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Collective behavior of swarmalators on a ring
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We study the collective behavior of swarmalators, generalizations of phase oscillators that both sync and
swarm, confined to move on a one-dimensional (1D) ring. This simple model captures the essence of movement
in two or three dimensions, but has the benefit of being solvable: most of the collective states and their
bifurcations can be specified exactly. The model also captures the behavior of real-world swarmalators which
swarm in quasi-1D rings such as bordertaxic vinegar eels and sperm.
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I. INTRODUCTION

Synchronization and swarming are universal phenomena
[1–5] that are, in a sense, spatiotemporal opposites. Syn-
chronizing units self-organize in time, but not in space; laser
arrays fire simultaneously [6,7], heart cells trigger all at once
[8], but neither system exhibits spontaneous group movement.
Swarming units flip the picture: they self-organize in space,
not time. Birds fly in flocks [9], fish swim in schools [10], but
neither coordinates the timing of an internal state or rhythm.
The units of some systems appear to self-organize in

both space and time. In biology, sperm [11,12], vinegar eels
[13,14], and other microswimmers [15–17] synchronize the
wriggling of their tails, which is speculated to hydrodynam-
ically couple to their motion. In chemistry, magnetic Janus
particles [18–20], dieletric Quinke rollers [21–23], and other
active entities [24] lock their rotations enabling a kind of sync-
dependent self-assembly. In engineering, land-based robots
and aerial drones can be programed to swarm based on their
synchronizable internal clocks [25–27]. Sync and swarming
are also suspected to interact in spatial cognition [28], embry-
ology [29–31], and the physics of magnetic domain walls [32].
The theoretical study of systems which both sync and

swarm is just beginning. Tanaka pioneered the initiative by
formulating a model of chemotactic oscillators [33] and found
diverse phenomena [34,35]. Leibchen and Levis general-
ized the Vicsek model and found new types of long-range
synchrony [36]. O’Keeffe et al. introduced a model of “swar-
malators”1 whose collective states have been realized in
nature and technology [21,25,26] and are being actively ex-
tended. The inclusion of noise [37], local coupling [38,39],
forcing [40], mixed sign interactions [41], and finite N ef-
fects [42] have been studied. The potential of swarmalators
in bio-inspired computing has been explored [43], as has
the well-posed-ness of N → ∞ solutions of the swarmalator
model [44,45].

1Short for “swarming oscillators.”

Here we study swarmalators confined to move on a one-
dimensional (1D) ring. Our aim is two-fold. First, to model
swarmalators which swarm purely in one dimension. Frogs,
nematodes, and other organisms are often bordertaxic, seeking
out the ring-like edges of their confining geometry [46–52].
Janus particles, when acting as microrobots for precision
medicine [53–55], will need to navigate pseudo-1D grooves
and channels [56]. Toy models for these systems will be useful
for applied research.
Our second aim is theoretical, namely to investigate the

original two-dimensional (2D) swarmalator model whose
physics is not understood.2 Figure 1 shows its order

2Note the figure displays the order parameters of a different in-
stance of the model than that presented in [61]; see Appendix B.

FIG. 1. Order parameters of the 2D swaramalator model (see
Appenndix B for definition of the model) S±eiφ± :=
(N )−1

∑
j ei(φ j±θ j ), where φ, θ are the spatial angle and phase

of swarmalators. S+ bifurcates from 0 at K1 as the static async state
[Fig. 2(b)] destabilizes, grows, then starts to decline at K2 as the
active phase wave [Fig. 2(f)] destabilizes. S− bifurcates from zero at
K2. The nature of these bifurcations, as well as analytic expressions
for both K1 and K2, are unknown.

2470-0045/2022/105(1)/014211(13) 014211-1 ©2022 American Physical Society



O’KEEFFE, CERON, AND PETERSEN PHYSICAL REVIEW E 105, 014211 (2022)

parameters S± := (N )−1
∑

j ei(φ j±θ j ), where φ, θ denote the
spatial angle and phase dependence on the coupling strength
K . At a critical K1, S+ jumps from zero as the system transi-
tions from a static async state [Fig. 2(b)] to an active phase
wave state [Fig. 2(e)] in which swarmalators run in a space-
phase vortex. As expected of order parameters, S+ grows as
K is increased. However, then it begins to decline at a second
value K2 as the swarmalator vortex bifurcates into a broken
band of mini-vortices [Fig. 2(d)]. The cause of this nonmono-
tinicity, as well as analytic values for K1, K2, are unknown.
Like the old puzzles to understand the transitions of the Ku-
ramoto model [2,57–60], the bifurcations of the swarmalator
model “cry out for a theoretical explanation” [57].
Our hope is that a retreat to a 1D ring will give some first

clues on how to provide such an explanation.

