
Improving Column-Generation for Vehicle Routing Problems via

Random Coloring and Parallelization

Miao Yu, Viswanath Nagarajan, Siqian Shen

Department of Industrial and Operations Engineering,

University of Michigan, Ann Arbor

Email: {miaoyu, viswa, siqian}@umich.edu

May 25, 2021

Abstract

We consider a variant of the Vehicle Routing Problem (VRP) where each customer has a unit demand

and the goal is to minimize the total cost of routing a fleet of capacitated vehicles from one or multiple

depots to visit all customers. We propose two parallel algorithms to efficiently solve the column-generation

based linear-programming relaxation for this VRP. Specifically, we focus on algorithms for the “pricing

problem” which corresponds to the resource-constrained elementary shortest path problem. The first

algorithm extends the pulse algorithm by Lozano et al. (2015), for which we derive a new bounding

scheme on the maximum load of any route. The second algorithm is based on random coloring from

parameterized complexity (Alon et al., 1995), which can be also combined with other techniques in the

literature for improving VRPs, including cutting planes and column enumeration. We conduct numerical

studies using VRP benchmarks (with 50–957 nodes) and instances of a medical home care delivery

problem using census data in Wayne County, Michigan. Using parallel computing, both pulse and random

coloring can significantly improve column generation for solving the linear programming relaxations and

we can obtain heuristic integer solutions with small optimality gaps. Combining random coloring with

column enumeration, we can obtain improved integer solutions having less than 2% optimality gaps for

most VRP benchmark instances, and less than 1% optimality gaps for the medical home care delivery

instances, both under a 30-minute computational time limit. The use of cutting planes (e.g., robust cuts)

can further reduce optimality gaps on some hard instances, without much increase in the runtime.

Keywords: vehicle routing problem (VRP), elementary shortest path, random coloring, column gener-

ation, parallel computing

1

1 Introduction

In the Vehicle Routing Problem (VRP) with Unit Demand (VRPUD), a fleet of vehicles is routed to visit

a set of customers, and each vehicle has a capacity, i.e., an upper bound on the maximum number of

customers to visit. Mathematically, let G = (V ∪D,E) be an undirected graph, where V is a set of nodes

representing the locations of all customers each having a unit demand and D is a set of depot nodes. The

set E = {(i, j)| i, j ∈ V ∪D} contains all the edges that correspond to the best travel routes between each

pair of nodes in graph G. Each edge (i, j) ∈ E is associated with a travel cost cij > 0, which satisfies the

triangle inequality, i.e., cij + cjp ≥ cip for any (i, j), (j, p), (i, p) ∈ E. At each depot node d ∈ D, a fleet of

identical vehicles with capacity Q, denoted by set Kd, is deployed to serve customers in V . Our goal is to

find a set of vehicle routes with the minimum total travel cost such that: (i) each node in V is visited by

exactly one route, (ii) each vehicle in Kd starts and ends its route at depot node d ∈ D, and (iii) each route

contains at most Q customer nodes.

When there is no capacity constraint and a single depot (|D| = 1), VRPUD extends the classic traveling

salesman problem (Kruskal, 1956). VRPUD is also a special case of the more general capacitated VRP

(CVRP) (see Toth and Vigo, 2014; Fukasawa et al., 2006; Baldacci et al., 2011; Pecin et al., 2017b), where a

fleet of vehicles, each having a limited capacity, is routed to visit a set of customers having different demand

volumes. VRPUD finds natural applications in service systems in transportation, logistics, and healthcare.

One application is in a patient-centered medical home system, where we need to route caregivers to provide

medical care services at patients’ homes (American Academy of Family Physicians, 2008). Such a system can

especially benefit those patients having limited mobility and can decrease the number of admissions in the

hospitals (The National Association for Home Care & Hospice, 2010; Adaji et al., 2018). However, the routing

and scheduling tasks are highly complex, often designed manually, and therefore can have unnecessarily high

cost in practice (Eveborn et al., 2006). Fikar and Hirsch (2017) provided a review of different approaches for

medical home care delivery, e.g., modeling the routing and scheduling problem as VRP with time windows

(VRPTW) or VRP with pickup and delivery. To the best of our knowledge, the problem has not been tackled

as a VRPUD with a goal of minimizing the workload of individual caregivers. According to The National

Association for Home Care & Hospice (2010), nationwide, the number of patients visited by one caregiver

ranges from 4 to 6 during a workday, depending on the types of caregivers. Thus, the capacity Q of each

vehicle can be set to a relatively small number when we solve the corresponding VRPUD model.

2

1.1 Solution Methods for VRPs

Column generation is a prominent approach for solving VRPs (see, e.g., Desaulniers et al., 2006; Fukasawa

et al., 2006; Baldacci et al., 2008, 2010, 2011; Pecin et al., 2017a,b). Here, a set-partitioning formulation is

used where we associate with each feasible route a binary variable indicating whether or not to take the route.

A key first step is to optimize the linear programming (LP) relaxation of this integer program. Because the

number of decision variables (i.e., columns) in the overall LP formulation can be huge, we repeatedly solve a

restricted LP model containing only a subset of columns. In each iteration, optimizing the restricted model

provides a dual solution, based on which we can either improve the current solution or prove optimality. This

requires solving the so-called “pricing problem” that finds a new column with the minimum reduced cost. If

the minimum reduced cost is non-negative, then the current solution is optimal to the overall LP relaxation;

otherwise, the column with the least reduced cost enters the basis and we re-optimize the restricted model

with an expanded set of columns. Note that in each iteration, any column with negative reduced cost can

improve the current solution, and thus we do not have to only add one column but can add multiple to speed

up the computation (Desaulniers et al., 2006).

Algorithms for optimizing the pricing problem play an essential role in searching for the best columns

to add, aiming to improve the computational efficacy of column generation. Finding a column with neg-

ative reduced cost is equivalent to solving an elementary shortest path problem with resource constraints

(ESPPRC), which finds the shortest path starting and ending at a depot, traversing customer nodes obeying

some resource constraints. When the underlying network contains negative-cost arcs, the problem is NP-hard

(Dror, 1994). Desrosiers et al. (1995) proposed a dynamic programming method to solve a relaxed version of

ESPPRC by allowing cycles. Based on their work, Feillet et al. (2004) proposed a label correcting algorithm

that is the first exact approach for ESPPRC, which was later improved by Feillet et al. (2007). This algo-

rithm solves the pricing problem for VRPTW very efficiently when time windows are tight, but it fails to

handle instances with wide time windows. Later, Righini and Salani (2006) proposed a bi-directional label

correcting algorithm based on state-space relaxation for ESPPRC and significantly reduced the computa-

tional time. Recently, Lozano et al. (2015) proposed a pulse algorithm that efficiently solved ESPPRC when

using column generation for solving the vehicle routing problem with time-windows (VRPTW), via implicit

enumeration and a bounding procedure. The algorithm worked with a depth-first-search-based enumeration

to construct the partial paths starting from the depot to some end nodes. With several pruning strategies

to discard the search on partial paths early, the algorithm pruned large regions of the solution space. The

algorithm was later extended and generalized by Duque et al. (2015) as a general-purpose framework for

solving hard shortest path problems and the orienteering problem with time windows.

3

The pricing problem in column generation for VRPUD has a parameter Q, which is the maximum number

of nodes involved in any route. Although the ESPPRC is NP-hard, it is possible to find a polynomial-time

algorithm with respect to the network size for fixed Q (Downey and Fellows, 2012). Indeed, polynomial-time

algorithms exist for finding a simple path/cycle with fixed length based on a technique called color-coding

(Alon et al., 1995), where each node is randomly assigned a color from a set with a fixed number of colors.

Finding a simple path of a fixed length then reduces to finding a path containing nodes with distinct colors.

The complexity of the latter is exponential with respect to the number of colors but polynomial with respect

to the number of nodes–this is because we only need to track a subset of assigned colors rather than nodes.

However, as one color-coding could color two distinct nodes with the same color, it forbids the exploration of

a path containing the two nodes. Therefore, we need to investigate multiple independent trials of color-coding

when applying the idea to ESPPRC. The color-coding concept has wider applications, e.g., in bioinformatics

to explore complex structures in protein-protein interaction networks (Alon et al., 2008). To the best of our

knowledge, our paper is the first to apply this technique in column generation algorithms.

The solution obtained at the end of column generation may not be integral. One way is to use all the

generated columns to form an integer program by solving which we can obtain a heuristic integer solution for

VRPs along with an optimization gap. To solve a VRP instance exactly, additional steps are needed to enforce

integrality. The branch-and-price algorithm (Barnhart et al., 1998) is used to close the optimization gap

by applying branch-and-bound atop the column generation approach, and branch-cut-and-price (Fukasawa

et al., 2006) improves the branch-and-price by introducing cutting planes to strengthen the lower bound on

each branching node. Recently, Baldacci et al. (2011); Contardo and Martinelli (2014); Pecin et al. (2017b,a)

proposed a column enumeration approach to close the optimality gap early in the branching tree and to solve

VRPs exactly. In this paper, we derive parallelized pulse and random-coloring algorithms for ESPPRC used

in column generation for solving the LP relaxation of VRPUD. We also demonstrate how to combine random

coloring with various types of cutting planes (Lysgaard et al., 2004; Jepsen et al., 2008) to reduce optimality

gaps and with column enumeration for improving the quality of integer solutions.

1.2 Contributions of the Paper

The main contributions of the paper are threefold. Firstly, we design an algorithm using random coloring for

solving ESPPRC to improve column generation for the LP relaxation of VRPUD. The approach is applicable

more broadly to other VRPs with some (possibly implicit) limits on the number of nodes visited in each route.

Because different coloring schemes are completely independent, it is natural to implement this algorithm in

parallel, and we observe a high speed-up ratio in our parallel implementation. In addition, as the proposed

4

approach specializes in finding multiple elementary paths quickly, it is particularly suitable for improving the

recently-proposed column-enumeration procedure for seeking exact VRP solutions. We note that techniques

to accelerate classical label-correcting algorithms for ESPPRC, such as bi-directional search and bounding

functions, can also be combined with the random-coloring algorithm, yielding further speed-up. The random

coloring algorithm can also be extended to handle all “robust” and some “non-robust” cutting planes, which

are often useful in improving the LP bound.

Secondly, we evaluate the random-coloring approach against a state-of-the-art algorithm for ESPPRC,

called pulse. The pulse algorithm has previously been tested in the column generation approach for VRPTW.

In this paper, we extend the pulse algorithm to solve VRPUD by (i) extending the bounding scheme to

consider vehicle capacity, and (ii) allowing the algorithm to stop early and return multiple negative-cost

paths instead of just one optimal path. The comparison between pulse and random coloring is conducted by

testing single-depot VRPUD on modified Solomon’s instances (Solomon, 1987) and unitary demand CVRP

X-instances (Uchoa et al., 2017) with the size of the instances ranging from 50 nodes to 957 nodes. We

also implement one family of robust cuts, the rounded capacity cuts (see Lysgaard et al., 2004), and observe

significant improvement in the optimality gaps by largely improving lower bounds on the optimal objective

values, with only a small increase in runtime. Our results show that the parallel implementations of both

algorithms can solve the LP relaxations of these instances efficiently, and the resulting heuristic integer

solutions have optimality gaps less than 2%. Furthermore, after combining random coloring with column

enumeration, the optimality gaps can be improved to less than 1% for most classical VRP instances.

Thirdly, we compare different algorithms on multi-depot VRPUD instances of a medical home care

delivery problem using census data in Wayne County, Michigan. The parallel implementations of both pulse

and random coloring can solve the LP relaxations with up to 500 nodes within reasonable time: about

6 minutes for random coloring and 15 minutes for pulse. Using the generated columns found by random

coloring, we obtain high-quality integer solutions that have less than 2% optimality gaps. Further, combined

with column enumeration, we improve the integer solutions to have less than 0.5% optimality gaps.

1.3 Organization

The remainder of the paper is organized as follows. In Section 2, we review the most relevant VRP literature

including formulations and solution methods. In Section 3, we build a set-partitioning-based formulation for

VRPUD that can be solved via column generation. In Section 4, provide details of the pulse and random-

coloring algorithms for solving the ESPPRC pricing problem. In Section 5, we present computational results

by combining our algorithms with column-generation and column-enumeration approaches and testing them

5

on VRP benchmark instances in the literature and on medical home delivery instances with different sizes

and complexities. Section 6 summarizes the paper and states future research directions.

2 Literature Review of VRP Variants

In recent years, the branch-cut-and-price (BCP) approach, which combines column generation with branch-

and-cut framework, has been considered the most efficient exact solution approach for VRPs and has been

widely applied to various types of VRPs (Pecin et al., 2017a,b). Nevertheless, solving the LP relaxation

efficiently via column generation is an important step involved in the overall exact approach for VRPs.

The branch-and-price method particularly performs very well for VRPTW. Desrosiers et al. (1995) con-

sidered a column generation method for VRPTW by modeling the pricing problem as a shortest path problem

with resource constraints by allowing cycles. The method was later improved by Kohl et al. (1999) and Irnich

and Villeneuve (2006) by forbidding cycles with a fixed length. Feillet et al. (2004) solved VRPTW using

column generation with ESPPRC as the pricing problem. They proposed the first exact algorithm for ESP-

PRC to improve the lower bounds obtained at each branching node. Jepsen et al. (2008) extended the BCP

framework by introducing so-called “subset-row” cuts which effectively enhanced the bound from root node

relaxation. Baldacci et al. (2010) proposed a column-and-cut generation algorithm and used non-elementary

route relaxation approach to bound the pricing problem. Pecin et al. (2017a) proposed a BCP approach

that combined several recently developed algorithms with limited-memory subset-row cuts and improved

elementary inequalities.

CVRP can be viewed as a special case of VRPTW with arbitrary large time windows. However, with

resource (i.e., time) being less constrained, the ESPPRC pricing problem becomes more challenging to

solve. To solve CVRP through column-generation-based approaches, the main stream of the research con-

sidered non-elementary relaxations of the pricing problem and strengthened them through cutting planes.

Christofides et al. (1981) first introduced q-route relaxation, which is a walk with at most q units of demand

starting from the depot, traversing a sequence of nodes and returning to the depot. In a q-route, a vehicle is

allowed to visit the same node multiple times, which may create loops. It is easy to avoid 2-node loops but

it is hard to avoid k-node loops with k ≥ 3. Fukasawa et al. (2006) initiated a BCP method to solve CVRP

by combining branch-and-cut and column generation. They considered the pricing problem as a minimum

cost q-route problem without 2-node loops, which significantly reduced the runtime of the pricing problem.

Fukasawa et al. (2015) extended the previous algorithm to solve a variant of CVRP, where the cost of an arc

was defined as the product of arc length and load of a vehicle that travels on this arc.

A variety of column-generation studies for CVRP focused on finding columns associated with elementary

6

routes, whose efficiency relies on bounding functions to reduce the search space of a dynamic program. The

bounds are computed through different state-space relaxations. Baldacci et al. (2008) proposed a column-

and-cut generation approach using a bounding procedure combining three dual ascent heuristics. Baldacci

et al. (2011) introduced the concept of ng-route that is more effective than the q-route. The ng-route is a

non-elementary route limiting the visit to a node that was previously visited if such a node belongs to a

dynamically computed no-good (ng) set associated with the route. Adding another dual ascent heuristic

with ng-route relaxation and non-robust subset-row cuts, they improved the speed and stability of the BCP

algorithm. Recently, Pecin et al. (2017b) improved the BCP algorithm by incorporating and enhancing

various techniques from the past decade.

Table 1 summarizes the reviewed literature that applied column-generation-based approaches for VRPs.

We classify them based on solution approaches used for solving the pricing problem. We refer the interested

readers to a survey paper by Braekers et al. (2016) for state-of-the-art classification and theory development

for broader VRPs.

Table 1: Summary of the reviewed papers based on solution methods for the pricing problem
Class of VRP ESPPRC Non-elementary Route Relaxation
VRPTW Feillet et al. (2004), Feillet et al.

(2007), Jepsen et al. (2008), Righ-
ini and Salani (2006), Lozano et al.
(2015), Pecin et al. (2017a).

Desrosiers et al. (1995), Kohl
et al. (1999), Irnich and Villeneuve
(2006), Baldacci et al. (2010).

CVRP Baldacci et al. (2008), Baldacci
et al. (2011), Pecin et al. (2017b).

Fukasawa et al. (2006), Fukasawa
et al. (2015), Baldacci et al. (2008),
Baldacci et al. (2011), Pecin et al.
(2017b).

Other VRPs Bettinelli et al. (2011), Dabia et al.
(2013), Duque et al. (2015).

Dabia et al. (2013).

3 VRPUD and Column Generation

Consider the VRP with unit demand (VRPUD) as defined in Section 1. A set-partitioning-based formulation

of our problem is given as follows. Recall that D is the set of the depots. For d ∈ D, let Pd be the set of

feasible routes rooted at depot d that can be assigned to vehicles in Kd (each route contains at most Q nodes

and starts/ends at d). We assume that the number of vehicles |Kd| at each depot is large enough so that

any number of routes can be assigned to each depot d. For each feasible route p ∈ Pd and node i ∈ V , let

cp be the cost of the route and aip be a binary coefficient such that aip = 1 if route p contains i and aip = 0

otherwise. We define a binary decision variable xp for each p ∈ Pd such that xp = 1 if we pick the route p

7

in our solution and xp = 0 otherwise. We formulate the overall model for VRPUD as

(MP) minimize:
∑
d∈D

∑
p∈Pd

cpxp (1)

subject to:
∑
d∈D

∑
p∈Pd

aipxp = 1 ∀ i ∈ V, (2)

xp ∈ {0, 1} ∀ p ∈ Pd, d ∈ D, (3)

where the objective function (1) minimizes the cost of all routes; constraints (2) ensure that each node in V

is covered by exactly one vehicle; constraints (3) enforce that all the decision variables are binary valued.

Model MP is hard to solve because each Pd, d ∈ D contains a number of feasible routes that grows

exponentially with the size of the input instance. In column generation, instead of solving the problem with

all variables explicitly, we solve the following restricted master problem (RMP), where a relatively small

subset of Pd, P̃d ⊂ Pd, is used to replace Pd:

(RMP) minimize:
∑
d∈D

∑
p∈P̃d

cpxp (4)

subject to:
∑
d∈D

∑
p∈P̃d

aipxp = 1 ∀ i ∈ V, (5)

xp ∈ {0, 1} ∀ p ∈ P̃d, d ∈ D. (6)

In each iteration, we solve the LP relaxation of RMP and obtain an optimal dual solution, using which we

can then search for new routes with negative cost to improve the current solution. Let πi, i ∈ V be the

dual variables associated with constraints (5). Then, for each depot d ∈ D, the reduced cost of a route p

(a column in the RMP) rooted at d is computed as c̄p =
∑

(i,j)∈p c̄ij , where for each arc (i, j), c̄ij is then

calculated as c̄ij = cij − πj . When we find such routes, we add them into P̃d and continue to the next

iteration of column generation. We obtain the optimal solution to the LP relaxation of MP when no more

routes with negative costs can be added.

