2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS) | 978-1-6654-2055-6/22/$31.00 ©2022 IEEE | DOI: 10.1109/F0CS52979.2021.00067

2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS)

Affine Extractors for
Almost Logarithmic Entropy

Eshan Chattopadhyay
Department of Computer Science
Cornell University
Ithaca, NY, USA
eshan@cs.cornell.edu

Abstract—We give an explicit construction of an affine
extractor (over FF3) that works for affine sources on n
bits with min-entropy k& > logn - (loglogn)'™°™M). This
improves prior work of Li (FOCS’16) that requires min-
entropy at least poly(logn).

Our construction is based on the framework of using
correlation breakers and resilient functions, a paradigm
that was also used by Li. On a high level, the key
sources of our improvement are based on the following new
ingredients: (i) A new construction of an affine somewhere
random extractor, that we use in a crucial step instead of
a linear seeded extractor (for which optimal constructions
are not known) that was used by Li. (ii) A near optimal
construction of a correlation breaker for linearly correlated
sources. The construction of our correlation breaker takes
inspiration from an exciting line of recent work that
constructs two-source extractors for near logarithmic min-
entropy.

[. INTRODUCTION

The area of randomness extraction is concerned with
producing truly random bits from defective sources of
randomness. The motivation for this area stems from
the fact that naturally occurring sources of randomness
are typically defective, but applications in areas such as
cryptography and distributed computing crucially require
access to truly uniform bits.

A lot of research has gone into modeling weak
sources of randomness, starting with the early work
of von Neumann [1] who considered the problem of
extracting randomness from a stream of independent,
biased bits. By now, the standard way of measuring the
quality of a weak source X is using the notion of min-
entropy defined as Ho(X) = min, log(1/ Pr[X = z]).
Note that for a distribution X on {0,1}", we have
0 < Ho(X) < n. We define an (n, k)-source to be
a distribution on n bits with min-entropy at least k.

We are now ready to define the notion of an extractor
for a class of sources. We measure the quality of the out-
put of the extractor using the notion of statistical distance

Jesse Goodman
Department of Computer Science
Cornell University
Ithaca, NY, USA
jpmgoodman@cs.cornell.edu

Jyun-Jie Liao
Department of Computer Science
Cornell University
Ithaca, NY, USA
jjliaolcs.cornell.edu

between distributions D; and D> (on some universe {2)
defined as |[Dy — D := 1>, |D1(z) — Da(x)].

Definition 1.1 (Deterministic extractors). An extractor
Ext : {0,1}"™ — {0,1}™ with error € for a class of
sources X satisfies the property that for any X € X, we
have |[Ext(X) —U,,| <e

A folklore result from the 80’s rules out the possibility
of an extractor (even with a single bit output) for the
class of (n,k)-sources, for any k < n — 1. Given this
impossibility result, research on random extraction over
the last four decades can be broadly classified into two
directions: (i) Seeded extraction: the assumption in this
setting is that the extractor has access to an independent
seed that can be used to extract randomness from the
source [2]. An impressive line of work has led to
efficient constructions of seeded extractors with optimal
parameters [3], [4], [5]. (See also the excellent survey by
Shaltiel [6] for earlier results on seeded extraction.) (ii)
Seedless (or deterministic) extraction: here one makes
some additional assumption on the source X that enables
the possibility of randomness extraction. Some exam-
ples include the class of bit-fixing sources [7], sources
sampled by a computationally bounded algorithms [8],
[9], and sources that comprise of multiple independent
sources [10], [11].

In this paper we focus on the setting of deterministic
extraction, and in particular, we study the problem of
randomness extraction from affine sources defined as
follows.

Definition 1.2 (Affine sources). Fix a finite field F of
size q, and parameters n,k. An (n,k)q-affine source
X is uniform over some (unknown) affine subspace
of dimension k in F". In other words, there exists
linearly independent vectors vy, ...,v in F™ such that
X is the distribution obtained by sampling A1, ..., \;

2575-8454/21/$31.00 ©2021 IEEE 622
DOI 10.1109/FOCS52979.2021.00067

Authorized licensed use limited to: Cornell University Library. Downloaded on March 17,2022 at 16:00:15 UTC from IEEE Xplore. Restrictions apply.

uniforméy and independently from F, and outputting
Vo + D1 Ai - v, for some vy € F™.

We note that extracting from affine sources falls into
the line of investigation that studies extraction from
sources sampled by computationally bounded algorithms
(since each output bit is computationally restricted to be
an affine function of the input randomness, namely the
)\i,S).

Thus, an affine extractor AffExt : F* — {0,1}™
for entropy k and error ¢ is such that for any (n,k)q-
affine source X (over F, where ¢ |F|), we have
|AffExt(X) — U,,| < €. For intuition, consider the case
of m = 1: in this case, an affine extractor is simply
a 2-coloring of F™ such that every dimension £ affine
subspace of [F" is almost evenly colored.

A. Applications of Affine Extractors

The class of affine sources naturally generalize (obliv-
ious) bit-fixing sources [7], where a bit-fixing source has
some unknown set of coordinates that hold random bits,
while the other coordinates are fixed to constants. Extrac-
tors for bit-fixing sources have applications in exposure
resilient cryptography [7], [9], and the generalization of
bit-fixing sources to affine sources played a key role in
obtaining the best known extractors for bit-fixing sources
[12].

Affine extractors have also found applications in de-
terministic extraction from many other models of weak
sources. Viola [13] proved that sources sampled by small
circuits are close to a convex combination of affine
sources (and thus an affine extractor can be used to ex-
tract from such circuit sources). In a recent work, Chat-
topadhyay and Goodman [14] proved a similar result
for sources sampled by algorithms with limited memory
[15]. Such small-space sources are known to capture
a wide variety of weak source models that have been
considered for randomness extraction, including: finite
Markov chain sources [16], symbol-fixing sources [9],
and (short) independent sources. Ben-Sasson and Zewi
[17] demonstrated another application by showing how
to use any affine extractor to construct low-error two-
source extractors in a black-box way, under plausible
conjectures from additive combinatorics. Cohen and Tal
[18] used affine extractors to extract randomness from
variety sources, which are distributions that are uniform
on the set of common zeroes of a system of polynomial
equations. Thus, affine extractors provide a unified way
to construct extractors for a wide range of well-studied
models of weak sources.

623

Finally, affine extractors over I, have important ap-
plications in circuit lower bounds: building on the work
of Demenkov and Kulikov [19], a breakthrough work of
Find, Golovnev, Hirsch, and Kulikov [20] used affine
extractors to bypass a longstanding barrier in circuit
lower bounds. To date, the best known circuit lower
bounds (of roughly 3.1n by Li and Yang [21]) are for
affine extractors.

B. Prior Work

A probabilistic argument shows the existence of ex-
cellent affine extractors: for example, setting the error &
to a constant and the output length to m = k — O(1),
a random function is an affine extractor for min-entropy
k > 2logn. However, for applications it is desirable
to find explicit constructions of such extractors (i.e., an
extractor that has running time which is polynomial in
the parameters n, q).

Prior work on explicitly constructing affine extractors
can be classified into two settings depending on the size
of the field:

e The large field setting (g poly(n)): In this
setting, Gabizon and Raz [22] in fact constructed
an affine extractor for lines (i.e., k = 1).! More
generally, they showed how to extract most of the
entropy out of any (n, k),-affine source in this large
field setting. A construction with improved error
was given by Bourgain, Dvir, and Leeman [23]
assuming ¢ is a prime, and further that ¢ — 1 does
not have too many prime factors.