II. MODEL

We study a pair of modified Kuramoto models

ẋi = νi + J

N

N∑
j

sin(x j − xi ) cos(θ j − θi ), (1)

θ̇i = ωi + K

N

N∑
j

sin(θ j − θi ) cos(x j − xi ), (2)

where (xi, θi ) ∈ (S1, S1) are the position and phase of the
ith swarmalator for i = 1, . . . , N and (νi, ωi), (J, K ) are the
associated natural frequencies and couplings. We consider
identical swarmalators (ωi, νi ) = (ω, ν) and by a change of
frame set ω = ν = 0 witout loss of generality (WLOG).
Equation (2) models position-dependent synchronization.

The familiar Kuramoto sine term minimizes swarmalators’
pairwise phase difference (so they sync) while the new cosine
term strengthens the coupling between nearby swarmala-
tors Ki j = K cos(x j − xi ) (so the sync is position dependent).
Equation (1) is Eq. (2)’s mirror-image: it models phase-
dependent swarming. Now the sine term minimizes the
swarmalators’ pairwise distances (so they swarm or aggre-
gate) and the cosine term strengthens the coupling between
similarly phased swarmalators Ji j = J cos(θ j − θi ). You can
also think of Eqs. (1) and (2) as modeling synchronization on
the unit torus.
Converting the trig functions to complex exponentials and

rearranging makes the model even simpler

ẋi = J

2
(S+ sin[�+ − (xi + θi )]+ S− sin[�− − (xi − θi )]),

(3)

θ̇i = K

2
(S+ sin[�+ − (xi + θi )]− S− sin[�− − (xi − θi )]),

(4)

where

W± = S±ei�± = 1

N

∑
j

ei(x j±θi ). (5)

The terms xi ± θi occur naturally so we define

ξi = xi + θi, (6)

ηi = xi − θi, (7)

and find

ξ̇i = J+S+ sin(�+ − ξ )+ J−S− sin(�− − η), (8)

η̇i = J+S+ sin(�+ − ξ )+ J+S− sin(�− − η), (9)

where J± = (J ± K )/2.3

We see ring swarmalators obey a sum of two Ku-
ramoto models where the traditional order parameter Rei� :=
(N )−1

∑
j eiθ j has been replaced by a pair of new order

parameters W± = S±ei�± = (N )−1
∑

j ei(x j±θ j ). The new W±
measures the system’s total amount of “space-phase order.”
What kind of order is this? The limiting cases are trivial:

static sync (xi, θi ) = (x∗, θ∗), which produces maximal or-
der S± = 1 [which follows from substitution into Eq. (5)],
and static async, in which positions xi are fully uncorre-
lated with phases θi, which produces minimal order S± = 0.
Between these two extremes, however, lies something more
interesting: Perfect correlation between position and phase
xi = ±θi + c for constant c which yields either (S+, S−) =
(0, 1) or (S+, S−) = (0, 1).4 What does xi ± θi mean physi-
cally? Picture swarmalators on a ring as a group of fireflies
flying around a circular track, flashing periodically. Let θi = 0
be the beginning of their phase cycle (when they flash). Then
xi ± θi + c means each firefly flashes at the same point on its
circular lap xi = c. Plotting swarmalators as colored dots in
space (where color represents phase) illustrates this behavior
most evocatively. Then xi = ±θi + c corresponds to a colored
splay state [Figs. 2(c) and 3(c)]. Since one of S± are maxi-
mal in this rainbow-like state, we call S± the rainbow order
parameters.
As we will show, S± are natural order parameters for the

ring model (insofar as they can distinguish between each of
its collective states).

Motivation for model Before showing our analysis, we
quickly show how the ring model connects to the original 2D
model [61]. The 2D model is

ẋi = vi + 1

N

N∑
j=1
[Iatt (x j − xi )F (θ j − θi )− Irep(x j − xi )],

(10)

θ̇i = ωi + K

N

N∑
j=1

Hatt (θ j − θi )G(x j − xi ). (11)

We pick out the rotational component of the swarming mo-
tion (since that part is analogous to movement on a ring) by
converting Eqs. (10) and (11) to polar coordinates. For certain

3Note we could set J = 1 WLOG by rescaling time but we decided
against this so as to make the facilitate a clean comparison to the 2D
model for which both (J, K ) appear.
4If the correlation is xi + θi = c, then S+ = 1. If xi− = θi + c, then

S− = 1.
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FIG. 2. Collective states of the 2D swarmalator model introduced in [61] where swarmalators are represented as colored dots where the
color refers to the swarmalators’s phase. As described in Appendix B, the states displayed are from a slightly different instance of the model to
that presented in [61], which produces the same qualitative behavior, but better emphasizes the nonmonotonic behavior of the order parameters
S± shown in Fig. 1. In all panels a Euler method was used with timestep dt = 0.1 for T = 1000 units for N = 1000 swarmalators. (a) Static
sync: (J, K, σ ) = (1, 1, 10). (b) Static async (J, K, σ ) = (1, 1, 10). (c) Static phase wave (J, K, σ ) = (1, 1, 10). (d) Splintered phase wave
(J, K, σ ) = (1, 1, 10). (e) Active phase wave. In the three static states (a)–(c) swarmalators do not move in space or phase. In the splintered
phase wave, each colored chunk is a vortex: the swarmalators librate in both space and phase. In the active phase wave, the librations are
excited into rotations; the swarmalators split into counterrotating groups as indicated by the black arrows.

