
1

ACD-EDMD: Analytical Construction for
Dictionaries of Lifting Functions in Koopman

Operator-based Nonlinear Robotic Systems
Lu Shi and Konstantinos Karydis

Abstract—Koopman operator theory has been gaining mo-
mentum for model extraction, planning, and control of data-
driven robotic systems. The Koopman operator’s ability to extract
dynamics from data depends heavily on the selection of an
appropriate dictionary of lifting functions. In this paper we
propose ACD-EDMD, a new method for Analytical Construction
of Dictionaries of appropriate lifting functions for a range of
data-driven Koopman operator based nonlinear robotic systems.
The key insight of this work is that information about funda-
mental topological spaces of the nonlinear system (such as its
configuration space and workspace) can be exploited to steer the
construction of Hermite polynomial-based lifting functions. We
show that the proposed method leads to dictionaries that are
simple to implement while enjoying provable completeness and
convergence guarantees when observables are weighted bounded.
We evaluate ACD-EDMD using a range of diverse nonlinear
robotic systems in both simulated and physical hardware exper-
imentation (a wheeled mobile robot, a two-revolute-joint robotic
arm, and a soft robotic leg). Results reveal that our method
leads to dictionaries that enable high-accuracy prediction and
that can generalize to diverse validation sets. The associated
GitHub repository of our algorithm can be accessed at https:
//github.com/UCR-Robotics/ACD-EDMD.

Index Terms—Calibration and Identification, Model Learning
for Control, Machine Learning for Robot Control, Koopman
Operator, Extended Dynamic Mode Decomposition.

I. INTRODUCTION

KOOPMAN operator theory and associated numerical
methods have been widely applied for system identifica-

tion, state estimation, and control (e.g., [1]–[4]). In an effort
to handle approximate models (or lack thereof) that serve as
a target for motion control of (nonlinear) robotic systems,
methods based on Koopman operator theory are increasingly
used in the context of robotics. Recent examples include mod-
eling and control of a tail-actuated robotic fish [5], trajectory
control of micro-aerial vehicles [6], dynamics estimation for
a spherical robot [7], model extraction for a simulated lunar
lander system [8], as well as model extraction and control for
soft robotic arms [9]–[12] and underwater soft robots [13].

A critical challenge inherent to all methods employing
Koopman operator theory is the choice of a proper set of lifting

We gratefully acknowledge the support of NSF under grants # IIS-1910087,
CMMI-2046270 and # CMMI-2133084, and of ONR under grant # N00014-
19-1-2264. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily
reflect the views of the funding agencies.

The authors are with the Dept. of Electrical and Computer Engineering,
University of California, Riverside. Email: {lshi024, karydis}@ucr.edu.

functions (typically called the dictionary). The lifting func-
tions are crucial because they serve as the basis to construct
an infinite-dimensional linear approximation of a (nonlinear)
system’s state evolution. Poor choice of the lifting function
can significantly impact the estimation accuracy of the Koop-
man operator and the higher-dimensional linearized dynamics.
This paper presents a new method to analytically construct
dictionaries of lifting functions for Koopman operator based
data-driven nonlinear robotic systems.

Existing works regarding construction of dictionaries for
Koopman operator based systems fall under four main direc-
tions. 1) The first one is empirically [14]. For example, Legen-
dre polynomials can make the observation matrix be block di-
agonal, Hermite polynomials are best suited to problems where
data are normally distributed, and radial basis functions are
effective for systems with complex geometry [15], [16]. How-
ever, empirical approaches can be time- and effort-demanding
and cannot guarantee generalization to and efficiency in new
cases. 2) Another direction is to rely on machine learning
to derive the dictionary [17]–[19]. While such methods have
stronger generalization capacity, they require significant tuning
(e.g., in the case of neural networks the number of layers,
number of units per layer, etc.), and large amounts of training
data. The latter can in practice pose a significant challenge
in robotics applications where data are in principle small. 3)
A third direction is when the original model has a special
structure or some underlying fundamental model is known
(or assumed). For example, elementary functions can be used
to map a system to an equivalent polynomial form via Lie
derivatives [20]. However, algorithms of that nature require
the original system to be a linear combination of elementary
functions. Another instance is to analyze the geometric relation
between a system model and its Koopman operator to obtain a
dictionary [21]. Although model-based methods of that spirit
can be useful in controller design and dimension reduction,
they cannot offer model identification. The latter is useful
as uncertainty can affect robot behavior to the extent that
an otherwise well-tuned model is no longer representative of
the underlying interaction dynamics between the robot and its
underlying environment [22], [23]. 4) A fourth approach is to
compare and optimize over multiple sets of lifting functions
to find a proper basis set [12], but still the question of how to
select the sets to begin with in an efficient manner remains.

Different from existing related methods, our proposed ap-
proach exploits the fact that robotic systems have certain char-
acteristic properties that can be acquired without knowledge

https://github.com/UCR-Robotics/ACD-EDMD
https://github.com/UCR-Robotics/ACD-EDMD

2

of their exact dynamical models. Properties considered herein
are the system’s configuration space, and its workspace. These
properties reveal fundamental information about system states
and dynamics, and can provide intuition on how to select lifting
functions required for Koopman operator approximation.

In this paper we propose ACD-EDMD, a general and analyt-
ical methodology to formalize the construction of lifting func-
tions based on such system characteristic properties. We show
how fundamental topological spaces and Cartesian products
thereof can be mapped to a basis of Hermite polynomials and
Kronecker products thereof which serve as the dictionary of
lifting functions. We further show that the resulting dictionary
is complete and leads to an estimated Koopman operator with
provable guarantees of convergence to the true one, in the limit
and provided that the observables are weighted bounded. At
the same time the resulting dictionary is simple to implement.