The small field setting (¢ O(1)): The task
of constructing affine extractors is generally more
challenging as the field size gets smaller. In the
setting of ¢ = O(1), Bourgain [24] and subsequent
works of Yehudayoff [25] and Li [26] gave explicit
constructions for k > n/+/loglogn. DeVos and
Gabizon [27] obtained a trade-off between the field
size and entropy, and gave explicit affine extrac-
tors for fields with characteristic Q2(n/k) and size
q = Q((n/k)?). Thus, they require linear entropy
(i.e., k = Q(n)) for extraction from affine sources
on fields with constant characteristic.

A vastly improved result was obtained by Li [28]
who gave an explicit affine extractor that works for
q = 2 (which is generally considered the hardest
setting) and k > C(logn)©, for some large enough
constant C'.

'When n is large enough compared to ¢, the Hales-Jewett theorem
rules out the possibility of an extractor for lines.

Authorized licensed use limited to: Cornell University Library. Downloaded on March 17,2022 at 16:00:15 UTC from IEEE Xplore. Restrictions apply.

Li’s construction in [28] is closely related to the
two-source extractor construction by Chattopadhyay and
Zuckerman [29], which works for two independent
sources with min-entropy O(log® (n)). The min-entropy
requirement for two-source extractors was later reduced
to log!To™) (n) by Ben-Aroya, Doron and Ta-Shma [30]
and was further improved in subsequent works [31], [32],
[33]. It is natural to ask whether a similar improvement
can be obtained for affine extractors.

C. Our Result

Our main result is a further improvement over the
result of Li [28], and thus nearly matching the random
construction in terms of the min-entropy requirement.

Theorem 1.3. For any constant € > 0, there exists
a constant C > 0 such that for all n,k € N such
that k < n, there exists an efficient construction of an
extractor AffExt : 5 — {0, 1} with error € for (n, k)a-
affine sources with min-entropy k > C'-logn -loglogn -
(logloglogn)S.

In fact, in the ¢ 2 setting, it is impossible
to construct an affine extractor for min-entropy k <
log(n) — O(1), since every deterministic function f :
F% — {0,1} is constant on some affine subspace of
dimension log(n) — O(1) (see, e.g., [34, Lemma 6.7]).
Therefore, the min-entropy requirement of our extractor
is nearly optimal.

One drawback of our construction compared to [28]
is the error of our extractor: while we can only achieve
constant error, the construction in [28] achieves poly-
nomially small error. We leave it as an interesting open
question to reduce the error of our extractor construction.

D. Subsequent Work
In a subsequent work, Chattopadhyay and Liao [35]

construct a “sumset source extractor” for min-entropy
O(log(n) log log(n) log log log®(n)), which also implies
an affine extractor with the same parameters, and hence
slightly improves over the result in this paper. The
key ingredient for the improvement in [35] is a better
construction of “affine correlation breakers” based on

some ideas in this work.

II. PROOF OVERVIEW

In this section, we give an overview of our affine
extractor. The formal proof for Theorem I.3 can be found
in the full version [36].

On a very high level, our construction follows the
framework in [29], which has been used to construct
deterministic extractors in many recent works. The

624

framework works as follows: given a source X, we
first convert it into a non-oblivious bit-fixing (NOBF)
source, which is a source on N = poly(n) bits such
that N — N° of them are “good,” meaning that they
are t-wise independent. Then we apply an extractor for
NOBF sources to get the output.

A general strategy to construct an NOBF source from
multiple independent sources was initiated in [37]. The
strategy works by first taking a strong seeded extractor,
which is a function Ext that takes d bits of extra
randomness (i.e. a seed) S and converts X into a close-
to-uniform string Ext(X, S), with high probability over
the seed S. Since in reality we do not have such a seed
S, we enumerate over all D = 2¢ possibilities of the
random seed and get a somewhere-random source (SR-
source), which is a collection of D different strings such
that most of them are close to uniform. However, note
that the strings which are close to uniform are arbitrarily
correlated with each other. The second step is to take
another independent source to “break the correlation”
between these uniform strings and make them ¢-wise
independent. A function which can complete this task
is called a correlation breaker [38]. Recent constructions
of such objects employ a technique known as alternating
extraction [39], which uses a strong seeded extractor as
a building block.

The setting of affine extractors is trickier since there
is only one source. At first glance, it doesn’t seem like
the above framework can be used to construct an affine
extractor. However, Li [28] showed that this framework
can still be used, based on a crucial observation orig-
inating in the work of Rao [12]: if the strong seeded
extractor Ext that we use is a linear function for every
fixing of the seed s (such extractors are called linear
seeded extractor), then there is still some “implicit
independence” between the output Y = Ext(X, s) and
the original source X. Specifically, X can be written in
the form A + B such that A has some entropy and
is independent of (B,Y). Then [28] showed that if
we again use linear seeded extractors to construct the
correlation breaker, then it is possible to exploit this
implicit independence.

However, the affine extractor in [28] requires
polylog(n) entropy, for the following reasons. First, to
extract from an NOBF source, [28] used the deran-
domized Ajtai-Linial resilient function [29], [40], [28]
in the last step, which requires the source to have
poly-logarithmic entropy. Second, the correlation breaker
in [28] also requires Q(log2 n) entropy to work. In
fact, even the state-of-the-art correlation breakers for

Authorized licensed use limited to: Cornell University Library. Downloaded on March 17,2022 at 16:00:15 UTC from IEEE Xplore. Restrictions apply.

independent sources [41] required Q(log2 n) entropy at
the time, while in [28] the correlation breaker needs
to work for two sources with linear correlation, which
is even harder. Finally, many steps in this construction
require a strong linear seeded extractor. However, the
known constructions of strong linear seeded extractors
usually require at least polylog(n) entropy. Specifically,
note that this framework heavily relies on strong linear
seeded extractors for two different purposes:

1) To convert X into a SR-source, and
2) To construct the correlation breaker.

In both cases we need the error of extractor to be
1/poly(n), and in the first case we further need the
seed to have length d = O(log(n)) to make sure that
there are only 2¢ = poly(n) possibilities of seed to
enumerate (since otherwise the running time of the affine
extractor we construct will not be polynomial). The most
commonly used strong linear seeded extractor is perhaps
Trevisan’s extractor [42], [43], but it requires a seed
of length at least log®(n) in this setting. The extractor
constructed in [28], while having O(log(n)) seed length,
requires the source to have log®(n) entropy for some
constant ¢ > 4.

A. Bypassing the linear seeded extractor barrier

To solve the problem of not having a good enough
linear seeded extractor, we take different approaches in
the two cases. We first discuss the task of turning X
into a SR-source, and explain the construction of our
correlation breaker in Section II-B.

In both cases, our starting point is a simple construc-
tion of strong linear seeded extractors which works as
follows. To extract m uniform bits, our first step is to
apply a strong lossless condenser on X: this is a function
that takes a seed and converts X into a shorter source
X’ of length O(m) while still having roughly m bits
of entropy. Using the celebrated “GUV condenser” [4],
this step requires a seed of length O(log(n/c)) where
€ is the error, and such a condenser can also be made
linear [44]. Our second step is to apply a linear universal
hash function on X’ to get an m-bit uniform string by the
Leftover Hash Lemma [45]. This “condense-then-hash”
extractor has optimal entropy requirement, but the seed
length is O(m + log(n)).