choices of Iatt (x), F (θ ) and so on this yields

ṙi = ν̃(ri )+ J

2
[S̃+ cos(�+ − ξi )+ S̃− cos(�− − ηi )], (12)

ξ̇i = ω̃(ri )+ J̃+(ri )S̃+ sin(
+ − ξi )

+ J̃−(ri )S̃− sin(
− − ηi ), (13)

η̇i = ω̃(ri )+ J̃−(ri )S̃+ sin(
+ − ξi)

+ J̃+(ri )S̃− sin(
− − ηi ), (14)

where we switched to (ξi, ηi ) = (φi + θi, φi − θi ) coordinates
and φi is the spatial angle of the ith swarmalator (which is

analogous to xi in the ring model). We put the derivation
and definitions of the various new quantities in the Appendix
because they are cumbersome and uninformative to display
here.
Equations (13) and (14) reveal the ring model hidden in the

2D model’s core. The (ξ̇i, η̇i ) equations have the same form as
the (ξ̇i, η̇i ) equations in the 1D model [Eqs. (8) and (9)]; both
are a summed pair of Kuramoto models. The only difference
is that in the 2D model, ω̃i(ri ) and J̃±(r) depend on ri. So
the ring model is like the 2D model with the radial dynamics
turned off. This is why we think studying the ring model will
yield hints on how to study the 2D model (one of the paper’s
aims).

FIG. 3. Collective states of ring model. Top row, swarmalators are drawn in as colored points on a unit circle in a dummy (x̃, ỹ) plane
to allow a comparison with the 2D swarmalator model in Fig. 2. x corresponds to the angular position on this unit circle [the point sizes in
(a) and (b) and their partners (f) and (g) are also drawn larger to make things clearer] while the color corresponds to the phase. Bottom row,
swarmalators are drawn as points in the (x, θ ) plane. All results were found by integrating Eqs. (1) and (2) using an RK4 solver with timestep
dt = 0.1 for T = 500 time units for N = 500 swarmalators. Initial positions and phases were drawn from [−π, π ] in all panels except panel
(a), which were drawn from [0, π ] (since this choice of initial conditions realized the static sync state). (a,f) Static sync (J, K ) = (1, 1). (b,g)
Static π -state (J, K ) = (1, 1). (c,h) Static phase wave (J, K ) = (1,−0.5). (d,i) Active async (J, K ) = (1,−1.05). Here the swarmalators jiggle
about in (x, θ ) as indicated by the double ended arrows with no global space-phase order as indicated by the scatterplot in (i). The amount of
motion or jiggling depends on the population size N as discussed in the main text and illustrated in Fig. 7. (e,j) Static async (J, K ) = (1,−2).
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FIG. 4. Rainbow order parameters S± for the ring swarmalator
model with νi = ωi = 0 and J = 1. We assumedWLOG that S+ > Si

[i.e., if S+ < S− in simulations we swapped (S+, S−) → (S−, S+)].
Data were collected by integrating the models (1) and (2) using
an RK4 method with (dt, T ) = (0.1, 500). The first 90% of data
were discarded as transients and the mean of the remaining 10%
were taken. We chose just N = 10 swarmalators to illustrate the
active async state as clearly as possible; the fluctuations in S± that
characterize the state decay to 0 for larger N (see main text).

III. RESULTS

A. Numerics

Simulations show the system settles into five collective
states depicted in Fig. 3 (the code used for the simulations
is available at [62]). The states are as follows.
(1) Static sync. [Figs. 3(a) and 3(f)]. Swarmalators fully

synchronize their positions xi = x∗ and phases θi = θ∗ result-
ing in maximal space-phase order S± = 1.
(2) Static π state. [Figs. 3(b) and 3(g)]. One group of swar-

malators synchronizes at (x∗, θ∗) and the remaining fraction
synchronize π units away (x∗ + π, θ∗ + π ). S± = 1 here also.
(3) Static phase wave. [Figs. 3(c) and 3(h)]. Swarmalators

form a static splay state with xi = 2π i/N and θi = ±xi + c
where the offset c is arbitrary and stems from the rotational
symmetry in the model.5 In (ξi, ηi ) coordinates, either ξi is
splayed ξi = 2π i/N and ηi is locked ηi = c or vice versa.
The order parameters are either (S+, S−) = (1, 0) (where the
phase gradient of the rainbow is clockwise) or (S+, S−) =
(1, 0) (where the phase gradient of the rainbow is counter-
clockwise).
(4) Active async. [Figs. 3(d) and 3(i)]. Swarmalators form

a dynamic steady state, moving in clean limit cycles for small
N , but in an erratic, jiggling patterns for large N . The motion
cools and ultimately freezes as N → ∞. There is little space-
phase order as indicated by the low, time-averaged values of
S± (Fig. 1) so we call this state the “active async.”
(5) Static async. [Figs. 3(e) and 3(j)]. Swarmalators form

a static, asynchronous crystal with S± = 0.
Figure 4 shows the curve S±(K ) can distinguish between

all but the static sync and static π states.

