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We consider a general class of multi-armed bandits (MAB) problems with sub-exponential rewards. This 
is primarily motivated by service systems with exponential inter-arrival and service distributions. It is 
well-known that the celebrated Upper Confidence Bound (UCB) algorithm can achieve tight regret bound 
for MAB under sub-Gaussian rewards. There has been subsequent work by Bubeck et al. (2013) [4]
extending this tightness result to any reward distributions with finite variance by leveraging robust mean 
estimators. In this paper, we present three alternative UCB based algorithms, termed UCB-Rad, UCB-
Warm, and UCB-Hybrid, specifically for MAB with sub-exponential rewards. While not being the first 
to achieve tight regret bounds, these algorithms are conceptually simpler and provide a more explicit 
analysis for this problem. Moreover, we present a rental bike revenue management application and 
conduct numerical experiments. We find that UCB-Warm and UCB-Hybrid outperform UCB-Rad in our 
computational experiments.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Consider multi-armed bandit (MAB) problems introduced by 
Robbins [16], where an agent faces a set of actions associated with 
unknown reward distributions. The goal of the agent is to collect as 
much reward as possible within a fixed number of rounds. A typi-
cal performance measure for MAB is cumulative regret, defined as 
the difference between the collected rewards by the policy of in-
terest and by choosing the arm with the highest expected reward 
in each round under the full information scenario. The literature 
predominantly assumes that rewards follow sub-Gaussian (includ-
ing bounded) distributions. Indeed, employing concentration in-
equalities of the light-tailed sub-Gaussian distributions [13,2], sev-
eral classes of algorithms, including Upper Confidence Bound (UCB) 
and Thompson Sampling (TS), have been analyzed with tight regret 
bounds. We refer readers to textbooks by Slivkins [21], Lattimore 
and Szepesvári [12], Bubeck and Cesa-Bianchi [3] for an extensive 
overview of MAB.

Many real-world decision-making problems require the reward 
distributions to be more general. For instance, any service systems 
with exponential inter-arrival and service time do not enjoy the 
sub-Gaussian property of classical MAB. To this end, we study a 
general class of MAB with sub-exponential reward distributions 
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(an important family of unbounded and heavy-tailed distributions). 
Bubeck et al. [4] was the first to thoroughly study MAB with 
heavy-tailed reward distributions. They considered rewards with 
moments of order 1 + ε for some ε ∈ (0, 1]. Their general ap-
proach is to replace the empirical mean in the upper confidence 
index with other robust estimators, such as the truncated empirical 
mean, Catoni’s M-estimator, and the median-of-means estimator. 
Their results also imply that moments of order 2 (i.e., finite vari-
ance) are sufficient to obtain regret bounds of the same order as 
under sub-Gaussian reward distributions.

In this paper, we present three alternative UCB-based algo-
rithms, termed UCB-Rad, UCB-Warm, and UCB-Hybrid, specifically 
for MAB with sub-exponential rewards. We prove that the cu-
mulative regret of the proposed algorithms is O (

√
MT log(T ) +

M log(T )), where T is the total number of rounds and M is the 
number of arms, and this result matches the lower bound of gen-
eral MAB up to a logarithmic factor. Although not being the first 
to achieve tight regret bounds, these algorithms are conceptually 
simpler and provide a more explicit treatment (in lieu of complex 
robust estimators used in Bubeck et al. [4]) for this problem. An-
other contribution of our study is to present a rental bike revenue 
management application and conduct extensive numerical studies 
to evaluate the empirical performance of the proposed algorithms. 
Both UCB-Warm and UCB-Hybrid outperform UCB-Rad numerically 
in our experimental results.