Now, recall that in the first step we need the seed
length to be O(log n), which means using this condense-
then-hash extractor, we can only extract a string Y
of length O(logn). However, this is not enough for a
correlation breaker to work, even if we use the state-of-
the-art correlation breaker for independent sources [33]

625

(recall, we have to deal with the harder case of the
linearly correlated sources).

To solve this problem, our observation is that while
Y| = O(logn) is not enough for a correlation breaker
to work, we require Y to be only slightly longer. In
particular, we need m = |[Y| = O(c(n) -logn) for some
slowly growing function ¢ = ¢(n). (We will see that
we can take ¢ = loglog(n) when we discuss correlation
breakers in Section II-B.) Our idea is to use a recursive
approach based on block-source extraction, combined
with an error reduction trick at the end, as follows:

e As before, we first use the GUV condenser to
condense the source X into a source X’ of length
n’ = O(m) and entropy 0.9n’. In other words, X’
has entropy rate 0.9. This requires a seed of length
O(log(n/e)).

Next, we cut X’ into two blocks, and a standard
argument shows that each block still has entropy
rate 0.8, even when conditioned on the other block.
Then again we apply the GUV condenser on each
block to condense the entropy rate to 0.9, but this
time we use one seed to condense both blocks.
Intuitively, this works because the GUV condenser
is strong (which can be considered as “success with
high probability” and hence we can apply the union
bound on both blocks). Furthermore, note that this
time the seed length is only O(log(m/e)).

We again divide each block into two halves and get
four blocks in total, and use one extra seed of length
O(log(m/e)) to condense all four blocks. By re-
peating this step for log(c) times we eventually get
¢ blocks, each having entropy roughly O(log(n)).
Finally, we use another seed of length O(log(n/¢))
to sample a linear hash function and extract
from every block. The total seed length is
O(log(n) +1log(c) log(m/e)), which is O(log(n) +
log(c) log(1/€)) since m is short.> Now we get an
extractor of seed length O(log(n)), but with error
e = n~90/10e()) which is slightly larger than
what we need.

To solve this problem, we apply the error reduc-
tion scheme in [30], which reduces the error to
1/poly(n) but only increases the seed length by a
constant factor. A drawback of this scheme is that
for every seed we get A different outputs such that
only one of them is guaranteed to be uniform. In
other words, we get a somewhere random extractor
instead of an extractor.

2In fact, the actual seed length should be O(log(n) +
log?(c) log(1/¢)). See the full version for more details.

Authorized licensed use limited to: Cornell University Library. Downloaded on March 17,2022 at 16:00:15 UTC from IEEE Xplore. Restrictions apply.

We note that the weaker notion of a somewhere random
extractor (instead of an extractor) suffices in our scheme
of constructing affine extractors. Informally, we follow
the approach of [30], and apply correlation breakers on
all outputs of the somewhere random extractor. Using
an idea from [38], we can simply merge these strings by
taking the parity after we break their correlation.

Another possible concern is the following. In [30]
they started from an extractor with error 1/poly(n),
and reduce it to 1 /nC for any constant C, and thus
get the parameter A (the number of different outputs)
to be a constant. In our setting, we start from an
extractor with error slightly larger than 1/poly(n), and
thus require A = O(log(c)). So, in our construction, we
need a correlation breaker which breaks the correlation
between more strings. This implies that we need the
output of our somewhere extractor, Y, to be longer,
and thus it increases the seed length of our extractor
correspondingly. Nevertheless, we only need to increase
the length of Y by a factor of A2. Since A only has
logarithmic dependence on the length of Y, this will
not be a problem.

B. Correlation breakers for linearly correlated sources

In this section, we give a brief description of the main
ideas that go into our correlation breaker construction,
assuming some familiarity with the techniques that are
used in recent constructions of correlation breakers. In
Section III, we present a much more detailed account of
our correlation breaker construction.

Many recent works successfully construct correlation
breakers for independent sources with error 1/poly(n)
which only require 10g1+0(1)(n) entropy [46], [47], [32],
[31], [33]. In fact, the state-of-the-art construction by
Li [33] only requires O(logn - blgolgol%) entropy.
As we pointed out above, if we try to adapt these
constructions to the setting of linearly correlated sources
using Trevisan’s extractor or the linear seeded extractor
in [28], the entropy requirement is at least log?(n).

A natural idea is to use the linear seeded extractor,
based on the ‘“condense-then-hash” approach discussed
in Section II-A, in the correlation breaker construction.
However, a problem of the extractor in Section II-A is
the seed length depends on the output length. Such a
dependence makes the analysis much more complicated,
for the following reasons. In correlation breaker con-
structions, the output length of an extractor Ext; usually
depends on the seed length of some other extractor Exto,
and the output length of Exty might also depend on
the seed length of another extractor Exts, and so on.
If the seed length of each extractor also depends on its

626

own output length, then the seed length of Ext; might
depend on the parameters of some other extractor Ext,
after £ = w(1) levels of propagation, and it is not clear
whether this will cause a loss in the parameters.

To solve this problem, we observe that it’s actually not
necessary to use a strong linear seeded extractor all the
time. To see why this is the case, first we recap why we
need a linear seeded extractor when considering linearly
correlated sources. As a toy example, we consider the
two-step alternating extraction between X,Y, in which
we first take a prefix of Y to extract from X, and then
use the extracted output to extract from Y. Recall that
X can be written as A + B, where A is independent of
(B,Y). Now let LExt denote a strong linear seeded ex-
tractor, and Ext be another strong seeded extractor. If we
take a prefix Q from Y and compute W = LExt(X, Q),
then W = W4 + W g, where W, = LExt(A, Q) and
Wi = LExt(B, Q). Now note that conditioned on the
fixing of Q, W4 is uniform with high probability and
is independent of W . Therefore W is also uniform
with high probability. When extracting from the Y
side, we again use the fact that W can be written as
W4 + Wp where W 4 is uniform and independent of
(Wp5,Y). Note that conditioned on W 5, W should still
be uniform and independent of Y, and Y only loses
a small amount of entropy (proportional to the length
of Wp). This ensures that Ext(Y, W) is still uniform
with high probability over W if Y has enough entropy.
Observe that this argument does not require Ext to be
linear.

Based on this observation, we can do the alternating
extraction in an “asymmetric” way: when we extract
from X, we use the condense-then-hash extractor, which
takes a dx-bit seed and outputs a uniform string with dy
bits. Note that dx = c-dy for some constant ¢ > 1. Then
when we extract from Y, we use a optimal non-linear
strong seeded extractor (e.g. the GUV extractor [4])
which has a fixed seed length dy regardless of the
output length. Therefore we can repeat this alternating
extraction step for many rounds without creating any
propagated dependence.

Finally, we note that the idea above can be generalized
to give a modular way for adapting correlation breakers
to the affine setting. Suppose a correlation breaker takes
a weak source X and a uniform seed Y as input.
We observe that previous constructions of correlation
breakers can be viewed as alternatively executing “sub-
protocols” on X and on Y. A sub-protocol on X is
a function which takes a seed correlated with Y and
runs some functions on random variables correlated with

Authorized licensed use limited to: Cornell University Library. Downloaded on March 17,2022 at 16:00:15 UTC from IEEE Xplore. Restrictions apply.

X. Similarly, a sub-protocol on Y is a function which
takes a seed correlated with X and runs some functions
on random variables correlated with Y. The simplest
example of a sub-protocol is a strong seeded extractor,
and more examples can be found in Section III. By
an argument similar to the alternating extraction case,
we observe that a correlation breaker will work in the
affine setting if the sub-protocols satisfy the following
conditions:

o If f is a sub-protocol on X, f should be linear.

o If g is a sub-protocol on Y, g does not need
to be linear, but should work properly when all
the random variables correlated with Y are weak
sources.

