopad-
hyay, Goodman, Goyal, and Li show how to construct
extractors for adversarial sources using explicit partial
Steiner triple systems ((n, 3, 2)-designs) with small in-
dependence number.

Given these applications, it is natural to ask about
the smallest possible independence number of more
general (n,r,s)-designs. Rodl and Sinajovd answered
this question in 1994, proving the following:

Theorem IV.1 ([30]). Given any n > r > s € N
with v > 2, there exists an (n,r,s)-design G with
independence number

a(G) < Chs - n%(logn)ﬁ,

where C,. ¢ = C(r, s) depends only on 1, s.
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In fact, they also showed this result is tight up to the
term C, s that depends only on r, s.

In order to prove Theorem IV.1, Rodl and ginajové
apply the Lovasz Local Lemma to show that a random
r-uniform hypergraph is such a design. Thus, while
their result proves the existence of such designs, it does
not provide an explicit way to construct them - and,
unfortunately, an explicit construction is needed if one
hopes to apply this result to construct other explicit
objects (like extractors).

In this section, we will provide explicit constructions
of these extremal designs. Our designs give the first
derandomization of Theorem IV.1, and differ from the
optimal bound by just a square.

B. Proof of Theorem 5

We are now ready to explicitly construct our designs,
and thereby prove Theorem 5. We start with the simple
observation that hypergraphs over n vertices can be
identified with subsets of F5. In particular, any subset
T C F% induces a hypergraph Gy = (V,E) in the
following way: identify V' with [n], and for each x € T’
add a hyperedge ¢ C [n| to E that contains exactly
the coordinates that take the value 1 in x. Using this
correspondence, we can instead focus on constructing
special subsets of 7, and thereby leverage the tools of
linear algebra and coding theory.

To obtain our designs, we will need to explicitly
construct a subset 7' C [F% such that (1) G is an
(n,r,s)-design; and (2) Gp has small independence
number. We can make sure this happens via the following
two simple facts, which describe how these hypergraph
properties can be identified with properties of subsets in
F2.

Fact IV.2. For any subset T C F%, the hypergraph G
is an (n,r,s)-design if and only if (i) every x € T has
A(z) = r; and (ii) any two distinct x,y € T have
A(z,y) > 2(r —s).

Proof. The two conditions are sufficient because the
first one guarantees that G will be r-uniform, and the
second one guarantees that any two edges in G intersect
at < s points. They are both necessary because if the first
does not hold, G will not be r-uniform, and if the first
holds but the second does not, then two edges will end
up sharing > s points. O

Fact IV.3. For any subset T C F%, the hypergraph G
has independence number o(Gr) < L if and only if every
subcube A C ¥y of dimension at least { has at least one
point in T.
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Proof. If a(Gr) > ¢, there is an independent set
S C V = [n] of size at least ¢, and thus the subcube
A := span({e;}ics) of dimension ¢ has no points in 7.
If there is a subcube A C 3 of dimension ¢ with no
points in 7', the set S C [n] indexing the standard basis
vectors that span A must have size ¢ and constitute an
independent set in G. O

By Fact IV.2 and Fact IV.3, we see that the task of
constructing an (n,r, s)-design G with small indepen-
dence number is equivalent to the task of constructing a
subset T' C 5 with the following three properties:
1) T lies in the Hamming slice A, := {z € F} :
A(z) =7},

2) Points in 7" have pairwise Hamming distance >
2(r — s), and

3) Any subcube of relatively small dimension inter-
sects 7.

In order to construct a set 7' C F3 with these three
properties, we use connections to coding theory and zero-
sum problems. In particular, recall that an (n, k, d)-code
is a subset @ C F% of size 2¥ with the guarantee that
any two distinct points z, y € ) have Hamming distance
A(z,y) > d. Thus, if we take any (n, k, d)-code Q C F§
with d > 2(r—s) and intersect it with the Hamming slice
A,., we obtain a set T' = ) N A, that enjoys properties
(1) and (2). In order to endow it with property (3), we
will need to start with some code @) such that for any
relatively large subcube S, the set SNT = SN (QN
A,) = (SNQ)NA, is non-empty.

