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Abstract—We give an explicit construction of an affine
extractor (over F2) that works for affine sources on n
bits with min-entropy k ≥ log n · (log log n)1+o(1). This
improves prior work of Li (FOCS’16) that requires min-
entropy at least poly(log n).

Our construction is based on the framework of using
correlation breakers and resilient functions, a paradigm
that was also used by Li. On a high level, the key
sources of our improvement are based on the following new
ingredients: (i) A new construction of an affine somewhere
random extractor, that we use in a crucial step instead of
a linear seeded extractor (for which optimal constructions
are not known) that was used by Li. (ii) A near optimal
construction of a correlation breaker for linearly correlated
sources. The construction of our correlation breaker takes
inspiration from an exciting line of recent work that
constructs two-source extractors for near logarithmic min-
entropy.

I. INTRODUCTION

The area of randomness extraction is concerned with

producing truly random bits from defective sources of

randomness. The motivation for this area stems from

the fact that naturally occurring sources of randomness

are typically defective, but applications in areas such as

cryptography and distributed computing crucially require

access to truly uniform bits.

A lot of research has gone into modeling weak

sources of randomness, starting with the early work

of von Neumann [1] who considered the problem of

extracting randomness from a stream of independent,

biased bits. By now, the standard way of measuring the

quality of a weak source X is using the notion of min-
entropy defined as H∞(X) = minx log(1/Pr[X = x]).
Note that for a distribution X on {0, 1}n, we have

0 ≤ H∞(X) ≤ n. We define an (n, k)-source to be

a distribution on n bits with min-entropy at least k.

We are now ready to define the notion of an extractor

for a class of sources. We measure the quality of the out-

put of the extractor using the notion of statistical distance

between distributions D1 and D2 (on some universe Ω)

defined as |D1 −D2| := 1
2

∑
x∈Ω |D1(x)−D2(x)|.

Definition I.1 (Deterministic extractors). An extractor
Ext : {0, 1}n → {0, 1}m with error ε for a class of
sources X satisfies the property that for any X ∈ X , we
have |Ext(X)−Um| ≤ ε.

A folklore result from the 80’s rules out the possibility

of an extractor (even with a single bit output) for the

class of (n, k)-sources, for any k ≤ n − 1. Given this

impossibility result, research on random extraction over

the last four decades can be broadly classified into two

directions: (i) Seeded extraction: the assumption in this

setting is that the extractor has access to an independent

seed that can be used to extract randomness from the

source [2]. An impressive line of work has led to

efficient constructions of seeded extractors with optimal

parameters [3], [4], [5]. (See also the excellent survey by

Shaltiel [6] for earlier results on seeded extraction.) (ii)

Seedless (or deterministic) extraction: here one makes

some additional assumption on the source X that enables

the possibility of randomness extraction. Some exam-

ples include the class of bit-fixing sources [7], sources

sampled by a computationally bounded algorithms [8],

[9], and sources that comprise of multiple independent

sources [10], [11].

In this paper we focus on the setting of deterministic

extraction, and in particular, we study the problem of

randomness extraction from affine sources defined as

follows.

Definition I.2 (Affine sources). Fix a finite field F of
size q, and parameters n, k. An (n, k)q-affine source
X is uniform over some (unknown) affine subspace
of dimension k in F

n. In other words, there exists
linearly independent vectors v1, . . . , vk in F

n such that
X is the distribution obtained by sampling λ1, . . . , λk
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uniformly and independently from F, and outputting
v0 +

∑k
i=1 λi · vi, for some v0 ∈ F

n.

We note that extracting from affine sources falls into

the line of investigation that studies extraction from

sources sampled by computationally bounded algorithms

(since each output bit is computationally restricted to be

an affine function of the input randomness, namely the

λi’s).

Thus, an affine extractor AffExt : F
n → {0, 1}m

for entropy k and error ε is such that for any (n, k)q-

affine source X (over F, where q = |F|), we have

|AffExt(X)− Um| ≤ ε. For intuition, consider the case

of m = 1: in this case, an affine extractor is simply

a 2-coloring of F
n such that every dimension k affine

subspace of Fn is almost evenly colored.

A. Applications of Affine Extractors

The class of affine sources naturally generalize (obliv-

ious) bit-fixing sources [7], where a bit-fixing source has

some unknown set of coordinates that hold random bits,

while the other coordinates are fixed to constants. Extrac-

tors for bit-fixing sources have applications in exposure

resilient cryptography [7], [9], and the generalization of

bit-fixing sources to affine sources played a key role in

obtaining the best known extractors for bit-fixing sources

[12].

Affine extractors have also found applications in de-

terministic extraction from many other models of weak

sources. Viola [13] proved that sources sampled by small

circuits are close to a convex combination of affine

sources (and thus an affine extractor can be used to ex-

tract from such circuit sources). In a recent work, Chat-

topadhyay and Goodman [14] proved a similar result

for sources sampled by algorithms with limited memory

[15]. Such small-space sources are known to capture

a wide variety of weak source models that have been

considered for randomness extraction, including: finite

Markov chain sources [16], symbol-fixing sources [9],

and (short) independent sources. Ben-Sasson and Zewi

[17] demonstrated another application by showing how

to use any affine extractor to construct low-error two-

source extractors in a black-box way, under plausible

conjectures from additive combinatorics. Cohen and Tal

[18] used affine extractors to extract randomness from

variety sources, which are distributions that are uniform

on the set of common zeroes of a system of polynomial

equations. Thus, affine extractors provide a unified way

to construct extractors for a wide range of well-studied

models of weak sources.

Finally, affine extractors over F2 have important ap-

plications in circuit lower bounds: building on the work

of Demenkov and Kulikov [19], a breakthrough work of

Find, Golovnev, Hirsch, and Kulikov [20] used affine

extractors to bypass a longstanding barrier in circuit

lower bounds. To date, the best known circuit lower

bounds (of roughly 3.1n by Li and Yang [21]) are for

affine extractors.

