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Abstract—We study the problem of extracting random
bits from weak sources that are sampled by algorithms
with limited memory. This model of small-space sources
was introduced by Kamp, Rao, Vadhan and Zuckerman
(STOC’06), and falls into a line of research initiated by
Trevisan and Vadhan (FOCS’00) on extracting randomness
from weak sources that are sampled by computationally
bounded algorithms. Our main results are the following.

1) We obtain near-optimal extractors for small-space
sources in the polynomial error regime. For space
s sources over n bits, our extractors require just
k ≥ s · polylog(n) entropy. This is an exponential
improvement over the previous best result, which
required entropy k ≥ s1.1 · 2log0.51 n (Chattopadhyay
and Li, STOC’16).

2) We obtain improved extractors for small-space
sources in the negligible error regime. For space s
sources over n bits, our extractors require entropy
k ≥ n1/2+δ · s1/2−δ , whereas the previous best
result required k ≥ n2/3+δ · s1/3−δ (Chattopadhyay,
Goodman, Goyal and Li, STOC’20).

To obtain our first result, the key ingredient is a
new reduction from small-space sources to affine sources,
allowing us to simply apply a good affine extractor.

To obtain our second result, we must develop some
new machinery, since we do not have low-error affine
extractors that work for low entropy. Our main tool is
a significantly improved extractor for adversarial sources,
which is built via a simple framework that makes novel use
of a certain kind of leakage-resilient extractors (known as
cylinder intersection extractors), by combining them with
a general type of extremal designs. Our key ingredient
is the first derandomization of these designs, which we
obtain using new connections to coding theory and additive
combinatorics.

Index Terms—adversarial sources; affine sources; de-
signs; explicit constructions; extremal hypergraphs; ran-
domness extractors; small-space sources

I. INTRODUCTION

Randomness is a powerful computational resource that

has found beautiful applications in algorithm design,

cryptography, and combinatorics (see [1] for an excellent

survey). Unfortunately, such applications require access

to uniform bits, but randomness harvested from natural

phenomena (e.g., radioactive decay, atmospheric noise)

rarely looks so pure. Such motivates the study of ran-
domness extractors, which are algorithms that convert

these weak sources of randomness into distributions that

are close to uniform:

Definition I.1 (Randomness extractor). Let X be a
family of distributions over {0, 1}n. A function Ext :
{0, 1}n → {0, 1}m is an extractor for X with error ε if
for every X ∈ X ,

|Ext(X)−Um| ≤ ε,

where Um is the uniform distribution over {0, 1}m, and
| · | denotes statistical distance.

Beyond purifying natural sources of randomness, ex-

tractors have found deep connections to complexity

theory, cryptography, coding theory, and combinatorics

(see, e.g., [1], [2]). Constructing these objects has thus

produced a fruitful line of research over the past 30

years, where various distribution families X and errors

ε have been considered depending on the motivating

application.
In order for extraction to be possible, each source X ∈

X must have some randomness. In this field, it is stan-

dard to measure the randomness content of X as its min-
entropy, defined as H∞(X) := minx log(1/Pr[X =
x]). Unfortunately, it turns out that a min-entropy re-

quirement alone is not enough to enable extraction.

Indeed, an easy folklore argument shows that even if

every source X ∈ X has min-entropy k ≥ n − 1,

there cannot exist an extractor Ext for X that achieves

nontrivial error ε < 1/2.
To circumvent this impossibility result, researchers

have considered two main directions. In the first di-

rection, one assumes that each source X ∈ X comes

with a uniform seed Ud, which can be used to extract

uniform bits from the rest of the source, which has some

min-entropy guarantee. Extractors in this setting are

called seeded extractors, and near-optimal constructions

of these objects are now known [3]–[5]. In this paper, we

focus on the second direction, where one assumes each
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source X ∈ X has some additional structure beyond its

min-entropy guarantee.

a) Samplable sources: One natural way to equip

each distribution X ∈ X with some additional structure

is to assume that it can be sampled efficiently, i.e.,

generated by an algorithm that has limited computational

resources. Such sources were introduced by Trevisan

and Vadhan [6], under the suggestion that they are a

good model for distributions that would actually arise in

nature. In [6], and the follow-up works of Viola [7] and

Li [8], the authors consider circuit sources: distributions

that can be sampled by small circuits. Such sources can

be thought of as distributions sampled by algorithms with

limited time.

In this paper, we consider distributions that can be

sampled by algorithms with limited memory. Known

as small-space sources, this family of distributions was

introduced by Kamp, Rao, Vadhan, and Zuckerman

[9], and further studied in recent work [10], [11]. To

define this class of sources formally, one uses branching
programs to model the evolution of state in the small-

space algorithm. A branching program of width w and

length n is a directed acyclic graph with n + 1 layers,

where the first layer has one node, the remaining layers

have w nodes each, and every edge starting in layer i
terminates in layer i + 1. Small-space sources are then

defined as follows.

Definition I.2 (Small-space source). A distribution X
over {0, 1}n is a space s source if it is generated by a
random walk starting on the first layer of a branching
program of width 2s and length n, where each edge is
labeled with an output bit and transition probability.

Beyond their motivation in modeling distributions that

one might actually find in nature, small-space sources

are powerful enough to capture several other well-

studied models. As noted in [9], small-space sources

can simulate: von Neumann’s model of a coin with

unknown bias [12]; the finite Markov chain model of

Blum [13]; the space-bounded models of Vazirani [14]

and Koenig and Maurer [15], [16]; and the popular

models of oblivious bit-fixing and symbol-fixing sources

[17], [18] and independent sources [19]. In fact, it is

suggested in [9] that the only model of sources that

appears unrelated to small-space sources is the class of

affine sources [20].

A. Summary of our results

In this paper, we explicitly construct two significantly

improved extractors for small-space sources. Along the

way, we prove a new structural result for small-space

sources, and provide new explicit constructions of sev-

eral related pseudorandom objects. Our extractors follow

easily from these new key ingredients, which may be

of independent interest. We formally state these results,

below.
1) Small-space extractors for polylogarithmic en-

tropy: In our first main theorem, we construct near-

optimal extractors for small-space sources in the poly-

nomial error regime.