Besides Bubeck et al. [4], there have been other studies devoted 
to MAB with heavy-tailed reward distributions. Vakili et al. [22]
proposed sequential phases of exploration and exploitation. Ko-
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rda et al. [11] and Dubey and Pentland [6] modified Thompson 
Sampling (TS) algorithms for heavy-tailed rewards. Xia et al. [23]
studied heavy-tailed rewards under the multi-play setting and 
Dubey and Pentland [7] considered multi-agent setting. One could 
potentially extend our proposed algorithms to these general set-
tings. Moreover, we believe that our algorithms find a wide range 
of online learning applications, including revenue management 
(e.g., [9,24,5]), online advertisement assortment (e.g., [18,1]), and 
health-care applications (e.g., [25,10]).

The remainder of this paper is organized as follows. In §2, we 
define the problem and present three modified UCB algorithms. In 
§3, we study a stylized revenue management example with expo-
nential reward distributions (one family of sub-exponential distri-
butions) and present numerical results of proposed algorithms. In 
§4, we conclude the paper and point out future research directions.

2. Three UCB based algorithms for sub-exponential rewards

Consider M arms, denoted by a set M and |M| = M . The agent 
can pull one arm m ∈ M in each round t, ∀t = 1, . . . T and receive 
a random reward rm . The uncertain reward rm of each arm follows 
a (τ 2

m, bm)-sub-exponential distribution with mean μm . We as-
sume that these three distribution parameters of each arm m, i.e., 
(μm, τ 2

m, bm), are unknown to the agent. The goal of the agent is to 
find an effective policy π , where the agent pulls arm mt(π) ∈ M
in round t , to maximize the expected cumulative reward by the 
end of round T , denoted by Jπ = E[∑T

t=1 rmt (π)]. Examples of 
sub-exponential variables include (i) exponential random variables 
and (ii) χ2 random variables. We refer readers to Foss et al. [8] for 
more properties of sub-exponential distributions.

Definition 1. A random variable X with mean E[X] is (τ 2, b)-sub-
exponential if

E[exp(λ(X −E[X]))] ≤ exp

(
λ2τ 2

2

)
for |λ| ≤ 1

b
.

Regret. The notion cumulative regret or simply regret is com-
monly used in online learning (see, e.g., [20]) to evaluate the per-
formance of a policy if the decision maker has limited information 
of the system against the optimal performance under full informa-
tion. In this problem, the optimal policy is a static policy where 
the agent always pulls the arm with the highest expected reward. 
Denote the arm with the highest expected reward as m∗ , and thus 
m∗ = argmaxm∈Mμm . Denote the expected cumulative reward of 
the optimal policy as J∗ and thus we have J∗ = Tμm∗ . Therefore, 
we define the regret of this problem as follows.

Definition 2. The regret by the end of round T of policy π is de-
fined as R(π, T ) = J∗ − Jπ .

We introduce three algorithms: UCB-Rad, UCB-Warm, and UCB-
Hybrid. UCB-Rad is a direct extension from general UCB to handle 
sub-exponential rewards, by enlarging the confidence radius and 
substituting Lemma 1 for Hoeffding’s inequality. A potential pit-
fall of UCB-Rad is that the resulting confidence radius could be 
too large, which slows down learning. To reduce the confidence 
radius of UCB-Rad, we develop another two modified UCB algo-
rithms. UCB-Warm includes a warm-up phase (uniform sampling) 
before starting active exploration. UCB-Hybrid utilized hybrid con-
fidence radii along the learning process. We present an algorithm 
overview in Table 1.

To provide a basis for our proposed algorithms, we now in-
voke a standard concentration inequality for sub-exponentials from 
Bernstein’s inequality (see, e.g., Rigollet and Hütter [15]).
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Lemma 1 (Concentration of sub-exponentials from Bernstein’s Inequal-
ity). Let a random variable X be (τ 2, b)-sub-exponential. Then for a 
non-negative number t ≥ 0:

P (|X −E[X]| ≥ t)

≤
{
2exp

(
− t2

2τ 2

)
if 0 ≤ t ≤ τ 2

b
; 2exp

(
− t

2b

)
if t ≥ τ 2

b

}
.