5Linear transformations xi → xi + C and θi → C do not change the
dynamics because only differences x j − xi and θ j − θi appear in the
model.

Now we analyze the stability of the states. The static
sync, π , and static async states are analyzed using standard
techniques, but are useful as warm ups to the analysis of
the much harder static phase wave state (which is the main
analytic contribution of the paper). The active async state,
being nonstationary, is analyzed mostly numerically.

B. Analysis

1. Static sync

We calculate the stability of the state by linearizing around
the fixed point in (ξ, η) space. We seek the eigenvalues λ of
the Jacobian M

M =
[

Zξ Zη

Nξ Nη

]
, (15)

where

(Zξ )i j = ∂ξ̇i

∂ξ j
, (16)

(Zη )i j = ∂ξ̇i

∂η j
, (17)

(Nξ )i j = ∂η̇i

∂ξ j
, (18)

(Nη )i j = ∂η̇i

∂η j
. (19)

Evaluating the derivatives in the above using Eqs. (8) and (9)
results in a clean block structure

M =
[

J+A(ξ ) J−A(η)
J−A(ξ ) J+A(η)

]
, (20)

where A(y)i,i = − 1
n

∑n
j=1 cos(y j − yi ) and A(y)i, j =

1
n cos(y j − yi ) for a dummy variable y. Evaluated at the
fixed points of the static sync state, ξi = c1 and ηi = c2 for
constants c1, c2, this becomes even simpler,

MSS =
[

J+A0 J−A0
J−A0 J+A0

]
, (21)

where

A0 :=

⎡
⎢⎢⎢⎣

−N−1
N

1
N . . . 1

N
1
N −N−1

N . . . 1
N

. . . . . . . . . . . .
1
N

1
N . . . −N−1

N

⎤
⎥⎥⎥⎦. (22)

Notice that the Jacobian of the entire systemM has dim(N ) =
2N since there are two state variables (x, θ ) for each of the N
swarmalators, but that dim(A0) = N since it is a subblock of
M. Now the eigenvalues λ̂ of A0 are well known: there is one
with the value λ̂ = 0 stemming from the rotational symmetry
of the model and N − 1 λ̂ = −1. We use these to find the
desired eigenvalues λ of MSS using the following identity for
symmetric block matrices:

det E := det

[
C D
D C

]
= det(C + D) det(C − D). (23)
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This implies the eigenvalues of E are the union of the eigen-
values of C + D and C − D. Applying this identity to MSS

(which has the required symmetric structure) yields

λ0 = 0, (24)

λ1 = −J, (25)

λ2 = −K, (26)

with multiplicities 2,−1+ N,−1+ N (which sum to the re-
quired 2N). This tells us the static sync is stable for J > 0 and
K > 0, consistent with simulations.

2. Static π state

The fixed points here are (xi, θi ) = (c1, c2) for
i = 1, 2, . . . , N/2 and (xi, θi ) = (c1 + π, c2 + π ) for
i = N/2, . . . , N . Conveniently, the shift in π for exactly half
of swarmalators does not change the form of the Jacobian,
Mπ = MSS , so the stability is the same as before. This means
the static sync and π states are bistable for all J > 0, K > 0.
Appendix A discusses the basis of attraction for each state.

3. Static phase wave

We calculate the stability of the static phase wave using
the same strategy as before: linearize around the fixed points
and exploit the block structure of the Jacobian M. This time,
however, the calculations are more challenging.
The fixed points of the static phase wave take two forms:

Either ξ is splayed ξi = 2π (i − 1)/N + c1 and ηi is syn-
chronized ηi = c2 (clockwise rainbow) or ξ is synchronized
ξi = c1 and η splayed ηi = 2π (i − 1)/N + c2 (counterclock-
wise rainbow). Here i = 1, . . . , N and the constants c1, c2 are
offsets. WLOG we analyze the fixed point with ξ splayed and
η synced. The Jacobian is

MSPW =
[

J+A1 J−A0
J−A1 J+A0

]
, (27)

where A0 is as before Eq. (22) but A1 is new

(A1)ii = − 1
N

∑
j �=i

cos
2π

N
( j − i) := − 1

N

∑
j �=i

ci j, (28)