Theorem 1. There exists a universal constant C > 0
such that for all n, k, s ∈ N satisfying k ≥ s · logC(n),
there exists an explicit extractor Ext : {0, 1}n →
{0, 1}m for space s sources with min-entropy k, which
has output length m = (k/s)Ω(1) and error ε = n−Ω(1).

Thus, our extractor requires min-entropy k ≥ s ·
logC(n), which is an exponential improvement over the

previous best requirement [10] of k ≥ s1.1 · 2log0.51(n).
In particular, in the natural setting of sources sampled

by s = polylog(n) space algorithms, our extractor is the

first construction that works for polylogarithmic entropy.

Non-constructively, it is known that small-space extrac-

tors exist for min-entropy k ≥ O(s+ log n+ log(1/ε)),
and thus our result is nearly optimal when the desired

error is at most polynomially small.
The key ingredient we use to prove Theorem 1 is

a new structural result, which establishes a connection

between small-space sources and affine sources. An

affine source X over n bits with min-entropy k is a

distribution that is uniform over some (unknown) k-

dimensional affine subspace of Fn
2 . A long line of work

has considered the problem of constructing extractors for

affine sources [8], [20]–[26], and in this work we show

that such extractors can also extract from small-space

sources. In particular, we prove the following.

Theorem 2. Let X be a space s source over {0, 1}n with
min-entropy k. Then X is 2−Ω(k)-close to a convex com-
bination of affine sources with min-entropy Ω( k

s log(n/k) ).

By combining this structural result with the explicit

affine extractor of Li [8], which works for polylog(n)
min-entropy and has polynomially small error, we im-

mediately obtain Theorem 1. Furthermore, if we are only

interested in outputting one bit with constant error, we

can use the recent affine extractor of Chattopadhyay,

Goodman, and Liao [26] to extract from small-space

sources with min-entropy k ≥ s · log2+o(1)(n).
2) Small-space extractors with exponentially small

error: While polynomially small error suffices for many

applications, it is sometimes important to achieve neg-

ligible error in applications such as cryptography [27].
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However, since the best low-error affine extractors re-

quire entropy k ≥ Ω(n/
√
log logn) [22]–[24], Theo-

rem 2 does not yield any new result in the negligible

error setting.

In our next main result, we develop some new machin-

ery in order to obtain improved low-error extractors for

small-space sources. Until recently, the best extractors

for such sources [9] required entropy k ≥ Cn1−γsγ ,

where γ > 0 is some tiny constant and C is a large

one. In [11], the entropy requirement was improved to

k ≥ Cn2/3+δs1/3−δ . We reduce this entropy require-

ment further, and prove the following.

Theorem 3. For any fixed δ ∈ (0, 1/2] there is a
constant C > 0 such that for all n, k, s ∈ N satisfying
k ≥ Cn1/2+δs1/2−δ , there exists an explicit extractor
Ext : {0, 1}n → {0, 1}m for space s sources of min-
entropy k, with output length m = nΩ(1) and error
ε = 2−nΩ(1)

.

Observe that the line of improvements described above

(from [9] to [11] to Theorem 3) is strict, since we always

have s < n (or else the bounds are trivial). In particular,

note that for, say s = nδ space, the entropy requirement

has dropped from k ≥ O(n1−γ) to k ≥ O(n2/3+δ) to

k ≥ O(n1/2+δ).

To prove Theorem 3, we start with the standard

approach [9] of reducing small-space sources to the class

of adversarial sources [11]. Informally, an adversarial

source X consists of many independent sources, where

only a few of them are guaranteed to be “good” (i.e.,

contain some min-entropy). Formally, an (N,K, n, k)-
adversarial source X consists of N independent sources

X1, . . . ,XN , each over n bits, with the guarantee that

at least K of them have min-entropy at least k. Such

sources have applications in generating a (cryptographic)

common random string in the presence of adversaries,

and in harvesting randomness from unreliable sources.

To prove Theorem 3, we explicitly construct signifi-

cantly improved extractors for adversarial sources:

Theorem 4. There is a universal constant C > 0
such that for any fixed δ > 0 and all sufficiently large
N,K, n, k ∈ N satisfying k ≥ logC n and K ≥ N δ ,
there exists an explicit extractor Ext : ({0, 1}n)N →
{0, 1}m for (N,K, n, k)-adversarial sources, with out-
put length m = kΩ(1) and error ε = 2−kΩ(1)

.

Previously, the best extractor for this setting [11]

required K ≥ N0.5+o(1) good sources, and our im-

provement to K ≥ N δ is crucial in obtaining better

extractors for small-space sources. An added bonus is

that our extractor construction is arguably much simpler

compared to [11].
To prove Theorem 4, we develop a simple new

framework for extracting from adversarial sources by

combining (i) a general type of combinatorial design;

and (ii) a specific kind of leakage-resilient extractor

[28], [29]. While such leakage-resilient extractors were

recently constructed explicitly in [29], the only known

construction of such designs is probabilistic [30].
Thus, the key ingredient we use to prove Theo-

rem 4, and subsequently Theorem 3, is the first ex-

plicit construction of such designs. In more detail,

an (n, r, s)-design is an r-uniform hypergraph over n
vertices with pairwise hyperedge intersections of size

< s. To instantiate our framework, we need explicit

(n, r, s)-designs with small independence number1 α.

Previously, Chattopadhyay, Goodman, Goyal and Li [11]

constructed (n, 3, 2)-designs with independence number

α ≤ O(n0.923). To obtain our improved extractors in

Theorems 3 and 4, we need designs with much smaller

independence number. Our final main theorem constructs

exactly such designs.

Theorem 5. For all constants r ≥ s ∈ N with r
even, there exist explicit (n, r, s)-designs (Gn)n∈N with
independence number

α(Gn) ≤ O(n
2(r−s)

r ).

Theorem 5 gives the first derandomization of a result

by Rödl and Šinajová [30], and our explicit designs are

optimal up to a factor of 2 in the power. We show that

it is easy to extend Theorem 5 to also work for odd r
(up to a small loss in parameters), and we also show

that our construction remains explicit for most super-
constant r, s. We refer the reader to the full version of

the paper for more details.
Finally, we can combine our explicit designs with

the leakage-resilient extractors from [29] to obtain our

improved adversarial sources (Theorem 4), which imme-

diately yields our improved extractors for small-space

sources (Theorem 3). It is known that the technique of

reducing small-space sources to adversarial sources has a

barrier at min-entropy
√
n. Thus, the result in Theorem 3

has almost the best parameters one can hope to achieve

using this technique.