The main difficulty is the step of finding routes with negative cost, i.e., solving the pricing problem to

generate columns. In this paper, we formulate the pricing problem as an ESPPRC described as follows.

Consider a directed graph G′ = (V ∪ {s, t}, A), where V ∪ {s, t} is the set of nodes with a source node s and

a terminal node t, which correspond to a depot node in VRPUD, and A = {(i, j)|i ∈ V ∪{s}, j ∈ V ∪{t}} is

the set of arcs. Each arc (i, j) ∈ A has a cost c̄ij that can be negative. We are also given a capacity Q and

a unit consumption associated with each node i ∈ V . Our goal is to find an elementary path from source

node s to terminal node t with the minimum cost while the total consumption is no more than Q.

8

Consider a binary decision vector y = (yij , (i, j) ∈ A)> such that yij = 1 if we visit node j right after

node i and yij = 0 otherwise. Let πi, ∀i ∈ V represent the optimal dual solutions obtained at the end of

the current iteration of solving RMP and let πs = πt = 0. The pricing problem (ESPPRC) is given by a

flow-based integer program as follows.

(PP) zPP(π) = minimize
y

∑
(i,j)∈A

(cij − πj)yij (7)

subject to
∑

j:(s,j)∈A

ysj = 1 (8)

∑
j:(j,t)∈A

yjt = 1 (9)

∑
j:(i,j)∈A

yij −
∑

j:(j,i)∈A

yji = 0 ∀i ∈ V (10)

∑
(i,j)∈A

yij ≤ Q+ 1 (11)

∑
(i,j)∈A, i,j∈S

yij ≤ |S| − 1 ∀S ⊂ V (12)

yij ∈ {0, 1} ∀(i, j) ∈ A. (13)

Here (8)–(10) are flow balance constraints to ensure a path solution from s to t, and the objective function

(7) minimizes the cost of the path by assuming (cij−πi) as the cost of arc (i, j), ∀(i, j) ∈ A. Constraint (11)

ensures that the path visits no more than Q nodes. Constraints (12) are subtour elimination constraints.

After solving PP, if zPP(π) < 0, then we find a path with negative cost. Otherwise, our solution is optimal

to the LP relaxation of RMP. It is well known that PP is NP-hard and solving it as a binary integer program

is challenging given that there are exponentially many constraints (12).

Also, as reviewed in Section 2, the use of non-elementary route relaxation can significantly improve

the performance of column generation at each branching node. However, it yields a worse lower bound

and thus results in a larger branch-and-bound tree (Desaulniers et al., 2006). In this paper, we focus on

exact approaches for ESPPRC that is equivalent to finding the minimum-cost route in a network where arcs

may have negative costs, while obeying resource/capacity-related side constraints. Different from tightly

constrained VRP instances (e.g., the pricing problem associated with VRPTW) where the ESPPRC can be

efficiently solved directly, it becomes very challenging to solve ESPPRC for less-constrained VRP instances,

e.g., CVRP with no time-window information (Lysgaard et al., 2004). Next we introduce new, efficient

algorithms for optimizing ESPPRC, which can be implemented in parallel.

9

4 Algorithms for Solving ESPPRC

Efficiently solving the pricing problem (PP) is crucial to improving the performance of the column generation

approach. In this section, we propose two exact algorithms for solving ESPPRC. The first algorithm (called

pulse) utilizes bounding and pruning strategies to accelerate the computational time of a dynamic program.

The second algorithm (called random coloring) is a randomized algorithm that solves a dynamic program

with significantly reduced state space.

4.1 Pulse Algorithm

This algorithm is based on a method proposed by Lozano and Medaglia (2013) for solving a constrained

shortest path problem and also an extension by Lozano et al. (2015) for solving ESPPRC related to VRPTW.

In VRPUD, the resource consumption is related to vehicle capacity rather than time (as in VRPTW).

The overall approach is to compute values b(v, q) representing the minimum cost of a path from v to t

that starts with resource consumption q. These values are computed in a backward manner, starting with

q = Q (which is trivial) and iteratively decreasing q by a step-size ∆. In order to compute b(v, q) for some

q, the algorithm performs a depth-first exploration from v and uses the b(·, q+ ∆) values as lower bounds to

prune the search (after ∆ nodes have been explored).

In more detail, the algorithm computing b(v, q) constructs paths from some starting node v to the terminal

node t by propagating from each current node to its successors. The propagation recursively explores the

graph to construct partial paths while recording needed information. At each node, the algorithm tries to

explore all outgoing arcs unless certain pruning strategies are triggered to stop the propagation. Each time,

when the propagation reaches the terminal node t, we find a feasible solution (which updates the current

best solution) and the algorithm will then backtrack to explore other options. At the end, the algorithm

enumerates all possible paths from s to t following a depth-first search scheme. Crucially, by implementing

pruning strategies to stop exploration early, the algorithm cleverly avoids full enumeration.

The implementation uses two procedures: pulse (see Algorithm 1) and bound (see Algorithm 2). The

pulse procedure takes as input a current path P , its cost r(P), its load q(P) and a node w to which the path

is being extended. It also maintains a pair of global variables: the best path P ∗ found so far and its cost

r(P ∗). The global variables are updated whenever the propagation reaches the end node t and the resulting

path is better than P ∗. To find more columns with negative reduced costs per iteration, we introduce a

global list L containing paths with negative costs. We add a path to L whenever the propagation reaches

the end node t and the resulting path has a negative cost. We terminate the algorithm early when the size of

L reaches a preset limit, nSol. Note that finding the optimal path P ∗ is critical for the bounding procedure

10

(to be discussed later) and list L is only used when calling pulse procedure to solve the entire problem. To

efficiently explore the graph, the pulse procedure utilizes a set of pruning strategies: infeasibility, rollback,

and bounds, which will be detailed in Section 4.1.1. The most important strategy is bounds pruning, which

relies on the already-computed b(·, q + ∆) values. The bound procedure implements a backward dynamic

program to compute the values b(v, q) for q = Q−∆, Q− 2∆, · · · , each time invoking the pulse procedure.

In particular, we start with obtaining the elementary shortest path (using pulse) from every node v ∈ V to

t given a resource consumption Q−∆. Then, we continue searching for the elementary shortest path from

every node v ∈ V to t given a resource consumption Q−2∆. We repeat the same procedure backwards until

we reach a desired lower bound on the bounding resource consumption Q. Therefore, this procedure collects

all b(v, q) values for all v ∈ V and q ∈ Q, where Q = {Q,Q+ ∆, . . . , Q− 2∆, Q−∆}.

Algorithm 1: Pulse procedure

input : Current node w; cost r(P); path load q(P); current path P
output: Void

1 Let u and v be the second last and the last node visited in P , respectively
2 if w == t then
3 if r(P) + c′vw < r(P ∗) then
4 P ∗ ← P ∪ {t}
5 r(P ∗)← r(P) + c′vw
6 end
7 . update optimal path if r(P) + c′vw < 0 . skip when executed inside bounding procedure then
8 L ← L ∪ {P ∪ {t}}
9 end

10 stop

11 end
12 if |L| ≥ nSol then stop . skip when executed inside bounding procedure
13

14 if q(P) == Q or w ∈ P then stop . pruned by infeasibility
15

16 if |P | ≥ 2 and c′uv + c′vw > c′uw then stop . pruned by rollback
17

18 let q(P) be the greatest q such that q ≤ q(P) and q ∈ Q if r(P) + b(w, q(P)) ≥ r(P ∗) then stop .

pruned by bounds
19

20 P ′ ← P ∪ {w}
21 q(P ′)← q(P) + 1
22 r(P ′)← r(P) + c′vw . r(P ′)← 0 if P = ∅
23 for (w,w′) ∈ A do
24 pulse(w′, r(P ′), q(P ′), P ′)
25 end

The overall algorithm works as follows. We start by executing the bounding procedure to compute the

lower bound matrix B. Note that we do not maintain the list of negative-cost paths L when executing pulse

within the bounding procedure. Next, we run the pulse procedure with P = {s}, r(P) = 0, and q(P) = 0.

11

Algorithm 2: Bounding procedure

input : Graph G′ = (V ∪ {s, t}, A); step size ∆; bounding cap [Q,Q]
output: Lower bound matrix B = [b(v, q) : v ∈ V, q ∈ Q]

1 q ← Q while q > Q+ ∆ do
2 q ← q −∆ for v ∈ V do
3 P ∗ ← {} . initialize global variables
4 r(P ∗)←∞
5 P ← {}
6 r(P)← 0
7 q(P)← q
8 pulse(v, r(P), q(P), P) . find the optimal partial path from v to t given q consumed
9 b(v, q)← r(P ∗)

10 end

11 end
12 return B

When the program terminates, the global list L contains at most nSol many s–t paths with negative costs.

4.1.1 Pruning Strategy

The efficiency of the pulse algorithm depends on the pruning strategies to stop the exploration of partial

paths as soon as possible. Lozano et al. (2015) proposed three pruning strategies: infeasibility, bound and

rollback. Based on the problem setting of VRPUD, we detail how to modify each pruning strategy as follows.

Infeasibility pruning. Infeasibility pruning terminates an exploration when a partial path violates any

feasibility constraints: the partial path visits more than Q nodes, or the partial path forms a cycle when it

reaches a new node. For each partial path, we maintain an indicator vector of length |V | to indicate if such

a path has visited each node v ∈ V . We can then identify if any cycle is created in constant time, i.e., if the

path is extended to a node that has been previously visited.

Bounds pruning. Bounds pruning is a key component that significantly improves the performance of

the pulse algorithm. The idea is to fathom suboptimal partial paths using the continuously updated primal

bound r(P ∗) (the cost from the current best feasible solution) and pre-calculated conditional lower bounds

b(v, q(P)), which store the minimum reduced cost that can be achieved for every node v ∈ V and for a given

resource consumption q(P). We terminate the exploration for a partial path P when it reaches a node v ∈ V

where its cost, r(P), plus the conditional lower bound at v with q(P) resource consumption is at least the

current primal bound, i.e., r(P) + b(v, q(P)) ≥ r(P ∗). Note that we may not have a valid s–t path of cost

r(P) + b(v, q(P)), but it is still a lower bound.

Rollback pruning As the pulse algorithm implicitly enumerates the search space in a depth-first search

fashion, a poor decision made at early stages may lead to an unpromising region of the search space. To

avoid this, we impose the rollback pruning strategy that examines the last choice made. Let Pij be a partial

12

path with end node j and it visits node i right before j. When we extend Pij to next node v, we check if

c̄ij + c̄jv > c̄iv. If yes, we terminate the current exploration as a better propagation is to roll back to the

partial path with end node i and extending it to v (“Rollback” is automatically done when we propagate

the path from node i); otherwise, we continue the exploration. This helps to avoid bad early explorations.

4.1.2 Parallelization

In the pulse framework, Algorithm 1 explores partial paths in a depth-first search fashion. Along the search,

it runs the pulse procedure on one node at a time until the search reaches the end node. Starting from

node s, the extensions starting on different outgoing arcs are independent, and therefore we can implement

Algorithm 1 in parallel on different computer threads to accelerate the search while maintaining the global

information properly. Lozano and Medaglia (2013) proposed to trigger a fixed number of threads at node s

and explore the extensions on different outgoing arcs from s independently. We only need to maintain the

record of the visited nodes for each thread and the bound information globally. Multiple threads can run

Algorithm 1 on the same node at the same time except for the end node t, where the global lower bound

can only be updated by one thread at a time.

4.2 Random Coloring Algorithm

A traditional way to solve ESPPRC is through the label correcting algorithm (e.g., Lysgaard et al., 2004;

Feillet et al., 2004). However, to make sure the path is elementary, the algorithm needs to record the full

path for each state variable. Therefore, it requires exponentially many state variables. To be specific, the

size of the state space for label correcting algorithm is in the order of O(2|V ||V |). In this section, we discuss

how to utilize the idea of color-coding from Alon et al. (1995) to extend the label correcting algorithm and

efficiently cut the size of the state space to O(2Q|V |).

In VRPUD, each route can visit at most Q nodes. Suppose that we are given a color-coding, which is

a function φ : V → {1, 2, . . . , Q} that maps each node in V to a color attribute labeled from 1, 2, . . . , Q.

We say that a path in G′ is colorful if the nodes in the path are colored by distinct colors. Clearly, every

colorful path is elementary, and each colorful path contains no more than Q nodes in V . Then if we can find

a colorful s-t path with negative cost, we find an elementary path connecting nodes s and t with a negative

cost. To find a colorful path in G′, we can modify the label correcting algorithm from Feillet et al. (2004).

Let Psi be a partial path from source node s to node i ∈ V . Different from the original algorithm, we

record the information of color history instead of node history of the path. A state Ri = (ni, V
1
i , . . . , V

Q
i)

corresponds to the number of visited nodes and a binary indication vector that is used to record color usage,

13

where V ki = 1 if Psi visits a node colored k ∈ {1, 2, . . . , Q} and V ki = 0 otherwise. Although ni is implied by∑Q
i=1 Vi, we keep it to save the computational time when implementing path domination. Let Ci = c(Psi) be

the cost of such path. A dominance rule is enforced to eliminate additional paths Psi in the label correcting

algorithm. Let P ′si and P ∗si be two distinct paths from s to i with associated labels (R′i, C
′
i) and (R∗i , C

∗
i).

We say that P ′si dominates P ∗si if and only if C ′i ≤ C∗i , n′i ≤ n∗i , V
′k
i ≤ V ∗ki for all k ∈ {1, 2, . . . , Q}, and

(R′i, C
′
i) 6= (R∗i , C

∗
i). Note that the number of possible states Ri is at most |V | · 2Q.

The label correcting algorithm works as follow. For each node i ∈ V , we maintain a list Λi of paths from

source node s to node i. We start with a set of active nodes containing s only. In each iteration, we poll

an active node i from the active node set and extend the paths in Λi. Let Psj be the extended path that

is feasible. Suppose Psj is not dominated by other paths in Λj ; then we put j into the active node set and

iterate the previous procedure. We stop the algorithm when no active nodes exist. The details of the label

correcting algorithm are displayed in Algorithm 3. For any partial path Psi, we record the history of colors

instead of nodes: during the extension process, we can extend a path to a new node only if we have not

visited a node with the same color before.

Theorem 1 (Theorem 3.4 from Alon et al. (1995)). Let G′ = (V ∪{s, t}, A) be a directed graph. Any pairs

of vertices connected by a path with Q vertices in G can be found in O(2Q|V ||A|) worst-case time.

Recall that our pricing problem is defined on a network G′ = (V ∪{s, t}, A) and it suffices to output any

route with negative cost. Hence, we can terminate the algorithm early to output such a solution.

Note that any negative-cost colorful path found by Algorithm 3 is indeed an elementary path with

negative cost. On the other hand, Algorithm 3 may fail to find a negative-cost colorful path even if there is

some elementary path with negative cost. We now bound this “failure” probability. For a randomly chosen

coloring φ, any elementary path in G′ with at most Q nodes (in particular, any feasible path with negative

cost) has a probability Q!
QQ > e−Q to be colorful. So the probability that the algorithm fails to identify a

negative-cost elementary path with at most Q nodes is less than 1− e−Q. Then, if we repeat k independent

runs of the color-coding algorithm, the probability of failing to identify a negative-cost path in all repetitions

is at most (1− e−Q)k, which is decreasing exponentially in k. Therefore, we repeat this algorithm multiple

times to increase the probability of finding a colorful path with negative cost. For example, with Q = 4 and

k = 40, the probability of failure is at most 0.02.

Our overall algorithm works as follows. We pre-define a stopping criterion in terms of the maximum

number of iterations and a threshold count for the number of output routes. In each iteration, we randomly

generate a color-coding φ that assigns color labels to each node in G′. Then, based on the color-coding φ,

we solve the ESPPRC through Algorithm 3 and store all solution routes found with negative cost. If we

14

Algorithm 3: Algorithm for ESPPRC with Colors

input : Graph G′ = (V ∪ {s, t}, A), color-coding φ.
output: A set T of routes with negative cost.

1 Initialization Λs ← {(0, . . . , 0)}
2 for i ∈ V ∪ {t} do
3 Λi ← ∅
4 end
5 S = {s}
6 while S 6= ∅ do
7 Pick i ∈ S
8 if i == t then
9 add corresponding routes from Λt with negative cost to T

10 end
11 else
12 forall j : (i, j) ∈ E do

13 forall λi = (Ri, Ci) ∈ Λi with Ri = (ni, V
1
i , . . . , V

Q
i) do

14 if V
φ(j)
i = 0 then

15 extend λi to get λj
16 if λj is not dominated by any path in Λj then
17 add λj to Λj and S = S ∪ {j}
18 remove any path in Λj that is dominated by λj
19 end

20 end

21 end

22 end

23 end
24 remove i from S

25 end
26 return T

reach the maximum number of iterations or the set of solutions contains more than the threshold number of

output routes, we stop the algorithm; otherwise, we move to the next iteration. The detail of our random

coloring algorithm for ESPPRC is presented in Algorithm 4.

Algorithm 4: Random Coloring Algorithm for ESPPRC

input : Graph G = (V ∪ {s, t}, A), maximum iteration maxIter to execute random coloring
algorithm, number of the solutions triggered early stop nSol.

output: A set T of routes with negative cost.
1 Initialization T = ∅ as solution set and k = 0
2 while k < maxIter or |T | < nSol do
3 Generate a random coloring scheme φk : V → {1, . . . , Q}
4 Use Algorithm 3 to solve ESPPRC based on current color-coding φi
5 Add routes with negative cost to T
6 k = k + 1

7 end
8 return T

Irrespective of the number of repetitions maxIter, the random coloring algorithm has a non-zero prob-

15

ability of failure (i.e., it does not find any negative-cost route even if one exists). To address this issue,

we can either implement the de-randomized algorithm (which has the same asymptotic time complexity) as

described in Section 4 of Alon et al. (1995) or any other exact algorithm (e.g., the pulse algorithm), as a

“safe vault”, to ensure that no more negative-cost routes can be found in such cases. In our computational

experiments, we used the pulse algorithm as the safe vault as it was already implemented.

It is worth highlighting that the random coloring idea could be extended to other label-correcting algo-

rithms for ESPPRC, as the label requires maintaining a binary vector recording the nodes of corresponding

partial path visited. By randomly assigning nodes with a fixed set of colors, we can reduce the length of such

vector and decrease the total number of labels to explore in the algorithm. One can also apply bidirectional

search techniques to further improve the random coloring algorithm.