We evaluate the efficacy of our proposed method using a
series of simulated and hardware experiments. We consider a
differential drive robot in both simulation and physical exper-
imentation, and a rigid robotic arm comprising two revolute
joints in simulation. In these cases we use the configuration
space of the robots. The method can also apply to soft
robots (whereby their configuration space is ill-defined), by
considering their workspace instead. Physical experimentation
using a soft robotic leg that can bend and extend confirms that
our approach can apply uniformly across rigid and soft robots,
and further demonstrates its practical utility. Results obtained
by ACD-EDMD are also compared against other nonlinear
dynamics identification approaches in terms of prediction ac-
curacy and training time, to demonstrate our method’s efficacy.

II. PRELIMINARY TECHNICAL BACKGROUND

A. Koopman Operator Theory and Extended Dynamic Mode
Decomposition (EDMD)

In Koopman operator theory [24], the infinite-dimensional
linear operator governs the evolution of observables g(xt); the
nonlinear evolving operator f of the original system is rep-
resented by Koopman modes, eigenvalues and eigenfunctions.
We use Koopman operator theory and EDMD to extract the
nonlinear system dynamics from data. The relevant background
is introduced in this section.

Consider the nonlinear system xt+1 = f(xt), where x ∈
Rnx . The propagation law of observables g with the Koopman
operator K : F → F is Kg(xt) = g(f(xt)). Then, decompos-
ing the full state observable [14] g(x) = x with N Koopman
modes vn, eigenvalues λn and eigenfunctions φn, we obtain

xt+1 = g(f(xt)) = Kg(xt) → xt+1 =
∑︁N

n=1 vnλnφn(xt) . (1)

Given snapshots of state measurements X =

[x1, x2, . . . , xM , xM+1], the Koopman operator K can be
approximated from the observations via EDMD, which
generates a finite dimensional approximation K : FN → FN

of the Koopman operator K : F → F . It employs a dictionary
of functions to lift state variables to a space where observable
dynamics is approximately linear.

One of the most critical steps is to choose a proper dictionary
for lifting the original states, D = span {ψ1, ψ2, . . . , ψN}.

If we set the vector-valued dictionary as Ψ(xm) =
[ψ1(xm), . . . , ψN (xm)], the Koopman operator can be approx-
imated by minimizing the total residual between snapshots, i.e.

J =
1

2

M∑︂
m=1

(Ψ (xm+1)−Ψ (xm)K)
2
. (2)

The least-squares problem can be solved by truncated sin-
gular value decomposition, yielding

K ≜ G†A, where

{︄
G = 1

M

∑︁M
m=1 Ψ

∗
mΨm ,

A = 1
M

∑︁M
m=1 Ψ

∗
mΨm+1 ,

(3)

with † denoting the pseudoinverse, and T and ∗ denoting
transpose and conjugate transpose operations, respectively.

With K via (3), we obtain⎧⎪⎨⎪⎩
vn = (w∗

nB)T ,

λnξn = Kξn ,

φn = Ψtξn ,

(4)

where ξn is the n-th eigenvector, wn is the n-th left eigenvector
of K scaled so wT

n ξn = 1, and B is the matrix of appropriate
weighting vectors so that x = (ΨB)T [14]. Now we can
describe the evolution of the original nonlinear system using
the estimated Koopman operator by plugging expressions (4)
back to (1). Control inputs can be readily incorporated to the
definition of Ψ as an augmented state [25].

B. EDMD with Dictionary Learning (EDMD-DL)

For high-dimensional and highly nonlinear systems, ma-
chine learning methods can help make selections on lifting
functions [26]. In this method, the lifting functions Ψ are
trained and represented by an artificial neural network. Thus,
EDMD is coupled with the trainable dictionary.

In EDMD-DL [26], given data measurements X the dictio-
nary vector Ψ(xm) is parameterized by a universal function
approximator, i.e. Ψ(x) = Ψ(x; θ) for θ ∈ Θ to be varied.
Then, a feedforward 3-layer neural network is designed to
approximate Ψ that solves the minimization problem (2) as

Ψ(x) =Wouth3 + bout

hk+1 = tanh(Wkhk + bk), k = 0, 1, 2 .

The set of all trainable parameters is θ =
{Wout, bout, {Wk, bk}2k=0}. By iterating over two steps:
(1) fix θ, optimize K as a least-square problem; then (2) fix
K, optimize θ as a standard machine learning problem, the
dynamics can be estimated until convergence.

C. Sparse Identification of Nonlinear Dynamical Systems
(SINDy)

SINDy [27] has been proposed for extracting governing
equations of nonlinear systems from data. The method con-
siders that only a few important terms govern the dynamics of
an underlying model and uses sparse regression to determine
the fewest terms required to accurately illustrate the system’s
state evolution based on observed (time-varying) data series.

3

Letting the system be ẋt = f(xt), where f(xt) represents
the dynamic constraints that describe propagation rules and
is to be identified by data, snapshots of states xt and their
derivatives ẋt are collected or estimated and arranged into
two data matrices X , Ẋ . Then, a library Θ(X) consisting
of candidate nonlinear functions of the column of X is
designed. Entries in this matrix of nonlinearities can be chosen
with significant freedom. One example consists of constant,
polynomial and trigonometric terms [27], i.e.

Θ(X) =
[︁
1 X X2 sin(X) cos(X)

]︁
(5)

A sparse regression problem to calculate the sparse vectors of
coefficients Ξ = [ξ1, ξ1, . . . , ξnx

] is setup as Ẋ = Θ(X)Ξ.
Once Ξ has been determined, the system can be approximated
as ẋ = f(x) = ΞT (Θ(xT))T . The process can also be
extended to include inputs [28].

