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Abstract. In this paper, we consider an integrated vehicle routing and service scheduling
problem for serving customers in distributed locations who need pick-up, drop-off, or de-
livery services. We take into account the random trip time, nonnegligible service time, and
possible customer cancellations, under which an ill-designed schedule may lead to unde-
sirable vehicle idleness and customer waiting. We build a stochastic mixed-integer pro-
gram to minimize the operational cost plus expected penalty cost of customers’ waiting
time, vehicles’ idleness, and overtime. Furthermore, to handle real-time arrived service re-
quests, we develop K-means clustering-based algorithms to dynamically update planned
routes and schedules. The algorithms assign customers to vehicles based on similarities
and then plan schedules on each vehicle separately. We conduct numerical experiments
based on diverse instances generated from census data and data from the Ford Motor
Company’s GoRide service, to evaluate result sensitivity and to compare the in-sample
and out-of-sample performance of different approaches. Managerial insights are provided
using numerical results based on different parameter choices and uncertainty settings.
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1. Introduction
Ford Motor Company’s nonemergency medical trans-
portation (NEMT) provides reservation-based pick-up
and drop-off services to patients who are elderly, dis-
abled, or have chronic diseases, for traveling to medi-
cal requests (see Dickey 2018). The NEMT type of
businesses requires a large fleet of vehicles to serve a
large number of dispersed patients during peak
hours, and these vehicles may be idle when the num-
ber of service requests is low. Some patients may can-
cel existing reservations, resulting in further system
idleness. The trip time and service duration could also
be random due to hourly traffic conditions and the
difficulty of loading/unloading some patients, respec-
tively. In NEMT, most patients reportedly wait for 10
to 20 minutes for their scheduled trips (see Bryant
2019). Through better designed vehicle routes and
schedules for NEMT, one can potentially reduce the
total number of vehicles in operations and cover new
service regions only using the existing vehicles, while

maintaining high vehicle utilization rates to attain
financial profits and high quality of service.

Through popularizing NEMT types of systems,
under-served populations having scarce mobility re-
sources but high needs can potentially have reliable
and affordable transportation. Indeed, an NEMT-like
system can be extended for medical home care delivery
or grocery delivery, in which vehicles take certified
nurses or medicines/goods to patients/customers rath-
er than having them travel to hospitals/grocery stores.
Amid the COVID-19 pandemic, this type of service is
extremely important to self-quarantined COVID-19 pa-
tients with mild conditions and also to patients having
chronic diseases who need to regularly visit their doc-
tors and thus could have high cross-infection risk. The
latter are also the most vulnerable population groups
with the highest fatality rate among all COVID-19 in-
fected case due to their weak health conditions (see
Centers for Disease Control and Prevention 2020). Pro-
viding such a service can alleviate some stress on
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existing medical systems (e.g., hospitals, clinics, and ur-
gent care units) that need to focus on treating COVID-
19 patients with critical conditions.

For goods, people, and product delivery, existing
models and approaches are mainly based on variants of
the vehicle routing problem (VRP) (Laporte 1992, 2007).
In a capacitated VRP (CVRP), multiple vehicles are dis-
patched from a single depot to meet all demand from
customers and each vehicle seeks a feasible route within
its capacity to deliver to or pick up from a set of cus-
tomers before returning to the depot, so that the total
traveling distance of all vehicles is minimized (see, e.g.,
Toth and Vigo 2002, Ralphs et al. 2003, Fukasawa et al.
2006). The VRP with time windows (VRPTW) studies
problems where each customer should be served only
within a specified time interval or time window (Bräysy
and Gendreau 2005a). In a more specific context, the
pick-up and delivery problem with time windows
(PDPTW) (see, e.g., Savelsbergh and Sol 1995, Parragh
et al. 2008) assumes that each request specifies the size
of the load needed to be transported, the locations
where it is to be picked up (the origins), and the loca-
tions where it is to be delivered (the destinations).

The NEMT settings are the most relevant to
PDPTW, except we also take into account nonnegli-
gible service duration at patients’ locations, service
cancellations, and the uncertainties. Moreover, we
consider a hybrid case having both static and dynamic
operations, such that the reservation-based system
schedules a set of known service requests first, and
then accommodates a few requests that may arrive on
short notice in real-time operations. This needs to dy-
namically reschedule existing unfinished services and
to compute the new schedule efficiently.

In this paper, we combine appointment scheduling
models with PDPTW while taking into account several
types of uncertainties. Two settings of problems are
considered: (i) in the static setting, we assume that all
service requests are known before planning, based on
which we make an initial schedule and route plan; (ii)
in the dynamic setting, customers arrive during real-
time operations before their requested pick-up time. All
the origin-destination (O-D) pairs and time windows
are known at the time of reserving or announcing ser-
vice requests; however, both the service duration and
travel time could be stochastic. We also incorporate ran-
dom cancellations such that customers who request
services have a certain chance of not showing up.

We model the static problem as a two-stage stochas-
tic mixed-integer linear program (TS-MILP) with the
objective to minimize the total operational cost of dis-
patching and routing vehicles, plus the expected pen-
alty cost of customer waiting, vehicle idleness, and
overtime for ensuring high quality of service. Specifi-
cally, in the first stage, we assign all customers to dif-
ferent vehicles and also make routing decisions

for each vehicle. After observing random service du-
ration/travel time/customer cancellations, we formu-
late a linear program to calculate customers’ waiting
time, vehicles’ idle time, and overtime. A rolling hori-
zon method is proposed to extend the TS-MILP to
solve dynamic vehicle routing and service scheduling
for real-time operations. Solving the TS-MILP could
suffer from incapability of attaining optimal solutions
at scale. Notice that due to the nonzero service time
and uncertainties of multiple parameters, we cannot
employ the traditional branch-and-price algorithm for
VRP variants for solving the TS-MILP. To speed up
computation for realistic problem sizes, we develop
several heuristic approaches that are all based on the
K-means clustering algorithm (Jain 2010). They first
group all the customers into K clusters based on their
O-D pair similarities, assign one vehicle to each clus-
ter, and then make a schedule for each vehicle sepa-
rately. Some heuristics also perform a swapping step
after getting an initial clustering result based on cus-
tomers’ time windows to distribute them more evenly
to each vehicle. We are able to compute a real-world
data set from Ford as well as large-scale instances via
the integration of the aforementioned optimization
and data clustering techniques.

The remainder of the paper is organized as follows.
In Section 2, we review the most relevant papers on
variants of VRP and appointment scheduling. In
Section 3, we describe stochastic optimization models
of the static and dynamic problems. In Section 4, we
develop clustering-based heuristics to improve the
efficiency of the dynamic approach for serving large-
scale regions. In Section 5, numerical studies are con-
ducted using instances generated based on the real
data of Ford Motor Company’s GoRide service. We
demonstrate the efficacy of our approaches under di-
verse settings and reveal managerial insights for dif-
ferent uncertainty realizations. Section 6 concludes the
paper and states future research directions.

2. Literature Review
Our problem is closely related to VRPTW (see, e.g.,
Desrochers et al. 1992; Bräysy and Gendreau 2005a,
b), the dial-a-ride problem (DARP) (see, e.g., Cordeau
and Laporte 2007, Berbeglia et al. 2012), the pick-up
and delivery problem (PDP) (see, e.g., Savelsbergh
and Sol 1995, Berbeglia et al. 2010), and appointment
scheduling problems (see, e.g., Gupta and Denton
2008, Erdogan and Denton 2013, Berg et al. 2014,
Deng and Shen 2016, Jiang et al. 2017). We refer to
Laporte (1992, 2007) for classical models for VRP and
the related exact algorithms, classical heuristics, and
metaheuristics. Cordeau and Laporte (2007) review
the literature of DARP, demonstrate the main features
of the problem, and provide a summary of the most
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important models and algorithms. Savelsbergh and
Sol (1995) distinguish PDP from standard VRP and
present a survey of its models and solution ap-
proaches, with a primary focus on deterministic
problems. Berbeglia et al. (2010) and Pillac et al. (2013)
provide thorough reviews of dynamic PDP and VRP,
respectively, where objects or people have to be
served in real-time. Cömert et al. (2017) consider VRP
with hard time windows (VRPHTW) using a cluster-
first route-second hierarchical approach, where the
authors first assign customers to vehicles using differ-
ent clustering algorithms and then solve a VRPHTW
as an MILP. Although the idea is similar to our work,
the authors do not take into account any parameter
uncertainty. In the context of dynamic and stochastic
VRP, Bertsimas and Van Ryzin (1991, 1993) and
Bertsimas and Simchi-Levi (1996) develop and review
the greedy heuristics for solving VRP with stochastic
dynamically arriving demand, mainly based on
queueing theories. On the other hand, Dror et al.
(1989) review the stochastic programming models for
VRPTW with stochastic demand and propose a new
solution frame using a Markov decision process
(MDP). Powell (1996), Powell et al. (2000), and Simao
et al. (2009) apply the MDP to the truckload assign-
ment problem and develop a deterministic myopic
method, a stochastic dynamic model, and approxi-
mate dynamic programming for estimating future
cost functions, respectively. Bent and Van Hentenryck
(2004) consider online stochastic multiple vehicle rout-
ing with time windows in which customers arrive dy-
namically and the goal is to maximize the number of
customers served. The authors propose a multiple sce-
nario approach (MSA) that continuously generates
routing plans for scenarios including known and fu-
ture requests. Later, Bent and Van Hentenryck (2007)
propose to include customer waiting and relocation in
the online algorithm to achieve better results. More re-
cently, Bertsimas et al. (2019) specifically consider on-
line vehicle routing solved by ride-sharing companies
and propose an optimization framework and an
efficient algorithm to allow solving the problem on
demand at a large scale, demonstrated by numerical
results using real New York City taxi data.