The trick here is to start with a linear code Q. A linear
[n, k,d]-code @ C F% is simply an (n, k, d) code that is
also a subspace. The condition (SNQ)NA,. # @ required
for property (3) now becomes more concrete: since () is
a subspace, S N (@ is also a subspace, and thus we can
make sure it contains some vector of Hamming weight
r as long as we can show that every large subspace
contains such a vector. In particular, defining A,.(n) to be
the dimension of the largest subspace R C ) containing
no vector of Hamming weight r, we prove the following
lemma.

Lemma IV4. If Q C F? is a linear [n, k,d]-code with
d > 2(r—s), then the hypergraph Ggna,. is an (n,r, s)-
design with independence number o = a(Ggna,.) that
obeys the following inequality:

a—AN(a)<n—k

Proof. Tt follows immediately from Fact IV.2 that
Gona, is an (n,r, s)-design. By Fact IV.3, there is a
subcube A = span(e;,,...,e;,) C Fy of dimension
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« that does not intersect ) N A,.. Thus, if we define
A’ := ANQ, then A’ contains no vector of Hamming
weight 7, and furthermore it has dimension dim(A’) =
dim(AN Q) > dim(A) + dim(Q) —n = a+k —n.
Notice now that if we define the projection 7 : Fy — F¢§
as the map (z1,...,2,) — (Ti,...,x;, ), then the
subset m(A’) is still a subspace (albeit now of F$) of
dimension dim(m(A’)) > a+k—n containing no vector
of Hamming weight r. Thus, by definition of A.,., it must
hold that o + k — n < dim(w(A")) < A (). O

To construct an (n, r, s)-design from Lemma IV.4 with
the smallest possible independence number «, we will
want an explicit [n, k,d > 2(r — s)]-linear code with the
largest possible dimension k, along with a strong upper
bound on A, (n). We start with the latter.

Getting a good upper bound on A,.(n) is closely
related to the theory of zero-sum problems. In this
field, one parameter of great interest is the (generalized)
Erdos-Ginzburg-Ziv constant(s) of a finite abelian group.
Given n > r € N where r is even, this parameter is
defined for F% as the smallest integer s,-(n) such that any
sequence of s,.(n) values in F} contains a subsequence
of length r that sums to zero. For our application, it will
be more convenient to use an almost identical parameter
Br(n), defined as the size of the largest subset of FY
containing no r elements that sum to zero. Using slightly
different terminology, the relationship between f,.(n)
and A, (n) was shown in [32].

Lemma IV.5 ([32]). For every n > r € N where r is
even,

Br(n—Ar(n)) > n.

To get a good upper bound on A,.(n), we need a good
upper bound on f,.(n). In 2018, Sidorenko provided a
very strong bound of this type:

Theorem IV.6 ([31], Theorem 4.4). There is a universal
constant C > 0 such that for every n,r € N where r is
even,

Br(n) < C-r®. 2207,

By plugging this bound into Lemma IV.5, we get the
following corollary.

Corollary IV.7 ([32]). There is a universal constant C' >
0 such that for any n > r € N where 1 is even, the
largest subspace S C T4 with no vector of Hamming
weight r has dimension

Ar(n) <n—(rlogn —3rlogr —rlogC)/2.
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We are finally ready to prove our main design lemma,
which reduces the problem of constructing (n,r,s)-
designs with small independence number to constructing
high-dimensional linear codes.

Lemma IV.8 (Main design lemma). There is a universal
constant C' > 0 such that for every n > r > s with r
even, if Q C FY is a linear n, k, d)-code with d > 2(r —
s), then Ggna, is an (n,r, s)-design with independence
number

a(Gona,) < C 1% . 2R/,

Proof. Simply plug the bound on A, («) from Corol-
lary IV.7 into Lemma IV.4. O

To complete the proof of Theorem 5, we now just
need to explicitly construct a linear code with very high
dimension. In 1959-1960, Bose, Ray-Chaudhuri [33],
and Hocquenghem [34] explicitly constructed codes of
exactly this type (see [38] for a great exposition of these
codes, which are known as BCH codes). In particular,
they proved the following theorem.

Theorem IV.9 ([33], [34]). For every m,t € N, there
exists an [n, k, d]-linear code BCH,, + C Fy with block
length n = 2™ — 1, dimension k > n—mt, and distance
d > 2t. Furthermore, there exists an Algorithm B that
given any m,t € N and x € Fy as input, checks if
x € BCH,, ; in poly(n) time.

By instantiating Lemma IV.8 with Theorem IV.9, we
immediately obtain Theorem 5. We refer the reader to
the full version for more details.