Usually the second case is easier to deal with: the same
construction (or a slight change) of sub-protocols should
still work most of the time. Therefore the construction
will be simple if we minimize the amount of sub-
protocols in the first case.

In fact, in our construction, all the functions we need
in the first case are simply strong seeded extractors,
and thus we can replace them with the condense-then-
hash extractor. However, it is still not clear how to use
previous results in a black-box fashion. Thus, we give
a much more detailed explanation of the main ideas of
our correlation breaker construction in Section III.

C. Extracting from NOBF sources

The final step is to extract from an NOBF source Z
on N bits that we obtain from the affine source X (by
first converting it into an SR-source and then applying
the correlation breaker). The derandomized Ajtai-Linial
function [48], [29], [40] was shown to be an extractor
for such sources with at least N — N/log? N good
bits. However, this extractor needs min-entropy at least
polylog(n) in the NOBF source, since good bits are
required to be polylog(n)-wise independent.

To circumvent this barrier, we recall a result of Vi-
ola [13], who proved that majority can extract from an
O(1)-wise independent NOBF source with constant er-
ror. Thus, this is better suited for our goal of constructing
affine extractors for near logarithmic entropy. In fact,
this resilient function is also used in recent constructions
of two-source extractors that work for near logarithmic
min-entropy based on the two-source framework of Ben-
Aroya, Doron, and Ta-Shma [30]. However, to use the
majority function we require the NOBF source Z to have
at least N — N° good bits, for § < 1/2. In fact, as
pointed out in [30], § = 1/2 is actually a barrier in the
two-source setting if the SR-source is created using a
seeded extractor.

627

Interestingly, for our setting, a general seeded extrac-
tor is not required and the above barrier does not hold.
Indeed, since we just wish to produce an SR-source from
an affine source X, it suffices to use a (linear) seeded
extractor that only works for affine sources - and one
can use the probabilistic method to show the existence
of such an object with appropriate parameters that can
bypass this barrier. However, we do not have explicit
constructions of these objects. Instead, we show that our
somewhere random extractor from Section II-A can be
used to construct the SR source with desired parameters.

D. Summary of our construction

Finally we summarize our construction. Given an
affine source X, we run the following steps to extract
a bit:

1) Take a strong linear seeded somewhere random ex-
tractor LSRExt with seed length d = O(logn), and
for every s € {0,1}¢ compute (Y 1,..., Y5 4) =
LSRExt(X, s).

This step guarantees that for most of s € {0,1}¢
there exists ¢ € [A] such that Y ; is uniform.
Take a “correlation breaker” ACB and compute
Z,; = ACB(X,Y,;,(s,j)) for every s €
{0,1}4,5 € [A]. Here (s,j) serves as “advice”
to ACB (more details can be found in the next
section).

Roughly speaking, the correlation breaker ACB
converts uniform strings {Y ;} to ¢t-wise indepen-
dent bits {Z, ;}, for some proper choice of ¢. It is
guaranteed that for most of s, there exists a “good
bit” Z, ; which is uniform.

For every s € {0,1}¢, compute P, := @le Z ;.
After this step, most of P are uniform, and the
uniform bits in {Py,..., Py} remain (¢/A)-wise
independent.

4) Compute the majority of Py, ...

2)

3)

Po.
III. CORRELATION-BREAKING GAMES

In this section, we present a detailed explanation of the
main ideas used in our correlation breaker. We explain
these ideas using a few (related) two-party games that
we introduce below.

Recall that our goal is to use an independent (or
linearly correlated) source X to break the correlation
between poly(n) strings Y1,...,Yp and make them
t-wise independent. The high-level idea is that we com-
pute the same function f, that is called a correla-
tion breaker, on X and every Y,, to produce strings
Z, = f(X,Y1),...,Zp = f(X,Yp). The property
we desire from f is the following: if there is a set

Authorized licensed use limited to: Cornell University Library. Downloaded on March 17,2022 at 16:00:15 UTC from IEEE Xplore. Restrictions apply.

T C [D], such that for any ¢ € T, Y; is uniform, then
for any ¢ € T and any i1,...,%; € [D] distinct from
1, the random variable Z; looks uniform conditioned on
{Zi;}!_,. For constructing the function f, it helps to
think of it as a two-party game that we discuss in detail
below.

Given the above discussion, it is enough to consider
the following setting: let 'Y be a uniform string, and let
Y!, Y2, ..., Y" be random variables that are arbitrarily
correlated with Y. Y? is called the i"* tampering of
Y. As before, let X be a random variable that is
independent (or linearly correlated) with Y, {Y* L
We want to construct a correlation breaker f with the
guarantee that the output f(X,Y) is uniform condi-
tioned on the outputs computed using all of its ¢ tamper-
ings {f(X,Y?")}!_,. Before discussing how to construct
correlation breakers, we first introduce some convenient
notation.

As alluded to above, a useful perspective is to think of
the computation of the correlation breaker as a two-party
communication between X and Y. This is because of the
following reason: if Z is the transcript of a two-party
communication between X and Y, then X <+ Z < Y
forms a Markov chain. This ensures that at any point
of the computation we have two independent sources
X,Y to work with, conditioned on any fixing of Z.
Therefore, at each step of the computation one party
can send a message as independent randomness to help
the other party complete some tasks. However, Z leaks
some information about X and Y; so ideally we want
the length of Z, i.e. the communication complexity, to
be as small as possible.

We now introduce some convenient notation.

Notation: Throughout this paper, we use Y to
denote all the ¢ tamperings of Y, and for any set S C [t]
such that S = {iy,...,ix}, we also use Y to denote
the collection Y%, ..., Y. For any random variable R
computed, we use R’ to denote the i tampered version
of R which is computed using Y*.

In Sections III-A to III-H, we discuss the two-party
games and relevant techniques that are used in recent
constructions of correlation breakers for independent
sources, in increasing order of complexity. Along the
way, we explain how we adapt some of these techniques
to construct our correlation breaker in the affine source
setting. In Section III-I, we define the correlation break-
ing game in the affine source setting, and in Section III-J
we summarize our construction.

We start with describing the correlation breaking game
in the independent source setting, in the more general
case that X also has its tampered versions X!,..., X?.

628

A. Correlation-breaking game for independent sources

The setup is as follows: Quentin has a source X which
is uniform and Wendy has a source Y which has some
entropy. Further, Quentin and Wendy hold some tam-
pered sources (X', X?,...,X%) and (Y!, Y2, ...,Y?)
respectively such that X!l can be arbitrarily correlated
with X and Y can be arbitrarily correlated with
Y. The assumption is that (X,X[) is independent
of (Y,YM). Quentin and Wendy are going to run a
two-party game as follows. The game starts with a
public transcript Z and some “tampered transcripts”
(Z',...,Z%) which are all empty at the beginning. They
need to choose a deterministic two-party communica-
tion protocol P, which is a sequence of deterministic
functions (f1,91, f2,92,...) so that in the first round
Quentin sends a message Q; := f1(X, Z), and then Q;
is added to the transcript Z. In the next round Wendy
sends a message Wi := ¢1(Y,Z), and then W, is
added to the transcript Z. They keep sending messages
computed with f5, go, ... until the protocol ends. How-
ever, there are also ¢ “tampered communications” that are
run in parallel. When Quentin sends Q; := f1(X,Z),
a tampered message Q7 := f1(X7,Z7) is also sent and
added to the tampered transcript Z7 for every j € [t].
Similarly when Wendy sends a message there will also
be t tampered messages sent simultaneously. At the
end of the protocol, one of the parties computes an
output, which we denote as R = P(X,Y), and R will
not be added to the transcript Z. Quentin and Wendy
win the game if R is uniform conditioned on all the
tampered outputs R[Y where R/ = P(X7,Y7) and all
the (tampered) transcripts Z, Z[*).