4.2.1 Cutting Planes

Valid inequalities (or cuts) can strengthen LP relaxations of integer programs and help to obtain integer

solutions at the extreme points of LP relaxations. In the BCP approach, the effective use of cuts yields better

root-node bounds and shortens the overall solution time. Poggi de Aragao and Uchoa (2003) proposed to

classify valid inequalities into “robust cuts” and “non-robust cuts”. In the context of VRP, robust cuts

apply to the “flow-based” formulation (which can be transformed into RMP) and these cuts do not affect

the complexity of the pricing problem. On the other hand, non-robust cuts are applied directly on the RMP

relaxation and thus increase the complexity of the pricing problem as their associated dual variables cannot

be incorporated into arc costs (of the pricing problem). In this section, we will discuss how to incorporate

robust and non-robust cuts to our proposed algorithm, which can improve the lower bounds and thus decrease

optimality gaps.

Robust cuts. Lysgaard et al. (2004) summarized various robust cuts for CVRP, including rounded capacity

cuts, bound cuts, framed capacity cut, strengthened comb, multistar, partial multistar, and hypotour cuts

(also, see Fukasawa et al., 2006). In our computations, we implement the rounded capacity cuts described

as follows. For any set S ⊂ V , let δ(S) be a set of edges having exactly one end-node in set S. The rounded

capacity cuts for VRPUD are:

∑
p∈P̃

∑
e∈δ(S)

xp ≥ 2 ·
⌈
|S|
Q

⌉
, ∀S ⊆ V (14)

Above, P̃ denotes all routes in the RMP. To see why these constraints are valid, note that each route can

visit at most Q nodes of S and each route must enter/leave set S at least twice. Although the separation

16

problem for these cuts is NP-hard, Lysgaard et al. (2004) gave a number of efficient heuristics. We also use

some of these heuristics in our computation later.

Non-robust cuts. We now discuss a class of non-robust cuts, known as subset-row cuts introduced by

Jepsen et al. (2008) for CVRP and explain how the random coloring algorithm can be extended to solve the

resulting pricing problem. The cuts are defined over route variables and are applied directly to the RMP.

Recall that aip is a binary coefficient indicating whether a route p ∈ P̃ visits a node i ∈ V . For any set

S ⊂ V and a multiplier 0 < k < 1, a subset-row cut is given by

∑
p∈P̃

⌊
k
∑
i∈S

aip

⌋
xp ≤ bk|S|c . (15)

Inequalities (15) are valid as they can be obtained by a Chvátal-Gomory rounding of constraints (5). Various

combinations of |S| and p yield effective subset-row cuts to improve the lower bounds given by the LP

relaxation of RMP. For example, when |S| = 3 and k = 1
2 , cuts (15) are 3-subset-row cuts and when |S| = 4

and k = 2
3 , cuts (15) are 4-subset-row cuts.

However, introducing these cuts changes the pricing subproblems. Let S denote all the added subset-row

cuts. For each S ∈ S, let σS be the dual variable associated with inequality (15) when solving the LP

relaxation of RMP. Then, the reduced cost of a column/route p is given by

c̄p =
∑

(i,j)∈p

(cij − πj)−
∑
S∈S

σS

⌊
k
∑
i∈S

aip

⌋
.

Recall that πi is the dual variable associated with constraint (5) in RMP. To incorporate the subset-row cuts

into the random coloring algorithm, we follow an idea from Jepsen et al. (2008). In each iteration of column

generation, we maintain a vector corresponding to the subset-row cuts S with non-zero dual variables. This

vector κ = 〈κS : S ∈ S〉 maintains counters for each subset-row cut: when a label extends to a node in a

subset-row cut S ∈ S, we increase κS by k. When the value of any κS (for S ∈ S) exceeds one, we (i) update

the cost by subtracting σS and (ii) reduce κS by 1. Therefore, for any path Psi from s to i, we maintain a

label (R,C, κ) where C denotes the cost of the path, the state R corresponds to the set of visited colors (as

in Section 4.2) and vector κ corresponds to the subset-row cuts (as defined above).

We also need to modify the dominance rule based on the above changes to the label of a path. Let P ′si

and P ∗si be two distinct paths from s to i with labels (R′, C ′, κ′) and (R∗, C∗, κ∗) respectively. For the pricing

algorithm without subset-row cuts, recall that P ′si dominates P ∗si if and only if C ′ ≤ C∗, n′ ≤ n∗, V ′j ≤ V ∗j

for all j ∈ {1, 2, . . . , Q}. With our modification for subset-row cuts, we say that P ′si dominates P ∗si if and

17

only if C ′ ≤ C∗+
∑
S∈S:κ′S>κ∗S

σS , n′ ≤ n∗, V ′j ≤ V ∗j for all j ∈ {1, 2, . . . , Q}. (See Proposition 6 in Jepsen

et al. (2008) for more details.)

To keep the pricing problem tractable, only a small number of subset-row cuts are included in the pricing

problem. Pecin et al. (2017b) introduced a weak version of subsets row cuts called limited-memory subset-

row cuts where each subset-row cut has a memory set, and the state counter of subset-row cut resets when

a label extends to a node outside such a memory set. Our proposed algorithm can also be easily modified

to incorporate limited-memory subset-row cuts following a similar idea.

4.2.2 Column Enumeration

Solving the LP relaxation for RMP through column generation does not guarantee an integer solution.

Furthermore, some routes in an optimal integer solution may not even be generated, and therefore solving

the RMP as an integer program at the end of the column generation cannot guarantee optimality. Most of the

exact approaches for VRPs use BCP approach to tackle this problem, but often lead to a large branch-and-

bound tree. Baldacci et al. (2008) and Baldacci et al. (2011) proposed a column-and-cut generation approach

that avoided branching to find optimal solutions for CVRP and VRPTW, respectively. The algorithm is

based on the idea of column enumeration: given an upper bound, UB, on the objective value of an integer

VRP solution and a lower bound, LB, on the objective value of an optimal solution to the LP relaxation of

RMP along with its optimal dual solution, one can enumerate a set of routes P ′ such that each route p ∈ P ′

has a reduced cost c̄p < UB −LB. Solving RMP with all routes (i.e., columns) in P ′ as an integer program

warrants that we find an optimal solution to MP. Such an approach has been proposed in recent literature

for solving a broad class of VRPs (see, e.g., Contardo and Martinelli, 2014; Pecin et al., 2014, 2017b,a).

The column enumeration step can be solved using the label-correcting algorithm. However, certain

modifications need to be made from the original one. First, we need to change the stopping criteria as we

now aim to enumerate routes with reduced cost less than UB−LB, instead of 0. Additionally, the early stop

should be disabled. Second, to enumerate several possible routes, we adopt a more restricted domination

criterion. Recall that for a partial path Psi connecting nodes s and i, we define a state Ri = (ni, V
1
i , . . . , V

Q
i)

that corresponds to the number of visited nodes, a binary indication vector for color usage and Ci = c(Psi)

being the cost of the path. Then in column enumeration, for any two partial paths P ′si and P ∗si from s to i

with associated labels (R′i, C
′
i) and (R∗i , C

∗
i), we say that P ′si dominates P ∗si if and only if

C ′i ≤ C∗i , n′i = n∗i , V
′k
i = V ∗ki , ∀k ∈ {1, 2, . . . , Q}. (16)

With more restricted domination criteria, the pricing problems becomes harder to solve by a general label-

18

correcting algorithm, which considers a domination criteria that is equivalent to letting Q = |V | in (16).

The resulting search space has size O(|V | × 2|V |), which counts the number of distinct labels. However, as

the label structure in random coloring algorithm only records color visited information, it keeps a smaller

search space with size O(|V | × 2Q), and therefore can achieve high computational efficiency. The details of

the modified label-correcting algorithm are presented in Algorithm 5.

Algorithm 5: Algorithm for ESPPRC with Colors for Enumeration

input : Graph G′ = (V ∪ {s, t}, A), color-coding φ, upper bound and lower bound, UB and LB, to
RMP

output: A set T of routes with reduced costs less than UB − LB.

1 Initialization Λs ← {(0, . . . , 0)}
2 for i ∈ V ∪ {t} do
3 Λi ← ∅
4 end
5 S = {s}
6 while S 6= ∅ do
7 Pick i ∈ S
8 if i == t then
9 add corresponding routes from Λt with cost less than UB − LB to T

10 end
11 else
12 forall j : (i, j) ∈ E do

13 forall λi = (Ri, Ci) ∈ Λi with Ri = (ni, V
1
i , . . . , V

Q
i) do

14 if V
φ(j)
i = 0 then

15 extend λi to get λj
16 if λj is not dominated then
17 add λj to Λj and S = S ∪ {j}
18 replace the dominated label as needed

19 end

20 end

21 end

22 end

23 end
24 remove i from S

25 end
26 return T

Despite that column enumeration avoids branching in an extensive search tree, it relies on commercial

solvers to solve the RMP with enumerated columns. On the one hand, such an approach benefits from

cutting-edge tools offered by the state-of-the-art solvers and therefore achieves high efficiency for some VRP

instances (Costa et al., 2019). On the other hand, when the number of enumerated columns is large, e.g., more

than 100,000 columns, it is not realistic to only rely on off-the-shelf solvers for optimizing the corresponding

RMP (Pecin et al., 2017b). Usually, the number of enumerated columns depends on the optimality gap

between the lower bound and the upper bound of RMP. To overcome the drawback, one may apply a hybrid

19

algorithm that combines column enumeration and branching (see, e.g., Pecin et al., 2017b,a). In practice,

we can still use commercial solvers to compute the RMP with many enumerated columns to quickly obtain

a feasible solution that has an optimality gap within a certain time limit.

Because random coloring is a randomized algorithm, we may fail to enumerate all routes with reduced cost

bounded by the optimality gap. However, as shown in Section 4.2, when repeating the independent runs of

the color-coding algorithm, the “failure” probability to find a particular route decreases exponentially. Also,

when we aim to find a high-quality integer solution instead of an optimal solution, missing some enumerated

columns is tolerable.

4.2.3 Parallelization

The random coloring algorithm requires to explore different color-codings to increase the success probability

of recovering all potential routes. In each iteration, a label correcting algorithm is executed based on the

current color-coding, which is completely independent from all other iterations. For this reason, it is natural

to perform a parallel implementation of the random coloring algorithm. We can invoke each iteration using

parallel computer threads to accelerate the algorithm while maintaining the solution set as global information.

The number of threads, therefore, determines the number of color-coding iterations that can be implemented

simultaneously.

5 Computational Experiments

We conduct numerical studies and demonstrate the performance of the proposed algorithms on different

types of VRP instances. We embed our proposed algorithms inside the column generation approach for

VRPUD. In experiments, we solve the root node LP relaxation of MP mentioned in Section 3. We also solve

a strengthened LP relaxation that incorporates rounded-capacity-cuts (for some experiments). Then, we use

the generated columns to obtain an integer solution to RMP. This integer solution provides an upper bound

UB1 on the optimal value. We further use UB1 in a column enumeration approach to generate an improved

integer solution. We conduct three sets of experiments: (i) a set of tailored instances from the Solomon’s

and Gehring & Homberger benchmark1, (ii) selected unitary demand CVRP instances from CVRPLIB2, and

(iii) a multi-depot VRPUD which has potential application in patient-centered medical home systems.

We implement column generation based on the conventional set-partitioning formulation RMP. We start

with a series of heuristics that initialize the columns pool following a common practice (see, e.g., Feillet et al.,

1https://www.sintef.no/projectweb/top/vrptw/
2http://vrp.galgos.inf.puc-rio.br/index.php/en/

20

https://www.sintef.no/projectweb/top/vrptw/
http://vrp.galgos.inf.puc-rio.br/index.php/en/

2004; Lozano et al., 2015). The heuristics are based on tabu search: we start with a set of feasible solutions

(e.g., routes visiting only one node per vehicle) and then execute insertion and deletion operations until no

further improvements can be made to these routes. After the initialization, we only solve subproblems as

ESPPRC to generate columns.

After tuning parameters in a few preliminary tests, we choose our parameters for pulse and random-

coloring algorithms as follows. For the pulse algorithm (Algorithm 2), we set ∆ = 1, Q = 2 and nSol = 30.

For random coloring (Algorithm 4), we set maxIter = 39 and nSol = 30. Also, when the random-coloring

algorithm fails to find any route with negative cost, we trigger a run of the pulse algorithm as a safe vault

to ensure that no more route with negative cost exists. For column enumeration, we utilize the upper bound

solution obtained at the end of column generation and set maxIter = 78. In our tests, we implement the

multi-thread versions of the proposed algorithms unless otherwise noted.

We remark that although column enumeration aims to close the optimality gap using a massive number

of columns, our solutions from column enumeration are not guaranteed optimal due to the following reasons.

First, we may fail to enumerate all columns due to the randomness in the coloring, even though the probability

of missing any particular negative-cost route is small. Second, due to the number of columns enumerated,

Gurobi cannot solve some problems to optimality within the preset time limit. Still, we find that the proposed

random coloring algorithm performs very well to find high-quality solutions with small optimality gaps. (The

lower bounds are significantly improved by the addition of rounded capacity cuts.)

We code our algorithms in Java on a computer with two Intel Xeon E5-2630v4 processors with 20 cores

each (40 total), and 128GB DDR4-2400 registered RAM. We use Gurobi 7.5.2 as the LP and mixed-integer

linear programming solver for all computation. All the data instances and our code can be downloaded from

the GitHub repository at https://github.com/myu23/VRPUD_RandCol for non-commercial use, where we

include a Readme document to define the contents and formats of the files.

5.1 Numerical Results on Single Depot VRPUD

5.1.1 Solomon and Gehring & Homberger Instances

The first set of test instances are modified from the Solomon benchmark with 100 customers3 and Gehring

& Homberger benchmark with up to 600 customers4. Both benchmark instances contain three types of

node distributions: Type R instances where customers are randomly distributed, Type C instances where

customers form several clusters, and Type RC where some customers are randomly distributed while others

are clustered. For each customer node in the test instances, we ignore its time windows and assign a unit

3https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/
4https://www.sintef.no/projectweb/top/vrptw/homberger-benchmark/

21

https://github.com/myu23/VRPUD_RandCol
https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/
https://www.sintef.no/projectweb/top/vrptw/homberger-benchmark/

demand. The travel distances between any two nodes are calculated as the Euclidean distance based on the

coordinates given by the original data.

We solve the LP relaxation of RMP that is strengthened with rounded capacity cuts (described in Section

4.2.1). As discussed before, the separation problem for rounded capacity cuts is NP-hard and we rely on

efficient heuristics for the cut separation. We note that because of the heuristic cut separation procedures, the

LP bounds obtained by the pulse and random-coloring algorithms may differ. We use the LP bound obtained

from random coloring as our lower-bound (LB), while noting that the LP bounds from both algorithms are

very similar.

Serial implementation. We first compare both our proposed algorithms with the label correcting algo-

rithm for ESPPRC from Feillet et al. (2004). As the original label correcting algorithm is implemented in

serial, we run the serial implementation of our algorithms as well. We test the performance of the algo-

rithms on instances with number of customers ranging from 50 to 150. For instances with number of nodes

|V | ≤ 100, we use the first |V |+ 1 nodes from Solomon’s instance and for |V | > 100, we use the first |V |+ 1

nodes from Gehring & Homberger’s instances with the first node being the depot node in all benchmark

instances. We consider Q = 4 and set the time limit for column generation as 15 minutes for each instance.

Figure 1 summarizes the computational results.

51 61 71 81 91 101 111 121 131 141 151

nNode

0

100

200

300

400

500

T
im

e
(s

ec
)

Feillet et al. (2004)

Pulse

Random Coloring

Figure 1: Numerical results for proposed algorithms in serial implementation (Q = 4)

In Figure 1, we observe the efficiency of the pulse algorithm as its runtime for solving the LP relaxation

22

of RMP is significantly shorter than the other two algorithms. Compared to the original label-correcting

algorithm, random coloring significantly improves the solution time. When the number of nodes increases,

the label correcting algorithm encounters the curse of dimensionality as it fails to solve instances with more

than 140 nodes given the limit of time. We can also see the advantage of using random coloring for larger

instances as the problem can be consistently solved. The speed-up factor of the random coloring algorithm

compared to the original label-correcting algorithm is between 2 and 10, and this factor increases for larger

instances.

51 61 71 81 91 101 111 121 131 141 151 201 251 301 351

nNode

0

1

2

3

4

O
p

ti
m

al
it

y
G

a
p

(%
)

Gap1

Gap2

0

20

40

60

80

100

120

140

T
im

e
(s

ec
)

Pulse

Random Coloring

Figure 2: Numerical results for proposed algorithms for Type C instance in parallel implementation (Q = 4)

All remaining experiments involve the parallel implementation of both pulse and random-coloring.

For instances with |V | ≤ 100, we use the first |V |+1 nodes from Solomon’s instance and for instances having

|V | > 100, we use the first |V | + 1 nodes from Gehring & Homberger’s instances. In the following figures,

we plot (i) the computational time (in seconds) for solving the column generation LP (Time (sec)), (ii) the

optimality gap for random-coloring at the end of column generation (Gap1), and (iii) the optimality gap

for random-coloring after column enumeration (Gap2). We note that the optimality gaps under the pulse

pricing algorithm are similar. The detailed numerical tables are presented Tables 7–9 and 16–18 in the online

supplement, Section A.1. Figures 2–4 summarize the performance of the proposed algorithms on Type C,

Type R, and Type RC instances with Q = 4. We observe significant improvements for both algorithms when

they are implemented in parallel. When implemented in parallel, the random coloring algorithm outperforms

the pulse algorithm (in terms of lower bound runtime). In the detailed tables, we highlight (in bold) the

23

51 61 71 81 91 101 111 121 131 141 151 201 251 301 351

nNode

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

O
p

ti
m

a
li
ty

G
ap

(%
)

Gap1

Gap2

0

20

40

60

80

100

120

140

T
im

e
(s

ec
)

Pulse

Random Coloring

Figure 3: Numerical results for proposed algorithms for Type R instance in parallel implementation (Q = 4)

51 61 71 81 91 101 111 121 131 141 151 201 251 301 351

nNode

0

1

2

3

4

O
p

ti
m

a
li
ty

G
ap

(%
)

Gap1

Gap2

0

20

40

60

80

100

120

140

T
im

e
(s

ec
)

Pulse

Random Coloring

Figure 4: Numerical results for proposed algorithms for Type RC instance in parallel implementation (Q = 4)

instances where the random coloring algorithm is faster than pulse. Notice that, although we allow both

algorithms to stop early when the number of generated columns reaches a preset limit, we still have one

algorithm generating more columns than the other for some instances. This is because when the global

24

number of generated columns reaches the preset bound, there are still some threads keeping a small set of

paths pending to update to global column set. We decide to not waste those generated columns. In any

case, the number of generated columns is much smaller than the total number of possible columns: For

example, the maximum number of generated columns in instances with 301 nodes and Q = 4 is less than

7000 (whereas the total possible number is more than 7.9 billion). With the help of cutting planes, the

optimality gap, Gap1, is small for column generation method (even without column enumeration): 2% on

average for Type C instances, and 1% on average for the other two types.

Results of column enumeration. We notice that the random coloring algorithm can enumerate columns

very efficiently (generating over 100,000 columns within 1.6 seconds), which barely affects the overall runtime.