Assumption 1. The agent knows valid upper bounds τ̃ 2
m and ηm for 

arm m ∈M such that

τ̃ 2
m ≥ τ 2

m and ηm ≥ (b2m/τ 2
m).

Assumption 1 requires the agent to only know the upper 
bounds of boundary/shape information of the distribution param-
eters. Technically, this assumption is used in Proposition 1 to mit-
igate the heavy-tailed effects. Note that UCB-Rad and UCB-Hybrid 
only require Assumption 1.

Assumption 2. T � ∑
m∈M 8ηm log(T ).

Assumption 2 is further assumed to apply UCB-Warm. It re-
quires the playing round horizon to be sufficiently long, since it 
takes time for the agent to eliminate the heavy-tailed effects and 
learn the underlying reward distributions through dynamic inter-
actions with the environment.

2.1. Modified UCB algorithm with enlarged radius: UCB-Rad

By the end of round t , denote the observed reward of arm m
as r̂im for i = 1, . . . , nt(m), where nt(m) is the number of observed 
rewards of arm m, i.e., the number of rounds that the agent pulls 
arm m. The UCB-Rad algorithm is an extension of UCB1 (see, e.g., 
Slivkins [21]). In each round t , UCB-Rad chooses the arm with the 
maximum upper confidence bound of the mean of the reward.

Definition 3. The upper confidence bound of the mean of the re-
ward associated with arm m in UCB-Rad is defined as:

U R
t (m) =

∑nt (m)
i=1 r̂im
nt(m)

+
√

8τ̃ 2
m log(T )

nt(m)
+ 8

√
ηmτ̃m log(T )

nt(m)
, (1)

and RadR
t (m) =

√
8τ̃ 2

m log(T )
nt (m)

+ 8
√

ηm τ̃m log(T )

nt (m)
is the confidence radius 

of arm m by end of round t .

We present UCB-Rad in Algorithm 1. Note that compared with 
UCB1, we enlarge the confidence radius from 

√
2 log(T )

nm
to RadR

t (m)

to counteract the heavy-tailed effects of sub-exponentials.

Algorithm 1 Modified UCB algorithm with enlarged radius: UCB-
Rad.
1: Input: M, T , ηm, ̃τm, ∀m ∈M.
2: Initialize: U R

0 (m) ← +∞, ∀m ∈M.
3: for t = 1, . . . , T do
4: Pull arm mt = argmaxm∈MU R

t−1(m) and receive reward r̂imt
.

5: Update U R
t (mt ) based on (1), t ← t + 1.

6: end for

Proposition 1 (Sub-exponential concentration bound for UCB-Rad). For 
any arm m ∈M by the end of round t = 1, . . . , T , we have

P

(∣∣∣∣∣μm −
∑nt (m)

i=1 r̂im
nt(m)

∣∣∣∣∣ ≤ RadR
t (m)

)
≥ 1− 2

T 4
.
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Table 1
Overview and comparison of the three algorithms in this paper.

UCB-Rad UCB-Warm UCB-Hybrid

Assumptions Assumption 1 Assumptions 1 and 2 Assumption 1
Needs a Warm-up Phase? No Yes No
Estimated Mean

∑nt (m)
i=1 r̂im/nt (m)

Confidence Radius
√

8τ̃ 2
m log(T )
nt (m)

+ 8
√

ηm τ̃m log(T )

nt (m)

√
8τ̃ 2

m log(T )
nt (m)

Hybrid of
√

8τ̃ 2
m log(T )
nt (m)

and
8
√

ηm τ̃m log(T )

nt (m)

Regret Bound O
(
M log(T ) + √

MT log(T )
)

Theorem 1. The cumulative regret of UCB-Rad is bounded by

O  
(√

MT log(T ) + M log(T )
)
.

Note that the regret lower bound for nominal MAB is �(
√
MT +

M) (see, e.g., [21]), which suggests that our regret bound is tight, 
up to a logarithmic factor.