B. Alternating extraction

It is easy to see that Quentin and Wendy can never win
the correlation-breaking game if X! = X and Y! =Y,
since this implies R! = R. However, it is possible to
win a weaker game which we call a look-ahead game.
In an ¢-look-ahead game, Quentin and Wendy need to
output multiple messages R;,Ro,...,Ry. We say a
message R has the look-ahead property [49] if R is
uniform conditioned on all the transcripts Z, 71 (but not
necessarily on the tampered output R[*). Quentin and
Wendy win the look-ahead game if the output R has the
look-ahead property. Winning the look-ahead game with
one output is actually not very interesting since Quentin
can just output a prefix of X while all the transcripts
are empty. Now consider the ¢-look-ahead game so that
Quentin and Wendy need to sequentially compute and
send R, ..., Ry such that every R; satisfies the look-
ahead property at the moment it is computed. Note

Authorized licensed use limited to: Cornell University Library. Downloaded on March 17,2022 at 16:00:15 UTC from IEEE Xplore. Restrictions apply.

that the transcripts of R; contain the previous outputs
Ri,...,R;_; and their tampered versions. This game
is winnable with the alternating extraction [39] protocol,
which works as follows. Observe that at any moment
of the game, (X, X)) « (Z,Zl1) « (Y, YM) is a
Markov chain. Moreover, conditioned on (Z,ZMY), Y
only loses roughly (¢ 4 1)¢ bits of entropy where £ is
the total length of messages from Wendy. Therefore, if
Y has high enough entropy at the beginning, it will
still have some entropy remaining if the total length
of messages (i.e. the communication complexity) from
Wendy is not too long. If Quentin sends a string Q; =
f(X, Z) which is uniform condition on (Z, Z!*)) (i.e. Q;
satisfies the look-ahead property), then Wendy can also
get a uniform string W; = Ext(Y, Q) conditioned
on (Z, Z[) by applying a seeded extractor. Moreover, if
Ext is strong, W remains uniform even after (Q, [f’])
is added to (Z,Z™"), since the entropy of W comes
purely from Y. Therefore, W also satisfies the look-
ahead property. This observation gives the alternating
extraction protocol: Quentin sends Q; which is a prefix
of X, Wendy sends W, := Ext(Y, Q1), Quentin sends
Q2 := Ext(X,W;), and so on. As long as X and
Y still have enough entropy left, every message sent
in this protocol satisfies the look-ahead property. The
entropy requirement is roughly O(¢tlogn), where the
logn comes from the seed length of each randomness
extractor.

C. Breaking correlation with advice

Now we change the correlation-breaking game a little
bit to get an actually winnable game. Suppose Quentin
and Wendy further get some advice (a,al,... af) €
[29] such that o # o for every j € [t]. Then the actual
communication is run with a protocol P, chosen from a
family of protocols { Py, ..., Py }. Moreover, for every
j € [t], the j™ tampered communication is run with the
protocol P,;. Since the actual protocol is different from
all the tampered protocols, now it’s possible that R is
independent of R even if X = X7 and Y = Y7 for
every j € [t]. This is called a correlation breaker with
advice [41], [50]. In fact, consider the family of protocols
such that P; runs alternating extraction for ¢ rounds and
outputs the " message from Wendy. Then if o > of
for every j € [t], the output R := P,(X,Y) is actually
independent of R := P_ (XY Y[) by the look-
ahead property. This idea first came in [37] by Li. When
the order of advice is unknown, there was a beautiful
idea by Cohen [38] called the “flip-flop” construction
which resolves the issue. However, note that with only
this idea X and Y need entropy roughly O(2°-tlogn),

629

and hence the protocol is only good enough when a is
small (e.g. 1 bit).

D. Merging independence

To reduce the entropy requirement, a nice
independence-preserving property of strong seeded
extractors comes to the rescue. Suppose there is a
source Y and a seed Q, and each of them have a
tampered version Y!, Q!. Now suppose Q is uniform
conditioned on Q!. Then if one applies a seeded
extractor and gets Ext(Y,Q), this string is also
uniform conditioned on Ext(Y!, Q!). Too see why
this is true, note that when conditioned on Q! and
Ext(Y?!, Q!), Q is still uniform and independent of Y,
while Y only loses a small amount of entropy. Therefore
Ext(Y, Q) is still uniform. In other words, Ext(Y, Q)
preserves the independence of Q from its tampering
Q'. This idea was used in [37] to get a better entropy
requirement, which is only linear in a. We will see
more details later. Furthermore, Ext can also preserve
the independence on the other side: if Y has high
entropy conditioned on Y!, then Ext(Y, Q) is uniform
conditioned on Ext(Y!, Q'). This can be proven using
a similar argument. Based on this observation, Cohen
and Schulman [51] suggested a protocol which works
as follows. Suppose Quentin has two uniform strings
X1, X9 such that either X; is independent of X% or
X, is independent of X3. (Note that X; and X, might
be correlated.) Let Q; be a prefix of X;. Now they
can do two rounds of alternating extraction to compute
W, Ext(Y,Q;) and then R Ext(Xq, W1).
The output R should be independent of R' by the
independence-preserving property. In other words,
they merge X1, Xo and preserve the independence of
X; or Xy from its tampered version. Chattopadhay
and Li [46] showed that it’s also possible to merge ¢
strings X4, ..., X, by doing more rounds of alternating
extraction. This protocol is called a non-malleable
independence-preserving merger (NIPM) [51], [46].

In this paper we show that a stronger independence
merging property holds. That is, suppose there exist
S,T C [t] such that X is uniform and independent
of X®, and Y has high min-entropy conditioned on
Y7T. Then by taking a prefix Q of X and computing
W = Ext(Y,Q), W is actually uniform conditioned
on W3YT In other words, the strong seeded extractor
Ext merges the independence of X and Y from their
tampered versions. To prove this, we can simply apply
the argument from both cases of independence preser-
vation, together. Therefore, we can use the same alter-
nating extraction protocol to merge the independence

Authorized licensed use limited to: Cornell University Library. Downloaded on March 17,2022 at 16:00:15 UTC from IEEE Xplore. Restrictions apply.

of X;,Xs,..., X, from their tampered versions, even
if the independence is scattered on multiple different
X;. This stronger property will help us deal with the
t-tampering case directly.