For appointment scheduling, Gupta and Denton
(2008) present a comprehensive review on models and
methods used in healthcare systems. Pinedo (2012)
summarizes all deterministic/stochastic scheduling
models and general-purpose procedures of dealing
with scheduling problems in practice. Zacharias and
Pinedo (2014) study an appointment scheduling prob-
lem with customers’ no-show behavior and overbook-
ing. Denton and Gupta (2003) model a two-stage
stochastic linear program to optimize appointment
times for a sequence of jobs with uncertain duration,
and Erdogan and Denton (2013) extend their results to

handle no-shows and to the multistage dynamic set-
ting. Berg et al. (2014) formulate a two-stage stochastic
mixed-integer program for optimizing booking and
appointment scheduling under uncertainty of proce-
dure times and patient attendance.

Recently, Jiang et al. (2017) consider a single-server
appointment scheduling problem with random
no-shows and service duration. They derive mixed-
integer nonlinear programming reformulations, valid
inequalities, and convex-hull representations under
specially structured ambiguity sets for distributionally
robust appointment scheduling. Deng and Shen
(2016) investigate a multiserver scheduling problem
with random service duration and minimize the cost
of operating servers, subject to a joint chance con-
straint limiting the risk of a server running overtime.

For home healthcare (HHC) routing and scheduling,
Fikar and Hirsch (2017) present a comprehensive re-
view with a focus on the various problem settings and
solution approaches. Among them, Heching et al.
(2019) use a logic-based Benders’ decomposition
(LBBD) to solve the assignment-scheduling problem
and propose several subproblem relaxations to speed
up the computation. Most literature consider static in-
formation, that is, all data are known in advance and no
uncertainty in the parameter is considered. Several pa-
pers deal with parameter uncertainties and among
them, Lanzarone andMatta (2014) and Carello and Lan-
zarone (2014) consider demand uncertainty. They for-
mulate the nurse-to-patient assignment problem as a ro-
bust optimization model and propose both analytical
and heuristic-based approaches. Yuan et al. (2015) study
random service time and propose column generation
(CG) and several heuristics to solve a stochastic pro-
gram for optimizing routing and scheduling decisions.
The random service time is also considered in Zhan
and Wan (2018) and Zhan et al. (2021), where the for-
mer formulates a scenario-based mixed-integer pro-
gram (SBMIP) and develops an algorithm based on
tabu search to efficiently solve the problem, and the lat-
ter proposes an L-shaped method with valid
inequalities to speed up the solution process. An easy-
to-implement heuristic based on a modified traveling
salesman problem (MTSP) is also developed in Zhan
et al. (2021) for solving large-scale instances. We com-
pare our work with the literature in Table 1, where we
also present the maximum size of instances that each
paper solves in the last two columns with | J | and | I | be-
ing the number of vehicles and customers, respectively.

2.1. Main Contributions of This Paper
To our best knowledge, this paper is the first to
combine PDPTW with appointment scheduling and
incorporates various uncertainty sources, including
time-related uncertainty and cancellations. Our sto-
chastic optimization model comprehensively captures
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a wide spectrum of decisions made in related applica-
tions, ranging from vehicle routing and service se-
quencing, to specific vehicle arrival and departure
times for appointment scheduling. We decompose the
model into two stages, such that the second-stage
problem can efficiently compute waiting time, idle
time, and overtime of an optimal schedule for each ve-
hicle via a linear programming model. Moreover, us-
ing the clustering-based heuristics, we are able to
quickly compute high-quality solutions for large-scale
instances with 40 vehicles and 450 demand requests,
within several seconds.

3. Optimization Models
We first consider a reservation-based transportation
system, where customers need to provide trip infor-
mation including O-D pairs and pick-up time win-
dows when reserving their trips. After gathering the
information of all the trips, the operating coordina-
tor needs to assign them to a fleet of vehicles and
make an initial schedule while considering the
uncertainty in the service duration/travel time/
customer cancellations. We illustrate the problem
in Figure 1, where we have one depot (denoted by
a square), three vehicles (denoted by different
colored lines), and seven customers with O-D pairs
(Oi,Di), i � 1, : : : , 7 (denoted by black dots). The ar-
rows indicate an optimal solution of vehicle routing
decisions, based on which we can make correspond-
ing scheduling decisions.

All the time-related notations (t and T) marked on
the figure are explained in Section 3.1 and modeled by
random variables. Moreover, each customer who
made a reservation may not show up with a certain
chance, which we can also model using random varia-
bles having 0 or 1 realized values. Next, we define our
notation in Section 3.1, and present formulations of
static and dynamic problems in Sections 3.2 and 3.3,
respectively.

3.1. Problem Description and Notation
We use I, J, K to denote the sets of customers, vehicles,
and service slots in each vehicle, respectively. (Each
service slot can only fulfill one request and a slot can
be used only when we have used up all the earlier
slots in the same vehicle.) For notation simplicity, we
assume that all vehicles have the same number of
slots, |K |, as the maximum number of service requests
a vehicle can serve within the operational time frame.
Note that this assumption is made without loss of
generality, as if no request is assigned to any remain-
ing slots on a vehicle, the vehicle returns to the depot
and therefore the depot will occupy all the remaining
slots. Let Oi, Di be the origin and destination of the
trip requested by customer i, [ai, āi] be the requested
pick-up time window of customer i, Lj and cj be the to-
tal operating time and operational cost of vehicle j for
all i ∈ I and j ∈ J. For example, if the operational time
frame is between 4 a.m. and 7 p.m., we set Lj � 60 mi-
nutes per hour × 15 hours � 900 minutes. Denote
cw, cu, co as the unit penalty costs of customers’ wait-
ing time, vehicles’ idle time, and overtime, respective-
ly. (For notation simplicity, we assume that these costs
are the same across all customers or vehicles. They
can easily be differentiated for individual customers or
vehicles without affecting our models later.) Let N be
the set of locations, containing all the origins, destina-
tions, and the depot, that is,N � {Oi,Di}i∈I⋃{depot}.

Parameter ξ denotes the overall vector of uncertain
parameters and let P be its probability distribution.
Without loss of generality, we consider discrete distri-
bution P and a finite set of realizations of the random
vector ξ. In practice, if the true distribution P of ran-
dom variable ξ is continuous, we apply the Monte
Carlo sampling approach to replace P with an empiri-
cal distribution constructed by |Ω | scenarios, with
each scenario ω ∈Ω having an equal probability
pω � 1= |Ω |. The resulting problem with the con-
structed scenarios is called the sample average ap-
proximation (SAA) problem (see Kleywegt et al.
2002). Specifically, for each scenario ω ∈Ω, we denote
τn1,n2(ω) as the travel time between n1 and n2 for all
n1, n2 ∈N, T̂Oi(ω), T̂Di(ω) as the service duration at
customer i’s origin and destination, respectively,
and Ti(ω) as the total time for serving customer i,
where Ti(ω) � T̂Oi(ω) + τOi ,Di(ω) + T̂Di(ω). Also, for all
i1, i2 ∈ I, let ti1,i2(ω) be the transition time from
customer i1 to customer i2, and for all i ∈ I, let
tdepot,i(ω), ti,depot(ω) be the transition time from the
depot to customer i and from customer i to the depot,
respectively. Finally, we consider qi(ω) as a random
service cancellation outcome of customer i, which
equals 1 if customer i shows up when an assigned ve-
hicle arrives, and 0 otherwise, for all i ∈ I. The overall
random vector is ξ � (T, T̂ ,τ, t,q). (Throughout the

Figure 1. A Single-Depot Vehicle Routing and Appointment
Scheduling Problem
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paper, we use bold symbols to denote the vector form
of a decision variable or a parameter.)

We define binary variables xj, yij, u
j
i,k, u

j
depot,k ∈

0, 1{ } for all i ∈ I, j ∈ J, k ∈ K such that xj � 1 if we op-
erate vehicle j, yij � 1 if we assign customer i to vehi-
cle j, uji,k � 1 if customer i is assigned to the kth slot of
vehicle j, and ujdepot,k � 1 if the depot is assigned to
the kth slot of vehicle j, respectively. We also define
continuous variables r jk ≥ 0 for all k ∈ K, j ∈ J as the
planned start time of kth request on vehicle j. Then,
in the second stage, for each scenario ω ∈Ω, varia-
bles wj

k(ω) represent the customer’s waiting time at
the beginning of the kth slot on vehicle j, ljk(ω) the ve-
hicle’s idle time at the end of the kth slot on vehicle j,
lj0(ω) the vehicle’s idle time before the first request
starts on vehicle j, Wj(ω) the overtime of vehicle j,
and Vj(ω) the total travel time of vehicle j for all
j ∈ J, k ∈ K.
Figure 2 depicts the relationship between the deci-

sion variables and parameters. Given a planned
schedule (r jk) with observed service duration (Ti(ω))
and transition time (ti1,i2(ω)), one can easily calculate
the waiting (wj

k(ω)), idling (ljk(ω)), and overtime
(Wj(ω)) for each scenario ω based on this figure. We
formalize it in (2a)–(2f), which can be transformed to a
set of linear constraints.