B. Prior Work

A probabilistic argument shows the existence of ex-

cellent affine extractors: for example, setting the error ε
to a constant and the output length to m = k − O(1),
a random function is an affine extractor for min-entropy

k > 2 log n. However, for applications it is desirable

to find explicit constructions of such extractors (i.e., an

extractor that has running time which is polynomial in

the parameters n, q).

Prior work on explicitly constructing affine extractors

can be classified into two settings depending on the size

of the field:

• The large field setting (q = poly(n)): In this

setting, Gabizon and Raz [22] in fact constructed

an affine extractor for lines (i.e., k = 1).1 More

generally, they showed how to extract most of the

entropy out of any (n, k)q-affine source in this large

field setting. A construction with improved error

was given by Bourgain, Dvir, and Leeman [23]

assuming q is a prime, and further that q − 1 does

not have too many prime factors.

• The small field setting (q = O(1)): The task

of constructing affine extractors is generally more

challenging as the field size gets smaller. In the

setting of q = O(1), Bourgain [24] and subsequent

works of Yehudayoff [25] and Li [26] gave explicit

constructions for k ≥ n/
√
log logn. DeVos and

Gabizon [27] obtained a trade-off between the field

size and entropy, and gave explicit affine extrac-

tors for fields with characteristic Ω(n/k) and size

q = Ω((n/k)2). Thus, they require linear entropy

(i.e., k = Ω(n)) for extraction from affine sources

on fields with constant characteristic.

A vastly improved result was obtained by Li [28]

who gave an explicit affine extractor that works for

q = 2 (which is generally considered the hardest

setting) and k ≥ C(log n)C , for some large enough

constant C.

1When n is large enough compared to q, the Hales-Jewett theorem
rules out the possibility of an extractor for lines.
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Li’s construction in [28] is closely related to the

two-source extractor construction by Chattopadhyay and

Zuckerman [29], which works for two independent

sources with min-entropy O(logC(n)). The min-entropy

requirement for two-source extractors was later reduced

to log1+o(1)(n) by Ben-Aroya, Doron and Ta-Shma [30]

and was further improved in subsequent works [31], [32],

[33]. It is natural to ask whether a similar improvement

can be obtained for affine extractors.

C. Our Result

Our main result is a further improvement over the

result of Li [28], and thus nearly matching the random

construction in terms of the min-entropy requirement.

Theorem I.3. For any constant ε > 0, there exists
a constant C > 0 such that for all n, k ∈ N such
that k ≤ n, there exists an efficient construction of an
extractor AffExt : Fn

2 → {0, 1} with error ε for (n, k)2-
affine sources with min-entropy k ≥ C · log n · log log n ·
(log log log n)6.

In fact, in the q = 2 setting, it is impossible

to construct an affine extractor for min-entropy k <
log(n) − O(1), since every deterministic function f :
F
n
2 → {0, 1} is constant on some affine subspace of

dimension log(n) − O(1) (see, e.g., [34, Lemma 6.7]).

Therefore, the min-entropy requirement of our extractor

is nearly optimal.

One drawback of our construction compared to [28]

is the error of our extractor: while we can only achieve

constant error, the construction in [28] achieves poly-

nomially small error. We leave it as an interesting open

question to reduce the error of our extractor construction.

D. Subsequent Work

In a subsequent work, Chattopadhyay and Liao [35]

construct a “sumset source extractor” for min-entropy

O(log(n) log log(n) log log log3(n)), which also implies

an affine extractor with the same parameters, and hence

slightly improves over the result in this paper. The

key ingredient for the improvement in [35] is a better

construction of “affine correlation breakers” based on

some ideas in this work.

II. PROOF OVERVIEW

In this section, we give an overview of our affine

extractor. The formal proof for Theorem I.3 can be found

in the full version [36].

On a very high level, our construction follows the

framework in [29], which has been used to construct

deterministic extractors in many recent works. The

framework works as follows: given a source X, we

first convert it into a non-oblivious bit-fixing (NOBF)

source, which is a source on N = poly(n) bits such

that N − N δ of them are “good,” meaning that they

are t-wise independent. Then we apply an extractor for

NOBF sources to get the output.

A general strategy to construct an NOBF source from

multiple independent sources was initiated in [37]. The

strategy works by first taking a strong seeded extractor,

which is a function Ext that takes d bits of extra

randomness (i.e. a seed) S and converts X into a close-

to-uniform string Ext(X,S), with high probability over

the seed S. Since in reality we do not have such a seed

S, we enumerate over all D = 2d possibilities of the

random seed and get a somewhere-random source (SR-

source), which is a collection of D different strings such

that most of them are close to uniform. However, note

that the strings which are close to uniform are arbitrarily

correlated with each other. The second step is to take

another independent source to “break the correlation”

between these uniform strings and make them t-wise

independent. A function which can complete this task

is called a correlation breaker [38]. Recent constructions

of such objects employ a technique known as alternating

extraction [39], which uses a strong seeded extractor as

a building block.

The setting of affine extractors is trickier since there

is only one source. At first glance, it doesn’t seem like

the above framework can be used to construct an affine

extractor. However, Li [28] showed that this framework

can still be used, based on a crucial observation orig-

inating in the work of Rao [12]: if the strong seeded

extractor Ext that we use is a linear function for every
fixing of the seed s (such extractors are called linear
seeded extractor), then there is still some “implicit

independence” between the output Y = Ext(X, s) and

the original source X. Specifically, X can be written in

the form A + B such that A has some entropy and

is independent of (B,Y). Then [28] showed that if

we again use linear seeded extractors to construct the

correlation breaker, then it is possible to exploit this

implicit independence.

