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We consider a general class of multi-armed bandits (MAB) problems with sub-exponential rewards. This
is primarily motivated by service systems with exponential inter-arrival and service distributions. It is
well-known that the celebrated Upper Confidence Bound (UCB) algorithm can achieve tight regret bound
for MAB under sub-Gaussian rewards. There has been subsequent work by Bubeck et al. (2013) [4]
extending this tightness result to any reward distributions with finite variance by leveraging robust mean
estimators. In this paper, we present three alternative UCB based algorithms, termed UCB-Rad, UCB-
Warm, and UCB-Hybrid, specifically for MAB with sub-exponential rewards. While not being the first
to achieve tight regret bounds, these algorithms are conceptually simpler and provide a more explicit
analysis for this problem. Moreover, we present a rental bike revenue management application and
conduct numerical experiments. We find that UCB-Warm and UCB-Hybrid outperform UCB-Rad in our
computational experiments.
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1. Introduction

Consider multi-armed bandit (MAB) problems introduced by
Robbins [16], where an agent faces a set of actions associated with
unknown reward distributions. The goal of the agent is to collect as
much reward as possible within a fixed number of rounds. A typi-
cal performance measure for MAB is cumulative regret, defined as
the difference between the collected rewards by the policy of in-
terest and by choosing the arm with the highest expected reward
in each round under the full information scenario. The literature
predominantly assumes that rewards follow sub-Gaussian (includ-
ing bounded) distributions. Indeed, employing concentration in-
equalities of the light-tailed sub-Gaussian distributions [13,2], sev-
eral classes of algorithms, including Upper Confidence Bound (UCB)
and Thompson Sampling (TS), have been analyzed with tight regret
bounds. We refer readers to textbooks by Slivkins [21], Lattimore
and Szepesvari [12], Bubeck and Cesa-Bianchi [3] for an extensive
overview of MAB.

Many real-world decision-making problems require the reward
distributions to be more general. For instance, any service systems
with exponential inter-arrival and service time do not enjoy the
sub-Gaussian property of classical MAB. To this end, we study a
general class of MAB with sub-exponential reward distributions
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(an important family of unbounded and heavy-tailed distributions).
Bubeck et al. [4] was the first to thoroughly study MAB with
heavy-tailed reward distributions. They considered rewards with
moments of order 1+ € for some € € (0, 1]. Their general ap-
proach is to replace the empirical mean in the upper confidence
index with other robust estimators, such as the truncated empirical
mean, Catoni’s M-estimator, and the median-of-means estimator.
Their results also imply that moments of order 2 (i.e., finite vari-
ance) are sufficient to obtain regret bounds of the same order as
under sub-Gaussian reward distributions.

In this paper, we present three alternative UCB-based algo-
rithms, termed UCB-Rad, UCB-Warm, and UCB-Hybrid, specifically
for MAB with sub-exponential rewards. We prove that the cu-
mulative regret of the proposed algorithms is O(y/MT log(T) +
Mlog(T)), where T is the total number of rounds and M is the
number of arms, and this result matches the lower bound of gen-
eral MAB up to a logarithmic factor. Although not being the first
to achieve tight regret bounds, these algorithms are conceptually
simpler and provide a more explicit treatment (in lieu of complex
robust estimators used in Bubeck et al. [4]) for this problem. An-
other contribution of our study is to present a rental bike revenue
management application and conduct extensive numerical studies
to evaluate the empirical performance of the proposed algorithms.
Both UCB-Warm and UCB-Hybrid outperform UCB-Rad numerically
in our experimental results.

Besides Bubeck et al. [4], there have been other studies devoted
to MAB with heavy-tailed reward distributions. Vakili et al. [22]
proposed sequential phases of exploration and exploitation. Ko-
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rda et al. [11] and Dubey and Pentland [6] modified Thompson
Sampling (TS) algorithms for heavy-tailed rewards. Xia et al. [23]
studied heavy-tailed rewards under the multi-play setting and
Dubey and Pentland [7] considered multi-agent setting. One could
potentially extend our proposed algorithms to these general set-
tings. Moreover, we believe that our algorithms find a wide range
of online learning applications, including revenue management
(e.g., [9,24,5]), online advertisement assortment (e.g., [18,1]), and
health-care applications (e.g., [25,10]).