3.2. Static Vehicle Routing and
Service Scheduling

We formulate a TS-MILP to model the vehicle routing
and service scheduling problem, where the first-stage
problem decides which vehicles to operate (xj), the as-
signment of each customer to vehicles (yij), the relative
slots in each vehicle (uji,k), and the planned start time
on each vehicle (r jk). Let Q(u, r,ω) be the total penalty
cost of waiting, idling, and overtime given first-
stage decision variables u, r and the realization of

uncertainty ξ in scenario ω. Then, the SAA reformula-
tion can be represented as follows:

min
∑
j∈J

cjxj +
∑
ω∈Ω

pωQ(u, r,ω) (1a)

subject to
∑
j∈J

yij� 1, ∀i ∈ I, (1b)

yij ≤ xj, ∀i ∈ I, j ∈ J, (1c)∑
k∈K

uji,k � yij, ∀i ∈ I, j ∈ J, (1d)

∑
i∈I

uji,k + ujdepot,k � xj, ∀k ∈ K, j ∈ J, (1e)

∑
i∈I

uji,k+1 ≤
∑
i∈I

uji,k, ∀k � 1, : : : , | K | −1, j ∈ J, (1f)

∑
i∈I

aiu
j
i,k + 1−∑

i∈I
uji,k

( )
Lj ≤ r jk

≤∑
i∈I

āiu
j
i,k + 1−∑

i∈I
uji,k

( )
Lj, ∀k ∈ K, j ∈ J, (1g)

r jk+1 ≥ r jk, ∀k � 1, : : : , | K | −1, j ∈ J, (1h)

xj ∈ 0, 1{ }, yij ∈ 0, 1{ }, uji,k ∈ 0, 1{ }, r jk ≥ 0,

∀i ∈ I, k ∈ K, j ∈ J: (1i)

The objective (1a) minimizes the total operational cost
and an expected second-stage cost Q(u, r,ω). Con-
straints (1b)–(1d) ensure that every request is assigned
to a slot on an operating vehicle. Constraints (1e) as-
sign at most one request to each slot on each vehicle,
and if there are no requests assigned to this slot, the
vehicle returns to the depot. Constraints (1f) prohibit
assigning a request to a slot on a vehicle if an earlier
slot is vacant. Constraints (1g) ensure that each re-
quest on vehicle j starts within its requested time win-
dow, and if no requests are assigned to vehicle j at the
kth slot, rjk is set as the time limit Lj for vehicle j.

Figure 2. Relationship Between Planned Schedule and RealizedWaiting Time, Idle Time, and Overtime Depending on Ob-
served Time Duration in One Scenario for a Vehicle
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Constraints (1h) ensure the requests’ start times are in
line with their order.

In the second stage under scenario ω, the waiting
time wj

1(ω), wj
k+1(ω), idle time lj0(ω), ljk(ω), and over-

time Wj(ω) for all k � 1, : : : , | K | −1 and j ∈ J can be re-
spectively measured by

wj
1(ω) �max 0,

∑
i∈I

tdepot,i(ω)uj
i,1 − r j1

{ }
, (2a)

lj0(ω) �max 0, r j1 −
∑
i∈I

tdepot,i(ω)uji,1
{ }

, (2b)

wj
k+1(ω) �max {0, r jk +wj

k(ω) +
∑
i∈I

qi(ω)Ti(ω)uj
i,k

+ ∑
i1, i2∈I

⋃
depot{ }

ti1,i2(ω)uj
i1,k

uj
i2,k+1 − r jk+1},

(2c)

ljk(ω) �max 0, r jk+1 − r jk +wj
k(ω) +

∑
i∈I

qi(ω)Ti(ω)uj
i,k

({

+ ∑
i1, i2∈I

⋃
depot{ }

ti1,i2(ω)uj
i1,k

uj
i2,k+1)}, (2d)

Wj(ω) �max 0, r j|K| +wj
|K|(ω) +

∑
i∈I

qi(ω)Ti(ω)uj
i,|K|

{
+∑

i∈I
ti,depot(ω)uj

i,|K| − Lj}, (2e)

lj|K|(ω) �max 0, Lj − r j|K| +wj
|K|(ω) +

∑
i∈I

qi(ω)Ti(ω)uj
i,|K|

({

+∑
i∈I

ti,depot(ω)uj
i,|K|)}: (2f)

In (2a)–(2f), the actual transition time ti1,i2(ω) between
customer i1 and customer i2 depends on the service
cancellation probability of customer i1, that is, if i1

cancels the service, then the vehicle will travel from
i1’s origin to i2’s origin directly; otherwise, the vehicle
travels from i1’s destination to i2’s origin. The calcula-
tions of the random travel time are given by

ti1,i2(ω) � qi1(ω)τDi1 ,Oi2
(ω) + (1− qi1(ω))τOi1 ,Oi2

(ω),
for all i1, i2 ∈ I. Specially, for each i ∈ I, we have

tdepot,i(ω) � τdepot,Oi(ω),
ti,depot(ω) � qi(ω)τDi ,depot(ω) + (1− qi(ω))τOi,depot(ω):

We illustrate different cases of waiting and idle time
in Figure 3, where we assume that on vehicle j, the kth
and (k+ 1)th slots are assigned to customers i1 and i2,
respectively. The upper figure shows the scenario
when we have idle time at the end of the kth slot,
whereas the lower figure shows the scenario when we
have waiting time at the beginning of (k+ 1)th slot.
Note that the differences between wj

k+1(ω) and ljk(ω)
for all k � 0, : : : , | K | −1 and the difference between
Wj(ω) and ljk(ω) are always constants. That is, in sce-
nario ω1 (see upper figure in Figure 3), we have

wj
k+1(ω) − lik(ω) � −lik(ω)

� r jk +wj
k(ω) +Ti1(ω) + ti1,i2(ω) − r jk+1,

and in scenarioω2 (see lowerfigure in Figure 3),we have

wj
k+1(ω) − lik(ω) � wj

k+1(ω)
� r jk +wj

k(ω) +Ti1(ω) + ti1,i2(ω) − r jk+1,

both of which share the same right-hand side. One
can argue for the difference between Wj(ω) and ljk(ω)
using the same logic. This leads to the following for-
mulation of the second-stage problem.

For a given VRP solution u, r and scenario ω ∈Ω,
we formulate Q(u, r,ω) �

Figure 3. Illustration of Waiting and Idle Time of Slots k and k + 1 on Vehicle j
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min
∑
j∈J

∑
k∈K

(cwwj
k(ω) + clljk(ω)) + coWj(ω) + cdVj(ω)

( )
(3a)

subject to wj
1(ω)− lj0(ω)�

∑
i∈I

tdepot,i(ω)uj
i,1−r j1, ∀j∈ J,

(3b)

wj
k+1(ω)− ljk(ω)−wj

k(ω)� rjk+
∑
i∈I

qi(ω)Ti(ω)uj
i,k

+ ∑
i1,i2∈I

⋃
depot{ }

ti1,i2(ω)uj
i1,k

uj
i2,k+1−rjk+1,

∀k�1, : :: , |K | −1, j∈ J, (3c)

Wj(ω)− lj|K|(ω)−wj
|K|(ω)� rj|K| +

∑
i∈I

qi(ω)Ti(ω)uj
i,|K|

+∑
i∈I

ti,depot(ω)uj
i,|K| −Lj, ∀j∈ J, (3d)

Vj(ω)�
(∑
k∈K

∑
i∈I

qi(ω)Ti(ω)uj
i,k+

∑
i∈I

tdepot,i(ω)uj
i,1

+∑|K|−1
k�1

∑
i1,i2∈I

⋃
depot{ }

ti1,i2(ω)uj
i1,k

uj
i2,k+1

+∑
i∈I

ti,depot(ω)uj
i,K

)
, ∀j∈ J, (3e)

wj
k(ω)≥0, lj0(ω)≥0, ljk(ω)≥0,Wj(ω)≥0,Vj(ω)≥0, ∀k∈K: (3f)

The objective function (3a) minimizes the total penalty
of waiting, idleness, overtime and total travel time in
scenario ω. Constraints (3b) and (3c) yield either the
waiting time of the (k+ 1)th slot or the vehicle’s idle
time after finishing the kth slot, both of which will
have the values as in (2a)–(2d). Similarly, constraints
(3d) yield either the overtime Wj(ω) or the idle time
lj|K|(ω). Constraints (3e) calculate the total travel time of
each vehicle by summing over the service time in each
slot, and the travel time between any two adjacent
slots. All the waiting, idleness, and overtime variables
are nonnegative according to constraints (3f).