(A1)i j = 1

N
cos

2π

N
( j − i) := 1

N
ci j . (29)

The following notation will be useful:

ci j := cos 2π (i − j)/N, (30)

si j := sin 2π (i − j)/N, (31)

βi j := ci j + Isi j, (32)

ci := cos 2π i/N, (33)

si := sin 2π i/N, (34)

where I = √−1 is the imaginary unit,6 β0,0 := β = e2πIN is
the primitive root of unity, and βk = βk is the kth root of unity.
The diagonal element Aii may be simplified. Recalling the sum
of roots of unities are zero (you can think of βk as a vector

6We choose the nonstandard notation I since we already used i and
j as indices.

pointing to the beginning of the kth segment of size 1/N of
the unit circle; then summing all the vectors around the unit
circle results in zero)

N−1∑
k=0

βk =
N−1∑
k=0

ck + Isk = 0, (35)

which implies

N−1∑
k=0

ck = 0, (36)

N−1∑
k=0

sk = 0 (37)

[in other words, the discrete sum of cos(2πk/N ) and
sin(2πkN ) around the unit circle is zero, which can be seen
by symmetry]. Applying these identities to Eq. (28) for (A1)ii,

(A1)ii = 1

N

∑
j �=i

cos
2π

N
( j − i) = − 1

N

N−1∑
k=1

ck (38)

= − 1
N

(
−c0 + 1

N

N−1∑
k=0

ck

)
= − 1

N
(−c0 + 0) (39)

= c0
N

. (40)

Notice in the first sum over i the jth term is excluded, which
means the second sum over k begins at 1. Since c0 = c0,0 = 1,
we get

(A1)i j = 1

N
ci, j, (41)

with A0 [Eq. (22)] and A1 [Eq. (41)] in hand, we begin the
search for the eigenvalues MSPW Eq. (27) by using another
identity for block matrices. If the consituent matrices A,C of
a general block matrix P,

P =
[

A B
C D

]
(42)

commute then

det(P) = det(AD − BC). (43)

Luckily, the constituent matrices A0 and A1 of MSPW do com-
mute. So we apply the above identity to the characteristic
equation for λ

det(MSPW − λI ) = det

[
J+A1 − λI J−A0

J−A1 J+A0 − λI

]
= 0,

(44)
and find

det(MSPW − λI ) = det
[
(J+A1 − λI )(J+A0 − λI ) (45)

− J2−A1A0
]

:= det(G), (46)
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where to compactify the right-hand side (RHS) we defined

G :=

⎡
⎢⎣

g0 g1 . . . gN−1
gN−1 g0 . . . gN−2
. . . . . . . . . . . .

g1 g2 . . . g0

⎤
⎥⎦, (47)

where

g0 = λ2 + J+
N

λ(N − 1− c0)+
J2− − J2+

N
c0, (48)

g(k>0) = −J+
N

λ(1+ ck )+
J2− − J2+

N
ck . (49)

We want the determinent of G which the product of its eigen-
values λ̂ j (not to be confusedMSPW’s eigenvalues λi which we
are trying to find),

det(G) =
N−1∏
j=0

λ̂ j = 0. (50)

Casting an eye back to Eq. (47), we see G is a circulent
matrix so its eigenvalues λ̂ j are known exactly

λ̂ j =
N−1∑
k=0

gkβ j∗k, (51)

λ̂ j = λ2 + λJ+ − J+
N

λ

N−1∑
k=0
(1+ ck )β j∗k

+ J2− − J2+
N

N−1∑
k=0

ckβ j∗k, (52)

where βk is the primitive root of unity as before. Note
we mean the product j ∗ k in β j∗k = cos 2π j ∗ k/N +
I sin 2π j ∗ k/N . Note also that while G has N eigenvalues
λ̂ (running from j = 0, . . . N − 1),MSPW has the required 2N
eigenvalues λ since each λ̂ j is quadratic in λ.
One last push remains: we simplify the summands in

Eq. (52) using some basic trig identities, find each λ̂ j for
j = 0, 1, . . . , N − 1, and then set λ̂ j = 0 [since det(G) = 0
so each term in the product must be zero], which yields a
quadratic equation for our target λ j .
We begin with j = 0 since it is distinguished from the

other values j takes. The first summand on the RHS of
Eq. (52) becomes

∑N−1
k=0 (1+ ck )β0 = ∑N−1

k=0 (1+ ck )(1) =
N + 0 = N . The second summand becomes

∑N−1
k=0 ckβ j∗k =∑N−1

k=0 ck (1) = 0 [which follows from from Eq. (36)]. Plug-
ging these in yields

λ̂0 = λ2 + λJ+ − J+
N

λ(N ) = λ2. (53)