E. Strongness of protocols

Suppose R is the output of some two-party commu-
nication protocol P(X,Y), Z is the transcript, and R is
computed by Wendy using some deterministic function
g(Y,Z). Then (X, X & (Z,ZM) « (R,Y,YH)
forms a Markov chain. In all the two-party games we
consider in this paper, R is uniform conditioned on the
transcripts (Z, Z[t]) and some of the tampered output.
Therefore even if the whole source X (and X[y is
sent by Quentin and added to the transcript, R is still
uniform. In other words, the protocol P is strong in X.
Now observe that when a protocol P is strong in X, we
can actually re-design P in the following way: Quentin
simply sends X, and Wendy simulates the output of P
using X,Y. When the protocol is re-designed in this
way we say X is the seed of the protocol. Similarly
we can let Wendy send Y and Quentin simulate P
if P is strong in Y. It’s also not hard to switch the
strongness of a protocol using the idea of alternating
extraction: if Wendy produces the output R, we can
let Wendy send R and let Quentin output Ext(X, R)
instead. Now the protocol becomes strong in Y. The
advantage of strongness is we can run many different
protocols in parallel. That is, suppose Wendy holds
many correlated sources Y1, ...,Y,, Quentin holds X
and another source Q correlated with X, and they
want to run many protocols P;(Q,Y1),..., Pi(Q,Yy).
Then Quentin can simply send Q (and Q!*) and let
Wendy simulate everything. This ensures that the total
communication complexity is low, so that the source X
in Quentin’s hand only loses roughly (¢ + 1)|Q| bits
of entropy regardless of how many protocols there are.
Moreover, Wendy doesn’t lose any entropy. This idea
plays a crucial role in [46].

Another advantage of strongness is, if we let Quentin
send his whole source in a look-ahead game, Wendy
doesn’t need to send any of her output. Therefore all
of Wendy’s outputs W,..., W, remain uniform but
still have the look-ahead property (i.e. W, is uniform
conditioned on Wy,..., W;_; and their tamperings).
Therefore these strings can be saved for later use. This
is called a look-ahead extractor [49]. There’s only one
drawback: to run any protocol based on alternating ex-
traction, usually the length of Q needs to be proportional
to t. Therefore if we need X to still have some entropy
left after sending Q, the total entropy requirement for

630

X becomes proportional to ¢2. Nevertheless ¢ is usually
small compared to other parameters so this is not a big
deal.

E. Correlation breakers based on somewhere indepen-
dence

Now we are ready to introduce the general strategy
for the correlation-breaking game. First Quentin and
Wendy run a 2-look-ahead extractor and create two
strings Wy, W1 on Wendy’s side. Now suppose the
advice is a € {0,1}%, and we use a; to denote the
7™ bit of a. For every j € [a], define Va;_; := W,
and Vo, := Wi_,,. Note that the pair (Vg;_1, Vaj)
is defined in the “flip-flop” way [38] so that it will
either be (Wo, W) or (W1, Wy), depending on «;.
If a; # aé-, then in the position Va;_o, where Wy
is placed, the corresponding tampered version V%j_aj
should be W{. Therefore we get independence of Wy
from W based on the look-ahead property. Now ob-
serve that (Vq, ..., Vy,) is somewhere-independent [51]
from its tamperings. That is, for every i € [t] there
exists some j € [2a] such that V is independent from
V; If they then use the independence merging protocol
described above to merge these strings, they get R
which is uniform conditioned on R, and hence win
the correlation-breaking game. The entropy requirement
is then proportional to O(a) instead of 2*. Moreover, the
entropy requirement can be further improved by running
the independence merging protocol in parallel. That is,
if they merge every two strings in parallel and repeat
for log(2a) rounds, eventually all the strings will be
merged into one which collects all the independence.
Intuitively the entropy requirement should be propor-
tional to log(a). This is the main idea in [46]. However,
as pointed out by Li [32], there were two obstacles
in [46] which prevented them from getting O(loga)
dependence. We explain each of them in the next two
paragraphs, respectively.

G. Preparing seeds for sub-protocols

The strategy we described above runs many indepen-
dence merging protocols in parallel for log(a) rounds.
In the 7™ round Quentin needs to prepare a seed Q;
with enough entropy conditioned on the transcripts. The
strategy in [46] is to take a prefix of X as Q; in
each round. However, suppose in the first round Quentin
sends a prefix Q. Then there are ¢ tampered messages
Q[lt] sent at the same time. Therefore X loses about
(t+1)|Q1] entropy. In the next round, to ensure that the
prefix Q2 of X still has some entropy, the length of Q2
needs to be O(t|Q1]). Therefore the entropy requirement

Authorized licensed use limited to: Cornell University Library. Downloaded on March 17,2022 at 16:00:15 UTC from IEEE Xplore. Restrictions apply.

for X grows exponentially in the number of rounds. To
solve this problem, Li [32] observed that they can first
run an /-look-ahead extractor which is strong in Y to
help Quentin prepare ¢ = O(loga) look-ahead strings
Q1,Q2,...,Qy. Then in the ™ round Quentin simply
sends Q;.

In our setting of linearly correlated sources (dis-
cussed below in Section III-I), we find it slightly
cumbersome to define a look-ahead protocol which is
strong in Y because of the linear correlation between
sources. Therefore, we take a slightly different strat-
egy: we construct an NIPM in a way such that it
can take a uniform seed Q; and merge every two
weak sources (Vl, VQ), (Vg, V4), RN (Vgafl, Vga)
into uniform strings Wy, ..., W,. Then before the start
of next round, we take a prefix P of W and extract
Q2 = Ext(X,P). If P is short compared to each W,
then each W; should still have enough entropy, and the
merging process can continue. Essentially this is like
running the look-ahead protocol “on the fly.”

H. Entropy recycling

Second, when merging a block (V1, V3) into a single
source W using the alternating extraction protocol de-
scribed above, the length of W is only 3|V1]| for some
constant 3 < 1. Therefore the entropy requirement for
Y also grows exponentially in the number of rounds. To
solve this problem, Li [33] observed that one can try to
“recycle entropy” from Y, which actually contains all
the entropy Wendy currently has. Since Y can contain
entropy much larger than |V], it is possible to restore
the length of W to |V|. Li [33] did this by using an
extra seed from Quentin as a buffer to extract from Y.

However, as we pointed out in the previous para-
graph, preparing multiple seeds for Quentin using a
look-ahead extractor is cumbersome in the linearly cor-
related source setting. Therefore we choose to em-
bed this approach into each NIPM sub-protocol. That
is, we change the protocol NIPM(Q,(V1,V2)) to
NIPM,...(Q, (V1, V2,Y)) in the following way. First,
run the original NIPM(Q, (V1,V3)) to get P which
merges the independence of V; and V5. Suppose P
is computed on Wendy’s side. Then Wendy sends P
to Quentin, Quentin sends S = Ext(Q,P) to Wendy,
and Wendy computes W = Ext(Y,S) as output. Note
that this protocol is still strong in X. Moreover, if P
is uniform conditioned on P? for some T' C [t], then
based on the independence preserving property of strong
seeded extractors, W should still be uniform conditioned
on W7 Therefore if the entropy of Q can afford one
more round of alternating extraction, NIPM,... preserves

631

every property we want for NTPM, but it also has output
length |[W| = |V4].

1. Two-party games for linearly correlated sources

Finally we state how to modify the definition of
correlation-breaking games to work for (X = A+B,Y)
where (A, Al") is independent of (B, B, Y, YY), A
has some entropy and Y is uniform. In this modified
game, Quentin holds A, and Wendy holds (B,Y). Fur-
thermore, there are two transcripts (and their ¢ tampered
versions): the normal transcript Z, and a “write-only”
transcript Zp. Then Quentin and Wendy run the game
as if they are simulating a two-party communication
between X and Y. This works as follows. First, when-
ever Quentin wants to send or output Q = f(X,Z), f
must be a linear function for any fixed Z, and Wendy
must send Qp = f(B,Z) first. In addition, Qp will be
added to the write-only transcript Zp. After receiving
Qp, Quentin sends or outputs Q = f(A,Z)+ Qp, and
then Q is added to the transcript Z. Second, Wendy’s
message should always be in the form ¢(Y,Z) for
some deterministic function g, which means Wendy
doesn’t have access to B (except when helping Quentin
compute f(X, Z)). Then we want the output R to be uni-
form conditioned on (R, Z, ZI1 Zp, Z%]). Note that
(A, Al & (2,219, 75, 7I) « (Y, YW, B,BlY) is
always a Markov chain.