The second-stage value function Q(u, r,ω) is a
nonconvex function with respect to u because of the
bilinear term uji1,ku

j
i2,k+1 on the right-hand-side of (3c).

Given binary-valued uji1,k and uji2,k+1, we provide exact
reformulations of the bilinear terms zji1,i2,k � uji1,ku

j
i2,k+1

in (3c) using McCormick envelopes:

zji1,i2,k ≤ uji1,k, ∀i1, i2 ∈ I
⋃

depot
{ }

, k � 1, : : : , |K | −1, j ∈ J, (4a)

zji1,i2,k ≤ uji2,k+1, ∀i1, i2 ∈ I
⋃

depot
{ }

, k � 1, : : : , |K | −1, j ∈ J, (4b)

zji1,i2,k ≥ uji1,k +uji2,k+1 − 1, ∀i1, i2 ∈ I
⋃

depot
{ }

, k� 1, : : : ,

|K | −1, j ∈ J: (4c)

We add variables zji1,i2,k, ∀i1, i2 ∈ I
⋃

depot
{ }

, k � 1, : : : ,
|K | −1, j ∈ J and constraints (4a)–(4c) into the first-
stage problem. As a result, the second-stage value
function is now a convex function in terms of the first-

stage decisions u, r, z, and we denote it as Q(u, r, z,ω)
to replace the originalQ(u, r,ω) in Equations (1a)–(1i).

In online Appendix A, we provide modeling details
of three extensions to model (1) for accommodating var-
ious practical issues, including allowing ride pooling
and multiple customers sharing one ride (extension I),
enforcing deadlines for dropping off customers (exten-
sion II), and allowing vehicles dispatched frommultiple
depots (extension III).

3.3. Dynamic Vehicle Routing and
Service Scheduling

Model (1) provides initial routes and schedules for
each vehicle on a day-to-day basis. However, in the
NEMT application, trip schedulers often observe that
customers request trips in a short notice. A common
mechanism for handling dynamic demand arrivals is
to use a rolling horizon-based approach, in which
plans are made using all known information within a
planning horizon, but decisions are not finalized until
necessitated by a deadline. At each execution of the al-
gorithm, the planning horizon is rolledforward to in-
clude more information, and we resolve the problem
and implement some decisions with updated input
data and parameters. Next, we elaborate how to ex-
tend our models in a rolling horizon framework to
handle real-time service requests.

We can optimize model (1) with updated parame-
ters each time when a new request becomes known,
and assume that no new service request will be con-
sidered while executing the algorithm. Specifically,
when a new request shows up at time s, we assume
the following sequence of events. First, we update all
vehicles’ current status, including the time when they
become available, r̂js, and the corresponding locations
when they become available, Ô

j
s, for all j ∈ J. There

are five possible cases when a new request can occur
(i.e., time s) and we specify their corresponding
(r̂js, Ô

j
s)-values in Figure 4 and as follows:

• Cases 1 and 2: When the assigned customer i1 is
waiting for vehicle j or has already boarded, we let the
vehicle finish its current request and then become
available. In these two cases, we set r̂ js � r jk +wj

k(ω1) +
qi1(ω1)Ti1(ω1), Ô j

s �Di1 if customer i1 does not cancel
the reservation (i.e., qi1(ω1) � 1), and Ô

j
s �Oi1 otherwise.

• Case 3: When the vehicle is traveling from the
previous customer’s destination to the next customer’s
origin and ljk(ω1) ≥ 0, we set r̂ js � r jk +wj

k(ω1) + qi1(ω1)
Ti1(ω1) + ti1,i2(ω1) and Ô

j
s �Oi2 .• Case 4: When the vehicle is idle, we set r̂js � s and

Ô
j
s �Oi2 .• Case 5: When the vehicle is traveling from the last

customer’s destination to the next customer’s origin
and wj

k+1(ω2) ≥ 0, we let the vehicle finish the (k+ 1)th
slot’s request and set r̂ js � r jk+1 +wj

k+1(ω2) + qi2(ω2)
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Ti2(ω2), Ôj
s �Di2 if customer i2 does not cancel the res-

ervation (i.e., qi2(ω2) � 1), and Ô
j
s �Oi2 otherwise.

Let Is be the set of all service requests announced
prior to time s, excluding the ones that have been
either completed or started (e.g., customers are wait-
ing or on board). We then reoptimize the vehicle-
customer assignments and corresponding schedules
by solving a two-stage stochastic programming model
similar to model (1), where the only differences are
that we replace all I with Is and drop the binary varia-
bles xi, meaning that all currently operating vehicles
will be in use. The second-stage problem is also simi-
lar to model (3), except that we replace all I with Is
and replace constraints (3b) with

wj
1(ω) − lj0(ω) � r̂js +

∑
i∈I

t
Ô

j
s,Oi

(ω)uji,1 − rj1, ∀j ∈ J,

because vehicle j will start its service at the available
time r̂js and the origin of it now becomes Ô

j
s, rather

than the depot.
We summarize the detailed steps of the rolling

horizon method based on the optimization models for
dynamic routing and scheduling in Algorithm 1.

Algorithm 1 (Rolling Horizon Method Based on Optimi-
zation Models)

1: Solve the initial scheduling-routing problem (1)
and obtain an optimal schedule and routing plan (ū, r̄).

2: Sample one out-of-sample scenario ω and imple-
ment ū, r̄ based on scenario ω.

3:while a new request i∗ shows up at time s do
4: Initialize Is � ∅.
5: for each customer i in I do
6: if the announce time s is earlier than the

planned start time of i in r̄ then
7: Put customer i into Is.
8: else
9: Customer i has been served.
10: end if
11: end for
12: Put customer i∗ into Is and update I � Is.
13: Gather all vehicles’ status (r̂js, Ô

j
s) according to

Cases 1–5.
14: Solve a variant of model (1) with input

(r̂js, Ô
j
s, I) and obtain an optimal schedule and

routing plan (ū, r̄).
15: Sample one out-of-sample scenario ω and im-

plement ū, r̄ based on scenario ω.
16: end while

Notice that Algorithm 1 is not restricted to
optimization-based models. In fact, as long as there is a
way to update scheduling and routing plans, we can al-
ways apply the rolling horizon method. For example,
we can combine Algorithm 1 with clustering-based
heuristics, which we will introduce next.

4. Two-Phase Heuristics Using
Data Clustering

Although we can attain solution optimality by solving
model (1), a drawback is the scalability of the ap-
proach and how quickly we can use it to derive dy-
namic solutions using a rolling horizon computational
framework. We will later show that the optimization
models do not scale well, and they are not able to
solve small- or medium-sized instances within a two-
hour computational time limit. In this section, based
on the spatial-temporal features of demand in NEMT
types of delivery services, we design vehicle routes
and service schedules using machine learning and
data classification algorithms. The goal is to improve
computational time and to derive easy-to-implement
decision policies under diverse sources of uncertain-
ties. The main idea of these heuristics is to break
the first-stage assignment-scheduling problem into
two steps. In the first step, we cluster | I | customers
into | J | groups based on their O-D pairs’ similarities
using data clustering methods (Jain 2010), such as
K-means, K-medoids, and so on. We can also modify
and improve the initial solutions by ensuring that
customers’ time windows do not significantly overlap
in the same cluster. Then, we assign each cluster of
customers to a vehicle and plan a schedule on each
vehicle, which can be solved in parallel, based on
sorted time windows of the customers in each corre-
sponding cluster. (Note that once we know the cus-
tomer-to-vehicle assignment and their service order,
deciding an optimal schedule such as vehicle arrival
time at each individual customer can be done quickly
via solving a small-size linear programming model
(3) described in Section 3.2.) We describe details of
the two heuristics, K-means and K-means with swap,
in Sections 4.1 and 4.2, respectively, for clustering
geographically similar customers.

4.1. Heuristic 1: K-Means
For each customer i, we use Google API to extract the
latitude and longitude of the origin and destination,
denoted by Olat

i ,Olong
i ,Dlat

i ,Dlong
i . Then we get a point-

by-feature matrix di{ }|I|i�1 where each di is a four-
dimensional real vector representing the geographical
information of customer i, that is, di � (Olat

i ,Olong
i ,

Dlat
i ,Dlong

i ). Via K-means clustering, we aim to partition
the | I | data points into | J | (≤| I |) sets S � S1,S2, : : : ,S|J|

{ }
to minimize the within-cluster sum of squares (WCSS).
Formally, the problem can be cast as:

min
m,µ

∑
i∈I

∑
j∈J

mji || di −µj ||2

s:t:
∑
j∈J

mji� 1, ∀i ∈ I,

mji ∈ 0, 1{ }, ∀j ∈ J, i ∈ I,

(5)
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where µj is the mean (centroid) of cluster Sj calculated
by (7), and mji � 1 if data point di belongs to cluster j,
and mji � 0 otherwise.