D. Convergence of the EDMD operator

It has been shown that as M → ∞ the operator KN,M

converges to KN , the orthogonal projection of K on the
subspace spanned by the lifting functions [29]. That result
has been extended to analyze the convergence of KN to the
actual Koopman operator K [30]. In Remark 1 below we list
an important result from [30], which we build upon in our own
theoretical analysis presented next in Section III.

Remark 1: (Adapted from [30]) If 1) the Koopman operator
K is bounded; 2) the lifting functions ψ1, . . . , ψN are selected
from an orthonormal basis of F , then the sequence of opera-
tors KN converges to K as N → ∞.

Thus, if the chosen dictionary of lifting functions satisfies
the above two conditions, the EDMD-estimated operator con-
verges to the actual one.

E. Property of Hermite Polynomials

Hermite functions serve as an orthonormal basis (complete
orthonorml set) for the Hilbert space [31], [32], which is useful
in our theoretical analysis. Remark 2 below elaborates.

Remark 2: Hermite polynomials form an orthogonal
basis of the Hilbert space of functions g(x) satisfying∫︁∞
−∞ |g(x)|2w(x)dx <∞, in which the inner product is given

by the integral ⟨g1, g2⟩ =
∫︁∞
−∞ g1(x)g2(x)w(x)dx, including

the Gaussian weight function w(x).

III. DICTIONARY CONSTRUCTION

In this section we present our main technical result. The key
insight is that fundamental topological spaces and Cartesian
products thereof can be mapped to a basis of Hermite poly-
nomials and Kronecker products thereof. The latter produces
the dictionary of lifting functions, which, as we show in the
following, enjoys provable convergence guarantees of esti-
mated Koopman operator to the true one when the observables
are weighted bounded. Fundamental topological spaces in the
context of robotics include the robot’s configuration space and
its workspace.

Importantly, in our approach we consider both rigid and
soft robots. This serves two key purposes. 1) To demonstrate

Fig. 1. Illustration of our proposed method pipeline. Thin arrows indicate the
computing sequence and the thick arrows represent how to map fundamental
topological spaces to lifting functions. Hermite polynomials establish lifting
functions for lower-dimensional spaces that work as the ‘operand.’ The
dictionary of higher-dimensional spaces is formed as the Kronecker product
(the ‘operation’) of sets of Hermite polynomials.

that employing a robot’s fundamental topology to yield lifting
functions is general and can apply across robotic embodiments.
2) To offer a baseline in which the configuration space or the
workspace topology might be preferred one over another. For
rigid robots we consider the configuration space. However, soft
robots are often considered to contain an infinite number of
degrees of freedom, hence the problem of constructing their
configuration space is ill-defined [33]. Thus, we consider the
workspace instead for the case of soft robots. A flowchart of
the proposed method is given in Fig. 1.

A. Analytical Construction of Lifting Functions for Fundamen-
tal Topological Spaces

The Euclidean space En is very frequently used in the
context of robotics. We use the Hermite polynomials to con-
struct the basis functions.1 The Hermite polynomials form an
orthogonal basis of the Euclidean space (or the Hilbert for
higher dimensions). Non-Euclidean spaces which are often
employed include the circle S1, the sphere Sn, and the torus
Tn. We elect to represent non-Euclidean spaces by an implicit
parameterization of unit complex numbers so that the explicit
variables are mapped to a higher dimensional space, e.g., an
angle θ ∈ S1 will be mapped to [sin(θ), cos(θ)] ∈ E2. Doing
so enables use of Hermite polynomials for a range of both
Euclidean and non-Euclidean spaces.

Higher-dimensional spaces can be expressed as the Cartesian
product of lower-dimensional spaces that contains the union
of these spaces. For topological spaces constructed as the
Cartesian product, we compute the Kronecker product of
the lifting functions of the lower-dimensional spaces as the
dictionary for the higher-dimensional space. The Kronecker
product can be viewed as a form of vectorization (or flattening)
of the outer product so it contains the results of all the elements
multiplied from the two sets.

We first construct the lifting functions for the state, D(x);
some examples of lifting functions are listed in Table I.
Note that we have considered zero- and first-order Hermite
polynomials (denoted by H0 and H1, respectively) but ACD-
EDMD may apply when considering higher-order terms as

1There are two different definitions of Hermite polynomials [34], the
“probabilist’s” and the “physicist’s.” We consider the “probabilist’s” Hermite
polynomial; yet, the same analysis applies to the “physicist’s” version too.

4

TABLE I
CONFIGURATION SPACE TOPOLOGY AND ASSOCIATED LIFTING FUNCTIONS

System Topology Sample # of Lifting Function D(x)
Representation states (recall notation: H1(x) = [H0(x), H1(x)])

Point on a Line E1 or R1 x 1 H1(x)

Point on a Plane E2 or R2 (x, y) 2 kron(H1(x), H1(y))

Point on a 3D Space E3 or R3 (x, y, z) 3 kron(kron(H1(x), H1(y)), H1(z))

Spherical Pendulum S2 (θ, ϕ) 2 kron (kron(H1(sin(θ)), H1(cos(θ))), kron(H1(sin(ϕ)), H1(cos(ϕ))))

2R Robot Arm T2 = S1 × S1 (θ, ϕ) 2 kron (kron(H1(sin(θ)), H1(cos(θ))), kron(H1(sin(ϕ)), H1(cos(ϕ))))

Rotating Sliding Knob E1 × S1 (x, θ) 2 kron(H1(x), kron(H1(sin(θ)), H1(cos(θ))))

Wheeled Robot R2 × S1 (x, y, θ) 3 kron(kron(H1(x), H1(y)), kron(H1(sin(θ)), H1(cos(θ))))

well; investigating this direction is part of future work. For
clarity, we set H1(x) = [H0(x), H1(x)]. For the control
input, D(u) is computed by the zero- and first-order Hermite
polynomials and Kronecker products thereof similarly to the
Rn cases for states as in Table I. 2 Having computed D(x) and
D(u), the complete dictionary is then formed as the Kronecker
product between lifting functions for states and inputs, i.e.
D = kron(D(x), D(u)) (see Fig. 1).