However, the affine extractor in [28] requires

polylog(n) entropy, for the following reasons. First, to

extract from an NOBF source, [28] used the deran-

domized Ajtai-Linial resilient function [29], [40], [28]

in the last step, which requires the source to have

poly-logarithmic entropy. Second, the correlation breaker

in [28] also requires Ω(log2 n) entropy to work. In

fact, even the state-of-the-art correlation breakers for

624

Authorized licensed use limited to: Cornell University Library. Downloaded on March 17,2022 at 16:00:15 UTC from IEEE Xplore.  Restrictions apply. 



independent sources [41] required Ω(log2 n) entropy at

the time, while in [28] the correlation breaker needs

to work for two sources with linear correlation, which

is even harder. Finally, many steps in this construction

require a strong linear seeded extractor. However, the

known constructions of strong linear seeded extractors

usually require at least polylog(n) entropy. Specifically,

note that this framework heavily relies on strong linear

seeded extractors for two different purposes:

1) To convert X into a SR-source, and

2) To construct the correlation breaker.

In both cases we need the error of extractor to be

1/poly(n), and in the first case we further need the

seed to have length d = O(log(n)) to make sure that

there are only 2d = poly(n) possibilities of seed to

enumerate (since otherwise the running time of the affine

extractor we construct will not be polynomial). The most

commonly used strong linear seeded extractor is perhaps

Trevisan’s extractor [42], [43], but it requires a seed

of length at least log2(n) in this setting. The extractor

constructed in [28], while having O(log(n)) seed length,

requires the source to have logc(n) entropy for some

constant c > 4.

A. Bypassing the linear seeded extractor barrier

To solve the problem of not having a good enough

linear seeded extractor, we take different approaches in

the two cases. We first discuss the task of turning X
into a SR-source, and explain the construction of our

correlation breaker in Section II-B.

In both cases, our starting point is a simple construc-

tion of strong linear seeded extractors which works as

follows. To extract m uniform bits, our first step is to

apply a strong lossless condenser on X: this is a function

that takes a seed and converts X into a shorter source

X′ of length O(m) while still having roughly m bits

of entropy. Using the celebrated “GUV condenser” [4],

this step requires a seed of length O(log(n/ε)) where

ε is the error, and such a condenser can also be made

linear [44]. Our second step is to apply a linear universal

hash function on X′ to get an m-bit uniform string by the

Leftover Hash Lemma [45]. This “condense-then-hash”

extractor has optimal entropy requirement, but the seed

length is O(m+ log(n)).
Now, recall that in the first step we need the seed

length to be O(log n), which means using this condense-

then-hash extractor, we can only extract a string Y
of length O(log n). However, this is not enough for a

correlation breaker to work, even if we use the state-of-

the-art correlation breaker for independent sources [33]

(recall, we have to deal with the harder case of the

linearly correlated sources).

To solve this problem, our observation is that while

|Y| = O(log n) is not enough for a correlation breaker

to work, we require Y to be only slightly longer. In

particular, we need m = |Y| = O(c(n) · log n) for some

slowly growing function c = c(n). (We will see that

we can take c = log log(n) when we discuss correlation

breakers in Section II-B.) Our idea is to use a recursive

approach based on block-source extraction, combined

with an error reduction trick at the end, as follows:

• As before, we first use the GUV condenser to

condense the source X into a source X′ of length

n′ = O(m) and entropy 0.9n′. In other words, X′

has entropy rate 0.9. This requires a seed of length

O(log(n/ε)).
• Next, we cut X′ into two blocks, and a standard

argument shows that each block still has entropy

rate 0.8, even when conditioned on the other block.

Then again we apply the GUV condenser on each

block to condense the entropy rate to 0.9, but this

time we use one seed to condense both blocks.

Intuitively, this works because the GUV condenser

is strong (which can be considered as “success with

high probability” and hence we can apply the union

bound on both blocks). Furthermore, note that this

time the seed length is only O(log(m/ε)).
• We again divide each block into two halves and get

four blocks in total, and use one extra seed of length

O(log(m/ε)) to condense all four blocks. By re-

peating this step for log(c) times we eventually get

c blocks, each having entropy roughly O(log(n)).
• Finally, we use another seed of length O(log(n/ε))

to sample a linear hash function and extract

from every block. The total seed length is

O(log(n)+ log(c) log(m/ε)), which is O(log(n)+
log(c) log(1/ε)) since m is short.2 Now we get an

extractor of seed length O(log(n)), but with error

ε = n−O(1/ log(c)), which is slightly larger than

what we need.

• To solve this problem, we apply the error reduc-

tion scheme in [30], which reduces the error to

1/poly(n) but only increases the seed length by a

constant factor. A drawback of this scheme is that

for every seed we get A different outputs such that

only one of them is guaranteed to be uniform. In

other words, we get a somewhere random extractor
instead of an extractor.

2In fact, the actual seed length should be O(log(n) +
log2(c) log(1/ε)). See the full version for more details.
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We note that the weaker notion of a somewhere random

extractor (instead of an extractor) suffices in our scheme

of constructing affine extractors. Informally, we follow

the approach of [30], and apply correlation breakers on

all outputs of the somewhere random extractor. Using

an idea from [38], we can simply merge these strings by

taking the parity after we break their correlation.

Another possible concern is the following. In [30]

they started from an extractor with error 1/poly(n),
and reduce it to 1/nC for any constant C, and thus

get the parameter A (the number of different outputs)

to be a constant. In our setting, we start from an

extractor with error slightly larger than 1/poly(n), and

thus require A = O(log(c)). So, in our construction, we

need a correlation breaker which breaks the correlation

between more strings. This implies that we need the

output of our somewhere extractor, Y, to be longer,

and thus it increases the seed length of our extractor

correspondingly. Nevertheless, we only need to increase

the length of Y by a factor of A2. Since A only has

logarithmic dependence on the length of Y, this will

not be a problem.

B. Correlation breakers for linearly correlated sources

In this section, we give a brief description of the main

ideas that go into our correlation breaker construction,

assuming some familiarity with the techniques that are

used in recent constructions of correlation breakers. In

Section III, we present a much more detailed account of

our correlation breaker construction.

Many recent works successfully construct correlation

breakers for independent sources with error 1/poly(n)
which only require log1+o(1)(n) entropy [46], [47], [32],

[31], [33]. In fact, the state-of-the-art construction by

Li [33] only requires O(log n · log logn
log log logn ) entropy.