During column enumeration, the number of enumerated columns, whose reduced costs are smaller than

UB1−LB, is approximately 10–20 times larger than the number of generated columns in the initial column

generation procedure. Despite the fact that the Gurobi solver generally cannot solve problems of this size to

optimality, it still obtains high-quality solutions under the 30-minute time limit. For example, for RC type

instances, the average of optimality gaps, Gap2, is 0.98%, which is improved from 1.71% of Gap1 obtained

earlier using column generation.

51 61 71 81 91 101 111 121 131 141 151 201 251 301 351

nNode

0

2

4

6

8

O
p

ti
m

a
li
ty

G
a
p

(%
)

Without Cut

With Cut

0

10

20

30

40

50

60

70

T
im

e
(s

ec
)

Without Cut

With Cut

Figure 5: Effect of cutting planes in column generation for Type RC instances (Q = 4)

Results of cutting planes. We also study the effect of cutting planes to our solution approaches. Figure 5

25

demonstrates the differences, in terms of solution time and optimality gap for column generation using

random coloring algorithm, for models with and without rounded capacity cuts. We consider the RC instances

with Q = 4. As shown in the figure, there is a trade-off of using cutting planes. On one hand, introducing

cutting planes will increase the solution time for the algorithm. On the other hand, it allows us to obtain

better lower bound solution and therefore leads to better optimality gap. On average, for the model with

rounded capacity cuts, the solution time increases by 20% while the optimality gap decreases by 50%.

Parallel runtime speedup. We also study the effect of using parallel computing. When running in

parallel, the speedup for the pulse algorithm is limited while the random coloring algorithm gets significantly

boosted because the runs for different color-codings are completely independent. In this computation, to

avoid different lower bounds resulting from different cuts added, we do not enforce any cuts. Figure 6 shows

the effect of parallel-implementation for the two algorithms by plotting the average speedup factor across

three different types of instances with Q = 4 on 50–150 nodes. As shown in the figure, we can observe a

significant improvement for the random coloring algorithm as the speedup factor ranges from 5 to 14 using

two 20-core processors. On the other hand, the speedup for pulse algorithm is limited.

60 80 100 120 140

Number of Node

2

4

6

8

10

12

14

S
p

ee
d

u
p

F
a
ct

or

Random Color

Pulse

Figure 6: Average speedup factor in parallel implementation for instances with Q = 4

Lastly, we conduct numerical experiments with different vehicle capacities. The results for the proposed

algorithms on the instances with Q = 3 and Q = 5 are also presented in the online supplement, Section A.1.

It shows that both pulse and random coloring algorithms perform similarly as for the cases of Q = 4, but we

26

observe that the pulse algorithm becomes more efficient than the random coloring algorithm as Q increases.

In terms of computational time (tLB) for computing LB, random coloring is on average 5 times faster and

1.1 times faster than the pulse algorithm for instances with Q = 3 and Q = 5, respectively. The optimality

gaps, (Gap2), found by proposed algorithms are on average 0.6% and 0.7% for instances with Q = 3 and

Q = 5, respectively.

5.1.2 Unitary Demand CVRP X-instances

As a special case of CVRP, some unitary demand CVRP instances have been tested in the literature. In

particular, Uchoa et al. (2017) proposed a set of new benchmark instances for CVRP. They are generated

on a [0, 1000] × [0, 1000] two-dimensional space with different settings on the number of customers, vehicle

capacity, depot locations, and demand distribution. Out of 100 instances in Uchoa et al. (2017), 16 are

unitary demand CVRP instances. The original capacity of the vehicle ranges from 3 to 23 in those instances.

We test both algorithms (pulse and random coloring) on those instances with modified vehicle capacity

Q = 3 to Q = 5. We use the same node locations of the original instances and compute the distance between

any pair of nodes as their Euclidean distance rounded to the nearest integer.

120 157 181 219 237 275 317 331 376 439 502 548 655 801 856 957

nNode

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

O
p

ti
m

a
li
ty

G
ap

(%
)

Gap1

Gap2

0

10

20

30

40

T
im

e
(m

in
)

Pulse

Random Coloring

Figure 7: Numerical results for proposed algorithms for X instance in parallel implementation (Q = 4)

Figure 7 summarizes the computational time and optimality gap of our proposed approaches for instances

derived from unitary demand CVRP X-instances in Uchoa et al. (2017) with Q = 4. We report the computa-

tional time (in minutes) of column generation (Time (min)) for both pulse and random coloring approaches,

27

the optimality gap at the end of column generation (Gap1), and the optimality gap obtained using enumer-

ated columns after the column generation (Gap2). The detailed results are presented in Tables 23–26 in the

online supplement, Section A.2. When the capacity of the vehicle is small, both algorithms are capable of

solving the root node LP relaxations with up to 957 customer nodes within a reasonable amount of time.

The random coloring algorithm outperforms the pulse algorithm in terms of the speed of solving the LP

relaxations: The former is on average 2.08 times faster than the latter. We note the efficiency of random

coloring when the number of nodes is large. The optimality gaps, Gap1, obtained by the two algorithms are

similar and ranges between 0.29%–1.78% with the average being 0.79%.

Next, we examine the effects of applying column enumeration atop column generation while using random

coloring. First, we notice that, as observed previously, the speed for random coloring to enumerate columns is

fast, even for the instance with 957 customers. The time taken by column enumeration is only a small fraction

of the time taken by column generation (noting that the unit of the runtime is in seconds for enumeration as

compared to in minutes when we present the lower-bound results in Table 26). During column enumeration,

the number of enumerated columns having reduced costs being smaller than UB1 − LB, is approximately

10–15 times larger than the number of columns generated in the initial column generation procedure. Despite

the large number of columns enumerated, we still manage to obtain solutions with excellent quality under

the 30-minute time limit. The average optimality gap is only 0.37%, which is a significant improvement from

the 0.79% average gap obtained before without using column enumeration.

We provide detailed results of modified X-instances with Q = 3 to Q = 5 in the online supplement,

Section A.2. We observe that the advantages of using the random coloring algorithm, compared with the

pulse algorithm, diminish as the capacity of the vehicle increases. The random coloring algorithm is on

average 4.31 and 1.11 times faster for instances with Q = 3 and Q = 5, respectively. The average optimality

gaps are 0.13% and 0.89% for instances with Q = 3 and Q = 5, respectively.

Comparison with results in existing literature. In Uchoa et al. (2017), authors provided the numerical

results of BCP from Pecin et al. (2014) and two heuristic approaches, UHGS from Vidal et al. (2012) and

ILS-SP from Subramanian et al. (2013) to solve all X-instances. Among them, we solve the instances X-

n219-k73, X-n376-k94, and X-n655-k131, which correspond to Q = 3, 4, and 5, respectively. We provide

a direct comparison between our proposed approach and exiting ones in Table 2. For each approach, we

provide the best upper bound solution found (UB) and the computational time (in minutes) to obtain such

a solution (Time (min)). We also show the best known solution for each instance (BKS). We note that the

computing environments used in these algorithms are different.

28

Table 2: Comparison of the proposed approach with existing results

Instance
ILS-SP UHGS BCP Random Coloring

BKSUB Time (min) UB Time (min) UB Time (min) UB Time (min)

X-n219-k73 117595 0.9 117605 7.3 117595 0.5 117595 0.8 117595
X-n376-k94 147713 7.1 147750 28.3 147713 3.3 147721 31.6* 147713
X-n655-k131 106782 47.2 106899 150.5 106780 41.5 107543 60.2* 106780

*: we terminate the solver for MIP to compute UB at 30-minute time limit.

We acknowledge that the BCP approach performs the best among all solution approaches in those

instances. However, we note that the BCP approach used in Pecin et al. (2014) is very complex, combines

several ideas in the literature and further improves them to solve the CVRP. We were not able to obtain

the full BCP code to fairly compare our approach in combination with the BCP with other speed-up tricks.

For example, the BCP approach utilizes the value of the best solution found by two metaheuristics as the

upper bound, which improves the computational performance in various ways. These two metaheuristics still

take a long time to solve VRPUD with small capacity, and their runtime is not included in the BCP time

reported above. When using the same upper bound obtained from the metaheuristic method, our approach

is also able to close the optimality gap for X-n219-k73 and the total computational time is only 0.2 minute,

including the time for solving the MIP.

5.2 Numerical Results on Multi-depot VRPUD

In this section, we discuss an application of VRPUD in a patient-centered medical home system where

caregivers route one or multiple fleets of vehicles to serve/treat patients in their homes. Patient-centered

medical home has been considered as an effective and economical way to serve patients and is experiencing

a fast-growing development (Musich et al., 2015). In 2012, over 4.7 million patients received services from

about 12,000 registered home health agencies (Harris-Kojetin et al., 2013) and nowadays patient-centered

medical home makes up more than 35% of post-acute care in the market.

According to Fikar and Hirsch (2017), different objectives and constraints of the patient-centered medical

home problem have been studied. They summarize that possible objectives are total traveling time, opera-

tional cost, total wait time, total overtime, workload balance, number of tasks, etc.; and possible constraints

include time windows, skill requirements, working time regulations, breaks, uncertainties, and so on (see, e.g.,

Allaoua et al., 2013; Bachouch et al., 2011; Dohn et al., 2009; Fernandez et al., 1974; Lanzarone and Matta,

2014). In this section, we model the patient-centered medical home problem as a VRPUD motivated by the

observation that the average number of patients that can be visited by a crew is small during one working

period. We generalize the problem as VRPUD allowing caregivers to operate the system with multiple bases

29

to start and end their service routes.

Figure 8: Distribution of hospitals in Wayne County

The test instances are based on the most updated United States Census data for Wayne County in

Michigan (see United States Census Bureau 20105). The census data divides Wayne County into 610 different

census tracts, and each contains the geographical information (longitude and latitude of the geographical

center). The detailed reference map can be found at Michigan 2010 Census - Census Tract Reference Maps6.

We assume that its geographical center represents each census tract and construct a corresponding network

with 610 nodes. In addition, we use the geographical information of the top five hospitals in Wayne County

as the depot nodes. The five hospitals are (1) Harper University Hospital, (2) Henry Ford Hospital, (3)

DMC Sinai-Grace Hospital, (4) Henry Ford Wyandotte Hospital, and (5) Beaumont Hospital-Wayne. The

distribution of the hospitals is shown in Figure 8. The travel time between any of two nodes is calculated

through Haversine Equation7: for any two points with longitude ϕ1, ϕ2 and latitude λ1, λ2, the distance is

given by:

d((ϕ1, λ1), (ϕ2, λ2)) = 2r arcsin

(√
sin2

(
ϕ2 − ϕ1

2

)
+ cos(ϕ1) cos(ϕ2) sin2

(
λ2 − λ1

2

))
5https://www2.census.gov/
6https://www2.census.gov/geo/maps/dc10map/tract/st26_mi/c26163_wayne/
7https://en.wikipedia.org/wiki/Haversine_formula

30

https://www2.census.gov/
https://www2.census.gov/geo/maps/dc10map/tract/st26_mi/c26163_wayne/
https://en.wikipedia.org/wiki/Haversine_formula

In this experiment, we assume that vehicles start and end the route at the same depot (hospital) while

covering all the patients. We test both proposed algorithms on the instances with the number of patient

nodes ranging from 100 to 500. We test against the instances with 1, 3, or 5 depots and use the parallel

implementation of the algorithms. We consider Q = 4 in our test instances. For any instance with |V | patient

nodes, we randomly pick |V | data points from 610 census tracts as patient nodes. (We do not include the

rounded capacity cuts in these computations because the optimality gap is very good even without the

additional cuts.)

100 150 200 250 300 350 400 450 500

nNode

0.0

0.5

1.0

1.5

2.0

2.5

O
p

ti
m

a
li
ty

G
ap

(%
)

Gap1

Gap2

0

200

400

600

800

1000

T
im

e
(s

ec
)

Pulse

Random Coloring

Figure 9: Numerical results on patient-centered medical home instances with 3 depots

Figure 9 and Figure 10 summarize the numerical results of the proposed algorithms on the multi-depot

VRPUD embedded in the patient-centered medical home problem. (We demonstrate detailed solutions

and other details of the results in the online supplement, Section A.3.) In the two figures, we report the

computational time (in seconds) for column generation (Time (sec)), the optimality gap at the end of column

generation (Gap1), and the optimality gap after column enumeration (Gap2). As the multi-depot VRPUD

requires us to solve the pricing problem based on each depot, the solution time increases when we have three

depots instead of one. However, the increase factor is less than 3. Surprisingly, when the number of depots

increases to five, the solution time for the instance is shorter than the cases where three depots allowed. We

believe that the involvement of more depots, especially new depots (Hospital 4 and 5) separated away from the

existing ones in our test instance, would reduce the empirical complexity of the problem. Between using pulse

algorithm and random coloring algorithm to solve the column generation, the random coloring algorithm is

31

100 150 200 250 300 350 400 450 500

nNode

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

O
p

ti
m

a
li
ty

G
ap

(%
)

Gap1

Gap2

0

100

200

300

400

500

600

T
im

e
(s

ec
)

Pulse

Random Coloring

Figure 10: Numerical results on patient-centered medical home instances with 5 depots

more efficient in solving multi-depot instances especially when the number of patient is large.The optimality

gap yielded by two algorithms are small (less than 2% in general). After implementing column enumeration

with the random coloring algorithm, we notice that the proposed algorithm is capable of enumerating a large

number of columns within a small amount of time. For example, it takes 4.9 seconds to enumerate about

310,000 routes for instances with up 500 customer nodes and 5 depots. We find better integer VRPUD

solutions with the help of additional enumerated columns, and achieve much better optimality gaps that are

less than 0.5% for most of instances. Throughout the experiments, our results show that both algorithms,

within a reasonable amount of time, are capable of solving large multi-depot VRPUD instances containing

up to 500 patient nodes, which is a practical amount under the context of a patient-centered medical home

system in Wayne County. Furthermore, as shown in the numerical results, the optimality gap using the

column generation approach is negligibly small considering the size of the instance.

6 Conclusion

In this paper, we studied VRPUD, a special case of multi-depot CVRP where each customer has a unit

demand, and applied the column generation method to solve the problem. To efficiently solve the exact

pricing problem (ESPPRC) in the column generation approach, we proposed two parallel pricing algorithms:

an extension of the pulse algorithm from Lozano and Medaglia (2013) and a randomized algorithm based

32

on the color-coding approach from Alon et al. (1995). Both algorithms could be implemented in parallel to

achieve better computational efficiency. In our numerical tests, the random coloring algorithm was typically

faster for smaller vehicle capacities. We further combined our methods with other techniques developed in

the existing literature for speeding up the computation of diverse VRP instances, including (robust) cutting

planes and column enumeration approaches, and observed that they can significantly improve the optimality

gaps and lead to high-quality integer solutions.

Acknowledgement

We thank Dr. Leonardo Lozano for providing to us the code used in their paper Lozano et al. (2015). We

thank the Associate Editor and reviewers for their constructive feedback and suggestions. The authors

are grateful for the support of the NSF grants CMMI-1636876, CMMI-1727618, CCF-1750127 and CMMI-

1940766.

References

Adaji, A., Melin, G. J., Campbell, R. L., Lohse, C. M., Westphal, J. J., and Katzelnick, D. J. (2018). Patient-

centered medical home membership is associated with decreased hospital admissions for emergency department

behavioral health patients. Population Health Management, 21(3):172–179.

Allaoua, H., Borne, S., Létocart, L., and Calvo, R. W. (2013). A matheuristic approach for solving a home health

care problem. Electronic Notes in Discrete Mathematics, 41:471–478.

Alon, N., Dao, P., Hajirasouliha, I., Hormozdiari, F., and Sahinalp, S. C. (2008). Biomolecular network motif counting

and discovery by color coding. Bioinformatics, 24(13):i241–i249.

Alon, N., Yuster, R., and Zwick, U. (1995). Color-coding. J. ACM, 42(4):844–856.

American Academy of Family Physicians (2008). Joint principles of the patient-centered medical home. Delaware

Medical Journal, 80(1):21.

Bachouch, R. B., Guinet, A., and Hajri-Gabouj, S. (2011). A decision-making tool for home health care nurses’

planning. In Supply Chain Forum: An International Journal, volume 12, pages 14–20. Taylor & Francis.

Baldacci, R., Bartolini, E., Mingozzi, A., and Roberti, R. (2010). An exact solution framework for a broad class of

vehicle routing problems. Computational Management Science, 7(3):229–268.

Baldacci, R., Christofides, N., and Mingozzi, A. (2008). An exact algorithm for the vehicle routing problem based on

the set partitioning formulation with additional cuts. Mathematical Programming, 115(2):351–385.

Baldacci, R., Mingozzi, A., and Roberti, R. (2011). New route relaxation and pricing strategies for the vehicle routing

problem. Operations Research, 59(5):1269–1283.

33

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W., and Vance, P. H. (1998). Branch-and-price:

Column generation for solving huge integer programs. Operations Research, 46(3):316–329.

Bettinelli, A., Ceselli, A., and Righini, G. (2011). A branch-and-cut-and-price algorithm for the multi-depot hetero-

geneous vehicle routing problem with time windows. Transportation Research Part C: Emerging Technologies,

19(5):723–740.

Braekers, K., Ramaekers, K., and Van Nieuwenhuyse, I. (2016). The vehicle routing problem: State of the art

classification and review. Computers & Industrial Engineering, 99:300–313.

Christofides, N., Mingozzi, A., and Toth, P. (1981). Exact algorithms for the vehicle routing problem, based on

spanning tree and shortest path relaxations. Mathematical Programming, 20(1):255–282.

Contardo, C. and Martinelli, R. (2014). A new exact algorithm for the multi-depot vehicle routing problem under

capacity and route length constraints. Discrete Optimization, 12:129–146.

Costa, L., Contardo, C., and Desaulniers, G. (2019). Exact branch-price-and-cut algorithms for vehicle routing.

Transportation Science, 53(4):946–985.

Dabia, S., Ropke, S., Van Woensel, T., and De Kok, T. (2013). Branch and price for the time-dependent vehicle

routing problem with time windows. Transportation Science, 47(3):380–396.

Desaulniers, G., Desrosiers, J., and Solomon, M. M. (2006). Column Generation. Springer Science & Business Media.

Desrosiers, J., Dumas, Y., Solomon, M. M., and Soumis, F. (1995). Time constrained routing and scheduling.

Handbooks in Operations Research and Management Science, 8:35–139.

Dohn, A., Kolind, E., and Clausen, J. (2009). The manpower allocation problem with time windows and job-teaming

constraints: A branch-and-price approach. Computers & Operations Research, 36(4):1145–1157.

Downey, R. G. and Fellows, M. R. (2012). Parameterized Complexity. Springer Science & Business Media.

Dror, M. (1994). Note on the complexity of the shortest path models for column generation in vrptw. Operations

Research, 42(5):977–978.

Duque, D., Lozano, L., and Medaglia, A. L. (2015). Solving the orienteering problem with time windows via the

pulse framework. Computers & Operations Research, 54:168–176.