B. Theoretical Analysis of ACD-EDMD

The lifting functions comprising dictionary D are Kronecker
products of Hermite polynomials in a single dimension. This
set of basis functions is simple to implement, and concep-
tually related to approximating the Koopman eigenfunctions
with a Taylor expansion [14]. Furthermore, because they are
orthogonal with respect to Gaussian weights, the matrix G
in (3) will be diagonal if the data are drawn from a normal
distribution, which can be beneficial numerically.

The Hermite polynomials also form a complete orthogonal
basis of the Hilbert space of the weights with exponential
decay, i.e. the linear span of the basis is dense [34]. We
can approximate the Koopman operator K with arbitrarily
high accuracy by using sufficiently large number of terms
of the basis functions when the observables are weighted
bounded in the Euclidean (Hilbert) space. In other words, the
EDMD operator using the proposed dictionary enjoys provable
conditioned convergence guarantees. Based on the technical
preliminaries discussed in Sections II-D and II-E, we can
deduce the following theorem.

Theorem 3.1 If the observable functions g ∈ F satisfy∫︂ ∞

−∞
|g(x)|2w(x)dx <∞ (6)

with the inner product defined as ⟨g1, g2⟩ =∫︁∞
−∞ g1(x)g2(x)w(x)dx , where g denotes the conjugate

function, and weighting function w(x) is the Gaussian weight
function, then the operator KN,M estimated by ACD-EDMD
converges to K as the number of samples M and number of
used lifting functions N go to infinity.

Proof: The proof is decomposed into four steps. 1) The
convergence of KN,M to KN is proven in [29] as M → ∞.
2) Condition (6) dictates that observables g(x) are bounded.

2This way to include the control input in the dictionary is consistent with
that of other related methods that append the control input to the state [1].

This implies that the Koopman operator K calculated by these
observables is also bounded and hence satisfies the first condi-
tion of Remark 1. 3) Per Remark 2, the Hermite polynomials
form an orthogonal (which implies orthonormal) basis of the
Hilbert space for all the weighted bounded observables g, and
hence the second condition of Remark 1 is also satisfied. 4)
We have established so far that individual Hermite polynomials
satisfy the two conditions of Remark 1. Here we consider the
Kronecker product of Hermite polynomials, which nonetheless
does not affect the aforementioned properties. Thus, with the
proposed lifting functions and if the observables are well-
designed (weighted bounded), we have KN,M −→ K as
M −→ ∞ and N −→ ∞. ■

IV. EXPERIMENTAL EVALUATION

We evaluate the efficacy of our proposed analytical method
to generate lifting functions for Koopman operator based
nonlinear robotic systems using a series of both simulated
and hardware experiments. We consider a differential drive
robot (ROSbot 2.0) in both simulation and physical experi-
mentation, a rigid robotic arm comprising two revolute joints
in simulation, and a soft robotic leg [35] that can bend and
extend in physical experimentation. Results from ACD-EDMD
are compared against those attained by other related methods
introduced in Section II: 1) Classical EDMD with dictionary
that contains the direct sum of Hermite polynomials of up
to second-order terms in all states; 2) EDMD-DL with 25
dictionary outputs (includes one constant non-trainable map,
the coordinate projection non-trainable maps and the rest
trainable lifting functions); 3) SINDy with nonlinear functions
introduced in (5) solved with least absolute shrinkage and
selection operator (LASSO) [36].

A. Differential Drive Robot - Simulation

The differential drive robot model is 3⎧⎪⎨⎪⎩
ẋ = r

2 (ωr + ωl) cos(ϕ)

ẏ = r
2 (ωr + ωl) sin(ϕ)

ϕ̇ = r
L (ωr − ωl)

(7)

where parameters r = 0.062 m and L = 0.228 m match those
of the physical ROSbot 2.0 (Fig. 2). The control input is u =

3The model is used as the baseline to create synthetic training data and to
get the ‘true state’ output in simulated testing and evaluation.

5

Fig. 2. ROSbot 2.0 (left) and the differential drive model (right).

[ωr, ωl], with ωr and ωl being the angular velocities of the
right and left wheel, respectively. The state vector contains
position {x, y} and orientation ϕ.

The configuration of the chassis of the differential drive
robot model is the Cartesian product of two points and a circle,
i.e. R2 × S1. We first map the orientation ϕ to the implicit
parameterization {sinϕ, cosϕ}. Then, the dictionary of lifting
functions is constructed as the Kronecker product of Hermite
polynomials of the four variables {x, y, sinϕ, cosϕ} of up to
first order terms (as shown in Table I).

For operator learning we simulate 100 trajectories each
lasting for 50 sec with sampling rate T = 0.1s. To construct
the training data, we input a random signal to (7) that is
sampled from the normal distribution u ∼ N ([0, 0]T , 92I2×2).
The covariance magnitude is selected so as to decrease chances
of generating control inputs that would be unattainable by the
robot or damage it, or could lead to damage to, the physical
robot. The learned operator is validated by picking random
input signals of length L = 50 sampled from the same normal
distribution as in the training set. We calculate the Mean
Squared Error (MSE) between predicted (superscript p) and
true (superscript t) states per MSE = 1

L

∑︁L
1 ([x

p, yp, ϕp] −
[xt, yt, ϕt])2. The MSE of the validation set is very low,
MSE = [0.0097 mm, 0.0000 mm, 0.0013 rad].