V. EXTRACTORS FOR ADVERSARIAL SOURCES VIA
DESIGNS AND LRES

Perhaps the most popular model of seedless extraction
is to assume that each source X actually consists of
several independent sources X = (X1,Xo,...,Xn),
each guaranteed to have some min-entropy. A long
line of work has focused on constructing extractors
for this setting [19], [39]-[43], and has culminated in
extractors with a near-optimal entropy requirement [43].
Recently, the idea of generalizing this model to allow for
bad sources with no entropy guarantee and/or limited
dependence has received considerable attention [11],
[44], [45]. Motivated by applications in generating a
(cryptographic) common random string in the presence
of adversaries, and in harvesting randomness from unre-
liable sources, Chattopadhyay, Goodman, Goyal, and Li
[11] introduced the class of adversarial sources:
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Definition V.1 (Adversarial sources). A source X over
({0,1}™)N is an (N, K,n, k)-adversarial source if it is
of the form X = (X1,Xa,...,Xy), where each X; is
an independent source over {0,1}", and at least K of
them are good: i.e., there is some set S C [N] of size K
such that Ho(X;) >k, for all i € S.

In this section, we will construct a significantly im-
proved extractor for adversarial sources, thereby proving
Theorem 4. Our proof of Theorem 4 builds upon and
generalizes the so-called “activation vs. fragile correla-
tion” paradigm introduced in [11] for extracting from
adversarial sources. In particular, instead of combining
various types of specialized extractors with various types
of specialized extremal hypergraphs (as is done in [11]),
we combine just one type of general robust extractor with
one type of general extremal hypergraph. The general
extremal hypergraphs we use are the designs constructed
in Section IV, while the general robust extractor we use
is known as a leakage-resilient extractor (LRE).

LREs are very general objects with extremely strong
conditioning properties. The exact variant that will be
useful here is actually a specialization known as ex-
tractors for cylinder intersections, first introduced in
[28]. Informally, we define an (r,s)-leakage-resilient
extractor to be an r-source extractor LRE that outputs
bits that look uniform, even conditioned on the output
of several functions that each act on fewer than s of the
inputs to LRE. Formally, it is defined as follows.

Definition V.2 ([28], [29]). A function LRE
({0,1}™)" — {0,1}™ is an (r, s)-leakage-resilient ex-
tractor for entropy k and error € if the following holds.
Let X := (X4,...,X,) be any r independent (n,k)
sources, let T = (gj]l), and let L := {Leakp
({0,1})*=t — {0,1}"}rer be any collection of
functions. Then:

ILRE(X) o (Leaks(Xs))ses
-U,, 0 (Leaks(Xg))5€S| <.

By combining these robust extractors with our designs
from Section IV, it is now easy to construct a new
framework for extracting from adversarial sources. This
framework, which generalizes the extractor constructions
in [11], is formally captured in the following lemma
(which is proven in the full version of this paper).

Lemma V.3. Let G ([N],E) be an (N,r,s)-
design with independence number o, and let Exty :
({0,1}™)" — {0,1}™ be an (r, s)-leakage resilient ex-
tractor for entropy ko with error €. Then for any K > «
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and k > ko, the function Extg : ({0,1}")N — {0,1}™
defined as

Exta(X):= €P Exto(X.)
e€E(G)

is an extractor for (N, K, n, k) adversarial sources with
error € = €.

If we want to use the above framework to extract
from adversarial sources with the fewest number of good
sources possible, we need two explicit objects. First,
we need explicit (IV,r,s)-designs with independence
numbers that decrease quickly as 7,s grow together.
Theorem 5 of the current paper gives exactly this, and in
fact the independence numbers of our designs decrease
with 7, s almost as quickly as possible, as shown by the
tightness of Theorem IV.1.

Second, we need explicit leakage-resilient extrac-
tors for polylogarithmic entropy that have exponentially
small error. Very recently, these exact objects were
constructed:

Theorem V.4 ([29]). There is a universal constant
C > 0 such that for any sufficiently large constant
r € N and all n,k € N satisfying k > log® n, there
exists an explicit (r,r — 1)-leakage resilient extractor
Ext : ({0,1}™)" — {0,1}™ for min-entropy k with
output length m = k) and error e = 9=k

It is now not too difficult to instantiate our framework
(Lemma V.3) with these LREs (Theorem V.4) and our
explicit designs (Theorem 5) to obtain our significantly
improved extractors for adversarial sources (Theorem 4).
We refer the reader to the full version for more details.