II. OVERVIEW OF TECHNIQUES

We use this section to sketch the explicit constructions

of our small-space extractors. We start with our low-error

1Recall that an independent set in a hypergraph is a subset of
vertices that contain no hyperedge, and the independence number of a
hypergraph is the size of its largest independent set.
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small space extractors (Theorem 3) and the ingredients

that go into it (Theorems 4 and 5). Then, we sketch

the construction of our small-space extractor for poly-

logarithmic entropy (Theorem 1) and its key ingredient

(Theorem 2).

A. Small-space extractors with exponentially small error

To construct our low-error small-space extractors, the

first step is to use a standard reduction [18] (which we

slightly optimize) from small-space sources to adversar-

ial sources. This reduction starts with the observation

of [9] that if we chop up the small space source X
into t consecutive (equal-sized) chunks, and condition
on any fixing of the vertices reached at the end of each

chunk in the random walk that generates X, then these t
chunks become t independent sources. Furthermore, if X
originally had k bits of entropy, then it follows from the

entropy chain rule that X will still have roughly k − st
bits of entropy. A Markov argument then shows that at

least a few of the t sources will have relatively high

entropy. In other words, X now looks like an adversarial

source, and we may now focus on constructing (low-

error) extractors for adversarial sources.

a) Improved low-error extractors for adversarial
sources: To construct our low-error extractors for ad-

versarial sources, we develop a new framework that

combines a certain type of leakage-resilient extractor
(LRE) with the (n, r, s)-designs discussed earlier. An

LRE for r sources offers the guarantee that its output

looks uniform even conditioned on the output of many

leakage functions, each called on up to r − 2 of the

same inputs fed to the original LRE. Furthermore, recall

that an (n, r, s)-design is an r-uniform hypergraph over

n vertices with pairwise hyperedge intersections of size

< s.

Now, given an (N,K, n, k)-adversarial source X, we

extract from it as follows, using an LRE and an (N, r, r−
1)-design G with independence number α(G) < K.

First, we identify the vertices of our design with the N
independent sources in X. Then, for each hyperedge in

our design, we call a leakage-resilient extractor on the

r sources it contains, and finish by taking the bitwise

XOR over the outputs of the LRE calls.

This construction successfully outputs uniform bits for

the following reasons. Because α(G) < K, we are guar-

anteed that some LRE call is given only good sources. By

the extractor property of the LRE, this call will output

uniform bits. Meanwhile, the bounded intersection prop-

erty of the (N, r, r−1)-design, paired with the leakage-
resilience property of the LRE, guarantees that these

uniform bits still look uniform even after taking their

bitwise XOR with the outputs of all other LRE calls.

Using these ideas, we actually provide a slightly more

general framework to combine (N, r, s)-designs with

LREs of various strength. Our framework leverages the

“activation vs. fragile correlation” paradigm introduced

in [11], yet it is able to do so in a much more simple,

general, and effective way, by combining two very

general pseudorandom objects: LREs and designs.

To make our framework explicit, we will need explicit

LREs and explicit designs with small independence

number. Our explicit LREs will come from the work

of Chattopadhyay et al. [29], where they gave the first

explicit LREs that work for entropy k = o(n), and in

fact their LREs work for entropy k ≥ polylog(n). Thus

all that remains is to provide an explicit construction of

designs with small independence number. We provide

such a construction in this paper, and sketch it below.

b) Explicit designs with small independence num-
ber: In order to construct our (n, r, s)-designs G =
(V,E), we start with a linear code Q ⊆ F

n
2 of distance

d > 2(r − s), and then restrict it to the set Qr ⊆ Q of

elements in Q that have Hamming weight r. Our design

G = (V,E) is constructed by identifying V with [n], and

by creating a hyperedge for each x ∈ Qr in the natural

way. The distance of the code and the definition of Qr

immediately guarantees that G is an (n, r, s)-design.

In order to upper bound the independence number

α(G) of our design, we observe that any independent

set in G corresponds to a subcube S ⊆ F
n
2 that contains

no vector in Q of weight r; in other words, since Q is a

linear code, this means that the subspace T ∗ := S ∩Q
has no vector of Hamming weight r. If our linear code

Q had very high dimension, then even if the subcube S
was relatively small, we would have found a relatively

large subspace T ∗ containing no vector of Hamming

weight r. But intuitively, it seems like as the dimension

of a subspace grows large enough, at some point it must

be guaranteed to have such a vector. It turns out this

is true, and it follows immediately from Sidorenko’s

recent bounds [31], [32] on the size of sets in F
n
2

containing no r elements that sum to zero. Thus if Q
has large enough dimension, S cannot be too large, and

thus neither can α(G). All that remains is to explicitly

construct (the weight-r vectors of) a high-dimensional

linear code Q ⊆ F
n
2 with distance d > 2(r − s), which

can easily be done using BCH codes [33], [34].

B. Small-space extractors for polylogarithmic entropy

Unfortunately, it is impossible to extract from small-

space sources with entropy k <
√
n using a reduction

of the previous type (i.e., to adversarial sources), since
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setting t ≥ √n will leave k − st ≤ k − 1 · √n < 0 bits

of entropy after the above fixing, while setting t <
√
n

will produce a chunk of size n/t >
√
n > k, which

could hold all of the entropy and thus make extraction

impossible. To circumvent this barrier, we provide a new

reduction from small-space sources to affine sources.

This reduction bypasses the
√
n barrier by adaptively

choosing vertices to fix: this was not possible above,

because such adaptive fixings can produce independent

sources of unknown and varying lengths, which cannot

be captured by adversarial sources. We describe our new

reduction in more detail below.

a) A reduction from small-space sources to affine
sources: Our new reduction from small-space sources to

affine sources starts the same way as before: by fixing

t vertices in the random walk generating the space s
source X, to create t independent sources with roughly

k − st bits of total entropy. The key idea now is to

use an observation of [11], which says that any source

with entropy at least 1 is a convex combination of affine
sources with entropy 1. Given this, we can say that as

long as t′ of the t independent sources have just one
bit of entropy, then X currently looks like a convex

combination of affine sources with min-entropy t′.