Effectively, this modified game is similar to a normal
game between A and Y, except for two things. First, f
must be linear. In our construction we actually make
sure that every function f Quentin uses is simply a
strong linear seeded extractor. Second, whenever Quentin
wants to send a message to help Wendy run some
protocols, Wendy is forced to send Qp which leaks
some information about her source. This means every
source Wendy holds in her hand loses some entropy.
Nevertheless, we will make sure that every sub-protocol
Wendy simulates still works even if she only has weak
sources. Finally, another slight difference on Wendy’s
side is she can only run some deterministic function
using Q = Q4 + Qp instead of Q4. But this is not
a problem, since Qp is independent of Q4 conditioned
on the transcripts, which means the conditional entropy
of Q is the same as Q 4. Moreover, Q is still independent
from Wendy’s side since QQp is already in the transcript.

J. Summary of our correlation breaker construction

Finally, we summarize the construction of our correla-
tion breaker using the two-party game from Section III-1.
We use the following building blocks:

Authorized licensed use limited to: Cornell University Library. Downloaded on March 17,2022 at 16:00:15 UTC from IEEE Xplore. Restrictions apply.

o A strong linear seeded extractor LExt, which is the
“condense-then-hash” extractor.

o A 2-look-ahead extractor laExt, which takes a weak
source Y and an independent uniform seed Q,
then outputs two strings (Ro, R1) such that R; is
uniform conditioned on (Ry, Rot).

o An NIPM which takes two weak sources Vi, Vo,
an entropy pool Y and an independent uniform
seed Q, then outputs a string W which merges the
independence of V1, Vy from their tamperings.

Given a source X A + B, a uniform seed Y,
their tamperings Al BIY) Y[such that (A, Al) is
independent of (B, B!}, Y, Y1), an advice a € {0,1}*
and the tampered advice ¥ # o, the construction works
as follows:

1) Wendy sends W which is a prefix of Y.

2) Wendy sends Qop = LExt(B, W), then Quentin
sends Qo = LExt(X,Wj) = LExt(A, W) +
Qos-

3) Wendy computes (R1,Ro) = laExt(Y, Qo), and
gets a sequence of 2a somewhere-independent
strings V. = (Vy,...,Vy,) by assigning each
string to be Ry or R; based on a (see the dis-
cussion in Section III-F).

4) Repeat the following steps for i from 1 to log(2a):

I Wendy sends W; which is a prefix of Vj.

IT Wendy sends Q;p LExt(B, W;), then
Quentin sends Q; = LExt(A, W;) + Q;5.

IIT Wendy merges each pair (Va;_1,Vy;) into a
single string V; with the NIPM, using Q; as the
uniform seed and Y as the entropy pool. Note
that the number of strings in V decreases by a
factor of 2 after this step.

5) Now there is only one string in V. Output V, which
is uniform conditioned on V.

Note the construction above has the following features:

o The only message from Quentin is the uniform seed
Q; in each round, which is computed by a strong
linear seed extractor. The length of Q; should be
O(tlog(n)) for each sub-protocol to work.

o In each round Wendy sends a message W, to be
used as the seed of Quentin’s extraction, and also
Q;p to help Quentin compute Q;. Both messages
have length O(|Q;|) and cause the sources in
Wendy’s hand to lose O(t|Q;|) bits of entropy.
However, both the look-ahead extractor and the
NIPM still work even if Wendy only has weak
sources.

Finally, observe that in each of the O(log(a)) rounds,
both parties need to send a message of length

632

O(tlog(n)). Since in each round there are ¢ tampered
messages sent simultaneously, the entropy requirement
of each side is O(¢? log(a) log(n)). Moreover, the length
of each |V;| needs to be O(t|Q;l) O(t?1og(n))
to tolerate the entropy loss in each round, so there is
an extra O(t®log(n)) entropy requirement on Y in the
look-ahead extractor. Nevertheless, this is dominated by
O(t? log(a) log(n)) in our application.

ACKNOWLEDGEMENT

We thank David Zuckerman for discussions about
affine extractors, which led to this work. We thank FOCS
reviewers for many helpful comments. We thank Jason
Gaitonde for helpful discussions.

Eshan Chattopadhyay, Jesse Goodman and Jyun-Jie
Liao are supported by NSF CAREER award 2045576.

REFERENCES

[1] J. von Neumann, “Various techniques used in connection with
random digits,” Applied Math Series, vol. 12, pp. 36-38, 1951,
notes by G.E. Forsythe, National Bureau of Standards. Reprinted
in Von Neumann’s Collected Works, 5:768-770, 1963.

N. Nisan and D. Zuckerman, “Randomness is linear in space,’
Journal of Computer and System Sciences, vol. 52, pp. 43-52,
1996.

C.-J. Lu, O. Reingold, S. Vadhan, and A. Wigderson, “Extractors:
Optimal up to constant factors,” in Proceedings of the thirty-fifth
annual ACM symposium on Theory of computing, 2003, pp. 602—
611.

V. Guruswami, C. Umans, and S. P. Vadhan, “Unbalanced ex-
panders and randomness extractors from parvaresh-vardy codes,”
J. ACM, vol. 56, pp. 20:1-20:34, 2009.

Z. Dvir, S. Kopparty, S. Saraf, and M. Sudan, “Extensions to the
method of multiplicities, with applications to kakeya sets and
mergers,” SIAM Journal on Computing, vol. 42, pp. 2305-2328,
2013.

R. Shaltiel, “Recent developments in explicit constructions of
extractors,” in Current Trends in Theoretical Computer Science:
The Challenge of the New Century. World Scientific, 2004, pp.
189-228.

B. Chor, O. Goldreich, J. Hasted, J. Freidmann, S. Rudich, and
R. Smolensky, “The bit extraction problem or t-resilient func-
tions,” in 26th Annual Symposium on Foundations of Computer
Science (sfcs 1985). 1EEE, 1985, pp. 396-407.

L. Trevisan and S. Vadhan, “Extracting randomness from sam-
plable distributions,” in Proceedings 41st Annual Symposium on
Foundations of Computer Science. 1EEE, 2000, pp. 32-42.

J. Kamp and D. Zuckerman, “Deterministic extractors for bit-
fixing sources and exposure-resilient cryptography,” SIAM Jour-
nal on Computing, vol. 36, pp. 1231-1247, 2007.

B. Chor and O. Goldreich, “Unbiased bits from sources of weak
randomness and probabilistic communication complexity,” SIAM
J. Comput., vol. 17, pp. 230-261, 1988.

B. Barak, R. Impagliazzo, and A. Wigderson, “Extracting ran-
domness using few independent sources,” SIAM Journal on
Computing, vol. 36, pp. 1095-1118, 2006.

A. Rao, “Extractors for low-weight affine sources,” in Proceed-
ings of the 24th Annual IEEE Conference on Computational
Complexity, CCC 2009. 1EEE Computer Society, 2009, pp.
95-101.

E. Viola, “Extractors for circuit sources,” SIAM J. Comput.,
vol. 43, pp. 655-672, 2014.

[2]

[3]

[4]

[5]

[6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

Authorized licensed use limited to: Cornell University Library. Downloaded on March 17,2022 at 16:00:15 UTC from IEEE Xplore. Restrictions apply.