The K-means is a special form of the well-known
expectation-maximization (EM) algorithm (Moon
1996), where in our case, the E-step is assigning the
data points to the closest cluster and the M-step is
computing the centroid of each cluster. Specifically,
we first randomly select | J | data points di1 ,di2 , : : : ,di|J|
as the centroids where ij ∈ I for all j ∈ J. In the E-step,
we fix µj � dij for all j ∈ J and solve problem (5), lead-
ing to the following optimal solution:

m∗
ji � 1, if j � argmin j′∈J || di −µj′ ||2,

0, otherwise:

{
(6)

In the M-step, given the optimal assignment mji �m∗
ji

for all i ∈ I, j ∈ J, we optimize the objective function (5)
over µ to obtain an updated set of centroids:

µ∗
j �

∑|I|
i�1mjidi∑|I|
i�1mji

, ∀j ∈ J: (7)

We then fix µj � µ∗
j for all j ∈ J and keep iterating over

these two steps until there is no change to the cent-
roids, that is, the assignment of data points to clusters
is not changing. We summarize the detailed step of the
K-means clustering algorithm in Algorithm 2.

Algorithm 2 (Use K-Means to Cluster jI j Customers into
jJ j Groups)

1: Given O-D pairs of | I | customers, we use
Google API to extract a point-by-feature matrix

(Olat
i ,Olong

i ,

{
Dlat

i ,Dlong
i )}Ii�1.

2: Data standardization: rescale the data matrix
along each column to get mean 0 and standard
deviation 1.

3: Initialization: randomly select | J | data points for
the centroids without replacement.

4: while the assignment of data points to clusters is
changing do

5: Assignment step: assign each data point to the
cluster with the nearest centroid following
Equation (6).

6: Update step: compute the centroids for the clus-
ters by taking the average of the all data points
that belong to each cluster following Equation (7).

7: end while

Given | J | clusters of customers, we assign one vehi-
cle to each cluster and then solve model (1) with fixed
(x,y)-values but without the second-stage cost to ob-
tain a schedule and routing plan efficiently, which we
denote as KM for short. One can also incorporate the
second-stage cost as we discuss in the next heuristic.

4.2. Heuristic 2: K-Means with Swap
Algorithm 2 does not consider the information of time
windows when performing clustering. Therefore, we
may end up with a cluster of customers who have simi-
lar planned start time and short time windows, resulting
in either infeasible solutions or extremely long waiting
time for some customers in the scheduling phase. More-
over, as we cannot control the number of data points in
each cluster, some vehicles may have extremely high de-
mand volumes whereas others are idle in most of the op-
eration time. In this heuristic, we propose a swapping
method to distribute all customers more evenly to each
vehicle, in terms of their time window distributions and
the number of customers in each cluster.

Specifically, we first apply Algorithm 2 to obtain an
initial clustering result S � S1,S2, : : : ,S|J|

{ }
. Let Skj be the

kth element of cluster j. For each cluster j ∈ J, we evaluate
the distance of time windows between any two adjacent
customers Skj and Sk+1j . If the distance is smaller than a
given threshold T, then we reassign either Skj or S

k+1
j to

the cluster jmin that has the smallest number of customers
currently, that is, jmin � argminj∈Jlength(Sj), where we
use length(Sj) to represent the number of customers in
cluster Sj. The selection criteria is to make sure that after
inserting one of the customers into cluster jmin, the dis-
tances of time windows between the customer and the
previous/next ones are no less than the threshold T. As
a result, we can ensure that there is enough time for each
vehicle to transit between customers, and the numbers of
customers in all the clusters are similar. We summarize
the algorithmic details in Algorithm 3.

Algorithm 3 (K-Means with Swap to Improve the
Clustering Results by K-Means in Algorithm 2)

1: Perform Algorithm 2 to get an initial clustering re-
sult S � S1,S2, : : : ,S|J|

{ }
.

2: Set the iteration number ℓ � 1 and the maximum
iterations to ℓmax.

3:while not converged and ℓ < ℓmax do
4: Calculate the cluster index with the smallest

length, that is, jmin � argmin j∈Jlength(Sj).
5: for j � 1, : : : , | J | and j � jmin do
6: Sort customers in Sj based on their time

windows.
7: Set k � 0.
8: while k < length(Sj) − 1 do
9: Denote prevk and nextk as the previous and

next customer index of customer Skj that be-
long to cluster jmin.

10: if | āSkj − āSk+1j
|< T then

11: if | āSk+1j
− āprevk+1 |≥ T and | āSk+1j

− ānextk+1 |
≥ T then

12: Reassign customer Sk+1j to cluster jmin.
13: else if | āSkj − āprevk |≥ T and | āSkj − ānextk |≥ T then
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14: Reassign customer Skj to cluster jmin.
15: else
16: k � k+ 1.
17: end if
18: else
19: k � k+ 1.
20: end if
21: endwhile
22: end for
23: Check for convergence: if in every cluster, the

time windows of any two adjacent customers
are no less than the threshold T, then set con-
verged to True; otherwise, set converged to
False.

24: ℓ � ℓ+ 1.
25: end while

Similarly, after obtaining the assignment decisions
from Algorithm 3, one can solve model (1) either with
the second-stage cost Q(u, r,z,ω) to account for the
randomness (denoted as KMSS), or without it to ob-
tain solutions in a quick fashion (denoted as KMS).
We will compare these two approaches in Section 5.

5. Computational Results
We compare different approaches for the static and
dynamic vehicle routing and service scheduling prob-
lem using a diverse set of instances generated based
on features of real data collected from operating Ford
Motor Company’s NEMT service in 2019. We conduct
in-sample and out-of-sample tests of model (1) and
the heuristic-based Algorithms 2 and 3 for handling
uncertain service duration and cancellations. In Sec-
tion 5.1, we describe detailed parameter settings in the
baseline case and our experimental setup. We vary pa-
rameter choices to conduct sensitivity studies and re-
port in-sample results in Section 5.2, and compare

out-of-sample results of the optimization model and
clustering-based heuristics in Section 5.3. In Section
5.4, we present the SAA analysis results, and in Sec-
tions 5.5 and 5.6, we present the results of applying
the rolling horizon approach on small- and large-scale
instances, respectively. We use Gurobi 9.0.3 coded in
Python 3.6.8 for solving all mixed-integer program-
ming models. Our numerical tests are conducted on a
Windows 2012 server with 128 gigabytes (GB) RAM
and an Intel 2.2 GHz processor.

5.1. Experimental Design and Setup
We generate customer time windows according to the
temporal demand density reported by Ford GoRide
Health team, shown in Figure 5, where the x-axis
represents the requested pick-up time in hours and
the y-axis indicates the kernel density. From Figure 5,
vehicles start to operate at 4 a.m. and all services end
at 7 p.m., yielding a total operational time of 15 hours.
Therefore, Lj � 900 minutes for all j ∈ J. For each cus-
tomer i ∈ I, we sample the earliest pick-up time ai ∈
[0, 900] following the given density function, and then
set āi � ai + 30, meaning that each customer has a
30-minute time window.

During the year 2019, the NEMT service was oper-
ated in Sterling Heights, Wayne, Southfield, Dear-
born, Taylor, and Ann Arbor in Southeast Michigan,
mainly for transporting patients who are elderly,
disabled, or have chronic disease from and to their
medical requests. We display the population estimate,
percentage of people who are either over 65 years old
or disabled in the six cities in the first three columns
of Table 2, based on the most updated information
posted by the U.S. Census Bureau (2010). In Table 2,
we also calculate the number of target customers and
the corresponding demand ratios in each city in the
last two columns. In our baseline case, the total

Figure 4. Illustration of Rolling Horizon Timings
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number of customers and vehicles in Southeast
Michigan are | I |� 100, | J |� 20, respectively, and we
also decompose the whole service area into six service
regions (cities) while distributing all the customers/
vehicles to each city according to their demand ratios,
with one depot in each city.

We select representative hospitals and senior hous-
ing locations in the six cities and mark them in red
and blue, respectively, in Figure 6, with a total of 23
hospitals and 48 senior housing locations, from which
we can sample O-D pairs of all service requests
received. Then we use Google API to calculate the
average travel time between each pair of the sampled
locations, serving as the empirical mean of the ran-
dom travel time. For example, we use τ̃Oi,Di to denote
the empirical mean of the random travel time τOi,Di

from Oi to Di, which follows a normal distribution
N (τ̃Oi,Di , τ̃Oi,Di × σ) with the standard deviation σ be-
ing 0.2 in the baseline case.

The service in the customers’ origins/destinations
mainly includes loading/unloading them to/from the
vehicle, which takes 20/5 minutes on average in the
Ford’s NEMT system. Therefore, we let the service
duration T̂Oi and T̂Di follow normal distributions
N (20,20 × σ) and N (5, 5 × σ), respectively. Recall that
we use qi(ω) to denote the cancellation status of

customer i in each scenario ω ∈Ω, which equals 1 if
the customer shows-up, and 0 otherwise. We sample
all the qi(ω)-values following a Bernoulli distribution
with showing-up probability � 0:89 as according to
Ford, the cancellation rate of all trips is 11% in 2019.
According to our discussions with the Ford GoRide
Health team, we set the daily operational cost of a ve-
hicle as cj � $240 for all vehicles j ∈ J and set the per-
minute penalty cost of vehicle being idle, customer
waiting, and overtime as cl � $1, cw � $2, co � $10, re-
spectively. As Ford hires vans and drivers on a daily
basis, it does not have significant cost associated with
the total travel time and, accordingly, we set the per-
minute penalty cost of vehicles’ travel time as cd � $0,
but will present the total travel time results for com-
paring different approaches.