Eveborn, P., Flisberg, P., and Rönnqvist, M. (2006). Laps care—an operational system for staff planning of home

care. European Journal of Operational Research, 171(3):962–976.

Feillet, D., Dejax, P., Gendreau, M., and Gueguen, C. (2004). An exact algorithm for the elementary shortest path

problem with resource constraints: Application to some vehicle routing problems. Networks, 44(3):216–229.

Feillet, D., Gendreau, M., and Rousseau, L.-M. (2007). New refinements for the solution of vehicle routing problems

with branch and price. INFOR: Information Systems and Operational Research, 45(4):239–256.

Fernandez, J., Blacking, J., Dundes, A., Edmonson, M. S., Etzkorn, K. P., Haydu, G. G., Kearney, M., Kehoe,

A. B., Loveland, F., McCormack, W. C., et al. (1974). The mission of metaphor in expressive culture. Current

Anthropology, pages 119–145.

34

Fikar, C. and Hirsch, P. (2017). Home health care routing and scheduling: A review. Computers & Operations

Research, 77:86–95.

Fukasawa, R., He, Q., and Song, Y. (2015). A branch-cut-and-price algorithm for the energy minimization vehicle

routing problem. Transportation Science, 50(1):23–34.

Fukasawa, R., Longo, H., Lysgaard, J., de Aragão, M. P., Reis, M., Uchoa, E., and Werneck, R. F. (2006). Robust

branch-and-cut-and-price for the capacitated vehicle routing problem. Mathematical Programming, 106(3):491–

511.

Harris-Kojetin, L., Sengupta, M., Park-Lee, E., and Valverde, R. (2013). Long-term care services in the united states:

2013 overview. Vital & health statistics. Series 3, Analytical and epidemiological studies/[US Dept. of Health

and Human Services, Public Health Service, National Center for Health Statistics], 3(37):1–107.

Irnich, S. and Villeneuve, D. (2006). The shortest-path problem with resource constraints and k-cycle elimination for

k ≥ 3. INFORMS Journal on Computing, 18(3):391–406.

Jepsen, M., Petersen, B., Spoorendonk, S., and Pisinger, D. (2008). Subset-row inequalities applied to the vehicle-

routing problem with time windows. Operations Research, 56(2):497–511.

Kohl, N., Desrosiers, J., Madsen, O. B., Solomon, M. M., and Soumis, F. (1999). 2-path cuts for the vehicle routing

problem with time windows. Transportation Science, 33(1):101–116.

Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings

of the American Mathematical society, 7(1):48–50.

Lanzarone, E. and Matta, A. (2014). Robust nurse-to-patient assignment in home care services to minimize overtimes

under continuity of care. Operations Research for Health Care, 3(2):48–58.

Lozano, L., Duque, D., and Medaglia, A. L. (2015). An exact algorithm for the elementary shortest path problem

with resource constraints. Transportation Science, 50(1):348–357.

Lozano, L. and Medaglia, A. L. (2013). On an exact method for the constrained shortest path problem. Computers

& Operations Research, 40(1):378–384.

Lysgaard, J., Letchford, A. N., and Eglese, R. W. (2004). A new branch-and-cut algorithm for the capacitated vehicle

routing problem. Mathematical Programming, 100(2):423–445.

Musich, S., Wang, S. S., Hawkins, K., and Yeh, C. S. (2015). Homebound older adults: Prevalence, characteristics,

health care utilization and quality of care. Geriatric Nursing, 36(6):445–450.

Pecin, D., Contardo, C., Desaulniers, G., and Uchoa, E. (2017a). New enhancements for the exact solution of the

vehicle routing problem with time windows. INFORMS Journal on Computing, 29(3):489–502.

Pecin, D., Pessoa, A., Poggi, M., and Uchoa, E. (2014). Improved branch-cut-and-price for capacitated vehicle

routing. In International Conference on Integer Programming and Combinatorial Optimization, pages 393–403.

Springer.

35

Pecin, D., Pessoa, A., Poggi, M., and Uchoa, E. (2017b). Improved branch-cut-and-price for capacitated vehicle

routing. Mathematical Programming Computation, 9(1):61–100.

Poggi de Aragao, M. and Uchoa, E. (2003). Integer program reformulation for robust branch-and-cut-and-price

algorithms. In In Proceedings of the Conference Mathematical Program in Rio: A Conference in Honour of

Nelson Maculan. Citeseer.

Righini, G. and Salani, M. (2006). Symmetry helps: Bounded bi-directional dynamic programming for the elementary

shortest path problem with resource constraints. Discrete Optimization, 3(3):255–273.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time window constraints.

Operations Research, 35(2):254–265.

Subramanian, A., Uchoa, E., and Ochi, L. S. (2013). A hybrid algorithm for a class of vehicle routing problems.

Computers & Operations Research, 40(10):2519–2531.

The National Association for Home Care & Hospice (2010). Basic statistics about home care. Technical report, The

National Association for Home Care & Hospice.

Toth, P. and Vigo, D. (2014). Vehicle Routing: Problems, Methods, and Applications, volume 18. SIAM.

Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., and Subramanian, A. (2017). New benchmark instances for

the capacitated vehicle routing problem. European Journal of Operational Research, 257(3):845–858.

Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., and Rei, W. (2012). A hybrid genetic algorithm for multidepot

and periodic vehicle routing problems. Operations Research, 60(3):611–624.

36

Online Supplement of the Paper

“Improving Column-Generation for Vehicle Routing Problems via Random

Coloring and Parallelization”

Miao Yu, Viswanath Nagarajan, Siqian Shen

Department of Industrial and Operations Engineering,

University of Michigan, Ann Arbor, MI, USA

A Detailed Numerical Results

We summarize all the numerical results for the column generation approach on VRPUD and multi-depot

VRPUD with different vehicle capacities Q. We consider both pulse algorithm and the random coloring

algorithm as the pricing algorithm for the column generation approach. Both algorithms have been im-

plemented in parallel using 40 computer threads unless otherwise noted. Table 3 summarizes the results

for original label correcting algorithm (Feillet et al., 2004), pulse algorithm, and proposed random coloring

algorithm in their serial implementation to solve modified Solomon instances. Tables 4–21 summarize the

results for modified Solomon and Gehring & Homerberger’s benchmark. For instances with a number of

customers |V | ≤ 100, we use the first |V | + 1 nodes from Solomon’s instance and for |V | > 100, we use the

first |V |+ 1 nodes from Gehring & Homberger’s instances. Tables 22–27 summarize the results for modified

unitary CVRP X-instances with Q = 3 to Q = 5. Lastly, Tables 28–29 summarize the results for multi-depot

VRPUD in patient-centered medical home problem with number of depots ranging from 1 to 5.

In all our result tables, for solving the LP relaxation of MP through column generation, nIter represents

the number of iterations; nCol represents the number of columns generated; LB represents the lower bound

of the optimal objective value of MP; tLB represents the runtime of column generation. When solving the

RMP as an integer program using the generated columns through column generation, UB1 represents the

upper bound of MP from the resulting integer solution; Gap1 (in %) represents the optimality gap computed

as UB1−LB
LB × 100%; tUB1 represents the runtime of computing the upper bound. The time limit is set as 30

minutes. We also apply column enumeration to obtain improved integer solutions. In all related tables, nCole

represents the number of columns enumerated in column enumeration; te (in seconds) represents the runtime

of enumerating columns; UB2 represents the upper bound of MP found by Gurobi solver using enumerated

1

columns; Gap2 (in %) represents the optimality gap computed as UB2−LB
LB × 100%; tUB2

represents the

runtime of computing UB2. The time limit of using solver to find upper bound is set as 30 minutes. In

all the tables, we remark columns reporting time with “(s)” if the time unit is in seconds; otherwise, the

reporting time unit is in minutes and remarked by “(m)”.

A.1 Solomon and Gehring & Homberger Instances

Table 3: Numerical results for proposed algorithms in serial implementation (Q = 4)

Type nNodes
Label Correcting Pulse Random Coloring

nCol LB tLB (s) nCol LB tLB (s) nCol LB tLB (s)

C

51 685 694.31 4.96 863 694.31 1.44 764 694.31 5.67
61 764 902.46 20.13 1077 902.46 1.64 842 902.46 3.93
71 920 1088.31 34.98 1171 1088.31 1.94 957 1088.31 6.13
81 1027 1266.57 47.04 1394 1266.57 2.71 1047 1266.57 8.58
91 1128 1437.82 37.77 1632 1437.82 3.73 1307 1437.82 13.42

101 1193 1643.44 49.37 1710 1643.44 4.42 1376 1643.44 18.93
111 1449 3211.32 367.57 2233 3211.32 8.06 1517 3211.32 61.02
121 1868 3501.8 420.60 2673 3501.80 8.76 1777 3501.80 70.50
131 2049 3798.77 557.21 2825 3798.77 10.30 1964 3798.77 106.54
141 2053 4136.82 – 3089 4096.78 15.95 2063 4096.78 119.24
151 2263 4442.25 – 3191 4398.63 13.61 2188 4398.63 137.89

R

51 569 916.81 4.08 707 916.81 1.42 754 916.81 3.67
61 749 1029.79 14.00 843 1029.79 1.51 898 1029.79 7.10
71 940 1235.64 28.42 987 1235.64 1.89 984 1235.64 10.50
81 1038 1375.34 45.58 1234 1375.34 2.98 1132 1375.34 15.99
91 1103 1510.59 52.83 1356 1510.59 3.51 1291 1510.59 26.61

101 1267 1612.58 124.91 1456 1612.58 4.66 1481 1612.58 34.60
111 1533 3508 283.43 1771 3508.00 5.26 1661 3508.00 61.99
121 1829 3775.6 725.47 1847 3775.60 5.15 1834 3775.60 75.67
131 1943 4123.27 – 2171 4107.18 6.58 1981 4107.18 93.00
141 1946 4393.12 – 2538 4364.25 8.87 2082 4364.25 112.32
151 2104 4669.05 – 2563 4624.60 10.40 2322 4624.60 150.79

RC

51 596 1124.15 4.01 596 1124.15 1.13 688 1124.15 2.85
61 758 1349.72 8.78 836 1349.72 1.46 872 1349.72 7.07
71 819 1488.27 25.76 1245 1488.27 2.28 920 1488.27 8.10
81 991 1717.44 52.22 1247 1717.44 2.69 1130 1717.44 14.74
91 1033 1871.52 71.30 1524 1871.53 4.09 1176 1871.53 21.53

101 1244 1994.13 107.79 1684 1994.13 4.70 1394 1994.13 30.36
111 1582 3459.84 117.58 2010 3459.84 7.45 1726 3459.84 54.83
121 1688 3832.77 366.14 2224 3832.77 8.25 1892 3832.77 79.02
131 1893 4190.07 – 2428 4174.07 9.74 2043 4174.07 87.58
141 2039 4428.03 – 2646 4396.25 10.85 2145 4396.25 95.44
151 2104 4731.66 – 2763 4685.09 13.53 2162 4685.09 121.90

– : runtime exceeds time limit of 15 minutes

2

Table 4: Numerical results for proposed algorithms for Type C instance in parallel implementation for Q = 3

nNode
Pulse Random Coloring

nIter nCol LB UB1 Gap1 tLB (s) tUB1
(s) nIter nCol LB UB1 Gap1 tLB (s) tUB1

(s)

51 52 444 902.6 924.4 2.41% 1.1 0.2 21 421 903.2 933.0 3.30% 1.4 0.5
61 73 485 1174.8 1196.3 1.83% 1.5 0.3 29 535 1180.3 1184.7 0.37% 0.8 0.1
71 57 557 1377.6 1419.7 3.05% 1.4 0.6 26 572 1383.5 1411.9 2.05% 0.8 1.1
81 75 746 1654.6 1687.5 1.99% 2.1 0.9 37 666 1660.1 1695.5 2.13% 1.1 1.3
91 80 692 1843.6 1905.4 3.35% 2.5 0.9 34 720 1859.5 1882.3 1.23% 0.8 0.6

101 89 862 2133.5 2158.5 1.17% 3.5 0.7 42 825 2139.8 2168.0 1.32% 1.3 1.2
111 96 978 4227.0 4313.8 2.05% 1.9 0.1 45 1013 4226.6 4286.1 1.41% 1.0 3.0
121 106 1231 4597.8 4685.4 1.90% 1.9 2.2 52 1092 4604.0 4682.8 1.71% 1.3 6.7
131 123 1177 4969.3 5069.3 2.01% 2.1 0.2 56 1258 4998.2 5070.5 1.45% 1.7 3.3
141 116 1284 5359.7 5575.3 4.02% 2.4 4.5 56 1218 5391.5 5553.2 3.00% 1.9 20.7
151 127 1399 5753.5 5879.1 2.18% 2.9 0.8 60 1259 5789.8 5867.1 1.33% 2.2 4.5
201 180 1993 14575.4 14893.9 2.18% 22.5 14.7 83 1736 14632.5 14813.8 1.24% 5.2 19.7
251 226 2598 17956.0 18243.2 1.60% 44.2 13.5 101 2226 18004.7 18276.9 1.51% 8.6 44.3
301 242 3294 21698.3 22078.5 1.75% 68.9 49.4 122 2792 21766.2 22053.1 1.32% 15.4 48.5
351 290 3925 24945.7 25381.4 1.75% 113.7 78.1 147 3174 25039.4 25319.5 1.12% 23.3 63.2

Table 5: Numerical results for proposed algorithms for Type R instance in parallel implementation (Q = 3)

nNode
Pulse Random Coloring

nIter nCol LB UB1 Gap1 tLB (s) tUB1
(s) nIter nCol LB UB1 Gap1 tLB (s) tUB1

(s)

51 51 386 1123.9 1131.4 0.67% 0.8 0.1 18 402 1125.5 1131.9 0.57% 0.2 0.2
61 59 446 1269.6 1275.7 0.48% 1.2 0.1 24 501 1269.1 1270.6 0.12% 0.3 0.1
71 68 588 1528.3 1541.0 0.83% 1.6 0.5 25 558 1528.7 1539.8 0.73% 0.4 0.8
81 80 662 1703.9 1713.8 0.58% 2.2 0.5 29 652 1703.1 1714.3 0.66% 0.5 0.8
91 93 815 1872.9 1881.8 0.47% 3.1 0.3 34 749 1872.9 1879.0 0.33% 0.6 0.7

101 99 898 2004.1 2017.9 0.69% 3.8 0.8 34 775 2005.5 2015.4 0.49% 0.7 1.3
111 100 994 4399.4 4427.6 0.64% 4.5 1.0 39 873 4398.8 4422.2 0.53% 1.0 1.1
121 108 1107 4749.1 4771.4 0.47% 5.5 0.7 45 995 4748.8 4774.3 0.54% 1.2 1.0
131 129 1152 5174.2 5210.2 0.69% 7.3 1.1 47 1077 5176.1 5216.4 0.78% 1.4 2.9
141 118 1299 5526.8 5589.4 1.13% 7.7 2.4 50 1124 5525.3 5567.5 0.76% 1.8 2.3
151 137 1400 5879.6 5932.2 0.89% 10.2 2.5 54 1213 5874.2 5922.0 0.81% 2.1 5.1
201 174 2028 15948.8 16074.3 0.79% 21.7 3.6 73 1680 15975.1 16066.4 0.57% 4.8 2.9
251 211 2625 19584.6 19653.5 0.35% 41.8 3.3 95 2097 19590.5 19679.3 0.45% 8.2 8.7
301 238 3154 23309.0 23433.6 0.53% 67.8 8.1 106 2501 23321.4 23469.6 0.64% 13.2 20.3
351 279 3803 27241.4 27396.3 0.57% 108.8 13.1 131 2987 27253.4 27422.9 0.62% 20.9 41.9

Table 6: Numerical results for proposed algorithms for Type RC instance in parallel implementation (Q = 3)

nNode
Pulse Random Coloring

nIter nCol LB UB1 Gap1 tLB (s) tUB1 (s) nIter nCol LB UB1 Gap1 tLB (s) tUB1 (s)

51 54 436 1521.9 1591.6 4.58% 0.8 0.2 20 412 1517.4 1564.4 3.10% 0.2 0.7
61 59 483 1737.5 1775.4 2.18% 1.1 0.9 24 517 1736.0 1770.0 1.96% 0.3 1.0
71 78 618 1896.1 1917.8 1.14% 1.8 0.4 34 601 1910.2 1915.8 0.29% 0.5 0.4
81 84 712 2182.6 2209.0 1.21% 2.4 1.4 34 708 2187.7 2199.3 0.53% 0.6 0.9
91 82 806 2380.7 2403.8 0.97% 2.8 0.8 32 683 2380.8 2397.5 0.70% 0.6 0.5

101 93 893 2541.8 2548.1 0.25% 3.6 0.3 38 796 2532.1 2568.1 1.42% 0.8 0.5
111 106 1014 4396.7 4444.6 1.09% 5.0 0.9 45 1015 4405.8 4428.2 0.51% 1.0 1.1
121 115 1095 4864.2 4893.3 0.60% 5.8 0.8 45 1039 4864.9 4906.2 0.85% 1.1 3.2
131 111 1272 5309.5 5343.2 0.63% 6.4 1.2 48 1096 5313.2 5335.8 0.43% 1.4 1.4
141 123 1338 5607.9 5656.1 0.86% 7.9 1.9 62 1278 5613.7 5648.2 0.61% 2.2 4.0
151 137 1554 5992.3 6047.3 0.92% 10.1 3.8 61 1348 5998.7 6049.0 0.84% 2.3 5.8
201 173 2081 15804.8 15915.6 0.70% 21.6 2.8 80 1704 15813.5 15911.2 0.62% 5.1 6.2
251 219 2719 19208.7 19327.8 0.62% 43.3 17.6 96 2140 19201.6 19335.9 0.70% 8.0 11.1
301 245 3276 22918.4 23013.8 0.42% 70.6 6.2 114 2560 22911.6 23109.1 0.86% 14.4 45.6
351 275 3706 26738.8 26866.2 0.48% 107.6 17.1 134 2989 26757.0 26865.2 0.40% 21.1 22.9

3

Table 7: Numerical results for proposed algorithms for Type C instance in parallel implementation (Q = 4)

nNode
Pulse Random Coloring

nIter nCol LB UB1 Gap1 tLB (s) tUB1 (s) nIter nCol LB UB1 Gap1 tLB (s) tUB1 (s)

51 57 949 719.9 725.1 0.72% 1.1 0.4 22 1370 721.3 726.9 0.78% 1.6 1.3
61 70 1082 915.7 948.5 3.58% 1.6 0.9 30 1604 929.3 931.7 0.26% 0.8 1.9
71 76 1352 1114.0 1125.9 1.07% 2.3 1.0 30 1737 1113.9 1126.7 1.15% 0.8 1.8
81 77 1322 1289.5 1290.2 0.06% 2.4 1.2 31 1808 1283.4 1292.6 0.72% 1.1 1.8
91 86 1612 1480.8 1524.1 2.93% 3.3 3.2 33 2082 1456.8 1521.8 4.46% 4.1 4.5