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

(24]
[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

E. Chattopadhyay and J. Goodman, “Improved extractors for
small-space sources,” in 62nd IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2021, 2021, to appear.

J. Kamp, A. Rao, S. Vadhan, and D. Zuckerman, “Deterministic
extractors for small-space sources,” in Proceedings of the thirty-
eighth annual ACM symposium on Theory of computing, 2006,
pp. 691-700.

M. Blum, “Independent unbiased coin flips from a correlated
biased source—a finite state markov chain,” Combinatorica,
vol. 6, pp. 97-108, 1986.

E. Ben-Sasson and N. Ron-Zewi, “From affine to two-source
extractors via approximate duality,” SIAM Journal on Computing,
vol. 44, pp. 1670-1697, 2015.

G. Cohen and A. Tal, “Two structural results for low degree
polynomials and applications,” in Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2015, 2015, pp. 680-709.

E. Demenkov and A. S. Kulikov, “An elementary proof of a 3n-
o (n) lower bound on the circuit complexity of affine dispersers,”
in International Symposium on Mathematical Foundations of
Computer Science. Springer, 2011, pp. 256-265.

M. G. Find, A. Golovnev, E. A. Hirsch, and A. S. Kulikov, “A
better-than-3n lower bound for the circuit complexity of an ex-
plicit function,” in IEEE 57th Annual Symposium on Foundations
of Computer Science, FOCS 2016, 2016, pp. 89-98.

J. Li and T. Yang, “3.1n-o(n) circuit lower bounds for explicit
functions.” in Electron. Colloquium Comput. Complex., vol. 28,
2021, p. 23.

A. Gabizon and R. Raz, “Deterministic extractors for affine
sources over large fields,” Combinatorica, vol. 28, pp. 415-440,
2008.

J. Bourgain, Z. Dvir, and E. Leeman, “Affine extractors over large
fields with exponential error,” computational complexity, vol. 25,
pp.- 921-931, 2016.

J. Bourgain, “On the construction of affine extractors,” GAFA
Geometric And Functional Analysis, vol. 17, pp. 33-57, 2007.
A. Yehudayoff, “Affine extractors over prime fields,” Combina-
torica, vol. 31, pp. 245-256, 2011.

X. Li, “A new approach to affine extractors and dispersers,” in
Proceedings of the 26th Annual IEEE Conference on Computa-
tional Complexity, CCC 2011. 1EEE Computer Society, 2011,
pp. 137-147.

M. DeVos and A. Gabizon, “Simple affine extractors using
dimension expansion,” in 2010 IEEE 25th Annual Conference
on Computational Complexity. 1EEE, 2010, pp. 50-57.

X. Li, “Improved two-source extractors, and affine extractors for
polylogarithmic entropy,” in IEEE 57th Annual Symposium on
Foundations of Computer Science, FOCS 2016. 1EEE Computer
Society, 2016, pp. 168-177.

E. Chattopadhyay and D. Zuckerman, “Explicit two-source ex-
tractors and resilient functions,” Annals of Mathematics, vol. 189,
pp. 653-705, 2019.

A. Ben-Aroya, D. Doron, and A. Ta-Shma, “An efficient re-
duction from two-source to nonmalleable extractors: achieving
near-logarithmic min-entropy,” SIAM Journal on Computing, pp.
STOC17-31, 2019.

G. Cohen, “Towards optimal two-source extractors and ramsey
graphs,” in Proceedings of the 49th Annual ACM SIGACT Sym-
posium on Theory of Computing, STOC 2017. ACM, 2017, pp.
1157-1170.

X. Li, “Improved non-malleable extractors, non-malleable codes
and independent source extractors,” in Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2017. ACM, 2017, pp. 1144-1156.

——, “Non-malleable extractors and non-malleable codes: Par-
tially optimal constructions,” in 34th Computational Complexity

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Conference, CCC 2019, ser. LIPIcs, vol. 137. Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, 2019, pp. 28:1-28:49.

D. Aggarwal, H. Bennett, A. Golovnev, and N. Stephens-
Davidowitz, “Fine-grained hardness of CVP(P) - everything that
we can prove (and nothing else),” in Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms, SODA 2021.
SIAM, 2021, pp. 1816-1835.

E. Chattopadhyay and J.-J. Liao, “Extractors for sum of two
sources,” arXiv preprint arXiv:2110.12652, 2021.

E. Chattopadhyay, J. Goodman, and J. Liao, “Affine extractors
for almost logarithmic entropy,” Electron. Colloquium Comput.
Complex., p. 75, 2021.

X. Li, “Extractors for a constant number of independent sources
with polylogarithmic min-entropy,” in 54th Annual IEEE Sympo-
sium on Foundations of Computer Science, FOCS 2013. 1EEE
Computer Society, 2013, pp. 100-109.

G. Cohen, “Local correlation breakers and applications to three-
source extractors and mergers,” SIAM J. Comput., vol. 45, pp.
1297-1338, 2016.

S. Dziembowski and K. Pietrzak, “Intrusion-resilient secret shar-
ing,” in 48th Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS 2007. 1EEE Computer Society, 2007, pp.
227-237.

R. Meka, “Explicit resilient functions matching ajtai-linial,” in
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2017. SIAM, 2017, pp. 1132—
1148.

E. Chattopadhyay, V. Goyal, and X. Li, “Non-malleable ex-
tractors and codes, with their many tampered extensions,” in
Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing. ACM, 2016, pp. 285-298.

L. Trevisan, “Extractors and pseudorandom generators,” J. ACM,
vol. 48, pp. 860-879, 2001.

R. Raz, O. Reingold, and S. P. Vadhan, “Extracting all the
randomness and reducing the error in trevisan’s extractors,” J.
Comput. Syst. Sci., vol. 65, pp. 97-128, 2002.

M. Cheraghchi, “Applications of derandomization theory in cod-
ing,” Ph.D. dissertation, EPFL, Lausanne, Switzerland, 2010.

J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby, “A
pseudorandom generator from any one-way function,” SIAM J.
Comput., vol. 28, pp. 1364-1396, 1999.

E. Chattopadhyay and X. Li, “Explicit non-malleable extractors,
multi-source extractors, and almost optimal privacy amplification
protocols,” in IEEE 57th Annual Symposium on Foundations of
Computer Science, FOCS 2016. 1EEE Computer Society, 2016,
pp. 158-167.

G. Cohen, “Making the most of advice: New correlation breakers
and their applications,” in IEEE 57th Annual Symposium on
Foundations of Computer Science, FOCS 2016. 1EEE Computer
Society, 2016, pp. 188-196.

M. Ajtai and N. Linial, “The influence of large coalitions,”
Combinatorica, vol. 13, pp. 129-145, 1993.

Y. Dodis and D. Wichs, “Non-malleable extractors and symmetric
key cryptography from weak secrets,” in Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC 2009.
ACM, 2009, pp. 601-610.

G. Cohen, “Non-malleable extractors - new tools and improved
constructions,” in 31st Conference on Computational Complexity,
CCC 2016, ser. LIPIcs, vol. 50. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2016, pp. 8:1-8:29.

G. Cohen and L. J. Schulman, “Extractors for near logarithmic
min-entropy,” in [EEE 57th Annual Symposium on Foundations
of Computer Science, FOCS 2016. 1EEE Computer Society,
2016, pp. 178-187.

Authorized licensed use limited to: Cornell University Library. Downloaded on March 17,2022 at 16:00:15 UTC from IEEE Xplore. Restrictions apply.