The remainder of this paper is organized as follows. In §2, we
define the problem and present three modified UCB algorithms. In
§3, we study a stylized revenue management example with expo-
nential reward distributions (one family of sub-exponential distri-
butions) and present numerical results of proposed algorithms. In
§4, we conclude the paper and point out future research directions.

2. Three UCB based algorithms for sub-exponential rewards

Consider M arms, denoted by a set M and | M| = M. The agent
can pull one arm m € M in each round t, Vt=1,...T and receive
a random reward r,. The uncertain reward r,,; of each arm follows
a (rrfl, bm)-sub-exponential distribution with mean w,. We as-
sume that these three distribution parameters of each arm m, i.e.,
(Um, 'C,%, bm), are unknown to the agent. The goal of the agent is to
find an effective policy 7, where the agent pulls arm m;(r) € M
in round t, to maximize the expected cumulative reward by the
end of round T, denoted by J* = E[Y._, rm,r)]. Examples of
sub-exponential variables include (i) exponential random variables
and (ii) x2 random variables. We refer readers to Foss et al. [8] for
more properties of sub-exponential distributions.

Definition 1. A random variable X with mean E[X] is (72, b)-sub-
exponential if

272 1
E[exp(A(X —E[X]))] < exp <?> for [A] < %

Regret. The notion cumulative regret or simply regret is com-
monly used in online learning (see, e.g., [20]) to evaluate the per-
formance of a policy if the decision maker has limited information
of the system against the optimal performance under full informa-
tion. In this problem, the optimal policy is a static policy where
the agent always pulls the arm with the highest expected reward.
Denote the arm with the highest expected reward as m*, and thus
m* = argmaxpc o Mm. Denote the expected cumulative reward of
the optimal policy as J* and thus we have J* = T p+. Therefore,
we define the regret of this problem as follows.

Definition 2. The regret by the end of round T of policy 7 is de-
fined as R(w,T) = J* — J™.

We introduce three algorithms: UCB-Rad, UCB-Warm, and UCB-
Hybrid. UCB-Rad is a direct extension from general UCB to handle
sub-exponential rewards, by enlarging the confidence radius and
substituting Lemma 1 for Hoeffding’s inequality. A potential pit-
fall of UCB-Rad is that the resulting confidence radius could be
too large, which slows down learning. To reduce the confidence
radius of UCB-Rad, we develop another two modified UCB algo-
rithms. UCB-Warm includes a warm-up phase (uniform sampling)
before starting active exploration. UCB-Hybrid utilized hybrid con-
fidence radii along the learning process. We present an algorithm
overview in Table 1.

To provide a basis for our proposed algorithms, we now in-
voke a standard concentration inequality for sub-exponentials from
Bernstein’s inequality (see, e.g., Rigollet and Hiitter [15]).
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Lemma 1 (Concentration of sub-exponentials from Bernstein’s Inequal-
ity). Let a random variable X be (t2,b)-sub-exponential. Then for a
non-negative number t > 0:

P(X - E[X]|>1)

t2
=fee(-5m)

Assumption 1. The agent knows valid upper bounds f,fl and np for
arm m € M such that

2 ¢ 2
ingtf%; 2exp(—%) ift>r—}.

= T and N > (b /7).

Assumption 1 requires the agent to only know the upper
bounds of boundary/shape information of the distribution param-
eters. Technically, this assumption is used in Proposition 1 to mit-
igate the heavy-tailed effects. Note that UCB-Rad and UCB-Hybrid
only require Assumption 1.

Assumption 2. T > )" 1,81y log(T).

Assumption 2 is further assumed to apply UCB-Warm. It re-
quires the playing round horizon to be sufficiently long, since it
takes time for the agent to eliminate the heavy-tailed effects and
learn the underlying reward distributions through dynamic inter-
actions with the environment.

2.1. Modified UCB algorithm with enlarged radius: UCB-Rad

By the end of round t, denote the observed reward of arm m
as ?ﬁn fori=1,...,n:(m), where n;(m) is the number of observed
rewards of arm m, i.e., the number of rounds that the agent pulls
arm m. The UCB-Rad algorithm is an extension of UCB1 (see, e.g.,
Slivkins [21]). In each round t, UCB-Rad chooses the arm with the
maximum upper confidence bound of the mean of the reward.