As we pointed out above, if we try to adapt these

constructions to the setting of linearly correlated sources

using Trevisan’s extractor or the linear seeded extractor

in [28], the entropy requirement is at least log2(n).
A natural idea is to use the linear seeded extractor,

based on the “condense-then-hash” approach discussed

in Section II-A, in the correlation breaker construction.

However, a problem of the extractor in Section II-A is

the seed length depends on the output length. Such a

dependence makes the analysis much more complicated,

for the following reasons. In correlation breaker con-

structions, the output length of an extractor Ext1 usually

depends on the seed length of some other extractor Ext2,

and the output length of Ext2 might also depend on

the seed length of another extractor Ext3, and so on.

If the seed length of each extractor also depends on its

own output length, then the seed length of Ext1 might

depend on the parameters of some other extractor Ext�
after � = ω(1) levels of propagation, and it is not clear

whether this will cause a loss in the parameters.

To solve this problem, we observe that it’s actually not

necessary to use a strong linear seeded extractor all the

time. To see why this is the case, first we recap why we

need a linear seeded extractor when considering linearly

correlated sources. As a toy example, we consider the

two-step alternating extraction between X,Y, in which

we first take a prefix of Y to extract from X, and then

use the extracted output to extract from Y. Recall that

X can be written as A+B, where A is independent of

(B,Y). Now let LExt denote a strong linear seeded ex-

tractor, and Ext be another strong seeded extractor. If we

take a prefix Q from Y and compute W = LExt(X,Q),
then W = WA +WB , where WA = LExt(A,Q) and

WB = LExt(B,Q). Now note that conditioned on the

fixing of Q, WA is uniform with high probability and

is independent of WB . Therefore W is also uniform

with high probability. When extracting from the Y
side, we again use the fact that W can be written as

WA +WB where WA is uniform and independent of

(WB ,Y). Note that conditioned on WB , W should still

be uniform and independent of Y, and Y only loses

a small amount of entropy (proportional to the length

of WB). This ensures that Ext(Y,W) is still uniform

with high probability over W if Y has enough entropy.

Observe that this argument does not require Ext to be

linear.

Based on this observation, we can do the alternating

extraction in an “asymmetric” way: when we extract

from X, we use the condense-then-hash extractor, which

takes a dX -bit seed and outputs a uniform string with dY
bits. Note that dX = c·dY for some constant c > 1. Then

when we extract from Y, we use a optimal non-linear

strong seeded extractor (e.g. the GUV extractor [4])

which has a fixed seed length dY regardless of the

output length. Therefore we can repeat this alternating

extraction step for many rounds without creating any

propagated dependence.

Finally, we note that the idea above can be generalized

to give a modular way for adapting correlation breakers

to the affine setting. Suppose a correlation breaker takes

a weak source X and a uniform seed Y as input.

We observe that previous constructions of correlation

breakers can be viewed as alternatively executing “sub-

protocols” on X and on Y. A sub-protocol on X is

a function which takes a seed correlated with Y and

runs some functions on random variables correlated with
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X. Similarly, a sub-protocol on Y is a function which

takes a seed correlated with X and runs some functions

on random variables correlated with Y. The simplest

example of a sub-protocol is a strong seeded extractor,

and more examples can be found in Section III. By

an argument similar to the alternating extraction case,

we observe that a correlation breaker will work in the

affine setting if the sub-protocols satisfy the following

conditions:

• If f is a sub-protocol on X, f should be linear.

• If g is a sub-protocol on Y, g does not need

to be linear, but should work properly when all

the random variables correlated with Y are weak

sources.

Usually the second case is easier to deal with: the same

construction (or a slight change) of sub-protocols should

still work most of the time. Therefore the construction

will be simple if we minimize the amount of sub-

protocols in the first case.
In fact, in our construction, all the functions we need

in the first case are simply strong seeded extractors,

and thus we can replace them with the condense-then-

hash extractor. However, it is still not clear how to use

previous results in a black-box fashion. Thus, we give

a much more detailed explanation of the main ideas of

our correlation breaker construction in Section III.

C. Extracting from NOBF sources
The final step is to extract from an NOBF source Z

on N bits that we obtain from the affine source X (by

first converting it into an SR-source and then applying

the correlation breaker). The derandomized Ajtai-Linial

function [48], [29], [40] was shown to be an extractor

for such sources with at least N − N/ log2 N good

bits. However, this extractor needs min-entropy at least

polylog(n) in the NOBF source, since good bits are

required to be polylog(n)-wise independent.
To circumvent this barrier, we recall a result of Vi-

ola [13], who proved that majority can extract from an

O(1)-wise independent NOBF source with constant er-

ror. Thus, this is better suited for our goal of constructing

affine extractors for near logarithmic entropy. In fact,

this resilient function is also used in recent constructions

of two-source extractors that work for near logarithmic

min-entropy based on the two-source framework of Ben-

Aroya, Doron, and Ta-Shma [30]. However, to use the

majority function we require the NOBF source Z to have

at least N − N δ good bits, for δ < 1/2. In fact, as

pointed out in [30], δ = 1/2 is actually a barrier in the

two-source setting if the SR-source is created using a

seeded extractor.

Interestingly, for our setting, a general seeded extrac-

tor is not required and the above barrier does not hold.

Indeed, since we just wish to produce an SR-source from

an affine source X, it suffices to use a (linear) seeded

extractor that only works for affine sources - and one

can use the probabilistic method to show the existence

of such an object with appropriate parameters that can

bypass this barrier. However, we do not have explicit

constructions of these objects. Instead, we show that our

somewhere random extractor from Section II-A can be

used to construct the SR source with desired parameters.

D. Summary of our construction

Finally we summarize our construction. Given an

affine source X, we run the following steps to extract

a bit:

1) Take a strong linear seeded somewhere random ex-

tractor LSRExt with seed length d = O(log n), and

for every s ∈ {0, 1}d compute (Ys,1, . . . ,Ys,A) :=
LSRExt(X, s).
This step guarantees that for most of s ∈ {0, 1}d
there exists i ∈ [A] such that Ys,i is uniform.