Setting λ̂0 = 0 gives our first eigenvalue

λ0 = 0 (54)

with a multiplicity of 2.
Next we analyze λ̂ j>0 all at once. First note

N−1∑
k=0

β j∗k =
N−1∑
k=0
cos

2π jk

N
+ I sin 2π jk

N
(55)

= 0+ 0× I = 0 (56)

for all j > 0 (when j = 0 we get the simple sum N − 1 which
is why we considered the case j = 0 separately). This implies
the second summand in Eq. (52) simplifies into the third sum-
mand

∑N−1
k=0 (1+ ck )β j∗k = ∑N−1

k=0 ckβ j∗k when j > 0 which
in turn becomes

N−1∑
k=0

ckβ j∗k =
N−1∑
k=0

ckc j∗k + Icks j∗k . (57)

Using the standard formulas

cos(a) cos(b) = 1
2 [cos(a + b)+ cos(a − b)], (58)

cos(a) sin(b) = 1
2 [sin(a + b)− sin(a − b)], (59)

we see

N−1∑
k=0

ckc j∗k = 1

2

N−1∑
k=0

(
cos

2π (1+ j)k

N
+ cos 2π (1− j)k

N

)
,

(60)
N−1∑
k=0

cks j∗k = 1

2

N−1∑
k=0

(
sin
2π (1+ j)k

N
+ sin 2π (1− j)k

N

)
,

(61)

where we inverted the c j notation for clarity. Both the cosine
terms in Eq. (60) and sine terms in Eq. (61) are zero [as
per Eq. (56)] except when the arguments are 0. This occurs
for j = 1,−1 (where j = −1 is interpreted modulo N and
equivalent to j = N − 1). Since cos 0 = 1 and sin = 0, this
yields

N−1∑
k=0

ckc jk = N

2
(δ j,1 + δ j,N−1), (62)

N−1∑
k=0

cks jk = 0, (63)

where δi, j = 1 is the Kronecker delta. Applying the above to
Eq. (57) gives

N−1∑
k=0

ckβ j∗k = N

2
(δ j,1 + δ j,N−1). (64)

Plugging this into Eq. (52) for λ̂ j

λ̂ j = λ2 + λJ+ +
(

− J+
N

λ + J2− − J2+
N

)
(δ j,1 + δ j,N−1) = 0,

(65)

which holds for j = 1, . . . , N − 1 since, recall, we analyzed
j = 0 separately and in that case found λ = 0 with multi-
plicity 2 [Eq. (54)]. The desired λ are the roots of the above
equations. Both their values and multiplicities depend on N .
For N � 4, a general pattern holds, but N = 2, 3 are special
cases.

N = 2 is special because both of the Kronecker delta
functions trigger at the same time: δ j,N−1 = δ j,2−1 = δ j,1 = 1.
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TABLE I. Spectrum of static phase wave for different population
sizes. The cases N = 2, 3 are distinguished. For N � 4 the pattern
is fixed. Notice a multiplicity of 1 for eigenvalues that are complex
conjugates: λ± means one instance of the pair; a multiplicity of 2
means two instances of the pair: λ+, λ+, λ−, λ−.

N (Multiplicity, eigenvalue)

2 λ = (2, 0), (1, ±√
J2+ − J2−)

3 λ = (2, 0), [2, (−J+ ± √
9J2+ − 8J2−)/4]

4 λ = (3, 0), (1, −J+), [2, (−J+ ± √
9J2+ − 8J2−)/4]

N �4 λ= (0, N − 1), (N − 3, −J+), [2, (−J+±√
9J2+ − 8J2−)/4]

Equation (65) then becomes

λ̂ j = λ2 + λJ+ + 2
(

− J+
N

λ + J2− − J2+
N

)
= 0, (66)

⇒ λ = ±
√

J2+ − J2−. (67)

Table I, row 1 reports these eigenvalues along with the two
zero eigenvalues λ = 0 which gives the required 2N = 4
eigenvalues’s total.

N = 3 is special because precisely one of the two kro-
necker δi, j functions is on for all j; there is no j for which
both δ j,1, δ j,N−1 are zero simultaneously. For j = 1, δ j,1 = 1
and for j = N − 1, δ j,N−1 = δ j,2 = 1 (recall j runs from 1 to
N − 1; so when N = 2, j = 1, 2 only). So we get the follow-
ing for both j = 1, 2:

λ̂ j = λ2 + λJ+ +
(

− J+
N

λ + J2− − J2+
N

)
= 0, (68)

⇒ λ± = 1

4
(−J+ ±

√
9J2+ − 8J2−), (69)

and so the pair λ± has multiplicity two as shown Table I, row
2 (i.e., the full set is λ+, λ+, λ−, λ−).
Finally, for N � 4, there are now intermediary values of

j = 2, . . . , N − 2 for which δ j,1 = δ j,N−1 = 0 simultaneously
in which case

λ̂ j = λ(λ + J+) = 0, (70)

⇒ λ = 0,−J+. (71)