We focus on the operations of NEMT in Ann Arbor,
Michigan, in Sections 5.2–5.5, which has | I |� 100 ×
16% � 16 customers and | J |� 20 × 16% � 3 vehicles in
the baseline case according to Table 2. For the
in-sample tests of TS-MILP, the number of scenarios is
set to |Ω |� 10, and we evaluate solutions given by
TS-MILP and clustering-based heuristics on 1,000 in-
dependently generated out-of-sample scenarios. Note
that in the objective function (3a), we do not penalize
the first idle time of each vehicle (i.e., lj0), as we can

Figure 5. Density of Requested Pick-Up Time During 4 a.m. to 7 p.m. in a Daily Base

Table 2. Distributions of Elderly (over 65 Years Old) and Populations with Disability Based on Census Data in Six Cities in
Southeast Michigan

City Population Percent of customers Number of customers Proportion

Sterling Heights 132,964 26% 34,571 29%
Wayne 16,896 28.5% 4,815 4%
Southfield 73,158 31.1% 22,752 19%
Dearborn 94,333 21.2% 19,999 17%
Taylor 61,148 29.4% 17,978 15%
Ann Arbor 121,890 15.6% 19,015 16%
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always inform the vehicles to start at the requested
pick-up time of their first customer. Therefore, we ex-
clude lj0 in our results when calculating average idle
time per vehicle. We compute instances based on the
whole Southeast Michigan service zone in Section 5.6
for demonstrating the scalability results of TS-MILP
and service clustering heuristics.

5.2. In-Sample Results and Sensitivity Analysis
of TS-MILP

Using the baseline setting, we first vary the standard
deviation σ from 0.2 to 0.8 to see the effects of the
variances of travel time and service duration on
in-sample solutions, reported in Table 3. We then vary
the showing-up probability for each customer from
0.2 to 0.8 while keeping σ � 0:2 to illustrate the im-
pacts of service cancellation, presented in Table 4.

In Tables 3 and 4, ID, OT, TT, and WT denote the
average idle/overtime/total travel time (in minutes)
per vehicle per scenario and average waiting time (in
minutes) per customer per scenario across all
in-sample scenarios. The last two columns display the
overall objective value of model (1) in dollars and the

computational time in seconds, respectively. From Ta-
bles 3 and 4, when increasing the variance of travel
time and service duration, the overall objective values
and the average waiting time both increase; when
fewer customers cancel their reservations, the overall
objective values, average idle time, and waiting time
are better. Therefore, to obtain satisfactory quality of
service, one key component is to maintain low vari-
ance of travel time and service duration and low can-
cellation rates.

To illustrate how the vehicles’ routes and schedules
change in response to different customers’ show-up
probability, we present each vehicle’s operational sta-
tus when q̂i � 0:2, 0:8 in Figure 7, where the x-axis de-
notes the time during operation with 4 a.m. being 0
and 7 p.m. being 900 minutes, and the y-axis denotes
the three vehicle statuses: working, waiting, and idle.
From Figure 7, (a)–(c), when customers all show up
with a lower probability, the three vehicles start to
work at different times of day (i.e., around 7 a.m., 12
p.m., and 5 p.m., respectively), so as to minimize the
average idle time. On the contrary, when q̂i � 0:8, the

Table 3. In-Sample Results of TS-MILP with Varying σ

σ ID (min.) WT (min.) OT (min.) TT (min.) Obj. ($) Time (sec.)

0.2 218.08 0.41 0.00 217.89 1,387.34 103.00
0.4 218.80 1.13 0.00 222.28 1,412.71 138.71
0.6 222.68 1.96 0.00 221.69 1,450.77 186.22
0.8 229.40 2.69 0.09 220.16 1,496.81 221.67

Table 4. In-Sample Results of TS-MILP with Varying
Show-Up Probability q̂i

q̂i ID (min.) WT (min.) OT (min.) TT (min.) Obj. ($) Time (sec.)

0.2 325.04 2.21 0.00 71.50 1,765.91 95.15
0.4 311.35 1.02 0.00 116.87 1,686.78 111.71
0.6 276.51 0.50 0.00 158.02 1,565.64 134.08
0.8 237.51 0.35 0.00 198.84 1,443.62 132.05

Figure 6. Map of Southeast Michigan with 48 Senior Housing Locations Marked by Blue and 23 Hospitals Marked by Red
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tasks are distributed to vehicles more evenly, as de-
picted in Figure 7, (d)–(f).

Next, we fix the baseline setting and vary | J | from 3
to 5 and | I | from 16 to 32 in Table 5, where we mark
the optimality gaps of the instances that cannot be
solved within 7,200 seconds in the bracket. From
Table 5, the waiting time per customer is almost negli-
gible compared with the idle time per vehicle. More-
over, the total travel time per vehicle decreases when
we have more vehicles and it almost doubles when
we increase the number of customers from 16 to 32. It
is also noteworthy that TS-MILP cannot be solved to
optimality within two hours when we have 32 cus-
tomers, which brings the need to use heuristics to de-
rive suboptimal solutions in a quick fashion.

5.3. Out-of-Sample Tests and Results of
Different Approaches

We first compare the out-of-sample results of solving
model (1) using off-the-shelf solvers directly and us-
ing the classical Benders’ decomposition algorithm
presented in online Appendix B (Benders 1962) in
Table 6, where we record the relative gaps between
the upper bound (UB) and lower bound (LB) provid-
ed by Benders’ decomposition and the gaps of its up-
per bound and the optimal objective value (OPT) in
the last two columns, respectively. We terminate the
Benders decomposition algorithm in 25 and 50 itera-
tions, and denote them by Benders-25 and Benders-50,
correspondingly. From Table 6, the Benders decompo-
sition fails to solve the problem to optimality within

Figure 7. Illustration of Vehicle Operational Status with Different q̂i

Notes. (a) First vehicle with q̂i � 0:2; (b) second vehicle with q̂i � 0:2; (c) third vehicle with q̂i � 0:2; (d) first vehicle with q̂i � 0:8; (e) second vehicle
with q̂ i � 0:8; and (f) third vehicle with q̂i � 0:8.

Table 5. In-Sample Results of TS-MILP with Varying | J | and | I |
| J | | I | ID (min.) WT (min.) OT (min.) TT (min.) Obj. ($) Time (sec.)

3 16 218.08 0.41 0.00 217.89 1,387.34 103.00
4 235.30 0.58 0.00 168.95 1,919.62 105.56
5 188.30 0.57 0.00 132.70 2,159.62 722.88
3 32 218.13 0.92 0.00 417.87 1,433.20 (24.9%) 7,200.00
4 246.30 1.21 0.00 321.70 2,022.40 (17.98%) 7,200.00
5 220.80 1.75 0.00 257.70 2,416.20 (14.15%) 7,200.00
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24 hours (or 50 iterations), which performs much
worse than directly solving it using a state-of-the-art
solver. This observation was also revealed in Zhan
et al. (2021, p. 103), where the authors pointed out that
“the lower and upper bounds are improved quite
slowly (in our experiments, the lower bounds hardly
increase within several hours, even after hundreds of

iterations).” Because of that, we will compare the re-
sults of solving model (1) using Gurobi with heuristic
approaches in the remaining of the paper.

Before proceeding to other heuristics, we examine
the out-of-sample performance of solving model (1)
with different in-sample scenarios |Ω |. Table 7
presents the results where we vary |Ω | from 10 to 100,
and the last column indicates the computational time

for the in-sample tests. From Table 7, there are no sig-
nificant result improvements when we increase the
sample size, whereas the computational time in-
creases drastically. As a result, we continue using |Ω |
� 10 in our subsequent tests.

In Table 8, we compare the out-of-sample results
between TS-MILP in Section 3 and the three heuristics

proposed in Section 4, namely K-means, K-means with
swap, and K-means with swap and the second-stage
cost (KM, KMS, and KMSS for short). We also set the
maximum number of swapping steps ℓmax � 5 and the
threshold T � 50 at default in Algorithm 3. We vary
the value of T in Table 9.

From Table 8, TS-MILP always obtains the best out-
of-sample performance in terms of the idle time and

Table 6. Out-of-Sample Results of Solving TS-MILP via Gurobi and Benders’ Decomposition with | J |� 3 and | I |� 16

| J | | I | Method ID (min.) WT (min.) OT (min.) TT (min.) Obj. ($) Time (sec.) (UB-LB)/LB (UB-OPT)/OPT

3 16 TS-MILP 221.04 0.53 0.02 215.23 1,400.40 103.00 N.A. N.A.
Benders-25 347.60 8.04 0.00 219.24 2,019.91 8,152.35 90.49% 45.07%
Benders-50 220.60 0.72 0.00 226.08 1,404.94 89,606.44 5.78% 1.25%

Table 7. Out-of-Sample Results of TS-MILP with Varying In-Sample Scenario Size |Ω |
| J | | I | |Ω | ID (min.) WT (min.) OT (min.) TT (min.) Obj. ($) Time (sec.)