VI. A REDUCTION FROM SMALL-SPACE SOURCES TO
ADVERSARIAL SOURCES

Now, we briefly discuss how our improved (low-error)
extractors for adversarial sources immediately imply
improved low-error extractors for small-space sources,
thereby proving Theorem 3. We use an intermediate class
of sources known as fotal entropy sources, defined as
follows.

Definition VI.1. A random variable X over
({0,1})" is an (r,{,k)-total entropy source
if X = (X,Xy,...,X,), where each X;
is an independent source over {0,1}¢, and

2ici) Hoo(Xi) 2 k.

It is well known that small-space sources are close to a
convex combination of total entropy sources [9], and that
total entropy sources are, in fact, adversarial sources (for
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some appropriate parameters) [11]. By composing these
two reductions, our improved extractors for adversarial
sources immediately imply Theorem 3. Along the way,
we also obtain the following improved extractor for total
entropy sources.

Theorem VI.2. For any fixed § > 0 and all sufficiently
large r, £, T € N with T" > max{(r€)1/2+5,r‘5€}, there
exists an explicit extractor Ext : ({0,1}%)" — {0,1}™
for (r,0,T)-total entropy sources, with output length
m = (r0)*Y) and error € = 9= (r",

Previously, the best low-error explicit extractors
for total-entropy sources [11] required entropy I' >
max{(rf)%/3+% 11/2+501  Non-constructively, we know
it is possible [9] to achieve an entropy requirement of
T > O(¢+logr) and error of 2~ Thus, while there
is still a lot of room to give improved explicit extractors
for total-entropy sources, our total-entropy extractor is
almost optimal when the source consists of “a few long
sources’:

Remark VL.3. The entropy requirement in Theorem VI.2
becomes k > 019 when ¢ > r, which is close to the
optimal requirement of k > O({).

VII. A REDUCTION FROM SMALL-SPACE SOURCES TO
AFFINE SOURCES

Finally, we construct extractors for small-space
sources that can handle just polylogarithmic entropy in
the polynomial error regime, proving Theorem 1. The
main tool we use to prove this theorem is a new reduction
from small-space sources to affine sources. As we have
seen, an affine source is simply a uniform distribution
over some affine subspace of F3. It will be useful,
however, to have the following formal definition.

Definition VII.1 (Affine source). A distribution X over

% is an affine source with min-entropy k if there exists
some shift vector vy € I3 and linearly independent basis
vectors vi,va, ...,V € Fy such that X is generated by
sampling k bits uniformly at random x1,Xo, ..
Fy and computing vy + Zie[k] X;Uj.

S XE

Given this definition, we are now ready to define the
main lemma used in proving Theorem 1.

Lemma VIL2 (Theorem 2, restated). Let X be a space
s source over {0,1}" with min-entropy k. Then X is
2=Kk)_close to a convex combination of affine sources
with min-entropy T, where

deroo)

F:

619

Before proving Lemma VIL.2, we use it to prove
Theorem 1. We recall the standard fact that if an extractor
works for each source X in a family & of distribu-
tions, then it also works for any convex combination
of sources from that family. In particular, this means
that any extractor for affine sources is automatically an
extractor for small-space sources, by Lemma VIL.2. The
following affine extractor of Li [8], which can handle
polylogarithmic entropy, will be of particular interest.

Theorem VIL.3 ([8]). There exists a universal constant
C > 0 such that for all n,k € N satisfying k > log® n,
there exists an explicit extractor Ext : {0,1}" —
{0,1}™ for affine sources with min-entropy k, which has
output length m = kY and error e = n=1),

Resetting the universal constant C' as necessary, The-
orem 1 follows immediately by combining Lemma VII.2
and Theorem VIIL.3. Furthermore, since our reduction
(Lemma VII.2) has extremely low error, we note that
we can also combine it with a classical affine extractor
of Bourgain [22] to immediately get the following bonus
result:

Theorem VIL4. For any fixed constants C,5 > 0 and
all n, k,s € N satisfying k > dn and s < C, there exists
an explicit extractor Ext : {0,1}" — {0,1}™ for space
s sources with min-entropy k, which has output length
m = Q(n) and error e = 27",

To the best of our knowledge, this is the only nontriv-
ial small-space extractor that achieves super low error
e =279 o all previous constructions [9] have error
at least ¢ = 27",

At last, we are ready to prove Lemma VIIL.2, which
will immediately yield Theorem 1 (and Theorem VIL.4).