Table I, row 3 summarizes the λ’s and their multiplici-
ties in this general case which completes our calculation.
We confirmed the expressions for λ are correct by using
MATHEMATICA (notebook provided at [62]) to compute the
eigenvalues of MSPW for N = 2, . . . , 6 (for larger N , MATH-
EMATICA starts to struggle) analytically.
Now we use the expressions for λ to predict the bifurca-

tions of the static phase wave. For convenience we write out
the expressions below (which are valid for N > 2. For N = 2,
λ =

√
J2− − J2+ > 0 for K < 0 meaning the static phase wave

is unstable in this case. We will analyze the N = 2 case fully
in the next section):

λ0 = 0, (72)

λ1 = −J+, (73)

λ2 = 1
4 (−J+ ±

√
9J2+ − 8J2−), (74)

λ2 exists for all N � 3 and triggers a Hopf bifurcation at Kc =
−J which comes from solving Re(λ±

2 ) = 0 (the determinant
9J2+ − 8J2− is negative here so λ±

2 are complex conjugates). It
also triggers a saddle node bifurcation at K = 0 which comes
from solving λ+

2 = 0 (λ−
2 is never 0). λ1 exists for all N � 4

and triggers a saddle node bifurcation also at Kc = −J . These
results imply the static phase wave is stable when

−J < K < 0 (75)

for all population sizes N > 2. To recap, at the left boundary
K = −J , it destabilizes via a Hopf bifurcation for N = 3
and a simultaneous Hopf and saddle node for N � 4. At the
right boundary K = 0, it destabilizes via a saddle node for all
N � 3.

4. Analysis of active async

The destabilization of the static phase wave via a Hopf
bifurcation for N � 2 implies a limit cycle is born at K <

Kc. Here swarmalators oscillate about their mean position in
space and phase [Fig. 3(d)] with little overall order S± ≈ 0
(Fig. 4) for most N . Figure 5(a) depicts the oscillations in
x(t ) for a typical swarmalator for different population sizes.
For small N , the oscillations are smooth and fast. For larger
N , the oscillations are irregular and slow. (The oscillations in
phase, unplotted, behave the same way). Figure 5(b) shows
the dynamics of the rainbow order parameters S± are similar.
In the simple case N = 2 the active state can be studied

using the standard transformation to mean and difference co-
ordinates (〈y〉,�y) = (y1 + y2, y2 − y1) where y is a dummy
variable. The mean positions and phases are invariant ˙〈x〉 =
˙〈θ〉 = 0 because of the pairwise oddness of Eqs. (1) and (2),
which implies x1 = −x2 and θ1 = −θ2. The differences, how-
ever, evolve according to

�̇x = J sin�x cos�θ, (76)

�̇θ = K sin�θ cos�x. (77)

These ordinary differential equations (ODEs) have eight
fixed points. For K > 0, the two fixed points (�x,�θ ) =
(0, π ), (0, π ) are stable nodes (which corresponds to static
synchrony) while the rest are saddles. For K < 0, four nonlin-
ear centers exist while the other fixed points are again saddles.
The family of periodic solution surrounding the centers corre-
spond to the active async state and can be found explicitly by
dividing Eq. (76) by Eq. (77) and integrating

d�x

d�θ
= J sin�x cos�θ

K sin�θ cos�x
, (78)

K
∫
cos x

sin x
dx = J

∫
cos θ

sin θ
dθ, (79)

sin xK = C sin θ J . (80)

For some constantC determined by initial conditions. Figure 6
plots the contours of Eq. (80), which corresponds to the limit
cycle of the active async state, along with the fixed point for
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FIG. 5. Dynamics in active async state. (a) Position x(t ) for a
typical swarmalator for N = 2, 5, 50 swarmalators showing oscil-
latory behavior. For small N , the oscillations are smooth and fast.
For larger N , they are irregular and slow. The dynamics of the swar-
malator’s phase θi (unplotted) are similar. (b) Time series of order
parameter S+. The behavior of S− is qualitatively the same. Simula-
tion parameters were (dt, T ) = (0.1, 100) and (J, K ) = (1,−1.05).

K = −1. These are consistent with the oscillations in x(t ) in
Fig. 5. They also tell us that the active async is stable for all
K < 0 when N = 2, which confirms our result from the last
section that the static phase wave is unstable when N = 2.
For N > 2, analysis of the active async state becomes

unwieldy, so we numerically examine the state by plotting
the mean velocity, or activity, 〈v〉 = N−1 ∑N

i=1 vi where vi =
(v2x + v2θ )

1/2 is the velocity of the ith swarmalator. Since all of
the other collective states are stationary, 〈v〉 is a natural order
parameter for the active async state. Figure 7, in which J = 1,
shows the 〈v〉 persists for large N when K ≈ Kc = −1 (recall,
we know the state must exist for some K for all finite N via
the Hopf bifurcation). For small coupling strengths K ≈ −2,
however, the motion dies out for moderately large systems
N � 5 and the final static async state is born.