Definition 3. The upper confidence bound of the mean of the re-
ward associated with arm m in UCB-Rad is defined as:

ne(m) s = -
UtR(m) _ Z;’=1 m i 87 log(T) i 8./ MmTm log(T) , (1)
ne(m) ng(m) ne (m)

8/ NmTm log(T)

) is the confidence radius

=2
and Radf (m) =,/ Stﬂtlfn%)m +

of arm m by end of round t.

We present UCB-Rad in Algorithm 1. Note that compared with
UCBI1, we enlarge the confidence radius from Zl%m to Radf (m)
to counteract the heavy-tailed effects of sub-exponentials.

Algorithm 1 Modified UCB algorithm with enlarged radius: UCB-
Rad.

: Input: M, T, nm, Tm, Ym e M.

: Initialize: UR (m) < +00, Yme M.

,,,,, T do

Pull arm m; = argmax,c Ut’il (m) and receive reward ?fn[.

Update U (m;) based on (1), t <t +1.

: end for

1
2
3
4:
5
6

Proposition 1 (Sub-exponential concentration bound for UCB-Rad). For

any arm m € M by theend of roundt =1, ..., T, we have
(m) »i
Z’?i T 2
P — &=l M) —RadR(m) ) =1 - =.
<Mm e (m) = e (m) | > 74
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Table 1
Overview and comparison of the three algorithms in this paper.
UCB-Rad UCB-Warm UCB-Hybrid
Assumptions Assumption 1 Assumptions 1 and 2 Assumption 1
Needs a Warm-up Phase? No Yes No
Estimated Mean SO E me(m)
. 877 log(T) | 8/Tmimlog(T) 82 log(T) . 82 log(T) 8/Tm Tm log(T)
Confidence Radius ) % VR Hybrid of |/ e and ’:t(’;'n)

Regret Bound

0 (Mlog(T) + ‘/MTlog(T))

Theorem 1.The cumulative regret of UCB-Rad is bounded by

0 (,/MT log(T) + Mlog(T)).

Note that the regret lower bound for nominal MAB is Q(+/MT +
M) (see, e.g., [21]), which suggests that our regret bound is tight,
up to a logarithmic factor.

2.2. Modified UCB algorithm with Warm-up phase: UCB-Warm

The UCB-Warm algorithm includes a Warm-up phase, which
allows to use the similar tight concentration bound as that for sub-
Gaussian tail. In the Warm-up Phase, the algorithm pulls each arm
for 871, log(T) number of rounds and collect the reward. The sec-
ond phase is Learning Phase and UCB-Warm chooses the arm with
the maximum upper confidence bound UtW (m), which is smaller
than UR(m) and is defined in Definition 4. We present UCB-Warm
in Algorithm 2.

Definition 4. The upper confidence bound of the mean of the re-
ward associated with arm m in UCB-Warm is defined as:

ng(m)
2ish

ne(m)

2
'm

872 log(T)
ne(m)

uY (m) =

(2)

=2
where Radyv (m) =,/ % is the confidence radius of arm m
by end of round t of UCB-Warm.

Algorithm 2 Modified UCB algorithm with Warm-up phase: UCB-
Warm.
1: Input: M, T, Ny, Tm, YMme M.
: Warm-up Phase:
: for me M do
Pull arm m for 8np,log(T) rounds and collect reward an, i=1
81m log(T).
Compute U (m).
: end for
: Learning Phase:
..... T do
Pull arm m; = argmaxc a( Ut"f ;(m) and receive reward frim'
Update U (my) by (2), t <t +1.
: end for

:J?wl\)

e eRNow

—_

Corollary 1 (Sub-exponential concentration bound for learning phase of
UCB-Warm). For any arm m € M, if the number of reward observations
n¢(m) > 8ny log(T), then

Y

ne(m)

872 log(T)
ne(m)

2
-7

2
'm

P

fm —

Corollary 1 shows that after observing a certain amount of ob-
servations, the negative effect of the heavy-tailed sub-exponentials
has been eliminated and the concentration inequality is as tight as
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that for sub-Gaussians. The proof is similar to that of Proposition 1
and hence omitted.

Theorem 2.The cumulative regret of UCB-Rad is bounded by

O (y/MT log(T) + M log(T)).