2.2. Modified UCB algorithm with Warm-up phase: UCB-Warm

The UCB-Warm algorithm includes a Warm-up phase, which 
allows to use the similar tight concentration bound as that for sub-
Gaussian tail. In the Warm-up Phase, the algorithm pulls each arm 
for 8ηm log(T ) number of rounds and collect the reward. The sec-
ond phase is Learning Phase and UCB-Warm chooses the arm with 
the maximum upper confidence bound UW

t (m), which is smaller 
than U R

t (m) and is defined in Definition 4. We present UCB-Warm 
in Algorithm 2.

Definition 4. The upper confidence bound of the mean of the re-
ward associated with arm m in UCB-Warm is defined as:

UW
t (m) =

∑nt (m)
i=1 r̂im
nt(m)

+
√

8τ̃ 2
m log(T )

nt(m)
(2)

where RadW
t (m) =

√
8τ̃ 2

m log(T )
nt (m)

is the confidence radius of arm m
by end of round t of UCB-Warm.

Algorithm 2 Modified UCB algorithm with Warm-up phase: UCB-
Warm.
1: Input: M, T , ηm, ̃τm, ∀m ∈M.
2: Warm-up Phase:
3: for m ∈M do
4: Pull arm m for 8ηm log(T ) rounds and collect reward r̂im, i = 1, . . . ,

8ηm log(T ).
5: Compute Ut (m).
6: end for
7: Learning Phase:
8: for t = tL , . . . , T do
9: Pull arm mt = argmaxm∈MUW

t−1(m) and receive reward r̂imt
.

10: Update UW
t (mt ) by (2), t ← t + 1.

11: end for

Corollary 1 (Sub-exponential concentration bound for learning phase of 
UCB-Warm). For any arm m ∈M, if the number of reward observations 
nt(m) ≥ 8ηm log(T ), then

P

⎛
⎝

∣∣∣∣∣μm −
∑nt (m)

i=1 r̂im
nt(m)

∣∣∣∣∣ ≤
√

8τ̃ 2
m log(T )

nt(m)

⎞
⎠ ≥ 1− 2

T 4
.

Corollary 1 shows that after observing a certain amount of ob-
servations, the negative effect of the heavy-tailed sub-exponentials 
has been eliminated and the concentration inequality is as tight as 
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that for sub-Gaussians. The proof is similar to that of Proposition 1
and hence omitted.

Theorem 2. The cumulative regret of UCB-Rad is bounded by
O (

√
MT log(T ) + M log(T )).

The regret during the warm-up phase is linear on the length 
of the operation time and thus one has RW (πUCB-Warm, T ) =
O (M log(T )). The regret during the learning phase can be bounded 
by using the same techniques for Theorem 1 and thus one has 
RL(πUCB-Warm, T ) ≤ O (

√
MT log(T )). By adding these two regret 

terms together, R(πUCB-Warm, T ) ≤ (
√
MT log(T ) + M log(T )).

2.3. Modified UCB algorithm with hybrid radii: UCB-Hybrid

The UCB-Hybrid algorithm is a hybrid algorithm combining the 
merits of UCB-Rad and UCB-Warm. Compared to UCB-Rad, UCB-
Hybrid utilizes a smaller confidence radius while pursuing the 
same level of confidence, i.e., 1 − 2/T 4. Compared to UCB-Warm, 
UCB-Hybrid algorithm makes adaptive decisions even when the 
number of trials is less than the threshold 8ηm log(T ) while pursu-
ing the same level of confidence. The UCB-Hybrid works similarly 
as UCB1 and UCB-Rad, but with two types of upper confidence 
bounds. We present UCB-Hybrid in Algorithm 3.

Algorithm 3 Modified UCB algorithm with hybrid radii: UCB-
Hybrid.
1: Input: M, T , ηm, ̃τm, ∀m ∈M.
2: Initialize: UH

0 (m) ← +∞, ∀m ∈M.
3: for t = 1, . . . , T do
4: Pull arm mt = argmaxm∈MUH

t−1(m) and receive reward r̂imt
.