On the other hand, if no t′ of the t independent sources

have just one bit of entropy, then the k − st remaining

bits of entropy must be very highly concentrated on the

t′ − 1 most entropic independent sources. In this case,

we can simply recursively apply the reduction on these

t′ − 1 independent sources. Because the entropy rate

increases on each recursive call, we know the recursion

must eventually stop, or else we will end up with a

source with entropy rate exceeding 1, a contradiction.

Thus, via a win-win argument, we can show that X is a

convex combination of affine sources with entropy t′.

We show that even if X starts with entropy just

k ≥ polylog(n), our resulting affine source will have

almost all of the entropy of the original source; namely,

t′ will barely be smaller than k. We are able to achieve

such an efficient reduction for two reasons. First, our

use of affine sources allows an adaptive and recursive
reduction that bypasses the k ≥ √

n entropy barrier

arising from existing reductions to source types of fixed

lengths (like total-entropy sources [9] and adversarial
sources [11]). Second, our reduction to a sequence of t′

independent sources with entropy 1 (which we argue is

an affine source with entropy t′ using the observation of

[11]) results in a negligible amount of lost entropy from

each recursive step, whereas similar recursive reductions

to a constant number of sources with relatively high

entropy [10] are forced to lose much more entropy in

each such step. As a result, we are able to bypass the

k ≥ 2
√
logn entropy barrier of [10].

Finally, we note that by carefully tracking the random

variables that pop up in our recursion, we are able to

describe all of the fixings that occur throughout the

recursion by the fixing of a single random variable. As

a result, we only need to apply the chain rule for min-

entropy (Lemma III.1) once, which keeps the error of

our reduction very low: 2−Ω(k), compared to an error of

2−kΩ(1)

in the recursive reduction of [10].

b) An alternate construction of low-error extractors
for small-space sources: It turns out that in the above

reduction from small space sources to affine sources,

we are actually reducing to a special type of affine

sources known as bit block sources, which were intro-

duced in [7]. While there are currently no explicit low-

error extractors for affine sources with low entropy, we

do have such objects for bit block sources [7], [25].

As a result, the above reduction actually provides an

alternate construction of low error extractors for small

space sources. However, the entropy requirement of this

alternate construction is slightly worse than our construc-

tion that goes through explicit designs and adversarial

extractors, and furthermore it does not provide these

results (Theorems 4 and 5), which are of independent

interest, along the way. For more detail, we refer the

reader to the full version of the paper.

c) Organization: In Section III we provide several

preliminaries. In the remainder of our paper, we follow

a bottom-up strategy for presenting our main results.

In Section IV, we provide an explicit construction of

designs with small independence number, proving The-

orem 5. In Section V, we combine these designs with the

explicit leakage-resilient extractors of [29] to obtain our

improved extractors for adversarial sources, Theorem 4.

In Section VI, we observe how this immediately gives

us our small-space extractors with exponentially small

error, Theorem 3. In Section VII, we provide our new
reduction from small-space sources to affine sources
(Theorem 2) and apply the affine extractor of Li [8]

to obtain our small-space extractors for polylogarithmic

entropy, Theorem 1. We conclude with some remarks

and present some open problems in Section VIII.

We refer the reader to [35] for the full version of this

paper.

III. PRELIMINARIES

a) General notation: Given two strings x, y ∈
{0, 1}m, we let x ⊕ y denote their bitwise XOR. For

a number n ∈ N, [n] denotes the interval [1, n] ⊆ N. We
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let ◦ denote string concatenation, and for a collection

{xi : i ∈ I} indexed by some finite set I , we let (xi)i∈I
denote the concatenation of all strings xi, i ∈ I . If I
is already equipped with some total order, this is used

to determine the concatenation order; otherwise, I is

arbitrarily identified with [|I|] to induce a total ordering.

Given a domain D, and some string x ∈ DN , we let

xi ∈ D denote the value at the ith coordinate of x.

Given a subset S ⊆ [N ], we let xS := (xi)i∈S . Even if

D = Rn for some other domain R and number n ∈ N,

the definition of xS ∈ D|S| does not change.

b) Basic coding theory and extractor definitions:
We let F2 denote the finite field of size two, and

we let F
n
2 denote a vector space over this field. The

Hamming weight of a vector x ∈ F
n
2 is defined as

Δ(x) := #{i ∈ [n] : xi = 1}, and the Hamming
distance between two vectors x, y ∈ F

n
2 is defined as

Δ(x, y) := Δ(x − y), where the subtraction is over

F2. The standard basis vectors in F
n
2 is the collection

E∗ := {ei}i∈[n], where ei ∈ F
n
2 holds a 1 at coordinate

i and 0 everywhere else, and a subcube is a subspace

spanned by some subset of E∗. An (n, k, d)-code is a

subset Q ⊆ F
n
2 of size 2k with the guarantee that any

two distinct points x, y ∈ Q have Hamming distance

Δ(x, y) ≥ d. A linear [n, k, d]-code is simply an (n, k, d)
code that is a subspace. Finally, we say that a source X
over {0, 1}n is an (n, k) source if it has min-entropy

at least k, and we say that an extractor Ext an N -

source extractor for entropy k if it is an extractor for

a family of sources X , where each X ∈ X consists of

N independent (n, k) sources.

c) Discrete probability: In general, for a random

variable X : Ω → V , we are only concerned with the

distribution over V induced by X. We will therefore typ-

ically not define the outcome space Ω, and can assume it

has any form we like (so long as the distribution induced

by X does not change). Given random variables X,Y
and any y ∈ support(Y), we let (X | Y = y) denote

a random variable that takes value x with probability

Pr[X = x | Y = y]. Given a random variable X and a

family of random variables Y , we say that X is a convex
combination of random variables from Y if there exists

a random variable Z such that for each z ∈ support(Z),
it holds that (X | Z = z) ∈ Y . We define the statistical
distance between two random variables X,Y over V as

|X−Y| := max
S⊆V

|Pr[X ∈ V ]− Pr[Y ∈ V ]|

=
1

2

∑
v∈V

|Pr[X = v]− Pr[Y = v]|,

and we say that X,Y are ε-close if |X − Y| ≤ ε.
Finally, we will need the following standard lemma about

conditional min-entropy.