We then evaluate the learned operator’s generalization ca-
pacity by testing with input u = [12.1369, 6.7310] rad/sec.
This input is designed to make the robot follow a counter-
clockwise circular trajectory (starting from the origin). The
predicted (by our method) and true (via (7)) states are shown
in Fig. 3. Comparison results with other approaches are listed
in Table II. Results indicate that the model learned from
the Koopman operator via ACD-EDMD is able to predict a
trajectory very distinct from what it was trained on with very
small error. In contrast, the direct combination of Hermite
polynomials leads to large errors, while EDMD-DL and SINDy
can achieve small errors (though still much larger than ACD-
EDMD) but require much longer training times.

B. Experiments with the Physical ROSbot 2.0 Robot

Next, we move on with evaluating the learned operator’s
generalization capacity by testing using actual experimental
data from the physical robot. Note that the dictionary is the
same as in the simulated case above, constructed on the basis
of random inputs using (7). The training dataset is captured
based on a random chattering linear velocity and angular
velocity input signals for 10 continuous trials. We consider
two evaluation cases; Case 1: predicting the same counter-
clockwise circular trajectory as above; and Case 2: predicting a
sharp turn trajectory. We wish to highlight that both trajectories

TABLE II
COMPARATIVE RESULTS IN SIMULATED DIFFERENTIAL DRIVE ROBOT

Method MSE Training Time
[mm; mm; rad] [sec]

Hermite Polynomials [291.063; 110.825; 0] 2.94

EDMD-DL [71.616; 1.119; 0.0624] 2080.11

SINDy [1.495; 1.729; 0] 2631.00

ACD-EDMD (ours) [0.035; 0; 0.006] 1.97

are very distinct from what the learned operator has been
trained upon, and contain noise (e.g., the effect of unmodeled
dynamics such as friction) which is also not captured by
training using the nominal model (7).

Fig. 3. Results from testing ACD-EDMD’s generalization capacity in making
a simulated differential-drive robot follow a circular trajectory using random-
input-signal simulated training data.

The true states (obtained by remote-controlling the physical
robot 4) and the predicted states (obtained by our method
using logged control inputs from the experiment) are shown
in Fig. 4. Results indicate that the model learned from the
Koopman operator using random-input simulated data is able
to predict experimental trajectories, which are also very dis-
tinct from the training dataset, with very small error (Case 1
MSE = [0.0008 m, 0.0011 m, 0.0211 rad]; Case 2 MSE =
[0.0016 mm, 0.0154 mm, 0.0011 rad]). There exist some small
discrepancies in the circular trajectory (Case 1, top panels in
Fig. 4), but overall results predicted using our proposed method
capture accurately experimentally the observed trajectories.

C. Two Revolute Joint (2R) Rigid Robotic Arm - Simulation
We further evaluate our method by testing with a topo-

logically distinct from the wheeled robot system; a 2R rigid
robotic arm. The input signal contains the joint torques, that
is τ = [τ1, τ2]. The state vector contains the joint angles
θ = [θ1, θ2] and their first derivatives (joint angular velocities)
θ̇ = [θ̇1 θ̇2]. The Lagrangian method [37] yields M(θ) =[︃

m1L2
1 +m2(L2

1 + 2L1L2 cos θ2 + L2
2) m2(L1L2 cos θ2 + L2

2)
m2(L1L2 cos θ2 + L2

2) m2L2
2

]︃
,

and

c(θ, θ̇) =

[︄
−m2L1L2 sin θ2(2θ̇1θ̇2 + θ̇

2

2)

m2L1L2θ̇
2

1 sin θ2

]︄
,

4Experimental data were collected using a motion capture camera system.

6

Fig. 4. Results from testing ACD-EDMD’s generalization capacity in making
ROSbot follow a circular (top panels) and a sharp turn trajectory (bottom
panels) using random-input-signal simulated training data.

g(θ) =

[︃
(m1 +m2)L1g cos θ1 +m2gL2 cos(θ1 + θ2)

m2gL2 cos(θ1 + θ2)

]︃
,

then the forward dynamics is given by

θ̈ =M−1(θ)(τ − c(θ, θ̇)− g(θ)) . (8)

The configuration space of the 2R arm is the 2-D torus
and is homeomorphic to the Cartesian product of two circles,
i.e. T2 = S1 × S1. We first express the two joint angles
as the unit complex number, that is θ1 ↦→ {sin θ1, cos θ1},
and θ2 ↦→ {sin θ2, cos θ2}. Then, the dictionary of lifting
functions is constructed as the Kronecker product of Hermite
polynomials of the four variables {sin θ1, cos θ1, sin θ2, cos θ2}
of up to first order terms (as shown in Table I).

For operator learning we simulate 100 trajectories each
lasting for 2 sec with sampling rate Ta = 0.01 sec; thus, each
trajectory time series has length La = 200. To construct the
training data, we input a random signal to (8), sampled from
the standard normal distribution (i.e. τ ∼ N ([0, 0]T , I2×2)).

The learned operator is validated by picking random input
(time series) signals of length La = 100 sampled from the
standard normal distribution as in the training set. We calculate
the MSE between predicted (superscript p) and true (super-
script t) states per MSE = 1

La

∑︁La

1 ([θp1 , θ
p
2]− [θt1, θ

t
2])

2). The
MSE of the validation set is very low, MSE = [0.0003 rad,
0.0009 rad].

We then evaluate the learned operator’s generalization ca-
pacity by testing with input τ = [−1, 0] Nm. This input is
designed to make the arm’s end-effector follow a clockwise
circular trajectory (from a horizontal to a vertical configuration
in the fourth quadrant). The predicted (by our method) and
true (via (8)) states are shown in Fig. 5. Comparison results
are illustrated in Table III. Results indicate that the model
learned via ACD-EDMD is able to predict a trajectory very
distinct from what it was trained on with very small error.
While EDMD with Hermite polynomials requires the shortest
time (approximately half of ACD-EDMD but same order of
magnitude) it leads to larger (over one order of magnitude)
errors in θ2. In contrast, EDMD-DL and SINDy produce
smaller errors but at the expense of increasing the training
time for more than two orders of magnitude.