101 96 1830 1694.9 1715.6 1.22% 4.3 1.7 34 2105 1691.7 1727.1 2.09% 1.8 4.2
111 139 2371 3307.8 3359.0 1.55% 2.3 1.3 42 2598 3272.0 3383.4 3.41% 2.7 5.2
121 135 2602 3612.6 3698.0 2.36% 9.2 11.8 50 2988 3617.8 3697.2 2.20% 3.8 15.0
131 136 2623 3882.8 4027.3 3.72% 10.1 11.0 53 3156 3884.0 3947.9 1.65% 4.8 7.9
141 147 2916 4176.6 4321.2 3.46% 12.7 19.2 57 3290 4170.7 4307.5 3.28% 5.6 18.8
151 161 3271 4513.4 4624.3 2.46% 15.6 34.3 62 3849 4498.8 4636.4 3.06% 7.0 59.1
201 211 4275 11378.7 11631.6 2.22% 31.5 50.5 79 4718 11372.9 11636.1 2.31% 15.1 61.3
251 271 5690 13908.9 14181.5 1.96% 62.1 116.3 101 5871 13889.1 14264.8 2.71% 31.1 138.2
301 327 6714 16651.2 16885.0 1.40% 108.0 57.1 128 7194 16641.7 16915.4 1.64% 54.1 90.1
351 342 7791 19109.4 19491.6 2.00% 149.6 571.6 139 7996 19103.8 19457.5 1.85% 77.2 487.3

Table 8: Numerical results for proposed algorithms for Type R instance in parallel implementation (Q = 4)

nNode
Pulse Random Coloring

nIter nCol LB UB1 Gap1 tLB (s) tUB1
(s) nIter nCol LB UB1 Gap1 tLB (s) tUB1

(s)

51 57 816 918.1 944.8 2.90% 1.0 0.8 17 1199 916.8 930.8 1.53% 0.3 0.7
61 70 1071 1029.9 1044.2 1.39% 1.6 0.3 21 1494 1029.8 1044.0 1.38% 0.5 0.3
71 76 1134 1236.7 1256.7 1.62% 2.1 1.0 24 1640 1235.6 1246.8 0.90% 0.8 0.8
81 85 1414 1375.3 1382.7 0.53% 2.8 0.4 30 1852 1375.5 1386.9 0.83% 1.2 1.3
91 99 1553 1510.6 1537.0 1.75% 3.8 1.5 32 2115 1511.7 1530.3 1.23% 1.7 2.0

101 103 1727 1612.7 1628.2 0.96% 4.7 0.5 36 2276 1612.7 1626.5 0.85% 2.2 1.5
111 125 2105 3515.3 3561.8 1.32% 6.7 4.0 41 2488 3514.9 3547.8 0.94% 2.9 3.9
121 128 2193 3777.3 3831.3 1.43% 7.7 0.9 42 2686 3783.9 3843.4 1.57% 3.5 6.5
131 134 2382 4116.6 4173.6 1.39% 9.2 3.4 46 2890 4115.5 4184.0 1.66% 4.3 6.0
141 155 2694 4382.2 4422.3 0.92% 11.8 2.1 50 3140 4376.5 4422.8 1.06% 5.6 5.3
151 155 2936 4627.6 4674.2 1.01% 13.6 4.8 52 3436 4625.3 4702.6 1.67% 6.5 14.6
201 201 3867 12503.8 12657.5 1.23% 30.0 13.6 66 4208 12499.4 12670.7 1.37% 13.1 10.0
251 211 4732 15263.0 15473.4 1.38% 48.7 80.2 85 5453 15280.6 15444.8 1.07% 27.0 12.3
301 259 5660 18122.3 18270.3 0.82% 85.3 16.7 100 6511 18125.2 18303.5 0.98% 42.8 94.8
351 311 6923 21119.0 21317.5 0.94% 136.7 77.7 109 6987 21123.8 21333.3 0.99% 61.5 172.1

Table 9: Numerical results for proposed algorithms for Type RC instance in parallel implementation (Q = 4)

nNode
Pulse Random Coloring

nIter nCol LB UB1 Gap1 tLB (s) tUB1
(s) nIter nCol LB UB1 Gap1 tLB (s) tUB1

(s)

51 60 1079 1217.3 1221.3 0.33% 1.2 1.5 23 1236 1184.6 1229.0 3.75% 0.5 5.5
61 74 1103 1375.0 1418.0 3.12% 1.6 3.3 27 1565 1372.0 1403.6 2.30% 0.7 6.8
71 87 1269 1510.6 1543.2 2.16% 2.4 1.9 28 1665 1507.4 1529.9 1.49% 0.9 3.7
81 89 1392 1740.0 1763.2 1.33% 2.9 2.3 31 1853 1728.4 1783.7 3.20% 1.3 10.5
91 92 1551 1899.3 1913.5 0.75% 3.7 1.3 34 2068 1893.3 1924.6 1.65% 1.7 3.7

101 110 1850 2018.0 2057.8 1.97% 5.1 2.6 34 2222 2000.7 2090.7 4.50% 1.9 17.6
111 117 2073 3469.4 3506.2 1.06% 5.9 1.6 41 2621 3478.8 3507.6 0.83% 2.7 2.5
121 132 2403 3837.1 3919.6 2.15% 7.8 3.3 45 2793 3844.9 3882.5 0.98% 3.4 3.5
131 133 2471 4178.5 4240.7 1.49% 9.0 5.2 50 2961 4184.4 4243.2 1.40% 4.4 8.8
141 138 2741 4400.8 4458.1 1.30% 10.6 2.3 53 3208 4403.9 4435.2 0.71% 5.5 2.8
151 167 3194 4698.0 4750.8 1.12% 14.8 18.0 58 3344 4698.2 4744.6 0.99% 6.7 5.1
201 199 3982 12400.2 12551.4 1.22% 29.2 14.5 70 4222 12413.8 12531.2 0.95% 14.4 10.7
251 257 5147 14928.3 15144.8 1.45% 59.7 97.0 96 5698 14945.3 15093.5 0.99% 28.1 137.0
301 284 6222 17717.7 17877.0 0.90% 94.0 44.8 106 6441 17732.7 17867.9 0.76% 44.7 22.2
351 320 7130 20685.4 20907.9 1.08% 139.5 98.2 125 7748 20689.6 20920.3 1.12% 68.6 361.5

4

Table 10: Numerical results for proposed algorithms for Type C instance in parallel implementation (Q = 5)

nNode
Pulse Random Coloring

nIter nCol LB UB1 Gap1 tLB (s) tUB1 (s) nIter nCol LB UB1 Gap1 tLB (s) tUB1 (s)

51 68 1312 589.45417 612.6 3.93% 1.5 1.0 28 2975 594.9 594.9 0.00% 2.8 0.8
61 78 1639 770.03333 770.1 0.01% 2.1 0.2 28 3029 768.8 770.1 0.17% 1.6 0.9
71 86 1921 934.52969 956.9 2.39% 2.8 2.6 29 3893 937.6 947.8 1.09% 2.7 1.8
81 106 2182 1088.4875 1101 1.15% 4.2 0.6 34 3915 1084.9 1117.0 2.96% 3.2 6.1
91 126 2459 1226.0092 1257.3 2.55% 6.0 3.1 37 4802 1226.6 1252.4 2.10% 11.3 9.1

101 141 2850 1393.4448 1401.4 0.57% 8.1 0.7 37 4987 1388.3 1412.7 1.75% 6.0 8.6
111 175 3814 2691.3854 2770.4 2.94% 13.8 7.2 50 6057 2702.6 2754.0 1.90% 14.1 13.0
121 179 4076 3000.4116 3092.3 3.06% 14.5 23.5 51 7030 2997.8 3100.8 3.43% 13.9 104.0
131 167 4021 3184.4195 3302.5 3.71% 15.3 10.8 47 6571 3173.4 3301.5 4.04% 14.0 45.9
141 193 4621 3429.9881 3531.4 2.96% 21.6 30.6 54 7032 3432.0 3554.2 3.56% 19.8 91.7
151 208 5013 3703.9952 3821.5 3.17% 25.5 156.2 59 7810 3728.5 3770.9 1.14% 23.3 69.9

Table 11: Numerical results for proposed algorithms for Type R instance in parallel implementation (Q = 5)

nNode
Pulse Random Coloring

nIter nCol LB UB1 Gap1 tLB (s) tUB1
(s) nIter nCol LB UB1 Gap1 tLB (s) tUB1

(s)

51 67 1128 793.725 816.7 2.89% 1.4 0.7 20 2392 793.9 816.1 2.80% 1.0 0.8
61 76 1428 892.58981 921.4 3.23% 2.0 1.2 20 3175 892.7 915.1 2.51% 1.4 0.8
71 88 1640 1067.3075 1086.9 1.84% 2.9 1.2 26 3505 1067.3 1084.8 1.64% 2.4 3.3
81 102 1944 1178.4755 1212.1 2.85% 4.0 2.5 28 3842 1178.5 1200.8 1.89% 3.2 5.6
91 127 2300 1291.238 1335.5 3.43% 6.1 4.1 30 4341 1290.8 1308.3 1.36% 4.4 7.4

101 122 2432 1373.7051 1418.8 3.28% 6.9 5.8 33 4647 1373.7 1414.2 2.95% 5.9 13.9
111 141 2978 2980.9473 3040 1.98% 9.3 4.6 41 5398 2973.4 3042.9 2.34% 10.1 11.5
121 146 3186 3197.1936 3234.2 1.16% 11.3 3.6 42 5991 3191.8 3226.8 1.10% 12.0 4.6
131 170 3600 3459.5512 3532.4 2.11% 14.6 8.4 45 6198 3451.9 3525.9 2.14% 14.0 23.0
141 174 3996 3664.3558 3743.8 2.17% 18.7 20.9 49 6671 3664.2 3748.5 2.30% 17.7 21.0
151 183 4036 3883.3897 3945.8 1.61% 21.1 3.6 53 7235 3882.6 3934.2 1.33% 21.9 8.1

Table 12: Numerical results for proposed algorithms for Type RC instance in parallel implementation (Q = 5)

nNode
Pulse Random Coloring

nIter nCol LB UB1 Gap1 tLB (s) tUB1
(s) nIter nCol LB UB1 Gap1 tLB (s) tUB1

(s)

51 76 1371 922.5 922.5 0.00% 1.5 0.0 18 2194 922.5 922.5 0.00% 0.8 0.1
61 80 1573 1145.2688 1211.7 5.80% 2.2 12.8 24 2936 1142.9 1177.2 3.00% 1.7 6.3
71 92 1825 1258.3929 1272.3 1.11% 3.1 0.8 30 3485 1251.9 1288.6 2.93% 2.9 4.3
81 115 2262 1440.6 1440.6 0.00% 4.6 0.1 32 4164 1440.6 1440.6 0.00% 3.7 0.1
91 118 2316 1569.275 1587.8 1.18% 5.5 1.3 33 4463 1568.4 1587.5 1.22% 4.8 2.0

101 132 2729 1676.1122 1704.6 1.70% 7.4 3.1 38 4738 1670.2 1706.1 2.15% 6.8 6.8
111 146 3218 2911.4224 2956.2 1.54% 9.7 4.2 39 5660 2911.0 2918.7 0.26% 8.3 1.1
121 142 3122 3222.6403 3269.5 1.45% 10.7 4.5 45 5859 3222.9 3265.8 1.33% 11.0 5.7
131 163 3563 3502.6785 3654.4 4.33% 14.2 46.9 48 6426 3511.6 3596.5 2.42% 14.9 31.3
141 177 3882 3689.6869 3794.5 2.84% 18.3 68.1 55 6898 3691.8 3770.3 2.13% 18.7 73.7
151 179 4166 3918.7123 4071.2 3.89% 20.6 121.7 57 7233 3923.0 4041.6 3.02% 21.6 115.5

5

Table 13: Random coloring with column enumeration for Type C instance (Q = 3)

nNode
Random Coloring w/o Column Enumeration Random Coloring w/ Column Enumeration

nIter nCol LB tLB (s) UB1 Gap1 tUB1 nCole te (s) UB2 Gap2 tUB2 (s)

51 21 421 903.2 1.4 933 3.30% 0.5 3044 0.3 920.8 1.95% 2.0
61 29 535 1180.3 0.8 1184.7 0.37% 0.1 1370 0.4 1184.7 0.37% 1.8
71 26 572 1383.5 0.8 1411.9 2.05% 1.1 4222 0.0 1407.6 1.74% 15.5
81 37 666 1660.1 1.1 1695.5 2.13% 1.3 4917 0.1 1683.9 1.44% 10.4
91 34 720 1859.5 0.8 1882.3 1.23% 0.6 4798 0.0 1878.3 1.01% 5.6

101 42 825 2139.8 1.3 2168 1.32% 1.2 3784 0.0 2152.4 0.59% 2.7
111 45 1013 4226.6 1.0 4286.1 1.41% 3.0 8014 0.0 4274 1.12% 14.9
121 52 1092 4604.0 1.3 4682.8 1.71% 6.7 9271 0.0 4652.1 1.04% 25.4
131 56 1258 4998.2 1.7 5070.5 1.45% 3.3 9436 0.0 5054.7 1.13% 139.3
141 56 1218 5391.5 1.9 5553.2 3.00% 20.7 11866 0.1 5485.1 1.74% 315.5
151 60 1259 5789.8 2.2 5867.1 1.33% 4.5 12208 0.0 5839.1 0.85% 231.9
201 83 1736 14632.5 5.2 14813.8 1.24% 19.7 16112 0.1 14745.2 0.77% 270.1
251 101 2226 18004.7 8.6 18276.9 1.51% 44.3 20599 0.2 18171.4 0.93% 1113.5
301 122 2792 21766.2 15.4 22053.1 1.32% 48.5 23319 0.2 21932.5 0.76% 1105.4
351 147 3174 25039.4 23.3 25319.5 1.12% 63.2 29735 0.3 25184.5 0.58% 1450.7

–: solution time reaches 30-minute time limit.

Table 14: Random coloring with column enumeration for Type R instance (Q = 3)

nNode
Random Coloring w/o Column Enumeration Random Coloring w/ Column Enumeration

nIter nCol LB tLB (s) UB1 Gap1 tUB1
nCole te (s) UB2 Gap2 tUB2

(s)

51 18 402 1125.5 0.2 1131.9 0.57% 0.2 703 0.0 1131.1 0.50% 0.5
61 24 501 1269.1 0.3 1270.6 0.12% 0.1 225 0.0 1270.6 0.12% 0.1
71 25 558 1528.7 0.4 1539.8 0.73% 0.8 2125 0.0 1536.6 0.52% 1.6
81 29 652 1703.1 0.5 1714.3 0.66% 0.8 2614 0.0 1707.9 0.28% 0.7
91 34 749 1872.9 0.6 1879 0.33% 0.7 1788 0.0 1876.8 0.21% 0.7

101 34 775 2005.5 0.7 2015.4 0.49% 1.3 3348 0.0 2013 0.37% 1.7
111 39 873 4398.8 1.0 4422.2 0.53% 1.1 4078 0.0 4416.5 0.40% 2.9
121 45 995 4748.8 1.2 4774.3 0.54% 1.0 4962 0.0 4763.3 0.31% 2.2
131 47 1077 5176.1 1.4 5216.4 0.78% 2.9 6917 0.0 5196.8 0.40% 5.3
141 50 1124 5525.3 1.8 5567.5 0.76% 2.3 8190 0.0 5559.9 0.63% 18.0
151 54 1213 5874.2 2.1 5922 0.81% 5.1 9039 0.0 5902.3 0.48% 19.4
201 73 1680 15975.1 4.8 16066.4 0.57% 2.9 12408 0.1 16021.7 0.29% 8.3
251 95 2097 19590.5 8.2 19679.3 0.45% 8.7 16289 0.1 19633 0.22% 51.2
301 106 2501 23321.4 13.2 23469.6 0.64% 20.3 23562 0.2 23372.6 0.22% 64.6
351 131 2987 27253.4 20.9 27422.9 0.62% 41.9 27834 0.3 27338.8 0.31% 96.5

6

Table 15: Random coloring with column enumeration for Type RC instance (Q = 3)

nNode
Random Coloring w/o Column Enumeration Random Coloring w/ Column Enumeration

nIter nCol LB tLB (s) UB1 Gap1 tUB1
nCole te (s) UB2 Gap2 tUB2

(s)

51 20 412 1517.4 0.2 1564.4 3.10% 0.7 3525 0.0 1558.2 2.69% 5.7
61 24 517 1736.0 0.3 1770 1.96% 1.0 3095 0.0 1762.6 1.54% 6.1
71 34 601 1910.2 0.5 1915.8 0.29% 0.4 1362 0.0 1915.8 0.29% 2.6
81 34 708 2187.7 0.6 2199.3 0.53% 0.9 2380 0.0 2199.3 0.53% 7.4
91 32 683 2380.8 0.6 2397.5 0.70% 0.5 3108 0.0 2390.8 0.42% 4.0

101 38 796 2532.1 0.8 2568.1 1.42% 0.5 5352 0.0 2546.1 0.55% 6.6
111 45 1015 4405.8 1.0 4428.2 0.51% 1.1 4454 0.0 4417.2 0.26% 7.6
121 45 1039 4864.9 1.1 4906.2 0.85% 3.2 6731 0.0 4885.4 0.42% 12.2
131 48 1096 5313.2 1.4 5335.8 0.43% 1.4 5275 0.0 5332.6 0.37% 15.5
141 62 1278 5613.7 2.2 5648.2 0.61% 4.0 7890 0.0 5628.6 0.26% 17.9
151 61 1348 5998.7 2.3 6049 0.84% 5.8 9949 0.1 6020.1 0.36% 11.1
201 80 1704 15813.5 5.1 15911.2 0.62% 6.2 13315 0.1 15878.7 0.41% 41.0
251 96 2140 19201.6 8.0 19335.9 0.70% 11.1 18999 0.1 19272.7 0.37% 126.8
301 114 2560 22911.6 14.4 23109.1 0.86% 45.6 21348 0.2 22967.7 0.24% 93.0
351 134 2989 26757.0 21.1 26865.2 0.40% 22.9 25402 0.3 26822.4 0.24% 145.2

Table 16: Random coloring with column enumeration for Type C instance (Q = 4)

nNode
Random Coloring w/o Column Enumeration Random Coloring w/ Column Enumeration

nIter nCol LB tLB (s) UB1 Gap1 tUB1
nCole te (s) UB2 Gap2 tUB2

(s)

51 22 1370 721.3 1.6 726.9 0.78% 5.0 3451 0.0 723.9 0.36% 2.5
61 30 1604 929.3 0.8 931.7 0.26% 3.4 1522 0.0 931.2 0.21% 4.2
71 30 1737 1113.9 0.8 1126.7 1.15% 6.6 9713 0.0 1123.6 0.87% 12.0
81 31 1808 1283.4 1.1 1292.6 0.72% 3.8 5284 0.0 1289.9 0.51% 7.9
91 33 2082 1456.8 4.1 1521.8 4.46% 9.4 22713 0.1 1505.3 3.33% 43.2

101 34 2105 1691.7 1.8 1727.1 2.09% 8.2 22726 0.1 1706.5 0.87% 23.7
111 42 2598 3272.0 2.7 3383.4 3.41% 6.8 30749 0.1 3347.9 2.32% 77.5
121 50 2988 3617.8 3.8 3697.2 2.20% 19.1 38411 0.1 3666.7 1.35% 533.0
131 53 3156 3884.0 4.8 3947.9 1.65% 13.7 37484 0.2 3930.5 1.20% 48.0
141 57 3290 4170.7 5.6 4307.5 3.28% 21.2 48653 0.2 4250.4 1.91% -
151 62 3849 4498.8 7.0 4636.4 3.06% 90.7 51330 0.2 4569.2 1.56% 1320.8
201 79 4718 11372.9 15.1 11636.1 2.31% 56.3 67710 0.4 11475 0.90% 232.5
251 101 5871 13889.1 31.1 14264.8 2.71% 62.6 86116 0.6 14054.2 1.19% -
301 128 7194 16641.7 54.1 16915.4 1.64% 17.3 102548 0.8 16835.6 1.17% -
351 139 7996 19103.8 77.2 19457.5 1.85% 680.1 127956 1.0 19329.8 1.18% -

–: solution time reaches 30-minute time limit.