2) Take a “correlation breaker” ACB and compute

Zs,j := ACB(X,Ys,j , (s, j)) for every s ∈
{0, 1}d, j ∈ [A]. Here (s, j) serves as “advice”

to ACB (more details can be found in the next

section).

Roughly speaking, the correlation breaker ACB
converts uniform strings {Ys,j} to t-wise indepen-

dent bits {Zs,j}, for some proper choice of t. It is

guaranteed that for most of s, there exists a “good

bit” Zs,i which is uniform.

3) For every s ∈ {0, 1}d, compute Ps :=
⊕A

j=1 Zs,j .

After this step, most of Ps are uniform, and the

uniform bits in {P1, . . . ,P2d} remain (t/A)-wise

independent.

4) Compute the majority of P1, . . . ,P2d .

III. CORRELATION-BREAKING GAMES

In this section, we present a detailed explanation of the

main ideas used in our correlation breaker. We explain

these ideas using a few (related) two-party games that

we introduce below.

Recall that our goal is to use an independent (or

linearly correlated) source X to break the correlation

between poly(n) strings Y1, . . . ,YD and make them

t-wise independent. The high-level idea is that we com-

pute the same function f , that is called a correla-
tion breaker, on X and every Yi, to produce strings

Z1 = f(X,Y1), . . . ,ZD = f(X,YD). The property

we desire from f is the following: if there is a set
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T ⊂ [D], such that for any i ∈ T , Yi is uniform, then

for any i ∈ T and any i1, . . . , it ∈ [D] distinct from

i, the random variable Zi looks uniform conditioned on

{Zij}tj=1. For constructing the function f , it helps to

think of it as a two-party game that we discuss in detail

below.
Given the above discussion, it is enough to consider

the following setting: let Y be a uniform string, and let

Y1,Y2, . . . ,Yt be random variables that are arbitrarily

correlated with Y. Yi is called the ith tampering of

Y. As before, let X be a random variable that is

independent (or linearly correlated) with Y, {Yi}ti=1.

We want to construct a correlation breaker f with the

guarantee that the output f(X,Y) is uniform condi-

tioned on the outputs computed using all of its t tamper-

ings {f(X,Yi)}ti=1. Before discussing how to construct

correlation breakers, we first introduce some convenient

notation.
As alluded to above, a useful perspective is to think of

the computation of the correlation breaker as a two-party

communication between X and Y. This is because of the

following reason: if Z is the transcript of a two-party

communication between X and Y, then X ↔ Z ↔ Y
forms a Markov chain. This ensures that at any point

of the computation we have two independent sources

X,Y to work with, conditioned on any fixing of Z.

Therefore, at each step of the computation one party

can send a message as independent randomness to help

the other party complete some tasks. However, Z leaks

some information about X and Y; so ideally we want

the length of Z, i.e. the communication complexity, to

be as small as possible.
We now introduce some convenient notation.
Notation: Throughout this paper, we use Y[t] to

denote all the t tamperings of Y, and for any set S ⊆ [t]
such that S = {i1, . . . , ik}, we also use YS to denote

the collection Yi1 , . . . ,Yik . For any random variable R
computed, we use Ri to denote the ith tampered version

of R which is computed using Yi.
In Sections III-A to III-H, we discuss the two-party

games and relevant techniques that are used in recent

constructions of correlation breakers for independent

sources, in increasing order of complexity. Along the

way, we explain how we adapt some of these techniques

to construct our correlation breaker in the affine source

setting. In Section III-I, we define the correlation break-

ing game in the affine source setting, and in Section III-J

we summarize our construction.
We start with describing the correlation breaking game

in the independent source setting, in the more general

case that X also has its tampered versions X1, . . . ,Xt.

A. Correlation-breaking game for independent sources
The setup is as follows: Quentin has a source X which

is uniform and Wendy has a source Y which has some

entropy. Further, Quentin and Wendy hold some tam-

pered sources (X1,X2, . . . ,Xt) and (Y1,Y2, . . . ,Yt)
respectively such that X[t] can be arbitrarily correlated

with X and Y[t] can be arbitrarily correlated with

Y. The assumption is that (X,X[t]) is independent

of (Y,Y[t]). Quentin and Wendy are going to run a

two-party game as follows. The game starts with a

public transcript Z and some “tampered transcripts”

(Z1, . . . ,Zt) which are all empty at the beginning. They

need to choose a deterministic two-party communica-

tion protocol P , which is a sequence of deterministic

functions (f1, g1, f2, g2, . . . ) so that in the first round

Quentin sends a message Q1 := f1(X,Z), and then Q1

is added to the transcript Z. In the next round Wendy

sends a message W1 := g1(Y,Z), and then W1 is

added to the transcript Z. They keep sending messages

computed with f2, g2, . . . until the protocol ends. How-

ever, there are also t “tampered communications” that are

run in parallel. When Quentin sends Q1 := f1(X,Z),
a tampered message Qj

1 := f1(X
j ,Zj) is also sent and

added to the tampered transcript Zj for every j ∈ [t].
Similarly when Wendy sends a message there will also

be t tampered messages sent simultaneously. At the

end of the protocol, one of the parties computes an

output, which we denote as R = P (X,Y), and R will

not be added to the transcript Z. Quentin and Wendy

win the game if R is uniform conditioned on all the

tampered outputs R[t] where Rj = P (Xj ,Yj) and all

the (tampered) transcripts Z,Z[t].

B. Alternating extraction
It is easy to see that Quentin and Wendy can never win

the correlation-breaking game if X1 = X and Y1 = Y,

since this implies R1 = R. However, it is possible to

win a weaker game which we call a look-ahead game.