The regret during the warm-up phase is linear on the length
of the operation time and thus one has Rw (wycB-warm, T) =
O (M log(T)). The regret during the learning phase can be bounded
by using the same techniques for Theorem 1 and thus one has
R (mycB-warm, T) < O(y/MT log(T)). By adding these two regret
terms together, R(ycg-warm, T) < (V MT log(T) + M log(T)).

2.3. Modified UCB algorithm with hybrid radii: UCB-Hybrid

The UCB-Hybrid algorithm is a hybrid algorithm combining the
merits of UCB-Rad and UCB-Warm. Compared to UCB-Rad, UCB-
Hybrid utilizes a smaller confidence radius while pursuing the
same level of confidence, i.e., 1 — 2/T*. Compared to UCB-Warm,
UCB-Hybrid algorithm makes adaptive decisions even when the
number of trials is less than the threshold 87, log(T) while pursu-
ing the same level of confidence. The UCB-Hybrid works similarly
as UCB1 and UCB-Rad, but with two types of upper confidence
bounds. We present UCB-Hybrid in Algorithm 3.

Algorithm 3 Modified UCB algorithm with hybrid radii: UCB-
Hybrid.

1: Input: M, T, Nm, Tn, Ym € M.

2: Initialize: UY (m) < +o0, Yme M.

3:fort=1,..., T do )
4: Pull arm m = argmaxpc a( Uﬁl(m) and receive reward ?,’m.
5: if ng(m¢) < 8nm, log(T) then

ne(me) s -

. H D 8. /Mg Ty l0g(T) .
6: Update Uf'(m) = =S + S i——, t <t +1;
7. else

ne (M) s =2

. H _ LV UR 875, log(T)

8: Update U/ (my) = nr'<m[>"“ ',’;[f(mt) Jt<—t+1.
9:  end if
10: end for

Corollary 2 (Sub-exponential concentration bound for UCB-Hybrid). For
any arm m € M, then one has

. S
ng(m)
where Rad{" (m) =

872 log(T) .
+/ e otherwise.

The proof of Corollary 2 is similar to that of Proposition 1 and
hence omitted.

2
>1-—,

Mm — 74

<Rad!! (m))

8/ NmTm log(T)

ne (m)

ifne(m) < 8nm log(T) and Rad}! (m)=

Theorem 3.The cumulative regret of UCB-Hybrid is bounded by

O(/MTlog(T) + Mlog(T)).
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Index Mean of the rewards associated with each price (vp) Size Difference between prices
1 56,7 Small Median

2 5, 10, 15 Small Large

3 56,738,910 Median Median

4 5, 10, 15, 20, 25, 30 Median Large

5 20, 21, 22, 23, 24, 25 Median Small

6 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 Large Small

7 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 Large Median

8 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 Large Large

9 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 Large Small

The proof of Theorem 3 is omitted because it is similar to that
of Theorem 1 since the concentration inequalities are in the same
order. Note that because UCB-Hybrid always utilizes a smaller
confidence radius versus UCB-Rad, the theoretical regret of UCB-
Hybrid is also smaller.

3. Rental bike pricing: an application of sub-exponential MAB

We study a pricing-based revenue management problem (see,
e.g., [19]) and provide specific algorithmic steps for three algo-
rithms, UCB-Rad, UCB-Warm, and UCB-Hybrid. Consider a bike
rental company that sequentially serves T homogeneous customers
with dynamically adjusted unit rental prices m € M. Under each
price m, Vm € M, the usage duration of the customer follows
an exponential distribution with mean 1/y;,;, and thus the rent
paid to the rental company follows an exponential distribution
with mean m/yy. This assumption of exponential service time has
been empirically justified in the literature (see, e.g., [14,19]). Let-
ting vim = ¥m/m, we have the rent that the company can collect by
posting price m, Vm € M follows an exponential distribution with
mean 1/vy. The parameter vy, Vm € M is unknown to the com-
pany in the beginning, and the company aims to collect as much
as rental revenue by dynamically adjusting the offered rental price
based on the information of the historical rents. Denote the price
for customer t =1,...,T as m;. The goal of the company is to
maximize the expected cumulative revenue Zle 1/vm,.