5: if nt (mt ) < 8ηmt log(T ) then

6: Update UH
t (mt ) =

∑nt (mt )
i=1 r̂imt
nt (mt )

+ 8
√

ηmt τ̃mt log(T )

nt (mt )
, t ← t + 1;

7: else

8: Update UH
t (mt ) =

∑nt (mt )
i=1 r̂imt
nt (mt )

+
√

8τ̃ 2
mt log(T )

nt (mt )
, t ← t + 1.

9: end if
10: end for

Corollary 2 (Sub-exponential concentration bound for UCB-Hybrid). For 
any arm m ∈M, then one has

P

(∣∣∣∣∣μm −
∑nt (m)

i=1 r̂im
nt(m)

∣∣∣∣∣ ≤ RadH
t (m)

)
≥ 1− 2

T 4
,

where RadH
t (m) = 8

√
ηm τ̃m log(T )

nt (m)
if nt(m) < 8ηm log(T ) and RadH

t (m) =√
8τ̃ 2

m log(T )
nt (m)

otherwise.

The proof of Corollary 2 is similar to that of Proposition 1 and 
hence omitted.

Theorem 3. The cumulative regret of UCB-Hybrid is bounded by
O (

√
MT log(T ) + M log(T )).
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Table 2
Instance settings.
Index Mean of the rewards associated with each price (νm) Size Difference between prices

1 5, 6, 7 Small Median
2 5, 10, 15 Small Large
3 5, 6, 7, 8, 9, 10 Median Median
4 5, 10, 15, 20, 25, 30 Median Large
5 20, 21, 22, 23, 24, 25 Median Small
6 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 Large Small
7 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 Large Median
8 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 Large Large
9 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 Large Small
The proof of Theorem 3 is omitted because it is similar to that 
of Theorem 1 since the concentration inequalities are in the same 
order. Note that because UCB-Hybrid always utilizes a smaller 
confidence radius versus UCB-Rad, the theoretical regret of UCB-
Hybrid is also smaller.

3. Rental bike pricing: an application of sub-exponential MAB

We study a pricing-based revenue management problem (see, 
e.g., [19]) and provide specific algorithmic steps for three algo-
rithms, UCB-Rad, UCB-Warm, and UCB-Hybrid. Consider a bike 
rental company that sequentially serves T homogeneous customers 
with dynamically adjusted unit rental prices m ∈ M. Under each 
price m, ∀m ∈ M, the usage duration of the customer follows 
an exponential distribution with mean 1/γm and thus the rent 
paid to the rental company follows an exponential distribution 
with mean m/γm . This assumption of exponential service time has 
been empirically justified in the literature (see, e.g., [14,19]). Let-
ting νm = γm/m, we have the rent that the company can collect by 
posting price m, ∀m ∈M follows an exponential distribution with 
mean 1/νm . The parameter νm, ∀m ∈ M is unknown to the com-
pany in the beginning, and the company aims to collect as much 
as rental revenue by dynamically adjusting the offered rental price 
based on the information of the historical rents. Denote the price 
for customer t = 1, . . . , T as mt . The goal of the company is to 
maximize the expected cumulative revenue 

∑T
t=1 1/νmt .

3.1. Algorithmic steps: three UCB algorithms

We assume that (i) the bike capacity of the company is suffi-
ciently large (e.g., larger than or equal to T ), (ii) the usage time of 
each customer is known to the company when the service begins, 
(iii) the company knows a valid lower bound of the exponential 
rates of all arms based on the information of the bike rental indus-
try, i.e., the company knows νmin such that νmin ≤ νm, ∀m ∈ M, 
and (iv) T >> 8M log(T ). The assumption (i) says that there are 
enough capacity such that for each customer, she can immediately 
start renting a bike. The assumption (ii) says that after posting 
a price, the company can know the usage, as well as the rent, 
before serving the next customer. The assumption (iii) says that 
though the performance of each candidate price is unknown, the 
company has information of the boundary case of all possible 
performance scenarios. Following the definition of νm , we have 
1/νmin ≥ maxm{m/γm}, where m is the unit price and 1/γm is the 
average usage time. Therefore, the company can estimate a valid 
lower bound for νmin by analyzing the maximum revenue it can 
gain from one customer in the local market. Based on the known 
lower bound of νm, ∀m ∈ M, we employ a uniform upper bound 
where τ̃ 2 = 4/ν2