7

Table 17: Random coloring with column enumeration for Type R instance (Q = 4)

nNode
Random Coloring w/o Column Enumeration Random Coloring w/ Column Enumeration

nIter nCol LB tLB (s) UB1 Gap1 tUB1 nCole te (s) UB2 Gap2 tUB2 (s)

51 17 1199 916.8 0.3 930.8 1.53% 0.654 3420 0.0 928.1 1.23% 1.2
61 21 1494 1029.8 0.5 1044.0 1.38% 0.263 4513 0.0 1037.5 0.75% 1.2
71 24 1640 1235.6 0.8 1246.8 0.90% 0.781 3596 0.0 1244.3 0.70% 1.5
81 30 1852 1375.5 1.2 1386.9 0.83% 1.257 6080 0.0 1380.5 0.36% 1.1
91 32 2115 1511.7 1.7 1530.3 1.23% 2.025 13007 0.1 1522.5 0.71% 7.5

101 36 2276 1612.7 2.2 1626.5 0.85% 1.532 11283 0.1 1619.3 0.41% 1.3
111 41 2488 3514.9 2.9 3547.8 0.94% 3.906 14425 0.1 3541.7 0.76% 51.6
121 42 2686 3783.9 3.5 3843.4 1.57% 6.479 28268 0.2 3808.6 0.65% 9.6
131 46 2890 4115.5 4.3 4184.0 1.66% 6.031 34794 0.2 4146 0.74% 124.7
141 50 3140 4376.5 5.6 4422.8 1.06% 5.281 28854 0.2 4400.3 0.54% 12.9
151 52 3436 4625.3 6.5 4702.6 1.67% 14.577 41635 0.3 4662.1 0.80% 160.0
201 66 4208 12499.4 13.1 12670.7 1.37% 10 60369 0.4 12567.7 0.55% 17.4
251 85 5453 15280.6 27.0 15444.8 1.07% 12.281 77788 0.6 15326.7 0.30% 78.0
301 100 6511 18125.2 42.8 18303.5 0.98% 94.766 92284 0.8 18191.5 0.37% 168.4
351 109 6987 21123.8 61.5 21333.3 0.99% 172.126 114496 1.0 21208.7 0.40% 237.0

Table 18: Random coloring with column enumeration for Type RC instance (Q = 4)

nNode
Random Coloring w/o Column Enumeration Random Coloring w/ Column Enumeration

nIter nCol LB tLB (s) UB1 Gap1 tUB1
nCole te (s) UB2 Gap2 tUB2

(s)

51 23 1236 1184.6 0.5 1229.0 3.75% 5.5 10472 0.0 1224.1 3.33% 11.4
61 27 1565 1372.0 0.7 1403.6 2.30% 6.8 10603 0.0 1389.8 1.30% 19.6
71 28 1665 1507.4 0.9 1529.9 1.49% 3.7 7940 0.1 1526.8 1.29% 23.3
81 31 1853 1728.4 1.3 1783.7 3.20% 10.5 21362 0.1 1749.1 1.20% 14.4
91 34 2068 1893.3 1.7 1924.6 1.65% 3.7 17072 0.1 1913.5 1.07% 57.6

101 34 2222 2000.7 1.9 2090.7 4.50% 17.6 30147 0.1 2031.0 1.51% 34.1
111 41 2621 3478.8 2.7 3507.6 0.83% 2.5 14469 0.1 3503.7 0.72% 31.3
121 45 2793 3844.9 3.4 3882.5 0.98% 3.5 19413 0.1 3871.2 0.68% 50.0
131 50 2961 4184.4 4.4 4243.2 1.40% 8.8 32915 0.2 4215.4 0.74% 33.3
141 53 3208 4403.9 5.5 4435.2 0.71% 2.8 21255 0.1 4428.3 0.55% 46.6
151 58 3344 4698.2 6.7 4744.6 0.99% 5.1 33437 0.2 4729.0 0.66% 119.8
201 70 4222 12413.8 14.4 12531.2 0.95% 10.7 52831 0.4 12472.3 0.47% 165.2
251 96 5698 14945.3 28.1 15093.5 0.99% 137.0 75244 0.6 15023.7 0.52% 1076.9
301 106 6441 17732.7 44.7 17867.9 0.76% 22.2 93267 0.8 17783.0 0.28% 522.5
351 125 7748 20689.6 68.6 20920.3 1.12% 361.5 120756 1.1 20782.5 0.45% 1801.6

Table 19: Random coloring with column enumeration for Type C instance (Q = 5)

nNode
Random Coloring w/o Column Enumeration Random Coloring w/ Column Enumeration

nIter nCol LB tLB (s) UB1 Gap1 tUB1
nCole te (s) UB2 Gap2 tUB2

(s)

51 28 2975 594.9 2.8 594.9 0.00% 0.8 38 0.0 594.9 0.00% 0.8
61 28 3029 768.8 1.6 770.1 0.17% 0.9 763 0.1 770.1 0.17% 0.9
71 29 3893 937.6 2.7 947.8 1.09% 1.8 11849 0.1 939.1 0.16% 2.7
81 34 3915 1084.9 3.2 1117 2.96% 6.1 54388 0.2 1101.8 1.56% 103.2
91 37 4802 1226.6 11.3 1252.4 2.10% 9.1 54548 0.3 1240.5 1.13% 127.0

101 37 4987 1388.3 6.0 1412.7 1.75% 8.6 50095 0.3 1396.7 0.60% 21.8
111 50 6057 2702.6 14.1 2754 1.90% 13.0 89092 0.5 2741.7 1.45% 1226.2
121 51 7030 2997.8 13.9 3100.8 3.43% 104.0 125698 0.7 3047.7 1.66% -
131 47 6571 3173.4 14.0 3301.5 4.04% 45.9 153927 0.7 3258 2.66% -
141 54 7032 3432.0 19.8 3554.2 3.56% 91.7 149970 0.8 3485.5 1.56% -
151 59 7810 3728.5 23.3 3770.9 1.14% 69.9 109314 0.8 3772 1.17% -

–: solution time reaches 30-minute time limit.

8

Table 20: Random coloring with column enumeration for Type R instance (Q = 5)

nNode
Random Coloring w/o Column Enumeration Random Coloring w/ Column Enumeration

nIter nCol LB tLB (s) UB1 Gap1 tUB1
nCole te (s) UB2 Gap2 tUB2

(s)

51 20 2392 793.9 1.0 816.1 2.80% 0.8 13323 0.0 804.4 1.32% 1.4
61 20 3175 892.7 1.4 915.1 2.51% 0.8 18944 0.0 897.8 0.57% 1.0
71 26 3505 1067.3 2.4 1084.8 1.64% 3.3 15417 0.0 1072.3 0.47% 1.1
81 28 3842 1178.5 3.2 1200.8 1.89% 5.6 30492 0.0 1185.5 0.60% 3.5
91 30 4341 1290.8 4.4 1308.3 1.36% 7.4 25936 0.0 1299.6 0.68% 6.0

101 33 4647 1373.7 5.9 1414.2 2.95% 13.9 87191 0.0 1384.6 0.79% 14.6
111 41 5398 2973.4 10.1 3042.9 2.34% 11.5 84934 0.0 2998.8 0.85% 36.7
121 42 5991 3191.8 12.0 3226.8 1.10% 4.6 30820 0.0 3206.5 0.46% 6.3
131 45 6198 3451.9 14.0 3525.9 2.14% 23.0 104694 0.0 3489.6 1.09% 127.5
141 49 6671 3664.2 17.7 3748.5 2.30% 21.0 126291 0.0 3691.5 0.74% 38.9
151 53 7235 3882.6 21.9 3934.2 1.33% 8.1 84715 0.1 3905.7 0.60% 51.8

Table 21: Random coloring with column enumeration for Type RC instance (Q = 5)

nNode
Random Coloring w/o Column Enumeration Random Coloring w/ Column Enumeration

nIter nCol LB tLB (s) UB1 Gap1 tUB1 nCole te (s) UB2 Gap2 tUB2 (s)

51 18 2194 922.5 0.8 922.5 0.00% 0.1 28 0.1 922.5 0.00% 0.0
61 24 2936 1142.9 1.7 1177.2 3.00% 6.3 26159 0.1 1157.8 1.31% 85.7
71 30 3485 1251.9 2.9 1288.6 2.93% 4.3 36754 0.2 1268.6 1.34% 16.5
81 32 4164 1440.6 3.7 1440.6 0.00% 0.1 62 0.2 1440.6 0.00% 0.1
91 33 4463 1568.4 4.8 1587.5 1.22% 2.0 16570 0.2 1572.3 0.25% 1.5

101 38 4738 1670.2 6.8 1706.1 2.15% 6.8 56078 0.3 1680.4 0.61% 8.4
111 39 5660 2911.0 8.3 2918.7 0.26% 1.1 5097 0.3 2916.3 0.18% 1.1
121 45 5859 3222.9 11.0 3265.8 1.33% 5.7 57420 0.4 3242.1 0.60% 42.5
131 48 6426 3511.6 14.9 3596.5 2.42% 31.3 116524 0.6 3537 0.72% 69.1
141 55 6898 3691.8 18.7 3770.3 2.13% 73.7 117008 0.6 3729.5 1.02% 937.6
151 57 7233 3923.0 21.6 4041.6 3.02% 115.5 156365 0.8 3976.9 1.38% 1122.7

9

A.2 Unitary Demand CVRP X-instances

Table 22: Numerical results for unitary X instances with Q = 3

Instance nNode
Pulse Random Coloring

LB UB1 Gap1 tLB (m) tUB1
(m) LB UB1 Gap1 tLB (m) tUB1

(m)

X-n120-k6 120 61050.8 61296.0 0.40% 0.1 0.0 61082.0 61324.0 0.40% 0.1 0.0
X-n157-k13 157 56791.2 56920.0 0.23% 0.2 0.1 56784.5 56935.0 0.27% 0.1 0.0
X-n181-k23 181 59806.8 60005.0 0.33% 0.3 0.1 59799.2 60216.0 0.70% 0.1 0.3
X-n219-k73 219 117306.1 117893.0 0.50% 0.5 0.4 117325.9 117761.0 0.37% 0.1 0.1
X-n237-k14 237 124261.1 124765.0 0.41% 0.6 0.4 124324.8 124653.0 0.26% 0.1 0.5
X-n275-k28 275 56713.8 56962.0 0.44% 0.9 0.4 56759.3 56984.0 0.40% 0.2 0.6
X-n317-k53 317 150795.9 151179.0 0.25% 1.4 - 150816.3 151199.0 0.25% 0.3 -
X-n331-k15 331 180868.0 181366.0 0.28% 1.7 0.3 180955.3 181495.0 0.30% 0.3 0.7
X-n376-k94 376 193400.3 193913.0 0.27% 2.1 0.3 193420.7 193986.0 0.29% 0.5 0.7
X-n439-k37 439 116146.1 116671.0 0.45% 3.4 0.2 116194.4 116633.0 0.38% 0.7 0.4
X-n502-k39 502 278048.1 278207.0 0.06% 5.5 0.4 278048.4 278251.0 0.07% 1.3 0.6
X-n548-k50 548 287916.8 288554.0 0.22% 6.4 2.0 287950.5 288610.0 0.23% 1.6 0.8
X-n655-k131 655 173036.6 173321.0 0.16% 12.3 1.4 173068.1 173343.0 0.16% 2.7 1.1
X-n801-k40 801 415868.9 416613.0 0.18% 19.5 2.7 415931.6 416600.0 0.16% 4.7 1.8
X-n856-k95 856 240621.2 241196.0 0.24% 25.9 12.7 240663.9 241300.0 0.26% 5.4 -
X-n957-k87 957 276006.7 276807.0 0.29% 29.8 6.9 276091.3 276890.0 0.29% 7.6 -

–: solution time reaches 30-minute time limit.

Table 23: Numerical results for unitary X instances with Q = 4

Instance nNode
Pulse Random Coloring

LB UB1 Gap1 tLB (m) tUB1
(m) LB UB1 Gap1 tLB (m) tUB1

(m)

X-n120-k6 120 47221.2 47496.0 0.58% 0.1 0.1 47225.7 47593.0 0.78% 0.4 0.0
X-n157-k13 157 43512.1 44171.0 1.51% 0.3 - 43541.9 44315.0 1.78% 0.2 -
X-n181-k23 181 45955.8 46175.0 0.48% 0.4 0.3 45946.5 46277.0 0.72% 0.2 0.9
X-n219-k73 219 89899.3 90756.0 0.95% 0.7 4.2 89902.8 90544.0 0.71% 0.3 0.5
X-n237-k14 237 95128.0 95579.0 0.47% 0.9 0.9 95130.9 95689.0 0.59% 0.5 0.8
X-n275-k28 275 43946.9 44476.0 1.20% 1.2 13.3 43956.9 44445.0 1.11% 0.6 25.9
X-n317-k53 317 114514.2 114745.0 0.20% 2.1 0.2 114523.6 114907.0 0.33% 1.0 1.4
X-n331-k15 331 137819.7 138772.0 0.69% 2.2 - 137819.7 138667.0 0.61% 1.2 5.4
X-n376-k94 376 147428.4 148116.0 0.47% 3.3 14.8 147397.3 148120.0 0.49% 1.6 7.0
X-n439-k37 439 89546.1 90493.0 1.06% 4.4 13.3 89540.5 90388.0 0.95% 2.2 4.0
X-n502-k39 502 209892.9 211201.0 0.62% 6.9 - 209900.2 211228.0 0.63% 4.1 -
X-n548-k50 548 218820.0 219725.0 0.41% 9.7 - 218817.3 220240.0 0.65% 4.7 -
X-n655-k131 655 131569.8 132050.0 0.36% 15.7 - 131572.5 132084.0 0.39% 8.1 18.1
X-n801-k40 801 315127.1 316191.0 0.34% 35.9 - 315162.3 317741.0 0.82% 14.8 -
X-n856-k95 856 183768.8 184630.0 0.47% 32.1 - 183733.5 185486.0 0.95% 15.8 -
X-n957-k87 957 210524.0 211425.0 0.43% 46.7 - 210542.6 212890.0 1.11% 22.6 -

–: solution time reaches 30-minute time limit.

A.3 Multi-depot VRPUD

We also study the solution routes computed from the column generation using two different pricing algo-

rithms. For each instance with the different number of patient nodes (nNode) and hospitals (nDepot), we

report the number of solution routes (nRoute) and their average cost (AvgCost) based at each depot. Table

30 and 31 summarize the solution results. Comparing the instances with the same number of customer nodes

(patients) but a different number of depots (hospitals), we notice the total number of routes used to cover

10

Table 24: Numerical results for unitary X instances with Q = 5

Instance nNode
Pulse Random Coloring

LB UB1 Gap1 tLB (m) tUB1 (m) LB UB1 Gap1 tLB (m) tUB1 (m)

X-n120-k6 120 38726.3 39159.0 1.12% 0.2 0.1 38695.4 39025.0 0.85% 0.2 0.2
X-n157-k13 157 35581.2 36134.0 1.55% 0.5 - 35625.0 36216.0 1.66% 0.6 -
X-n181-k23 181 37686.6 38445.0 2.01% 0.7 23.3 37684.9 38190.0 1.34% 0.7 17.4
X-n219-k73 219 73324.6 74120.0 1.08% 1.4 2.9 73328.2 74131.0 1.09% 1.1 6.5
X-n237-k14 237 77640.4 78431.0 1.02% 1.7 3.6 77639.8 78598.0 1.23% 1.4 12.4
X-n275-k28 275 36358.3 36826.0 1.29% 2.0 6.9 36342.5 37131.0 2.17% 1.7 -
X-n317-k53 317 92730.0 93561.0 0.90% 4.6 - 92773.9 93719.0 1.02% 3.5 -
X-n331-k15 331 111945.6 113641.0 1.51% 4.2 - 111926.1 113611.0 1.51% 3.8 -
X-n376-k94 376 119634.3 120369.0 0.61% 6.9 14.5 119607.3 121447.0 1.54% 5.4 -
X-n439-k37 439 73375.0 74450.0 1.47% 6.7 - 73405.3 74907.0 2.05% 7.6 -
X-n502-k39 502 169081.8 170765.0 1.00% 14.0 - 169083.8 171768.0 1.59% 14.1 -
X-n548-k50 548 177331.1 181087.0 2.12% 21.3 - 177332.4 180340.0 1.70% 16.2 -
X-n655-k131 655 106568.6 108434.0 1.75% 27.1 - 106559.2 109359.0 2.63% 30.2 -
X-n801-k40 801 254747.6 258542.0 1.49% 76.1 - 254727.9 263320.0 3.37% 57.7 -
X-n856-k95 856 149461.0 152721.0 2.18% 54.9 - 149468.3 152965.0 2.34% 65.0 -
X-n957-k87 957 171173.4 174174.0 1.75% 115.4 - 171170.3 176515.0 3.12% 93.9 -

–: Solution time reaches 30-minute time limit.