In an �-look-ahead game, Quentin and Wendy need to

output multiple messages R1,R2, . . . ,R�. We say a

message R has the look-ahead property [49] if R is

uniform conditioned on all the transcripts Z,Z[t] (but not

necessarily on the tampered output R[t]). Quentin and

Wendy win the look-ahead game if the output R has the

look-ahead property. Winning the look-ahead game with

one output is actually not very interesting since Quentin

can just output a prefix of X while all the transcripts

are empty. Now consider the �-look-ahead game so that

Quentin and Wendy need to sequentially compute and

send R1, . . . ,R� such that every Ri satisfies the look-

ahead property at the moment it is computed. Note
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that the transcripts of Ri contain the previous outputs

R1, . . . ,Ri−1 and their tampered versions. This game

is winnable with the alternating extraction [39] protocol,

which works as follows. Observe that at any moment

of the game, (X,X[t]) ↔ (Z,Z[t]) ↔ (Y,Y[t]) is a

Markov chain. Moreover, conditioned on (Z,Z[t]), Y
only loses roughly (t + 1)� bits of entropy where � is

the total length of messages from Wendy. Therefore, if

Y has high enough entropy at the beginning, it will

still have some entropy remaining if the total length

of messages (i.e. the communication complexity) from

Wendy is not too long. If Quentin sends a string Q1 =
f(X,Z) which is uniform condition on (Z,Z[t]) (i.e. Q1

satisfies the look-ahead property), then Wendy can also

get a uniform string W1 = Ext(Y,Q1) conditioned

on (Z,Z[t]) by applying a seeded extractor. Moreover, if

Ext is strong, W1 remains uniform even after (Q1,Q
[t]
1 )

is added to (Z,Z[t]), since the entropy of W1 comes

purely from Y. Therefore, W1 also satisfies the look-

ahead property. This observation gives the alternating

extraction protocol: Quentin sends Q1 which is a prefix

of X, Wendy sends W1 := Ext(Y,Q1), Quentin sends

Q2 := Ext(X,W1), and so on. As long as X and

Y still have enough entropy left, every message sent

in this protocol satisfies the look-ahead property. The

entropy requirement is roughly O(�t log n), where the

log n comes from the seed length of each randomness

extractor.

C. Breaking correlation with advice

Now we change the correlation-breaking game a little

bit to get an actually winnable game. Suppose Quentin

and Wendy further get some advice (α, α1, . . . , αt) ∈
[2a] such that α 
= αj for every j ∈ [t]. Then the actual

communication is run with a protocol Pα chosen from a

family of protocols {P1, . . . , P2a}. Moreover, for every

j ∈ [t], the jth tampered communication is run with the

protocol Pαj . Since the actual protocol is different from

all the tampered protocols, now it’s possible that R is

independent of R[t] even if X = Xj and Y = Yj for

every j ∈ [t]. This is called a correlation breaker with
advice [41], [50]. In fact, consider the family of protocols

such that Pi runs alternating extraction for i rounds and

outputs the ith message from Wendy. Then if α > αj

for every j ∈ [t], the output R := Pα(X,Y) is actually

independent of R[t] := Pα[t](X[t],Y[t]) by the look-

ahead property. This idea first came in [37] by Li. When

the order of advice is unknown, there was a beautiful

idea by Cohen [38] called the “flip-flop” construction

which resolves the issue. However, note that with only

this idea X and Y need entropy roughly O(2a · t log n),

and hence the protocol is only good enough when a is

small (e.g. 1 bit).

D. Merging independence

To reduce the entropy requirement, a nice

independence-preserving property of strong seeded

extractors comes to the rescue. Suppose there is a

source Y and a seed Q, and each of them have a

tampered version Y1,Q1. Now suppose Q is uniform

conditioned on Q1. Then if one applies a seeded

extractor and gets Ext(Y,Q), this string is also

uniform conditioned on Ext(Y1,Q1). Too see why

this is true, note that when conditioned on Q1 and

Ext(Y1,Q1), Q is still uniform and independent of Y,

while Y only loses a small amount of entropy. Therefore

Ext(Y,Q) is still uniform. In other words, Ext(Y,Q)
preserves the independence of Q from its tampering

Q1. This idea was used in [37] to get a better entropy

requirement, which is only linear in a. We will see

more details later. Furthermore, Ext can also preserve

the independence on the other side: if Y has high

entropy conditioned on Y1, then Ext(Y,Q) is uniform

conditioned on Ext(Y1,Q1). This can be proven using

a similar argument. Based on this observation, Cohen

and Schulman [51] suggested a protocol which works

as follows. Suppose Quentin has two uniform strings

X1,X2 such that either X1 is independent of X1
1 or

X2 is independent of X1
2. (Note that X1 and X2 might

be correlated.) Let Q1 be a prefix of X1. Now they

can do two rounds of alternating extraction to compute

W1 = Ext(Y,Q1) and then R = Ext(X2,W1).
The output R should be independent of R1 by the

independence-preserving property. In other words,

they merge X1,X2 and preserve the independence of

X1 or X2 from its tampered version. Chattopadhay

and Li [46] showed that it’s also possible to merge �
strings X1, . . . ,X� by doing more rounds of alternating

extraction. This protocol is called a non-malleable

independence-preserving merger (NIPM) [51], [46].

In this paper we show that a stronger independence
merging property holds. That is, suppose there exist

S, T ⊆ [t] such that X is uniform and independent

of XS , and Y has high min-entropy conditioned on

YT . Then by taking a prefix Q of X and computing

W = Ext(Y,Q), W is actually uniform conditioned

on WS∪T . In other words, the strong seeded extractor

Ext merges the independence of X and Y from their

tampered versions. To prove this, we can simply apply

the argument from both cases of independence preser-

vation, together. Therefore, we can use the same alter-

nating extraction protocol to merge the independence
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of X1,X2, . . . ,X� from their tampered versions, even

if the independence is scattered on multiple different

Xi. This stronger property will help us deal with the

t-tampering case directly.

E. Strongness of protocols

Suppose R is the output of some two-party commu-

nication protocol P (X,Y), Z is the transcript, and R is

computed by Wendy using some deterministic function

g(Y,Z). Then (X,X[t]) ↔ (Z,Z[t]) ↔ (R,Y,Y[t])
forms a Markov chain. In all the two-party games we

consider in this paper, R is uniform conditioned on the

transcripts (Z,Z[t]) and some of the tampered output.