Fig. 5. Model of 2R robotic arm (left panel). Results from testing general-
ization capacity in driving the arm to follow a clockwise quadrant trajectory
(right panel). The yellow and purple solid lines indicate the initial and final
positions. The dashed lines indicate intermediate states of the arm.

TABLE III
COMPARATIVE RESULTS IN SIMULATED 2R ARM

Method MSE Training Time
[rad; rad] [sec]

Hermite Polynomials [0.0016; 0.0594] 0.59

EDMD-DL [0.0000; 0.0000] 280.45

SINDy [0.0000; 0.0016] 576.92

ACD-EDMD (ours) [0.0015; 0.0036] 0.96

D. Experiments with a Soft Robotic Leg

Lastly yet importantly, we turn our attention to soft robotic
systems. In contrast to rigid robotic systems whereby their
configuration space can be uniquely determined, soft robotic
systems do not possess such property. However, the workspace
of a soft robot can be determined uniquely and hence we
propose employing the workspace topology in the case of soft
robotic systems.

Fig. 6. The soft robotic leg considered herein shown at distinct operating
settings (left: pressurization; middle: depressurization; right: idle).

The soft robotic system we consider is a soft pneumatic
robotic leg [35]. The leg comprises of 1) the bending part,
and 2) the extension part (Fig. 6). When the two parts are
simultaneously pressurized, the leg both bends and extends.
Pressurization is controlled by two DC 12V 2-way normally
closed electric solenoid air valves, one for bending (|u1|) and
one for extension (|u2|). Two vacuum pumps are utilized for
input (+) and exhaust (-). A motion capture camera system is
used to collect position data (y, z) of the tip of the soft leg.
The workspace of the tip is R2 and we observe both y and z.
Hence, the dictionary to be used in ACD-EDMD is formed as
the Kronecker product of H1(y) and H1(z).

We adopt a two-pronged training and evaluation method.
First, we conduct individual tests for the two parts by setting
one input at zero. Then, we pressurize/depressurize both bend-
ing and extension parts to mimic a foot path [35]. In training, a

7

constant voltage input signal is given to the valves that control
active leg parts. Each signal lasts for 2 sec; training inputs for
different tests are listed in Table IV. Note that in Case 3 we
train the system with both positive and negative listed values.
Collected data are post-processed by a moving-average filter
with window length of 5.

TABLE IV
TRAINING INPUTS FOR THE SOFT ROBOTIC LEG EXPERIMENTS

Case 1: Individual test u1 = +[3.12, 3.61, 3.64, 5.92, 7.97]V
for bending part u2 = [0.00, 0.00, 0.00, 0.00, 0.00]V

Case 2: Individual test u1 = [0.00, 0.00, 0.00, 0.00, 0.00]V
for extension part u2 = +[3.12, 3.64, 4.30, 5.92, 6.92]V

Case 3: Test on the |u| = [(3.85, 4.55), (3.85, 12.03),
the whole robot leg (4.63, 4.63), (6.16, 6.16), (9.30, 9.30),

(11.24, 4.55), (11.24, 12.03)]V

We evaluate ACD-EDMD’s generalization capacity in three
cases. In Cases 1 and 2, the input signal is a combination of two
constant voltages (not used in training) each lasting for 1 sec.
Case 1 testing input (bending part) is u1 = 4.30 V for 1 sec
followed by u1 = 3.19 V for another 1 sec, while u2 = 0 V
for 2 sec. In Case 2 (extension part) the input sequence is u1 =
0 V for 2 sec, while u2 = 3.22 V for 1 sec and u2 = 3.61 V
for the following 1 sec.

Fig. 7. Results from testing generalization capacity when actuating only the
bending part (top panels) and only the extension part (bottom panels).

Results in Fig. 7 suggest that ACD-EDMD (in spite of
using a very small dataset) offers a good prediction in the
individual parts tests (Case 1 MSE = [0.1423, 0.0068] mm
and Case 2 MSE = [0.0005, 0.0122] mm). In Case 3 where
both the bending and extension parts are actuated, we first
drive the robot to curl up (u = [−3.88,−7.74] V) then extend
as well bend (u = [4.63, 3.50] V), and finally curl up again
(u = [−4.54,−3.88] V) to complete one foot trajectory cycle.
Results shown in Fig. 8 demonstrate that the proposed method,
despite its reduced performance compared to the single-part
tests in Cases 1 and 2, can still predict a relatively accurate
trajectory for the full actuator. We anticipate that a more
rich training dataset can help improve prediction accuracy;
improving upon these results is part of future work.

In Table V, we report comparative results in Case 3 between
ACD-EDMD and the other related approaches. Results show
that our approach achieves similar error as SINDy, but at

Fig. 8. Test results for Case 3 that the robotic leg follows a walk trajectory.
The blue curve with star indicates the true state and the red curve with circle
represents the prediction. In the right panel we show how the leg moves; less
transparent snapshots indicate later states. (Best viewed in color.)

significantly lower (two orders of magnitude) training time.
EDMD-DL attains the smallest error but the training time is
four orders of magnitude larger compared to ACD-EDMD’s
training time. Direct use of Hermite polynomials in EDMD
results to the lowest accuracy.