Table 25: Random coloring with column enumeration for unitary X instances with Q = 3

nNode
Random Coloring w/o Column Enumeration Random Coloring w/ Column Enumeration

nIter nCol LB tLB (m) UB1 Gap1 tUB1 (m) nCole te (s) UB2 Gap2 tUB2 (m)

120 50 1125 61082.0 0.1 61324.0 0.40% 0.0 5731 1.7 61236.0 0.25% 0.2
157 63 1435 56784.5 0.1 56935.0 0.27% 0.0 8523 0.5 56851.0 0.12% 0.0
181 83 1848 59799.2 0.1 60216.0 0.70% 0.3 13311 0.1 59926.0 0.21% 0.6
219 89 2021 117325.9 0.1 117761.0 0.37% 0.1 13376 0.1 117595.0 0.23% 0.7
237 101 2182 124324.8 0.1 124653.0 0.26% 0.5 12937 0.1 124505.0 0.14% 6.3
275 104 2360 56759.3 0.2 56984.0 0.40% 0.6 17014 0.1 56845.0 0.15% 3.6
317 136 3084 150816.3 0.3 151199.0 0.25% - 20867 0.2 151058.0 0.16% -
331 134 3051 180955.3 0.3 181495.0 0.30% 0.7 21870 0.2 181138.0 0.10% 1.0
376 154 3379 193420.7 0.5 193986.0 0.29% 0.7 25647 0.3 193678.0 0.13% 2.9
439 172 3923 116194.4 0.7 116633.0 0.38% 0.4 33172 0.4 116367.0 0.15% 1.4
502 238 5335 278048.4 1.3 278251.0 0.07% 0.6 28125 0.5 278148.0 0.04% 0.7
548 236 5161 287950.5 1.6 288610.0 0.23% 0.8 39342 0.5 288233.0 0.10% -
655 291 6495 173068.1 2.7 173343.0 0.16% 1.1 44404 0.8 173172.0 0.06% 2.9
801 338 7591 415931.6 4.7 416600.0 0.16% 1.8 60586 1.2 416246.0 0.08% 8.0
856 352 7959 240663.9 5.4 241300.0 0.26% - 66588 1.4 240911.0 0.10% -
957 387 8833 276091.3 7.6 276890.0 0.29% - 79422 1.8 276386.0 0.11% -

–: solution time reaches 30-minute time limit.

the patients are similar as most of the routes contain four patients. However, the average cost of each route

reduces 30%-40% (from approximately 40 to approximately 25) as the number of depots increases from 1 to

3. Further reduction, though diminishing, is observed as we increase the number of depots to 5, reducing the

average cost per route from 25 to 20. An example solution for instances with 500 patients and five hospitals

has been displayed in Figure 11.

11

Table 26: Random coloring with column enumeration for unitary X instances with Q = 4

nNode
Random Coloring w/o Column Enumeration Random Coloring w/ Column Enumeration

nIter nCol LB tLB (m) UB1 Gap1 tUB1
(m) nCole te (s) UB2 Gap2 tUB2

(m)

120 47 2942 47225.7 0.4 47593.0 0.78% 0.0 20382 4.1 47366.0 0.30% 0.6
157 68 4047 43541.9 0.2 44315.0 1.78% - 51868 0.3 44239.0 1.60% -
181 74 4592 45946.5 0.2 46277.0 0.72% 0.9 40854 0.3 46021.0 0.16% 0.2
219 82 5215 89902.8 0.3 90544.0 0.71% 0.5 57460 0.5 90215.0 0.35% 11.8
237 93 5683 95130.9 0.5 95689.0 0.59% 0.8 58772 0.5 95339.0 0.22% 4.9
275 100 6291 43956.9 0.6 44445.0 1.11% 25.9 85111 0.7 44187.0 0.52% -
317 128 8113 114523.6 1.0 114907.0 0.33% 1.4 72284 0.8 114593.0 0.06% 0.3
331 130 7721 137819.7 1.2 138667.0 0.61% 5.4 103195 1.1 138113.0 0.21% -
376 145 8972 147397.3 1.6 148120.0 0.49% 7.0 113954 2.0 147721.0 0.22% -
439 157 9632 89540.5 2.2 90388.0 0.95% 4.0 150900 2.6 89900.0 0.40% -
502 226 12801 209900.2 4.1 211228.0 0.63% - 164436 2.1 210991.0 0.52% -
548 217 12908 218817.3 4.7 220240.0 0.65% - 185357 3.2 219142.0 0.15% 20.2
655 257 15651 131572.5 8.1 132084.0 0.39% 18.1 213913 4.7 131808.0 0.18% -
801 316 19145 315162.3 14.8 317741.0 0.82% - 273588 5.5 316398.0 0.39% -
856 303 17830 183733.5 15.8 185486.0 0.95% - 281052 6.3 184412.0 0.37% -
957 341 20789 210542.6 22.6 212890.0 1.11% - 327607 7.8 211192.0 0.31% -

–: solution time reaches 30-minute time limit.

Table 27: Random coloring with column enumeration for unitary X instances with Q = 5

nNode
Random Coloring w/o Column Enumeration Random Coloring w/ Column Enumeration

nIter nCol LB tLB (m) UB1 Gap1 tUB1
(m) nCole te (s) UB2 Gap2 tUB2

(m)

120 45 6174 38695.4 0.2 39025.0 0.85% 0.2 40883 0.4 38875.0 0.46% 2.5
157 74 9835 35625.0 0.6 36216.0 1.66% - 159998 0.8 36171.0 1.53% -
181 74 9622 37684.9 0.7 38190.0 1.34% 17.4 161859 1.0 37800.0 0.31% 6.6
219 80 11158 73328.2 1.1 74131.0 1.09% 6.5 200115 1.5 73662.0 0.46% -
237 89 12547 77639.8 1.4 78598.0 1.23% 12.4 246750 1.9 77932.0 0.38% -
275 90 13026 36342.5 1.7 37131.0 2.17% - 302297 4.2 36503.0 0.44% -
317 128 17026 92773.9 3.5 93719.0 1.02% - 356056 3.4 93882.0 1.19% -
331 123 16451 111926.1 3.8 113611.0 1.51% - 385527 3.8 112667.0 0.66% -
376 138 18724 119607.3 5.4 121447.0 1.54% - 436722 6.9 119933.0 0.27% -
439 149 20077 73405.3 7.6 74907.0 2.05% - 515734 6.7 74029.0 0.85% -
502 219 26837 169083.8 14.1 171768.0 1.59% - 566745 12.3 170408.0 0.78% -
548 196 26977 177332.4 16.2 180340.0 1.70% - 613757 14.8 178120.0 0.44% -
655 244 32206 106559.2 30.2 109359.0 2.63% - 744221 18.1 107543.0 0.92% -
801 280 37742 254727.9 57.7 263320.0 3.37% - 949217 29.6 259321.0 1.80% -
856 280 36127 149468.3 65.0 152965.0 2.34% - 990298 41.1 151460.0 1.33% -
957 294 41178 171170.3 93.9 176515.0 3.12% - 1121190 45.4 175186.0 2.35% -

–: solution time reaches 30-minute time limit.

12

Table 28: Numerical result for the proposed algorithm on patient-centered medical home instances

nNode nDepot
Pulse Random Coloring

nIter nCol LB UB1 Gap1 tLB (s) tUB1
(s) nIter nCol LB UB1 Gap1 tLB (s) tUB1

(s)

100

1 99 2409 971.62 991.92 2.09% 6.50 5.45 35 1875 971.62 992.33 2.13% 6.05 5.14
3 57 3085 759.23 778.90 2.59% 8.17 3.83 18 2779 759.23 778.69 2.56% 2.87 5.73
5 25 2036 486.91 503.24 3.35% 5.88 1.94 12 2245 486.91 496.77 2.02% 3.02 3.46

150

1 148 3826 1398.61 1423.14 1.75% 16.15 17.76 43 2589 1398.61 1417.99 1.39% 9.15 19.45
3 78 4893 1091.60 1101.16 0.88% 22.66 4.95 26 3961 1091.60 1111.10 1.79% 8.29 13.75
5 44 3370 669.27 681.97 1.90% 20.52 4.81 16 3125 669.27 679.10 1.47% 7.93 8.02

200

1 211 5671 1852.60 1875.21 1.22% 40.26 178.24 66 3704 1852.60 1875.51 1.24% 12.80 160.01
3 112 7365 1428.08 1441.64 0.95% 57.68 32.00 34 4844 1428.08 1444.44 1.15% 17.85 23.32
5 46 4279 852.30 867.48 1.78% 37.73 6.22 19 4001 852.30 867.42 1.77% 15.20 8.25

250

1 303 8408 2274.12 2293.87 0.87% 89.82 63.99 79 4277 2274.12 2293.49 0.85% 22.71 90.64
3 147 9746 1748.24 1764.20 0.91% 118.44 49.34 40 6191 1748.24 1765.39 0.98% 33.47 21.61
5 65 5494 1033.53 1055.22 2.10% 84.31 68.46 21 4851 1033.53 1054.21 2.00% 26.66 36.43

300

1 388 11226 2736.67 2751.82 0.55% 164.92 51.40 93 5372 2736.67 2761.15 0.89% 38.29 164.73
3 187 12002 2094.00 2104.35 0.49% 214.41 32.31 50 6844 2094.00 2106.56 0.60% 56.55 33.13
5 79 6902 1235.72 1255.16 1.57% 147.11 42.35 26 5794 1235.72 1248.57 1.04% 46.79 19.12

350

1 477 13727 3173.38 3188.32 0.47% 274.14 530.63 111 6242 3173.38 3199.79 0.83% 59.53 1012.17
3 226 15152 2418.36 2429.37 0.46% 346.35 131.20 60 8428 2418.36 2432.85 0.60% 91.38 72.25
5 93 8255 1404.23 1418.66 1.03% 233.33 38.64 31 6812 1404.23 1417.29 0.93% 74.40 51.59

400

1 596 17313 3580.96 3599.36 0.51% 431.60 411.34 121 6888 3580.96 3620.50 1.10% 85.54 1129.43
3 260 17964 2719.65 2738.64 0.70% 505.62 213.47 63 9181 2719.65 2741.33 0.80% 123.64 133.02
5 103 9253 1586.06 1603.77 1.12% 327.58 91.37 37 7505 1586.06 1603.30 1.09% 111.06 132.86

450

1 682 19942 3981.56 3997.29 0.40% 611.65 2502.78 137 7721 3981.56 4011.20 0.74% 116.24 1481.64
3 298 20372 3011.01 3026.54 0.52% 713.83 727.64 77 9782 3011.01 3028.74 0.59% 186.63 529.59
5 126 11209 1799.96 1817.65 0.98% 499.46 120.01 39 8204 1799.96 1817.77 0.99% 148.03 130.18

500

1 836 24471 4439.35 4455.34 0.36% 913.61 2437.67 153 8743 4439.35 4466.88 0.62% 166.67 2791.23
3 349 23711 3370.00 3384.41 0.43% 1022.49 169.83 80 11263 3370.00 3392.68 0.67% 245.36 660.38
5 129 12494 2006.88 2023.09 0.81% 622.25 304.67 44 9483 2006.88 2027.25 1.02% 208.37 370.29

Figure 11: Example solution of assignments to the instance with 500 patients and 5 hospitals

13

Table 29: Random coloring with column enumeration for patient-centered medical home instances

nNode nDepot
Random Coloring w/o Column Enumeration Random Coloring w/ Column Enumeration

nIter nCol LB tLB (s) UB1 Gap1 tUB1
(s) nCole te (s) UB2 Gap2 tUB2

(s)

100

1 35 1875 971.62 6.0 992.33 2.13% 5.1 19872 2.5 981.11 0.98% 6.3
3 18 2779 759.23 2.9 778.69 2.56% 5.7 48014 0.2 769.58 1.36% 22.1
5 12 2245 486.91 3.0 496.77 2.02% 3.5 23203 0.3 496.20 1.91% 4.2

150

1 43 2589 1398.61 9.1 1417.99 1.39% 19.4 31227 0.3 1405.09 0.46% 20.0
3 26 3961 1091.60 8.3 1111.10 1.79% 13.7 68022 0.3 1096.46 0.45% 5.3
5 16 3125 669.27 7.9 679.10 1.47% 8.0 39691 0.6 674.44 0.77% 6.3

200

1 66 3704 1852.60 12.8 1875.51 1.24% 160.0 43480 0.3 1860.91 0.45% 311.8
3 34 4844 1428.08 17.8 1444.44 1.15% 23.3 89259 0.6 1436.07 0.56% 543.0
5 19 4001 852.30 15.2 867.42 1.77% 8.2 82328 0.8 861.72 1.11% 206.0

250

1 79 4277 2274.12 22.7 2293.49 0.85% 90.6 46853 0.3 2283.13 0.40% 1600.7
3 40 6191 1748.24 33.5 1765.39 0.98% 21.6 118636 0.9 1757.44 0.53% 210.2
5 21 4851 1033.53 26.7 1054.21 2.00% 36.4 140038 1.3 1043.01 0.92% 177.7

300

1 93 5372 2736.67 38.3 2761.15 0.89% 164.7 67823 0.5 2743.00 0.23% 160.7
3 50 6844 2094.00 56.6 2106.56 0.60% 33.1 112536 1.2 2100.69 0.32% 150.1
5 26 5794 1235.72 46.8 1248.57 1.04% 19.1 113158 2.0 1244.15 0.68% 131.6

350

1 111 6242 3173.38 59.5 3199.79 0.83% 1012.2 76853 0.6 3200.29 0.85% -
3 60 8428 2418.36 91.4 2432.85 0.60% 72.2 153475 1.7 2425.83 0.31% 1112.1
5 31 6812 1404.23 74.4 1417.29 0.93% 51.6 140965 2.5 1411.46 0.52% 136.2

400

1 121 6888 3580.96 85.5 3620.50 1.10% 1129.4 95003 0.8 3589.30 0.23% 722.4
3 63 9181 2719.65 123.6 2741.33 0.80% 133.0 242063 2.2 2728.82 0.34% 1673.9
5 37 7505 1586.06 111.1 1603.30 1.09% 132.9 190925 3.2 1594.89 0.56% 1135.1

450

1 137 7721 3981.56 116.2 4011.20 0.74% 1481.6 107861 0.8 3997.29 0.40% 155.1
3 77 9782 3011.01 186.6 3028.74 0.59% 529.6 238318 3.0 3017.63 0.22% 351.0
5 39 8204 1799.96 148.0 1817.77 0.99% 130.2 246107 4.0 1807.56 0.42% 421.6

500

1 153 8743 4439.35 166.7 4466.88 0.62% 2791.2 114403 1.1 4447.10 0.17% 421.0
3 80 11263 3370.00 245.4 3392.68 0.67% 660.4 284804 3.5 3377.22 0.21% 265.8
5 44 9483 2006.88 208.4 2027.25 1.02% 370.3 309440 4.9 2027.25 1.02% -

–: solution time reaches 30-minute time limit.

14

Table 30: Solution summary of multi-depot VRPUD with pulse pricing algorithm

nNode nDepot
Depot 1 Depot 2 Depot 3 Depot 4 Depot 5

nRoute avgCost nRoute avgCost nRoute avgCost nRoute avgCost nRoute avgCost

100

1 25 39.88 – – – – – – – –
3 6 24.69 7 26.80 13 35.17 – – – –
5 5 23.39 5 14.63 6 18.26 2 15.51 9 20.06

150

1 38 38.01 – – – – – – – –
3 8 23.70 10 22.28 20 35.20 – – – –
5 8 21.07 7 13.79 8 16.76 3 17.93 14 16.92

200

1 51 37.08 – – – – – – – –
3 12 26.20 14 21.56 25 34.15 – – – –
5 9 20.41 10 14.94 11 16.25 5 15.60 16 18.22

250

1 63 36.67 – – – – – – – –
3 15 22.29 17 21.22 32 33.94 – – – –
5 14 20.09 10 12.76 13 14.92 7 17.28 20 17.31

300

1 76 36.58 – – – – – – – –
3 19 24.30 18 19.60 39 33.35 – – – –
5 14 20.20 13 12.72 16 15.85 10 14.03 25 16.96

350

1 88 36.56 – – – – – – – –
3 23 24.13 19 19.66 46 33.10 – – – –
5 16 18.86 15 13.72 20 15.42 9 14.64 29 16.84

400

1 100 36.21 – – – – – – – –
3 23 22.10 25 21.56 53 32.29 – – – –
5 19 18.39 17 12.11 24 15.18 11 14.52 33 16.20

450

1 113 35.56 – – – – – – – –
3 27 22.31 26 20.54 60 31.67 – – – –
5 22 18.88 19 13.07 25 14.89 12 15.80 36 16.86

500

1 126 35.55 – – – – – – – –
3 32 22.05 27 18.99 67 32.74 – – – –
5 25 18.39 21 13.22 28 15.47 13 15.16 40 16.71

15

Table 31: Solution summary of multi-depot VRPUD with random coloring pricing algorithm

nNode nDepot
Depot 1 Depot 2 Depot 3 Depot 4 Depot 5

nRoute avgCost nRoute avgCost nRoute avgCost nRoute avgCost nRoute avgCost

100

1 25 39.3 – – – – – – – –
3 6 26.5 6 25.44 13 35.66 – – – –
5 5 23.18 4 15.93 6 18.07 2 14.45 9 20.06

150

1 38 37.07 – – – – – – – –
3 9 22.89 9 22.18 20 34.88 – – – –
5 7 20.7 8 16.82 8 17.59 3 15.22 12 17.64

200

1 50 37.31 – – – – – – – –
3 11 25.16 13 20.44 26 34.5 – – – –
5 10 20.62 9 13.54 11 16.79 5 15.51 16 17.11

250

1 63 36.3 – – – – – – – –
3 16 22.91 15 21.18 32 33.6 – – – –
5 13 19.62 11 13.34 13 15.46 6 15.32 20 17.81

300

1 75 36.62 – – – – – – – –
3 19 23.59 18 19.73 39 33.33 – – – –
5 14 19.5 13 12.81 17 16.81 9 15.26 23 16.64

350

1 88 36.16 – – – – – – – –
3 20 23.55 22 20.32 46 32.86 – – – –
5 16 18.64 15 13.45 19 15.21 9 14.64 29 16.95

400

1 100 35.94 – – – – – – – –
3 24 23.44 23 20.04 53 32.2 – – – –
5 18 19.18 17 13.02 22 14.65 10 15.22 33 16.81

450

1 113 35.33 – – – – – – – –
3 26 21.99 28 20.58 59 31.72 – – – –
5 21 18.72 20 12.93 25 15.16 11 15.48 36 16.95

500

1 125 35.6 – – – – – – – –
3 31 22.37 29 20.1 65 32.38 – – – –
5 24 18.95 21 12.93 27 14.47 12 15.24 42 17.07

16

	Introduction
	Solution Methods for VRPs
	Contributions of the Paper
	Organization

	Literature Review of VRP Variants
	VRPUD and Column Generation
	Algorithms for Solving ESPPRC
	Pulse Algorithm
	Pruning Strategy
	Parallelization

	Random Coloring Algorithm
	Cutting Planes
	Column Enumeration
	Parallelization

	Computational Experiments
	Numerical Results on Single Depot VRPUD
	Solomon and Gehring & Homberger Instances
	Unitary Demand CVRP X-instances

	Numerical Results on Multi-depot VRPUD

	Conclusion
	Detailed Numerical Results
	Solomon and Gehring & Homberger Instances
	Unitary Demand CVRP X-instances
	Multi-depot VRPUD