Lemma III.1 ([36]). Let X,Y be random variables such
that Y can take at most � values. Then for any ε > 0,
it holds that

Pr
y∼Y

[H∞(X | Y = y) ≥

H∞(X)− log �− log(1/ε)] ≥ 1− ε.

IV. EXPLICIT EXTREMAL DESIGNS VIA SLICING

CODES AND ZERO-SUM SETS

In this section, we will construct our explicit designs

and thereby prove Theorem 5. But before we do so, we

begin with some background and discussion on (n, r, s)-
designs.

A. Background and discussion

A combinatorial design is a special type of well-
balanced set system, where each set has the same size,

and no two sets intersect at too many points. More for-

mally, we say that an r-uniform hypergraph G = (V,E)
over n vertices is an (n, r, s)-design, or (n, r, s)-partial
Steiner system, if |e1∩e2| < s for all distinct e1, e2 ∈ E.

Beyond the fact that they are pseudorandom objects

themselves, it turns out that (n, r, s)-designs enjoy sev-

eral interesting applications in pseudorandomness.

A notable application of designs is in the seminal

work of Nisan and Wigderson [37], where they are used

to construct pseudorandom generators (PRGs). In this

application, the authors require (and provide) explicit

designs that are extremal in the sense that they have

a large number of hyperedges. More recently, explicit

designs of a different extremal flavor have been used

in the construction of extractors: in [11], Chattopad-

hyay, Goodman, Goyal, and Li show how to construct

extractors for adversarial sources using explicit partial

Steiner triple systems ((n, 3, 2)-designs) with small in-
dependence number.

Given these applications, it is natural to ask about

the smallest possible independence number of more

general (n, r, s)-designs. Rödl and Šinajová answered

this question in 1994, proving the following:

Theorem IV.1 ([30]). Given any n ≥ r ≥ s ∈ N

with r ≥ 2, there exists an (n, r, s)-design G with
independence number

α(G) ≤ Cr,s · n
r−s
r−1 (log n)

1
r−1 ,

where Cr,s = C(r, s) depends only on r, s.
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In fact, they also showed this result is tight up to the

term Cr,s that depends only on r, s.

In order to prove Theorem IV.1, Rödl and Šinajová

apply the Lovász Local Lemma to show that a random
r-uniform hypergraph is such a design. Thus, while

their result proves the existence of such designs, it does

not provide an explicit way to construct them - and,

unfortunately, an explicit construction is needed if one

hopes to apply this result to construct other explicit

objects (like extractors).

In this section, we will provide explicit constructions

of these extremal designs. Our designs give the first

derandomization of Theorem IV.1, and differ from the

optimal bound by just a square.

B. Proof of Theorem 5

We are now ready to explicitly construct our designs,

and thereby prove Theorem 5. We start with the simple

observation that hypergraphs over n vertices can be

identified with subsets of F
n
2 . In particular, any subset

T ⊆ F
n
2 induces a hypergraph GT = (V,E) in the

following way: identify V with [n], and for each x ∈ T
add a hyperedge e ⊆ [n] to E that contains exactly

the coordinates that take the value 1 in x. Using this

correspondence, we can instead focus on constructing

special subsets of Fn
2 , and thereby leverage the tools of

linear algebra and coding theory.

To obtain our designs, we will need to explicitly

construct a subset T ⊆ F
n
2 such that (1) GT is an

(n, r, s)-design; and (2) GT has small independence

number. We can make sure this happens via the following

two simple facts, which describe how these hypergraph

properties can be identified with properties of subsets in

F
n
2 .

Fact IV.2. For any subset T ⊆ F
n
2 , the hypergraph GT

is an (n, r, s)-design if and only if (i) every x ∈ T has
Δ(x) = r; and (ii) any two distinct x, y ∈ T have
Δ(x, y) > 2(r − s).

Proof. The two conditions are sufficient because the

first one guarantees that GT will be r-uniform, and the

second one guarantees that any two edges in GT intersect

at < s points. They are both necessary because if the first

does not hold, GT will not be r-uniform, and if the first

holds but the second does not, then two edges will end

up sharing ≥ s points.

Fact IV.3. For any subset T ⊆ F
n
2 , the hypergraph GT

has independence number α(GT ) < � if and only if every
subcube A ⊆ F

n
2 of dimension at least � has at least one

point in T .

Proof. If α(GT ) ≥ �, there is an independent set

S ⊆ V = [n] of size at least �, and thus the subcube

A := span({ei}i∈S) of dimension � has no points in T .

If there is a subcube A ⊆ F
n
2 of dimension � with no

points in T , the set S ⊆ [n] indexing the standard basis

vectors that span A must have size � and constitute an

independent set in GT .

By Fact IV.2 and Fact IV.3, we see that the task of

constructing an (n, r, s)-design G with small indepen-

dence number is equivalent to the task of constructing a

subset T ⊆ F
n
2 with the following three properties:

1) T lies in the Hamming slice Δr := {x ∈ F
n
2 :

Δ(x) = r},
2) Points in T have pairwise Hamming distance >

2(r − s), and

3) Any subcube of relatively small dimension inter-

sects T .

In order to construct a set T ⊆ F
n
2 with these three

properties, we use connections to coding theory and zero-
sum problems. In particular, recall that an (n, k, d)-code

is a subset Q ⊆ F
n
2 of size 2k with the guarantee that

any two distinct points x, y ∈ Q have Hamming distance

Δ(x, y) ≥ d. Thus, if we take any (n, k, d)-code Q ⊆ F
n
2

with d > 2(r−s) and intersect it with the Hamming slice

Δr, we obtain a set T = Q ∩Δr that enjoys properties

(1) and (2). In order to endow it with property (3), we

will need to start with some code Q such that for any

relatively large subcube S, the set S ∩ T = S ∩ (Q ∩
Δr) = (S ∩Q) ∩Δr is non-empty.