TABLE V
COMPARATIVE RESULTS IN SOFT ROBOTIC LEG EXPERIMENTS

Method MSE [mm; mm] Training Time [sec]

Hermite Polynomials [96.357; 2.940] 0.11

EDMD-DL [0.095; 0.013] 151.19

SINDy [0.507; 0.216] 2.77

ACD-EDMD (ours) [0.464; 0.616] 0.08

V. CONCLUSIONS

The main scientific premise in this paper is that robotic
systems exhibit certain characteristic properties which can be
exploited to inform selection and design of appropriate lifting
functions for use in the context of modeling and control of
data-driven Koopman operator based robotic systems. Selec-
tion of an appropriate set of lifting functions directly affects the
Koopman operator’s ability to extract dynamics from data, and
to-date several successful approaches using Koopman operator
theory in the context of robotics employ empirically-selected
lifting functions.

In this paper we provide an analytical way to design lifting
functions based on fundamental topological spaces for robots
(i.e. their configuration space if rigid and their workspace if
soft) using products of Hermite polynomials. Our proposed
method, termed ACD-EDMD, is simple to implement and
enjoys provable guarantees of completeness and convergence
when the observables are weighted bounded Evaluation results
using a range of diverse robotic systems and tested both in sim-
ulation and via physical hardware experiments reveal that our
proposed method can generalize well and predict accurately
the robot’s state evolution. This finding is persistently observed
especially in rigid robots, and even when testing the method’s
generalization capacity in very different cases. An example is
the wheeled robot learning to follow specific patterns (e.g., a
circular trajectory) while trained on (simulated) random-input-
signal trajectories.

8

Comparison with other related dynamics identification meth-
ods indicates that ACD-EDMD can achieve high prediction
accuracy and low training times in all tested cases. Prediction
accuracy is overall much higher than the baseline method of
using directly EDMD with a sum of Hermite polynomials,
on par to SINDy and in some cases higher than EDMD-
DL (although the latter requires manual tuning of hyper-
parameters to perform well). Training time is overall on par
to the baseline case and at least two orders of magnitude
faster than SINDy and two-four orders of magnitude faster than
EDMD-DL. The fast training times of ACD-EDMD, compared
with its high accuracy, make it beneficial for implementation in
physical robots and toward online Koopman-based modeling
and control architectures.

Promising results obtained herein lay the foundations to
study higher-dimensional problems in future work. We demon-
strated that Kronecker products of Hermite polynomials of up
to first order terms can work well in the planar problems
considered herein. Future work will investigate the trade-
offs of including higher-order Hermite polynomial terms for
prediction in 2.5D and 3D robotics problems.

REFERENCES

[1] E. Kaiser, J. N. Kutz, and S. L. Brunton, “Data-driven approximations
of dynamical systems operators for control,” in The Koopman Operator
in Systems and Control. Springer, 2020, pp. 197–234.

[2] M. Korda and I. Mezić, “Linear predictors for nonlinear dynamical sys-
tems: Koopman operator meets model predictive control,” Automatica,
vol. 93, pp. 149–160, 2018.

[3] I. Abraham and T. D. Murphey, “Active learning of dynamics for
data-driven control using koopman operators,” IEEE Transactions on
Robotics, vol. 35, no. 5, pp. 1071–1083, 2019.

[4] B. Huang, X. Ma, and U. Vaidya, “Data-driven nonlinear stabilization
using koopman operator,” in The Koopman Operator in Systems and
Control. Springer, 2020, pp. 313–334.

[5] G. Mamakoukas, M. L. Castano, X. Tan, and T. D. Murphey, “Derivative-
based koopman operators for real-time control of robotic systems,” IEEE
Transactions on Robotics, 2021.

[6] L. Shi, H. Teng, X. Kan, and K. Karydis, “A data-driven hierarchical
control structure for systems with uncertainty,” in IEEE Conference on
Control Technology and Applications (CCTA), 2020, pp. 57–63.

[7] I. Abraham, G. De La Torre, and T. D. Murphey, “Model-based control
using koopman operators,” in Robotics: Science and Systems, RSS. MIT
Press Journals, 2017.

[8] A. Broad, I. Abraham, T. Murphey, and B. Argall, “Data-driven koopman
operators for model-based shared control of human–machine systems,”
The International Journal of Robotics Research, vol. 39, no. 9, pp. 1178–
1195, 2020.

[9] D. Bruder, X. Fu, R. B. Gillespie, C. D. Remy, and R. Vasudevan, “Data-
driven control of soft robots using koopman operator theory,” IEEE
Transactions on Robotics, vol. 37, no. 3, pp. 948–961, 2021.

[10] D. Bruder, C. D. Remy, and R. Vasudevan, “Nonlinear system identifi-
cation of soft robot dynamics using koopman operator theory,” in IEEE
International Conference on Robotics and Automation (ICRA), 2019, pp.
6244–6250.

[11] D. Bruder, X. Fu, R. B. Gillespie, C. D. Remy, and R. Vasudevan,
“Koopman-based control of a soft continuum manipulator under variable
loading conditions,” IEEE Robotics and Automation Letters, vol. 6, no. 4,
pp. 6852–6859, 2021.

[12] D. A. Haggerty, M. J. Banks, P. C. Curtis, I. Mezić, and E. W. Hawkes,
“Modeling, reduction, and control of a helically actuated inertial soft
robotic arm via the koopman operator,” arXiv preprint arXiv:2011.07939,
2020.

[13] M. L. Castaño, A. Hess, G. Mamakoukas, T. Gao, T. Murphey, and
X. Tan, “Control-oriented modeling of soft robotic swimmer with koop-
man operators,” in IEEE/ASME International Conference on Advanced
Intelligent Mechatronics (AIM), 2020, pp. 1679–1685.

[14] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A data–driven
approximation of the koopman operator: Extending dynamic mode
decomposition,” Journal of Nonlinear Science, vol. 25, no. 6, pp. 1307–
1346, 2015.