3 16 10 221.04 0.53 0.02 215.23 1,400.40 103.00
50 220.97 0.47 0.00 218.15 1,397.97 376.10
100 221.52 0.40 0.00 220.14 1,397.53 816.26

Table 8. Out-of-Sample Tests and Results of Different Approaches with Varying | J | and | I |
| J | | I | Method ID (min.) WT (min.) OT (min.) TT (min.) Obj. ($) Time (sec.)

3 16 TS-MILP 221.04 0.53 0.02 215.23 1,400.40 103.00
KM 435.40 2.22 0.24 203.52 2,104.54 0.13
KMS 434.65 0.12 0.00 207.14 2,027.80 0.13
KMSS 404.92 0.10 0.00 207.14 1,937.87 5.19

4 16 TS-MILP 237.34 0.68 0.04 167.19 1,932.62 105.56
KM 425.00 0.59 0.00 153.24 2,678.99 0.15
KMS 420.29 0.12 0.00 152.01 2,644.99 0.18
KMSS 390.44 0.11 0.00 152.00 2,525.36 6.66

5 16 TS-MILP 189.93 0.68 0.03 131.06 2,172.79 722.88
KM 441.20 0.09 0.00 123.15 3,408.86 0.22
KMS 446.32 0.10 0.00 122.74 3,434.83 0.21
KMSS 411.29 0.09 0.00 123.16 3,259.55 8.16

3 32 TS-MILP 218.07 1.13 0.00 416.53 1,446.53 7,200.00
KM 331.07 25.48 8.47 408.24 3,598.21 0.95
KMS 327.74 14.02 1.55 410.15 2,646.75 0.37
KMSS 297.54 11.55 1.07 409.87 2,383.79 33.96

4 32 TS-MILP 243.93 1.79 0.00 320.98 2,050.40 7,200.00
KM 396.71 7.38 0.00 309.88 3,019.21 0.81
KMS 416.40 2.74 0.00 312.52 2,800.92 0.38
KMSS 386.27 0.92 0.00 312.52 2,563.91 38.02

5 32 TS-MILP 220.63 2.15 0.00 258.56 2,440.83 7,200.00
KM 387.86 4.05 0.00 240.26 3,398.61 0.59
KMS 457.65 1.44 0.00 245.49 3,580.42 0.35
KMSS 421.92 0.81 0.00 244.91 3,361.18 39.85

Yu, Shen, and Wang: Integrated Routing and Scheduling Under Uncertainty
186 Service Science, 2021, vol. 13, no. 3, pp. 172–191, © 2021 INFORMS



overall objective values, as it is designed to optimize
the expected objectives under uncertainty. All the
heuristics perform significantly worse in idle time
whereas they slightly improve the waiting time and
total travel time. On the other hand, they reduce the
computational time from hundreds of seconds to less
than 10 seconds for the small-scale instances when | I |
� 16 based on Ann Arbor. When | I |� 32, the heuristics
can still solve the problems within 40 seconds, where-
as TS-MILP cannot be optimized within two hours.
Moreover, KMS improves the overall objective values
of KM, which is further reduced by KMSS while main-
taining the computational efficiency.

As can be seen from Algorithm 3, the threshold T
plays an important role in determining the swap be-
tween customers and the termination of the algo-
rithm. In Table 9, we fix | J |� 3, | I |� 16 and test
K-means with swap where we vary the threshold T
from 30 to 50 minutes. With more transit time inten-
tionally left for adjacent customers, all performance
metrics are improved, where the improvements from
T � 30 to 40 are much more significant than the ones
from 40 to 50. As a result, in the following tests, we
continue to fix T � 50. We also present the results of
K-means-based heuristics with different swapping
steps ℓmax and different input feature matrix {di}|I|i�1 in
online Appendix C.

5.4. Comparison Between Stochastic and
Deterministic Approaches

We compare the in-sample and out-of-sample perfor-
mance of TS-MILP and its deterministic counterpart,
where we generate |Ω | in-sample scenarios to obtain
an optimal TS-MILP solution and use the empirical
mean of these |Ω | in-sample scenarios to obtain a de-
terministic optimal solution. Then we evaluate these
two solutions on the same 1,000 out-of-sample scenar-
ios based on the overall objective values.

We generate 10 independent sets of scenario samples,
each of size |Ω |, and conduct the tests independently

for each set of scenarios. We calculate the average objec-
tive values of in-sample and out-of-sample tests in
Table 10, and display the box plot in Figure 8.

In both Table 10 and Figure 8, TS-MILP IS, TS-MILP
OS, and gap 1 denote the average objective values of
in-sample and out-of-sample tests and the gap between
the two, whereas DT IS, DT OS, and gap 2 represent
those of the deterministic counterpart, respectively.

From Table 10 and Figure 8, the gap between the
average in-sample and out-of-sample objective values
in TS-MILP is 0.85%, indicating that the optimal solu-
tions computed by |Ω | in-sample scenarios also per-
form well in the 1,000 out-of-sample performance.
However, in the deterministic counterpart, the gap
between the average out-of-sample and in-sample ob-
jective values is 7.78%. Although solving the deter-
ministic model with empirical means can return a
better in-sample result, the out-of-sample perfor-
mance could be much worse than the out-of-sample
performance of TS-MILP.

5.5. Results of the Rolling Horizon Method on
Ann Arbor Instances

In this section, we present results from the rolling ho-
rizon approach in Section 3.3 for optimizing real-time
vehicle routing and service scheduling. In Algorithm
1, first, model (1) is solved to obtain an initial vehicle-
customer assignment. Then, in each period, demand
is realized and fulfilled on a first-come, first-served

Table 9. Out-of-Sample Tests and Results of K-Means with Swap with Varying Threshold T

| J | | I | T (min.) ID (min.) WT (min.) OT (min.) TT (min.) Obj. ($) Time (sec.)

3 16 30 435.40 2.22 0.24 203.52 2,104.54 0.13
40 434.80 0.12 0.00 207.62 2,028.24 0.16
50 434.65 0.12 0.00 207.14 2,027.80 0.13

Table 10. Average Objective Values of In-Sample and Out-
of-Sample Tests and Their Gaps (Across 10 Replications)
Using TS-MILP and Its Deterministic Counterpart

TS-MILP IS TS-MILP OS Gap 1 DT IS DT OS Gap 2

Average 1,408.21 1,420.111 0.85% 1,337.96 1,442.07 7.78%

Figure 8. Box Plot of In-Sample and Out-of-Sample Results
and Gaps Across 10 Replications Given by TS-MILP and Its
Deterministic Counterpart
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basis, and we adaptively change the assignment and
schedule plan. Alternatively, one can use the two heu-
ristics to match vehicle-customer pairs in each period,
which gives us a combination of Algorithm 1 with Al-
gorithms 2 and 3. We still focus on operations in Ann
Arbor, which has 16 initial customers with reserva-
tions one-day ahead, and then we set another eight
real-time customers who request at least 30 minutes in
advance, and their time windows are also drawn from
the density function presented in Figure 5. Therefore,
we have a total of | I |� 16+ 8 � 24 customers, and in
Table 11, we present the results of the rolling horizon
method combined with different algorithms, where
the last column displays the average computational
time across all periods.

From Table 11, when we increase the number of ve-
hicles | J | from three to four, the average waiting time
decreases while the average idle time increases. The
differences between TS-MILP and the heuristic ap-
proaches in terms of the overall objective values are
much smaller than those in the static setting, and the
heuristics even improve the waiting/travel time in
some instances. Moreover, the heuristic approaches
maintain the computational efficiency by solving all
the instances within four seconds, which sheds light
on the applicability of these heuristics in dynamic
settings.

Next, we present the performance of the rolling ho-
rizon method combined with TS-MILP in Table 12,
where we vary the sample size |Ω | from 10 to 100.
From Table 12, with more in-sample scenarios, al-
though the average waiting and travel time decrease,
vehicles are idle for a longer period of time and the
overall objective cost also increases. This is because

we do not take into account the uncertainty of future
customers when making decisions, and enlarging the
sample size for the current stage’s uncertainty would not
necessarily help in the dynamic environment.

5.6. Results of Large-Scale Operations Using
Clustering-Based Heuristics

Having witnessed the efficiency of clustering-based
heuristics, we now present the performance of them
on large instances based on Southeast Michigan with
six operating cities, and vary the number of vehicles
from 20 to 40 and the number of customers from 100
to 300 in Table 13. In these instances, we set the maxi-
mum number of swapping steps ℓmax � 5 in Algo-
rithm 3 for implementing KMS and KMSS.

From Table 13, when increasing the number of cus-
tomers, the idle time per vehicle decreases while the
waiting time per customer and the overtime per vehi-
cle increase drastically. The waiting time and overtime
also drop significantly with doubled vehicles. More-
over, KMSS improves the performance drastically by
shortening waiting time per customer and overtime
per vehicle.

Next, we present the results of using the rolling ho-
rizon method with KM, KMS, and KMSS for operating
Southeast Michigan in Table 14 and set the number of
dynamically arrived customers as half of the number
of customers with reservations, such that the total | I |
ranges from 150 to 450. Comparing Table 14 with Ta-
ble 13, the idle time per vehicle decreases, while the
travel time per vehicle almost doubles as we include
dynamically arriving customers. The computational
time also decreases as we average among all periods

Table 11. Results of Rolling Horizon Algorithm for Different Approaches

| J | | I | Method ID (min.) WT (min.) OT (min.) TT (min.) Obj. ($) Time (sec.)