The trick here is to start with a linear code Q. A linear
[n, k, d]-code Q ⊆ F

n
2 is simply an (n, k, d) code that is

also a subspace. The condition (S∩Q)∩Δr �= ∅ required

for property (3) now becomes more concrete: since Q is

a subspace, S ∩ Q is also a subspace, and thus we can

make sure it contains some vector of Hamming weight

r as long as we can show that every large subspace

contains such a vector. In particular, defining Λr(n) to be

the dimension of the largest subspace R ⊆ F
n
2 containing

no vector of Hamming weight r, we prove the following

lemma.

Lemma IV.4. If Q ⊆ F
n
2 is a linear [n, k, d]-code with

d > 2(r−s), then the hypergraph GQ∩Δr is an (n, r, s)-
design with independence number α = α(GQ∩Δr

) that
obeys the following inequality:

α− Λr(α) ≤ n− k

Proof. It follows immediately from Fact IV.2 that

GQ∩Δr is an (n, r, s)-design. By Fact IV.3, there is a

subcube A = span(ei1 , . . . , eiα) ⊆ F
n
2 of dimension
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α that does not intersect Q ∩ Δr. Thus, if we define

A′ := A ∩ Q, then A′ contains no vector of Hamming

weight r, and furthermore it has dimension dim(A′) =
dim(A ∩ Q) ≥ dim(A) + dim(Q) − n = α + k − n.

Notice now that if we define the projection π : Fn
2 → F

α
2

as the map (x1, . . . , xn) 
→ (xi1 , . . . , xiα), then the

subset π(A′) is still a subspace (albeit now of F
α
2 ) of

dimension dim(π(A′)) ≥ α+k−n containing no vector

of Hamming weight r. Thus, by definition of Λr, it must

hold that α+ k − n ≤ dim(π(A′)) ≤ Λr(α).

To construct an (n, r, s)-design from Lemma IV.4 with

the smallest possible independence number α, we will

want an explicit [n, k, d > 2(r−s)]-linear code with the

largest possible dimension k, along with a strong upper

bound on Λr(n). We start with the latter.

Getting a good upper bound on Λr(n) is closely

related to the theory of zero-sum problems. In this

field, one parameter of great interest is the (generalized)

Erdős-Ginzburg-Ziv constant(s) of a finite abelian group.

Given n ≥ r ∈ N where r is even, this parameter is

defined for Fn
2 as the smallest integer sr(n) such that any

sequence of sr(n) values in F
n
2 contains a subsequence

of length r that sums to zero. For our application, it will

be more convenient to use an almost identical parameter

βr(n), defined as the size of the largest subset of F
n
2

containing no r elements that sum to zero. Using slightly

different terminology, the relationship between βr(n)
and Λr(n) was shown in [32].

Lemma IV.5 ([32]). For every n ≥ r ∈ N where r is
even,

βr(n− Λr(n)) ≥ n.

To get a good upper bound on Λr(n), we need a good

upper bound on βr(n). In 2018, Sidorenko provided a

very strong bound of this type:

Theorem IV.6 ([31], Theorem 4.4). There is a universal
constant C > 0 such that for every n, r ∈ N where r is
even,

βr(n) ≤ C · r3 · 22n/r.

By plugging this bound into Lemma IV.5, we get the

following corollary.

Corollary IV.7 ([32]). There is a universal constant C >
0 such that for any n ≥ r ∈ N where r is even, the
largest subspace S ⊆ F

n
2 with no vector of Hamming

weight r has dimension

Λr(n) ≤ n− (r log n− 3r log r − r logC)/2.

We are finally ready to prove our main design lemma,

which reduces the problem of constructing (n, r, s)-
designs with small independence number to constructing

high-dimensional linear codes.

Lemma IV.8 (Main design lemma). There is a universal
constant C > 0 such that for every n ≥ r ≥ s with r
even, if Q ⊆ F

n
2 is a linear [n, k, d]-code with d > 2(r−

s), then GQ∩Δr
is an (n, r, s)-design with independence

number

α(GQ∩Δr ) ≤ C · r3 · 22(n−k)/r.

Proof. Simply plug the bound on Λr(α) from Corol-

lary IV.7 into Lemma IV.4.

To complete the proof of Theorem 5, we now just

need to explicitly construct a linear code with very high

dimension. In 1959-1960, Bose, Ray-Chaudhuri [33],

and Hocquenghem [34] explicitly constructed codes of

exactly this type (see [38] for a great exposition of these

codes, which are known as BCH codes). In particular,

they proved the following theorem.

Theorem IV.9 ([33], [34]). For every m, t ∈ N, there
exists an [n, k, d]-linear code BCHm,t ⊆ F

n
2 with block

length n = 2m−1, dimension k ≥ n−mt, and distance
d > 2t. Furthermore, there exists an Algorithm B that
given any m, t ∈ N and x ∈ F

n
2 as input, checks if

x ∈ BCHm,t in poly(n) time.

By instantiating Lemma IV.8 with Theorem IV.9, we

immediately obtain Theorem 5. We refer the reader to

the full version for more details.

V. EXTRACTORS FOR ADVERSARIAL SOURCES VIA

DESIGNS AND LRES

Perhaps the most popular model of seedless extraction

is to assume that each source X actually consists of

several independent sources X = (X1,X2, . . . ,XN ),
each guaranteed to have some min-entropy. A long

line of work has focused on constructing extractors

for this setting [19], [39]–[43], and has culminated in

extractors with a near-optimal entropy requirement [43].

Recently, the idea of generalizing this model to allow for

bad sources with no entropy guarantee and/or limited
dependence has received considerable attention [11],

[44], [45]. Motivated by applications in generating a

(cryptographic) common random string in the presence

of adversaries, and in harvesting randomness from unre-

liable sources, Chattopadhyay, Goodman, Goyal, and Li

[11] introduced the class of adversarial sources:
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Definition V.1 (Adversarial sources). A source X over
({0, 1}n)N is an (N,K, n, k)-adversarial source if it is
of the form X = (X1,X2, . . . ,XN ), where each Xi is
an independent source over {0, 1}n, and at least K of

them are good: i.e., there is some set S ⊆ [N ] of size K
such that H∞(Xi) ≥ k, for all i ∈ S.