Therefore even if the whole source X (and X[t]) is

sent by Quentin and added to the transcript, R is still

uniform. In other words, the protocol P is strong in X.

Now observe that when a protocol P is strong in X, we

can actually re-design P in the following way: Quentin

simply sends X, and Wendy simulates the output of P
using X,Y. When the protocol is re-designed in this

way we say X is the seed of the protocol. Similarly

we can let Wendy send Y and Quentin simulate P
if P is strong in Y. It’s also not hard to switch the

strongness of a protocol using the idea of alternating

extraction: if Wendy produces the output R, we can

let Wendy send R and let Quentin output Ext(X,R)
instead. Now the protocol becomes strong in Y. The

advantage of strongness is we can run many different

protocols in parallel. That is, suppose Wendy holds

many correlated sources Y1, . . . ,Yr, Quentin holds X
and another source Q correlated with X, and they

want to run many protocols P1(Q,Y1), . . . , P�(Q,Y�).
Then Quentin can simply send Q (and Q[t]) and let

Wendy simulate everything. This ensures that the total

communication complexity is low, so that the source X
in Quentin’s hand only loses roughly (t + 1)|Q| bits

of entropy regardless of how many protocols there are.

Moreover, Wendy doesn’t lose any entropy. This idea

plays a crucial role in [46].

Another advantage of strongness is, if we let Quentin

send his whole source in a look-ahead game, Wendy

doesn’t need to send any of her output. Therefore all

of Wendy’s outputs W1, . . . ,W� remain uniform but

still have the look-ahead property (i.e. Wi is uniform

conditioned on W1, . . . ,Wi−1 and their tamperings).

Therefore these strings can be saved for later use. This

is called a look-ahead extractor [49]. There’s only one

drawback: to run any protocol based on alternating ex-

traction, usually the length of Q needs to be proportional

to t. Therefore if we need X to still have some entropy

left after sending Q, the total entropy requirement for

X becomes proportional to t2. Nevertheless t is usually

small compared to other parameters so this is not a big

deal.

F. Correlation breakers based on somewhere indepen-
dence

Now we are ready to introduce the general strategy

for the correlation-breaking game. First Quentin and

Wendy run a 2-look-ahead extractor and create two

strings W0,W1 on Wendy’s side. Now suppose the

advice is α ∈ {0, 1}a, and we use αj to denote the

jth bit of α. For every j ∈ [a], define V2j−1 := Wαj

and V2j := W1−αj . Note that the pair (V2j−1,V2j)
is defined in the “flip-flop” way [38] so that it will

either be (W0,W1) or (W1,W0), depending on αj .

If αj 
= αi
j , then in the position V2j−αj

where W1

is placed, the corresponding tampered version V1
2j−αj

should be Wi
0. Therefore we get independence of W1

from Wi
0 based on the look-ahead property. Now ob-

serve that (V1, . . . ,V2a) is somewhere-independent [51]

from its tamperings. That is, for every i ∈ [t] there

exists some j ∈ [2a] such that Vj is independent from

Vi
j . If they then use the independence merging protocol

described above to merge these strings, they get R
which is uniform conditioned on R[t], and hence win

the correlation-breaking game. The entropy requirement

is then proportional to O(a) instead of 2a. Moreover, the

entropy requirement can be further improved by running

the independence merging protocol in parallel. That is,

if they merge every two strings in parallel and repeat

for log(2a) rounds, eventually all the strings will be

merged into one which collects all the independence.

Intuitively the entropy requirement should be propor-

tional to log(a). This is the main idea in [46]. However,

as pointed out by Li [32], there were two obstacles

in [46] which prevented them from getting O(log a)
dependence. We explain each of them in the next two

paragraphs, respectively.

G. Preparing seeds for sub-protocols

The strategy we described above runs many indepen-

dence merging protocols in parallel for log(a) rounds.

In the ith round Quentin needs to prepare a seed Qi

with enough entropy conditioned on the transcripts. The

strategy in [46] is to take a prefix of X as Qi in

each round. However, suppose in the first round Quentin

sends a prefix Q1. Then there are t tampered messages

Q
[t]
1 sent at the same time. Therefore X loses about

(t+1)|Q1| entropy. In the next round, to ensure that the

prefix Q2 of X still has some entropy, the length of Q2

needs to be O(t|Q1|). Therefore the entropy requirement
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for X grows exponentially in the number of rounds. To

solve this problem, Li [32] observed that they can first

run an �-look-ahead extractor which is strong in Y to

help Quentin prepare � = O(log a) look-ahead strings

Q1,Q2, . . . ,Q�. Then in the ith round Quentin simply

sends Qi.

In our setting of linearly correlated sources (dis-

cussed below in Section III-I), we find it slightly

cumbersome to define a look-ahead protocol which is

strong in Y because of the linear correlation between

sources. Therefore, we take a slightly different strat-

egy: we construct an NIPM in a way such that it

can take a uniform seed Q1 and merge every two

weak sources (V1,V2), (V3,V4), . . . , (V2a−1,V2a)
into uniform strings W1, . . . ,Wa. Then before the start

of next round, we take a prefix P of W1 and extract

Q2 = Ext(X,P). If P is short compared to each Wi,

then each Wi should still have enough entropy, and the

merging process can continue. Essentially this is like

running the look-ahead protocol “on the fly.”

H. Entropy recycling

Second, when merging a block (V1,V2) into a single

source W using the alternating extraction protocol de-

scribed above, the length of W is only β|V1| for some

constant β < 1. Therefore the entropy requirement for

Y also grows exponentially in the number of rounds. To

solve this problem, Li [33] observed that one can try to

“recycle entropy” from Y, which actually contains all

the entropy Wendy currently has. Since Y can contain

entropy much larger than |V1|, it is possible to restore

the length of W to |V1|. Li [33] did this by using an

extra seed from Quentin as a buffer to extract from Y.