3 24 TS-MILP 179.67 2.38 0.00 487.33 1,373.24 55.23
KM 217.33 4.71 0.00 480.00 1,598.00 0.16
KMS 224.00 6.08 0.00 473.33 1,684.00 0.15
KMSS 240.00 0.33 0.00 420.33 1,456.00 3.05

4 24 TS-MILP 250.75 0.25 0.00 383.50 1,975.00 45.05
KM 220.25 3.63 0.00 450.50 2,015.00 0.14
KMS 262.75 0.67 0.00 408.00 2,043.00 0.11
KMSS 259.75 0.54 0.00 379.25 2,025.00 2.63

5 24 TS-MILP 214.00 1.92 0.00 473.40 2,362.00 235.41
KM 243.80 1.33 0.00 404.00 2,483.00 0.14
KMS 247.40 0.38 0.00 400.40 2,455.00 0.16
KMSS 258.20 0.92 0.00 353.60 2,535.00 3.86

Table 12. Results of Rolling Horizon Algorithm Solved by TS-MILP with Varying In-Sample Scenario Size |Ω |
| J | | I | |Ω | ID (min.) WT (min.) OT (min.) TT (min.) Obj. Time (sec.)

3 24 10 179.67 2.38 0.00 487.33 1,373.24 55.23
50 221.67 1.21 0.00 443.00 1,443.08 92.15
100 263.33 0.50 0.00 403.33 1,534.00 162.32

Yu, Shen, and Wang: Integrated Routing and Scheduling Under Uncertainty
188 Service Science, 2021, vol. 13, no. 3, pp. 172–191, © 2021 INFORMS



while later periods having much smaller sizes can be
solved relatively quickly.

6. Conclusion
In this paper, we modeled a TS-MILP for solving a
static and dynamic vehicle routing and scheduling
problem, where we applied the rolling horizon
method to solve the dynamic variant. To speed up
computation, we proposed K-means-based heuristics
to cluster geographically similar customers and then
separately decide a routing and scheduling plan in
each cluster. We conducted various experiments
based on data collected by Ford Motor Company’s
GoRide Health team. Results indicate that the

clustering-based heuristics can solve large-scale in-
stances efficiently and effectively.

For future research, one possibility is to design a
branch-and-price algorithm for solving the TS-MILP
that, unlike many VRP variants, involves nonnegli-
gible service duration at each customer location and
also multiple parameter uncertainties. The develop-
ment of appropriate pricing subproblems to generate
route-and-schedule-combined columns is challenging.
Moreover, as the pick-up/drop-off locations are typi-
cally hospitals and senior apartments, a large portion
of customers may share similar routes or the same ori-
gins/destinations. It would be beneficial to pool these
customers, which may reduce the total operational
cost but increase individuals’waiting time.

Table 13. Performance of Clustering-Based Heuristics on Large Instances of Southeast Michigan

| J | | I | Method ID (min.) WT (min.) OT (min.) TT (min.) Obj. ($) Time (sec.)

20 100 KM 335.38 7.43 0.69 173.98 13,129.87 0.30
KMS 412.41 0.30 0.38 174.73 13,185.72 0.22
KMSS 384.06 0.19 0.38 174.73 12,595.56 12.35

20 200 KM 286.14 42.32 31.58 336.90 33,764.87 0.93
KMS 284.15 12.58 14.13 350.38 18,343.01 0.55
KMSS 257.90 7.33 11.47 350.46 15,184.04 85.86

20 300 KM 207.27 126.76 137.80 517.21 112,561.06 2.42
KMS 168.20 85.28 88.44 535.63 77,017.12 1.29
KMSS 148.42 69.61 85.04 534.65 66,542.21 335.05

40 100 KM 375.08 2.54 0.21 89.76 25,194.28 0.34
KMS 411.96 0.04 0.19 90.24 26,163.24 0.28
KMSS 382.86 0.02 0.19 90.24 24,995.25 14.72

40 200 KM 361.19 13.64 8.71 171.42 32,986.82 1.12
KMS 417.96 0.89 4.58 172.40 28,508.52 0.72
KMSS 388.05 0.39 4.58 172.40 27,111.77 129.63

40 300 KM 341.93 42.30 26.39 251.73 59,211.74 2.20
KMS 365.13 3.17 5.16 253.41 28,168.64 1.15
KMSS 335.96 0.98 4.44 253.41 25,404.40 293.83

Table 14. Results of the Rolling Horizon Approach with Clustering-Based Heuristics on Large-Scale Instances

| J | | I | Method ID (min.) WT (min.) OT (min.) TT (min.) Obj. ($) Time (sec.)

20 150 KM 204.35 8.71 4.00 425.30 12,301.00 0.15
KMS 211.65 2.47 3.95 448.45 10,563.00 0.13
KMSS 213.80 1.16 0.15 414.70 9,454.00 5.37

20 300 KM 158.15 17.38 17.20 551.50 21,833.00 0.33
KMS 163.80 14.41 15.20 556.40 19,762.00 0.31
KMSS 129.90 6.68 9.45 557.40 13,296.00 38.40

20 450 KM 112.05 27.82 25.55 612.70 37,191.00 0.69
KMS 121.40 25.62 20.80 606.80 34,442.00 0.72
KMSS 87.45 14.90 34.40 641.10 26,839.00 135.94

40 150 KM 197.98 1.95 1.50 474.48 18,703.00 0.26
KMS 200.68 0.52 1.63 447.88 18,433.00 0.23
KMSS 210.08 0.13 0.08 385.18 18,073.00 8.17

40 300 KM 184.33 6.36 7.00 480.63 23,589.00 0.61
KMS 202.33 1.69 7.70 455.58 21,789.00 0.51
KMSS 205.98 0.51 3.45 409.10 19,525.00 54.16

40 450 KM 168.75 9.96 7.65 491.45 28,378.00 1.24
KMS 189.33 2.30 9.28 485.08 22,955.00 0.88
KMSS 169.30 1.71 4.45 472.93 19,688.00 134.12
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proach for solution of vehicle routing problem with hard time
window: An application in a supermarket chain. Sadhana
42(12):2067–2080.

Cordeau J-F, Laporte G (2007) The dial-a-ride problem: Models and
algorithms. Ann. Oper. Res. 153(1):29–46.

Deng Y, Shen S (2016) Decomposition algorithms for optimizing
multi-server appointment scheduling with chance constraints.
Math. Programming 157(1):245–276.

Denton B, Gupta D (2003) A sequential bounding approach for opti-
mal appointment scheduling. IIE Trans. 35(11):1003–1016.

Desrochers M, Desrosiers J, Solomon M (1992) A new optimization
algorithm for the vehicle routing problem with time windows.
Oper. Res. 40(2):342–354.

Dickey MR (2018). Ford launches on-demand medical transportation
service. TechCrunch (April 18), https://techcrunch.com/2018/
04/18/ford-launches-on-demand-medical-transportation-service/.

Dror M, Laporte G, Trudeau P (1989) Vehicle routing with stochas-
tic demands: Properties and solution frameworks. Transporta-
tion Sci. 23(3):166–176.

Erdogan SA, Denton B (2013) Dynamic appointment scheduling of
a stochastic server with uncertain demand. INFORMS J. Com-
put. 25(1):116–132.

Fikar C, Hirsch P (2017) Home healthcare routing and scheduling:
A review. Comput. Oper. Res. 77:86–95.

Fukasawa R, Longo H, Lysgaard J, De Aragão MP, Reis M, Uchoa
E, Werneck RF (2006) Robust branch-and-cut-and-price for the
capacitated vehicle routing problem. Math. Programming 106(3):
491–511.

Gupta D, Denton B (2008) Appointment scheduling in healthcare:
Challenges and opportunities. IIE Trans. 40(9):800–819.

Heching A, Hooker JN, Kimura R (2019) A logic-based Benders ap-
proach to home healthcare delivery. Transportation Sci. 53(2):510–522.

Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern
Recognition Lett. 31(8):651–666.

Jiang R, Shen S, Zhang Y (2017) Integer programming approaches
for appointment scheduling with random no-shows and service
durations. Oper. Res. 65(6):1638–1656.

Kleywegt AJ, Shapiro A, Homem-de Mello T (2002) The sample av-
erage approximation method for stochastic discrete optimiza-
tion. SIAM J. Optim. 12(2):479–502.

Lanzarone E, Matta A (2014) Robust nurse-to-patient assignment in
home care services to minimize overtimes under continuity of
care. Oper. Res. Health Care 3(2):48–58.

Laporte G (1992) The vehicle routing problem: An overview of exact
and approximate algorithms. Eur. J. Oper. Res. 59(3):345–358.

Laporte G (2007) What you should know about the vehicle routing
problem. Naval Res. Logist. 54(8):811–819.

Moon TK (1996) The expectation-maximization algorithm. IEEE Sig-
nal Processing Magazine 13(6):47–60.
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