A. A reduction from small-space sources to simple bit-
block sources

In this subsection, we actually show a stronger result
than Lemma VIIL.2. In particular, we prove that the reduc-
tion holds even for a special case of affine sources called
bit-block sources. Given a vector v € 7, we define
support(v) C [n] to be the subset of all coordinates
where v takes the value 1, and we define these sources
as follows:

Definition VILS ([7]). A source X over 4 is a bit-
block source with min-entropy k if it is an affine source
with min-entropy k (as per Definition VIIL.1) with the
additional guarantee that support(v;) Nsupport(v;) = 0,

for all i # j € [k].
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In fact, we even show that the reduction holds for a
special case of bit-block sources.

Definition VIL.6. A source X over % is a simple bit-
block source with min-entropy k if it is a bit-block
source with min-entropy k (as per Definition VILS),
with the additional guarantee that max(support(v;)) <
min(support(v;)) for all i < j € [k].

Given these definitions, we are now able to state the
technical version of Lemma VII.2.

Lemma VIL.7 (Lemma VII.2, technical version). Let X
be a space s source over {0,1}" with min-entropy k.
Then X is e-close to a convex combination of simple
bit-block sources with min-entropy I, where

= (S )
slog

(n/F)

Before we prove Lemma VIL.7, we briefly observe
that a simple bit-block source X over n bits with min-
entropy I is also a space s = 1 source over n bits with
min-entropy I'. Combining this with Lemma VIL7, we
see that simple bit-block sources and space s sources are
roughly equivalent (in the low-error convex combination
sense), up to a factor of O(s).

We are now ready to prove Lemma VIL.7. We will use
an intermediate type of source, called an independent
source sequence, which is a natural generalization of
independent sources to allow for uneven (and unknown)
length. We will show that small-space sources are (close
to) a convex combination of independent source se-
quences, which are a convex combination of simple bit-
block sources.

We start by defining independent source sequences.

Definition VIL8. A source X over {0,1}" is an
(n,r, k)-independent source sequence if there exist some
(unknown) lengths (1,..., L, € [n| that sum to n
such that X = (Xy,...,X,), where each X; is an
independent ({;, k)-source.

r

and ¢ = 2~ Fk),

Next, we show that an independent source sequence
is a convex combination of simple bit-block sources.

Lemma VIL9. Let X be an (n,T',1)-independent
source sequence. Then X is a convex combination of
simple bit-block sources with min-entropy I'.

The proof of this result (in the full version of the
paper) uses the nice observation from [11] that any (¢, 1)-
source Z is a convex combination of affine sources with
min-entropy exactly 1. Finally, we show that small-space
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sources are close to a convex combination of independent
source sequences. By combining the following lemma
with Lemma VIIL.9, we immediately get Lemma VIL.7.

Lemma VIL10. Let X be a space s source over {0,1}"
with min-entropy k. Then X is e-close to a convex
combination of (n,T,1)-independent source sequences,

_ k _ o—Q(k
whereF—Q(W) and € = 27Uk),

This is the key lemma in the proof of Lemma VIL7,
and thus in the proof of Theorem 1. We refer the reader
to Section II-B for a sketch of its proof, and to the full
version of this paper for the complete proof.

VIII. FUTURE DIRECTIONS

In this paper, we demonstrated new applications of ex-
tremal designs and leakage-resilient extractors. It would
be interesting to explore whether these objects have fur-
ther applications in pseudorandomness and complexity.
Beyond this, three natural open problems are as follows.

Problem 1. Better low-error extractors for small-space
sources: Reduce the entropy requirement for low-error
small-space extraction (Theorem 3) so that it is closer
to the entropy requirement for polynomial-error small-
space extraction (Theorem 1).

Problem 2. Better extractors for adversarial sources:
Improve the requirement on good sources in Theorem 4
from K > N° to K > polylog(N), or (less ambitiously)
K > Ne,

Problem 3. Better explicit designs with small indepen-
dence number: Improve the constant in the power of n
of Theorem 5 from 2 to 1.99.
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