In this section, we will construct a significantly im-

proved extractor for adversarial sources, thereby proving

Theorem 4. Our proof of Theorem 4 builds upon and

generalizes the so-called “activation vs. fragile correla-
tion” paradigm introduced in [11] for extracting from

adversarial sources. In particular, instead of combining

various types of specialized extractors with various types

of specialized extremal hypergraphs (as is done in [11]),

we combine just one type of general robust extractor with

one type of general extremal hypergraph. The general

extremal hypergraphs we use are the designs constructed

in Section IV, while the general robust extractor we use

is known as a leakage-resilient extractor (LRE).

LREs are very general objects with extremely strong

conditioning properties. The exact variant that will be

useful here is actually a specialization known as ex-
tractors for cylinder intersections, first introduced in

[28]. Informally, we define an (r, s)-leakage-resilient
extractor to be an r-source extractor LRE that outputs

bits that look uniform, even conditioned on the output

of several functions that each act on fewer than s of the

inputs to LRE. Formally, it is defined as follows.

Definition V.2 ([28], [29]). A function LRE :
({0, 1}n)r → {0, 1}m is an (r, s)-leakage-resilient ex-

tractor for entropy k and error ε if the following holds.
Let X := (X1, . . . ,Xr) be any r independent (n, k)
sources, let T :=

(
[N ]
s−1

)
, and let L := {LeakT :

({0, 1}n)s−1 → {0, 1}m}T∈T be any collection of
functions. Then:

|LRE(X) ◦ (LeakS(XS))S∈S

−Um ◦ (LeakS(XS))S∈S | ≤ ε.

By combining these robust extractors with our designs

from Section IV, it is now easy to construct a new

framework for extracting from adversarial sources. This

framework, which generalizes the extractor constructions

in [11], is formally captured in the following lemma

(which is proven in the full version of this paper).

Lemma V.3. Let G = ([N ], E) be an (N, r, s)-
design with independence number α, and let Ext0 :
({0, 1}n)r → {0, 1}m be an (r, s)-leakage resilient ex-
tractor for entropy k0 with error ε0. Then for any K > α

and k ≥ k0, the function ExtG : ({0, 1}n)N → {0, 1}m
defined as

ExtG(X) :=
⊕

e∈E(G)
Ext0(Xe)

is an extractor for (N,K, n, k) adversarial sources with
error ε = ε0.

If we want to use the above framework to extract

from adversarial sources with the fewest number of good

sources possible, we need two explicit objects. First,

we need explicit (N, r, s)-designs with independence

numbers that decrease quickly as r, s grow together.

Theorem 5 of the current paper gives exactly this, and in

fact the independence numbers of our designs decrease

with r, s almost as quickly as possible, as shown by the

tightness of Theorem IV.1.

Second, we need explicit leakage-resilient extrac-

tors for polylogarithmic entropy that have exponentially

small error. Very recently, these exact objects were

constructed:

Theorem V.4 ([29]). There is a universal constant
C > 0 such that for any sufficiently large constant

r ∈ N and all n, k ∈ N satisfying k ≥ logC n, there
exists an explicit (r, r − 1)-leakage resilient extractor
Ext : ({0, 1}n)r → {0, 1}m for min-entropy k with
output length m = kΩ(1) and error ε = 2−kΩ(1)

.

It is now not too difficult to instantiate our framework

(Lemma V.3) with these LREs (Theorem V.4) and our

explicit designs (Theorem 5) to obtain our significantly

improved extractors for adversarial sources (Theorem 4).

We refer the reader to the full version for more details.

VI. A REDUCTION FROM SMALL-SPACE SOURCES TO

ADVERSARIAL SOURCES

Now, we briefly discuss how our improved (low-error)

extractors for adversarial sources immediately imply

improved low-error extractors for small-space sources,

thereby proving Theorem 3. We use an intermediate class

of sources known as total entropy sources, defined as

follows.

Definition VI.1. A random variable X over
({0, 1}�)r is an (r, �, k)-total entropy source

if X = (X1,X2, . . . ,Xr), where each Xi

is an independent source over {0, 1}�, and∑
i∈[r]H∞(Xi) ≥ k.

It is well known that small-space sources are close to a

convex combination of total entropy sources [9], and that

total entropy sources are, in fact, adversarial sources (for
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some appropriate parameters) [11]. By composing these

two reductions, our improved extractors for adversarial

sources immediately imply Theorem 3. Along the way,

we also obtain the following improved extractor for total

entropy sources.

Theorem VI.2. For any fixed δ > 0 and all sufficiently
large r, �,Γ ∈ N with Γ ≥ max

{
(r�)1/2+δ, rδ�

}
, there

exists an explicit extractor Ext : ({0, 1}�)r → {0, 1}m
for (r, �,Γ)-total entropy sources, with output length
m = (r�)Ω(1) and error ε = 2−(r�)

Ω(1)

.

Previously, the best low-error explicit extractors

for total-entropy sources [11] required entropy Γ ≥
max{(r�)2/3+δ, r1/2+δ�}. Non-constructively, we know

it is possible [9] to achieve an entropy requirement of

Γ ≥ O(�+log r) and error of 2−Ω(Γ). Thus, while there

is still a lot of room to give improved explicit extractors

for total-entropy sources, our total-entropy extractor is

almost optimal when the source consists of “a few long

sources”:

Remark VI.3. The entropy requirement in Theorem VI.2
becomes k ≥ �1+δ when � ≥ r, which is close to the
optimal requirement of k ≥ O(�).

VII. A REDUCTION FROM SMALL-SPACE SOURCES TO

AFFINE SOURCES

Finally, we construct extractors for small-space

sources that can handle just polylogarithmic entropy in

the polynomial error regime, proving Theorem 1. The

main tool we use to prove this theorem is a new reduction

from small-space sources to affine sources. As we have

seen, an affine source is simply a uniform distribution

over some affine subspace of F
n
2 . It will be useful,

however, to have the following formal definition.

Definition VII.1 (Affine source). A distribution X over
F
n
2 is an affine source with min-entropy k if there exists

some shift vector v0 ∈ F
n
2 and linearly independent basis

vectors v1, v2, . . . , vk ∈ F
n
2 such that X is generated by

sampling k bits uniformly at random x1,x2, . . . ,xk ∼
F2 and computing v0 +

∑
i∈[k] xivi.