However, as we pointed out in the previous para-

graph, preparing multiple seeds for Quentin using a

look-ahead extractor is cumbersome in the linearly cor-

related source setting. Therefore we choose to em-

bed this approach into each NIPM sub-protocol. That

is, we change the protocol NIPM(Q, (V1,V2)) to

NIPMrec(Q, (V1,V2,Y)) in the following way. First,

run the original NIPM(Q, (V1,V2)) to get P which

merges the independence of V1 and V2. Suppose P
is computed on Wendy’s side. Then Wendy sends P
to Quentin, Quentin sends S = Ext(Q,P) to Wendy,

and Wendy computes W = Ext(Y,S) as output. Note

that this protocol is still strong in X. Moreover, if P
is uniform conditioned on PT for some T ⊆ [t], then

based on the independence preserving property of strong

seeded extractors, W should still be uniform conditioned

on WT . Therefore if the entropy of Q can afford one

more round of alternating extraction, NIPMrec preserves

every property we want for NIPM, but it also has output

length |W| = |V1|.

I. Two-party games for linearly correlated sources

Finally we state how to modify the definition of

correlation-breaking games to work for (X = A+B,Y)
where (A,A[t]) is independent of (B,B[t],Y,Y[t]), A
has some entropy and Y is uniform. In this modified

game, Quentin holds A, and Wendy holds (B,Y). Fur-

thermore, there are two transcripts (and their t tampered

versions): the normal transcript Z, and a “write-only”

transcript ZB . Then Quentin and Wendy run the game

as if they are simulating a two-party communication

between X and Y. This works as follows. First, when-

ever Quentin wants to send or output Q = f(X,Z), f
must be a linear function for any fixed Z, and Wendy

must send QB = f(B,Z) first. In addition, QB will be

added to the write-only transcript ZB . After receiving

QB , Quentin sends or outputs Q = f(A,Z)+QB , and

then Q is added to the transcript Z. Second, Wendy’s

message should always be in the form g(Y,Z) for

some deterministic function g, which means Wendy

doesn’t have access to B (except when helping Quentin

compute f(X,Z)). Then we want the output R to be uni-

form conditioned on (R[t],Z,Z[t],ZB ,Z
[t]
B ). Note that

(A,A[t]) ↔ (Z,Z[t],ZB ,Z
[t]
B ) ↔ (Y,Y[t],B,B[t]) is

always a Markov chain.

Effectively, this modified game is similar to a normal

game between A and Y, except for two things. First, f
must be linear. In our construction we actually make

sure that every function f Quentin uses is simply a

strong linear seeded extractor. Second, whenever Quentin

wants to send a message to help Wendy run some

protocols, Wendy is forced to send QB which leaks

some information about her source. This means every

source Wendy holds in her hand loses some entropy.

Nevertheless, we will make sure that every sub-protocol

Wendy simulates still works even if she only has weak

sources. Finally, another slight difference on Wendy’s

side is she can only run some deterministic function

using Q = QA + QB instead of QA. But this is not

a problem, since QB is independent of QA conditioned

on the transcripts, which means the conditional entropy

of Q is the same as QA. Moreover, Q is still independent

from Wendy’s side since QB is already in the transcript.

J. Summary of our correlation breaker construction

Finally, we summarize the construction of our correla-

tion breaker using the two-party game from Section III-I.

We use the following building blocks:
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• A strong linear seeded extractor LExt, which is the

“condense-then-hash” extractor.

• A 2-look-ahead extractor laExt, which takes a weak

source Y and an independent uniform seed Q,

then outputs two strings (R0,R1) such that R1 is

uniform conditioned on (R0,R
[t]
0 ).

• An NIPM which takes two weak sources V1,V2,

an entropy pool Y and an independent uniform

seed Q, then outputs a string W which merges the

independence of V1,V2 from their tamperings.

Given a source X = A + B, a uniform seed Y,

their tamperings A[t],B[t],Y[t] such that (A,A[t]) is

independent of (B,B[t],Y,Y[t]), an advice α ∈ {0, 1}a
and the tampered advice α[t] 
= α, the construction works

as follows:

1) Wendy sends W0 which is a prefix of Y.

2) Wendy sends Q0B = LExt(B,W0), then Quentin

sends Q0 = LExt(X,W0) = LExt(A,W0) +
Q0B .

3) Wendy computes (R1,R0) = laExt(Y,Q0), and

gets a sequence of 2a somewhere-independent

strings V = (V1, . . . ,V2a) by assigning each

string to be R0 or R1 based on α (see the dis-

cussion in Section III-F).

4) Repeat the following steps for i from 1 to log(2a):

I Wendy sends Wi which is a prefix of V1.

II Wendy sends QiB = LExt(B,Wi), then

Quentin sends Qi = LExt(A,Wi) +QiB .

III Wendy merges each pair (V2j−1,V2j) into a

single string Vj with the NIPM, using Qi as the

uniform seed and Y as the entropy pool. Note

that the number of strings in V decreases by a

factor of 2 after this step.

5) Now there is only one string in V. Output V, which

is uniform conditioned on V[t].

Note the construction above has the following features:

• The only message from Quentin is the uniform seed

Qi in each round, which is computed by a strong

linear seed extractor. The length of Qi should be

O(t log(n)) for each sub-protocol to work.

• In each round Wendy sends a message Wi to be

used as the seed of Quentin’s extraction, and also

QiB to help Quentin compute Qi. Both messages

have length O(|Qi|) and cause the sources in

Wendy’s hand to lose O(t |Qi|) bits of entropy.

However, both the look-ahead extractor and the

NIPM still work even if Wendy only has weak

sources.

Finally, observe that in each of the O(log(a)) rounds,

both parties need to send a message of length

O(t log(n)). Since in each round there are t tampered

messages sent simultaneously, the entropy requirement

of each side is O(t2 log(a) log(n)). Moreover, the length

of each |Vj | needs to be O(t |Qi|) = O(t2 log(n))
to tolerate the entropy loss in each round, so there is

an extra O(t3 log(n)) entropy requirement on Y in the

look-ahead extractor. Nevertheless, this is dominated by

O(t2 log(a) log(n)) in our application.
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