min ≥ τ̃ 2
m ≥ τ 2

m for all m ∈M. The specific property 
of exponential distributions results in an arm-independent value 
of ηm where ηm = b2m/τ 2

m = 1 for all m ∈ M. Thus, by plugging in 
these values, we conclude that this problem satisfies Assumption 1. 
The assumption (iv) requires the number of customers is large 
enough for the company to find the best candidate price through 
731
interactions, which satisfies Assumption 2. Therefore, this pricing-
based revenue management problem can be formulated as an MAB 
problem with sub-exponential rewards and solve with proposed al-
gorithms.

Lemma 2. (Sub-exponential property.) If a random variable X follows 
an exponential distribution with mean 1/ν , then the random variable X
is ( 4

ν2 , 2ν )-sub-exponential.

UCB-Rad, UCB-Warm, and UCB-Hybrid. In UCB-Rad, the al-
gorithm utilizes a confidence radius as 

√
32 log(T )/ν2

minnt(m) +
16 log(T )/vminnt(m). In UCB-Warm, the algorithm firstly posts each 
price for serving 8 log(T ) customers, and then utilizes a confidence 
radius as 

√
32 log(T )/ν2

minnt(m). In UCB-Hybrid, the algorithm uses 
16 log(T )/vminnt(m) as the confidence radius when the number of 
served customers under this specific price is less than 8 log(T ) and 
otherwise uses 

√
32 log(T )/ν2

minnt(m).

3.2. Numerical experiments

We present the numerical results of different instances settings, 
including various size of candidate price sets and distributional 
parameters, see instance settings in Table 2. For each price set, 
we consider the total time horizon T ∈ {M × (400 + 200 × i) : i =
0, 1, . . . , 10}. For each price set under a specific T , we run 10 repli-
cates of the instances. We present the empirical average regret 
over T and 2 × empirical standard deviation in Fig. 1. The cu-
mulative regret of three UCB algorithms shows the same pattern, 
where the cumulative regret over time converges to zero. More-
over, the regret of UCB-Warm and UCB-Hybrid is smaller than that 
of UCB-Rad. The number of rounds for choosing the optimal price 
by UCB-Warm and UCB-Hybrid is significantly larger than that of 
UCB-Rad and the selected prices of UCB-Warm and UCB-Hybrid 
are stabilized more quickly than that of UCB-Rad (see Figure 2 and 
Figure 3 in e-companion). These results show that UCB-Warm and 
UCB-Hybrid have better numerical performance than UCB-Rad in 
most of the scenarios.

4. Conclusion

We developed three provably tight learning algorithms, namely, 
UCB-Rad, UCB-Warm, and UCB-Hybrid, for a general class of MAB 
problems with sub-exponential rewards. The proposed algorithms 
can be readily extended to Thompson Sampling (TS) based ap-
proaches (with the notion of Bayesian regret) if the reward has 
a specific conjugate distribution (see [17]). We conducted exten-
sive numerical studies on a revenue management example with 
exponential reward distributions, to analyze and compare the three 
algorithms.

There are two plausible future research avenues. First, the algo-
rithmic structures, with a Warm-up Phase or using different radius 
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Fig. 1. Regret over T : empirical mean ± 2 × empirical std. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)
along the learning process, can also be extended to other algo-
rithms when dealing with heavy-tailed effects. Second, one may 
consider exploring other specific heavy-tailed families to propose 
algorithms with tight regret bounds.
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