Given this definition, we are now ready to define the

main lemma used in proving Theorem 1.

Lemma VII.2 (Theorem 2, restated). Let X be a space
s source over {0, 1}n with min-entropy k. Then X is
2−Ω(k)-close to a convex combination of affine sources
with min-entropy Γ, where

Γ = Ω

(
k

s log(n/k)

)
.

Before proving Lemma VII.2, we use it to prove

Theorem 1. We recall the standard fact that if an extractor

works for each source X in a family X of distribu-

tions, then it also works for any convex combination

of sources from that family. In particular, this means

that any extractor for affine sources is automatically an

extractor for small-space sources, by Lemma VII.2. The

following affine extractor of Li [8], which can handle

polylogarithmic entropy, will be of particular interest.

Theorem VII.3 ([8]). There exists a universal constant
C > 0 such that for all n, k ∈ N satisfying k ≥ logC n,
there exists an explicit extractor Ext : {0, 1}n →
{0, 1}m for affine sources with min-entropy k, which has
output length m = kΩ(1) and error ε = n−Ω(1).

Resetting the universal constant C as necessary, The-

orem 1 follows immediately by combining Lemma VII.2

and Theorem VII.3. Furthermore, since our reduction

(Lemma VII.2) has extremely low error, we note that

we can also combine it with a classical affine extractor

of Bourgain [22] to immediately get the following bonus

result:

Theorem VII.4. For any fixed constants C, δ > 0 and
all n, k, s ∈ N satisfying k ≥ δn and s ≤ C, there exists
an explicit extractor Ext : {0, 1}n → {0, 1}m for space
s sources with min-entropy k, which has output length
m = Ω(n) and error ε = 2−Ω(n).

To the best of our knowledge, this is the only nontriv-

ial small-space extractor that achieves super low error

ε = 2−Ω(n), as all previous constructions [9] have error

at least ε = 2−
˜Ω(n).

At last, we are ready to prove Lemma VII.2, which

will immediately yield Theorem 1 (and Theorem VII.4).

A. A reduction from small-space sources to simple bit-
block sources

In this subsection, we actually show a stronger result

than Lemma VII.2. In particular, we prove that the reduc-

tion holds even for a special case of affine sources called

bit-block sources. Given a vector v ∈ F
n
2 , we define

support(v) ⊆ [n] to be the subset of all coordinates

where v takes the value 1, and we define these sources

as follows:

Definition VII.5 ([7]). A source X over F
n
2 is a bit-

block source with min-entropy k if it is an affine source
with min-entropy k (as per Definition VII.1) with the
additional guarantee that support(vi)∩support(vj) = ∅,
for all i �= j ∈ [k].
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In fact, we even show that the reduction holds for a

special case of bit-block sources.

Definition VII.6. A source X over F
n
2 is a simple bit-

block source with min-entropy k if it is a bit-block
source with min-entropy k (as per Definition VII.5),
with the additional guarantee that max(support(vi)) <
min(support(vj)) for all i < j ∈ [k].

Given these definitions, we are now able to state the

technical version of Lemma VII.2.

Lemma VII.7 (Lemma VII.2, technical version). Let X
be a space s source over {0, 1}n with min-entropy k.
Then X is ε-close to a convex combination of simple
bit-block sources with min-entropy Γ, where

Γ = Ω

(
k

s log(n/k)

)
,

and ε = 2−Ω(k).

Before we prove Lemma VII.7, we briefly observe

that a simple bit-block source X over n bits with min-

entropy Γ is also a space s = 1 source over n bits with

min-entropy Γ. Combining this with Lemma VII.7, we

see that simple bit-block sources and space s sources are

roughly equivalent (in the low-error convex combination

sense), up to a factor of Õ(s).
We are now ready to prove Lemma VII.7. We will use

an intermediate type of source, called an independent
source sequence, which is a natural generalization of

independent sources to allow for uneven (and unknown)

length. We will show that small-space sources are (close

to) a convex combination of independent source se-

quences, which are a convex combination of simple bit-

block sources.

We start by defining independent source sequences.

Definition VII.8. A source X over {0, 1}n is an
(n, r, k)-independent source sequence if there exist some
(unknown) lengths �1, . . . , �r ∈ [n] that sum to n
such that X = (X1, . . . ,Xr), where each Xi is an
independent (�i, k)-source.

Next, we show that an independent source sequence

is a convex combination of simple bit-block sources.

Lemma VII.9. Let X be an (n,Γ, 1)-independent
source sequence. Then X is a convex combination of
simple bit-block sources with min-entropy Γ.

The proof of this result (in the full version of the

paper) uses the nice observation from [11] that any (�, 1)-
source Z is a convex combination of affine sources with

min-entropy exactly 1. Finally, we show that small-space

sources are close to a convex combination of independent

source sequences. By combining the following lemma

with Lemma VII.9, we immediately get Lemma VII.7.

Lemma VII.10. Let X be a space s source over {0, 1}n
with min-entropy k. Then X is ε-close to a convex
combination of (n,Γ, 1)-independent source sequences,
where Γ = Ω

(
k

s log(n/k)

)
and ε = 2−Ω(k).

This is the key lemma in the proof of Lemma VII.7,

and thus in the proof of Theorem 1. We refer the reader

to Section II-B for a sketch of its proof, and to the full

version of this paper for the complete proof.

VIII. FUTURE DIRECTIONS

In this paper, we demonstrated new applications of ex-

tremal designs and leakage-resilient extractors. It would

be interesting to explore whether these objects have fur-

ther applications in pseudorandomness and complexity.

Beyond this, three natural open problems are as follows.

Problem 1. Better low-error extractors for small-space

sources: Reduce the entropy requirement for low-error
small-space extraction (Theorem 3) so that it is closer
to the entropy requirement for polynomial-error small-
space extraction (Theorem 1).

Problem 2. Better extractors for adversarial sources:

Improve the requirement on good sources in Theorem 4
from K ≥ N δ to K ≥ polylog(N), or (less ambitiously)
K ≥ No(1).

Problem 3. Better explicit designs with small indepen-

dence number: Improve the constant in the power of n
of Theorem 5 from 2 to 1.99.
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