[15] J. Boyd, Chebyshev and Fourier spectral methods. Courier Corp, 2001.
[16] H. Wendland, “Meshless galerkin methods using radial basis functions,”

Mathematics of computation, vol. 68, no. 228, pp. 1521–1531, 1999.
[17] Q. Li, F. Dietrich, E. M. Bollt, and I. G. Kevrekidis, “Extended dynamic

mode decomposition with dictionary learning: A data-driven adaptive
spectral decomposition of the koopman operator,” Chaos: An Interdisci-
plinary Journal of Nonlinear Science, vol. 27, no. 10, p. 103111, 2017.

[18] E. Yeung, S. Kundu, and N. Hodas, “Learning deep neural network
representations for koopman operators of nonlinear dynamical systems,”
in American Control Conference (ACC), 2019, pp. 4832–4839.

[19] N. Takeishi, Y. Kawahara, and T. Yairi, “Learning koopman invariant
subspaces for dynamic mode decomposition,” in Proceedings of the 31st
International Conference on Neural Information Processing Systems,
2017, pp. 1130–1140.

[20] M. Netto, Y. Susuki, V. Krishnan, and Y. Zhang, “On analytical construc-
tion of observable functions in extended dynamic mode decomposition
for nonlinear estimation and prediction,” in American Control Confer-
ence (ACC). IEEE, 2021, pp. 4190–4195.

[21] E. M. Bollt, “Geometric considerations of a good dictionary for koopman
analysis of dynamical systems: Cardinality,“primary eigenfunction,” and
efficient representation,” Communications in Nonlinear Science and
Numerical Simulation, vol. 100, p. 105833, 2021.

[22] K. Karydis, I. Poulakakis, J. Sun, and H. G. Tanner, “Probabilistically
valid stochastic extensions of deterministic models for systems with
uncertainty,” The International Journal of Robotics Research, vol. 34,
no. 10, pp. 1278–1295, 2015.

[23] K. Karydis and M. A. Hsieh, “Uncertainty quantification for small robots
using principal orthogonal decomposition,” in International Symposium
on Experimental Robotics. Springer, 2016, pp. 33–42.

[24] B. O. Koopman, “Hamiltonian systems and transformation in hilbert
space,” Proceedings of the national academy of sciences of the united
states of america, vol. 17, no. 5, p. 315, 1931.

[25] J. L. Proctor, S. L. Brunton, and J. N. Kutz, “Generalizing koopman
theory to allow for inputs and control,” SIAM Journal on Applied
Dynamical Systems, vol. 17, no. 1, pp. 909–930, 2018.

[26] Q. Li, F. Dietrich, E. M. Bollt, and I. G. Kevrekidis, “Extended dynamic
mode decomposition with dictionary learning: A data-driven adaptive
spectral decomposition of the koopman operator,” Chaos: An Interdisci-
plinary Journal of Nonlinear Science, vol. 27, no. 10, p. 103111, 2017.

[27] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing
equations from data by sparse identification of nonlinear dynamical
systems,” Proceedings of the national academy of sciences, vol. 113,
no. 15, pp. 3932–3937, 2016.

[28] ——, “Sparse identification of nonlinear dynamics with control
(sindyc),” IFAC-PapersOnLine, vol. 49, no. 18, pp. 710–715, 2016.

[29] S. Klus and C. Schütte, “Towards tensor-based methods for the numerical
approximation of the perron-frobenius and koopman operator,” Journal
of Computational Dynamics, 2016.

[30] M. Korda and I. Mezić, “On convergence of extended dynamic mode
decomposition to the koopman operator,” Journal of Nonlinear Science,
vol. 28, no. 2, pp. 687–710, 2018.

[31] E. Celeghini, M. Gadella, and M. A. del Olmo, “Hermite functions and
fourier series,” Symmetry, vol. 13, no. 5, p. 853, 2021.

[32] B. Reed, M.; Simon, “Functional analysis,” Academic Press:, 1972.
[33] Z. Jing, L. Qiao, H. Pan, Y. Yang, and W. Chen, “An overview of the

configuration and manipulation of soft robotics for on-orbit servicing,”
Science China Information Sciences, vol. 60, no. 5, p. 050201, 2017.

[34] P. Maheshwari, G. Mukhopadhyay, and S. SenGupta, “Properties of
tensor hermite polynomials,” arXiv preprint arXiv:1411.7398, 2014.

[35] Z. Liu, Z. Lu, and K. Karydis, “Sorx: A soft pneumatic hexapedal robot
to traverse rough, steep, and unstable terrain,” in IEEE International
Conference on Robotics and Automation (ICRA), 2020, pp. 420–426.

[36] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal
of the Royal Statistical Society: Series B (Methodological), vol. 58, no. 1,
pp. 267–288, 1996.

[37] K. M. Lynch and F. C. Park, Modern Robotics. Cambridge University
Press, 2017.

	I Introduction
	II Preliminary Technical Background
	II-A Koopman Operator Theory and Extended Dynamic Mode Decomposition (EDMD)
	II-B EDMD with Dictionary Learning (EDMD-DL)
	II-C Sparse Identification of Nonlinear Dynamical Systems (SINDy)
	II-D Convergence of the EDMD operator
	II-E Property of Hermite Polynomials

	III Dictionary Construction
	III-A Analytical Construction of Lifting Functions for Fundamental Topological Spaces
	III-B Theoretical Analysis of ACD-EDMD

	IV Experimental Evaluation
	IV-A Differential Drive Robot - Simulation
	IV-B Experiments with the Physical ROSbot 2.0 Robot
	IV-C Two Revolute Joint (2R) Rigid Robotic Arm - Simulation
	IV-D Experiments with a Soft Robotic Leg

	V Conclusions
	References