3.1. Algorithmic steps: three UCB algorithms

We assume that (i) the bike capacity of the company is suffi-
ciently large (e.g., larger than or equal to T), (ii) the usage time of
each customer is known to the company when the service begins,
(iii) the company knows a valid lower bound of the exponential
rates of all arms based on the information of the bike rental indus-
try, i.e., the company knows v, such that vyin < vy, Yme M,
and (iv) T >> 8Mlog(T). The assumption (i) says that there are
enough capacity such that for each customer, she can immediately
start renting a bike. The assumption (ii) says that after posting
a price, the company can know the usage, as well as the rent,
before serving the next customer. The assumption (iii) says that
though the performance of each candidate price is unknown, the
company has information of the boundary case of all possible
performance scenarios. Following the definition of v, we have
1/Vmin = maxy{m/ym}, where m is the unit price and 1/yy, is the
average usage time. Therefore, the company can estimate a valid
lower bound for vy, by analyzing the maximum revenue it can
gain from one customer in the local market. Based on the known
lower bound of vy, Vm € M, we employ a uniform upper bound
where 72 =4/v2. > 72 > 12 for all m € M. The specific property
of exponential distributions results in an arm-independent value
of nm where 1y = b2,/t2 =1 for all m € M. Thus, by plugging in
these values, we conclude that this problem satisfies Assumption 1.
The assumption (iv) requires the number of customers is large
enough for the company to find the best candidate price through
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interactions, which satisfies Assumption 2. Therefore, this pricing-
based revenue management problem can be formulated as an MAB
problem with sub-exponential rewards and solve with proposed al-
gorithms.

Lemma 2. (Sub-exponential property.) If a random variable X follows
an exponential distribution with mean 1/v, then the random variable X
is (%, )-sub-exponentil.

UCB-Rad, UCB-Warm, and UCB-Hybrid. In UCB-Rad, the al-
gorithm utilizes a confidence radius as \/3210g(T)/v§]mnt(m) +
1610g(T)/Vminne (M). In UCB-Warm, the algorithm firstly posts each
price for serving 8log(T) customers, and then utilizes a confidence
radius as \/3210g(T)/vr2nmnt(m). In UCB-Hybrid, the algorithm uses
1610g(T)/vminfe (M) as the confidence radius when the number of
served customers under this specific price is less than 8log(T) and

otherwise uses \/32 log(T)/v2

min

ne(m).
3.2. Numerical experiments

We present the numerical results of different instances settings,
including various size of candidate price sets and distributional
parameters, see instance settings in Table 2. For each price set,
we consider the total time horizon T € {M x (400 + 200 x i) :i =
0,1,...,10}. For each price set under a specific T, we run 10 repli-
cates of the instances. We present the empirical average regret
over T and 2 x empirical standard deviation in Fig. 1. The cu-
mulative regret of three UCB algorithms shows the same pattern,
where the cumulative regret over time converges to zero. More-
over, the regret of UCB-Warm and UCB-Hybrid is smaller than that
of UCB-Rad. The number of rounds for choosing the optimal price
by UCB-Warm and UCB-Hybrid is significantly larger than that of
UCB-Rad and the selected prices of UCB-Warm and UCB-Hybrid
are stabilized more quickly than that of UCB-Rad (see Figure 2 and
Figure 3 in e-companion). These results show that UCB-Warm and
UCB-Hybrid have better numerical performance than UCB-Rad in
most of the scenarios.

4. Conclusion

We developed three provably tight learning algorithms, namely,
UCB-Rad, UCB-Warm, and UCB-Hybrid, for a general class of MAB
problems with sub-exponential rewards. The proposed algorithms
can be readily extended to Thompson Sampling (TS) based ap-
proaches (with the notion of Bayesian regret) if the reward has
a specific conjugate distribution (see [17]). We conducted exten-
sive numerical studies on a revenue management example with
exponential reward distributions, to analyze and compare the three
algorithms.

There are two plausible future research avenues. First, the algo-
rithmic structures, with a Warm-up Phase or using different radius
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Fig. 1. Regret over T: empirical mean £ 2 x empirical std. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

along the learning process, can also be extended to other algo-
rithms when dealing with heavy-tailed effects. Second, one may
consider exploring other specific heavy-tailed families to propose
algorithms with tight regret bounds.
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