5. Analysis of static async

Here the swarmalators sit at fixed points (x∗
i , θ

∗
i ) scattered

uniformly in space and phase [Fig. 3(e)] implying no global
order S± = 0 (Fig. 4). This state is hard to analyze for finite N

FIG. 6. Phase space for N = 2 swarmalators in (�x, �θ ) coor-
dinates [Eqs. (76) and (77)] for (J, K ) = (1, −1). Saddle points are
shown as open red circles, nonlinear centers as open green circles.
The family of periodic orbits, which correspond to the active async
state, are given by Eq. (80) forC = −6, . . . , 6.

because for most population sizes N � 3, multiple configura-
tions of fixed points (x∗

i , θ
∗
i ) exist for a given set of parameters

(J, K ). Simply enumerating this family of fixed points is a
difficult problem (it has not been done in the regular Kuramoto
model) never mind analyzing their stability. In the continuum
limit N → ∞, however, the stability may be analyzed since
the state has a simple representation ρ(x, θ, t ) = 1/(4π2)
where ρ(x, θ, t )dxdθ gives the fraction of swarmalators with
positions between x + dx and phases between θ + dθ at time

FIG. 7. Mean velocity 〈v〉 = N−1 ∑N
i=1 vi, where vi = (v2x +

v2θ )
1/2 is the velocity of the ith swarmalator, in the (N, K ) plane

for J = 1. Simulation parameters were (dt, T ) = (0.1, 5000). The
first 90% of data were discarded as transients and the mean of the
remaining 10% are plotted.
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FIG. 8. Bifurcation diagram in (J, K ) space as N → ∞.

t . The density obeys the continuity equation

ρ̇ + ∇(vρ) = 0, (81)

and the velocity v = (vx, vθ ) is given by the N → ∞ limit of
Eqs. (1) and (2)

vx = J
∫
sin(x′ − x) cos(θ ′ − θ )ρ(x′, θ ′, t )dx′dθ ′, (82)

vθ = K
∫
sin(θ ′ − θ ) cos(x′ − x)ρ(x′, θ ′, t )dx′dθ ′. (83)

The stability is analyzed by plugging a general perturbation

ρ = ρ0 + εη = (4π2)−1 + εη(x, θ, t ) (84)

into the continuity equation and computing the spectrum.
Since such analyses are standard, we put the details in Ap-
pendix C. The eventual result is

K < Kc = −J. (85)

Recall this is only valid as N → ∞. Interestingly, this result
also proves the active async state disappears for N → ∞ via
a “squeeze” argument: Since the static phase wave also loses
stability at Kc = −J , there is no room left for the active async
state to exist as N → ∞.
This completes our analysis. Figure 8 reports the bifurca-

tion diagram in (J, K ) space when N → ∞ (note the active
async state is not present in the diagram because it is realized
only for finite N).

IV. MATCH TO REAL-WORLD SWARMALATORS

Swarmalators are defined as entities with a two-way inter-
action between swarming and synchronization [61]. Below
we list examples which (i) appear to meet this definition,7

7We say “appear” to meet these definitions because what it means
to prove a bidirectional space-phase coupling in an experimental
system is somewhat ambiguous. Most experimental studies of swar-
malators either infer a space-phase coupling exists based on the
observations (like the microswimmers [11,13,63] we describe; the
authors of [63] did a particularly comprehensive study), but do not
specify if the coupling is bidirectional. Other studies demonstrated

(ii) swarm in ring-like geometries, and (iii) display collective
behavior similar to the ring model.
Sperm are a classic microswimmer which swarm in solu-

tion and sync their tail gaits [11]. Sperm collected from ram
semen and confined to 1D rings bifurcate from an isotropic
state (analogues to the static async state) to a vortex state in
which sperm rotate either clockwise or anticlockwise [50],
which implies their positions and orientations are splayed just
like the static phase wave (recall the static phase wave is really
a state of uniform rotation and only static in the frame co-
moving with the natural frequencies ω, ν) [50]. Moreover, the
transition has associated transient decay of rotation velocity
(see Fig. 4(a) in [50]) consistent with a Hopf bifurcation, just
like the ring model (74). Note unlike other studies of syncing
sperm [11], here the phase variable is the sperm’s orientation,
not its tail rhythm.
Vinegar eels are a type of nematode found in beer mats and

the slime from tree wounds [13,14]. They are swarmalators
because they sync the wriggling of their heads, swarm in
solution, and it seems likely based on their behavior that said
sync and swarming interact [13,14] (neighboring eels sync
more easily than distant eels, so sync interacts with swarming,
and synced eels presumably affect each local hydrodynamic
environment and thereby affect each other’s movements, so
swarming interacts with sync). When confined to 2D disks,
they seek out the 1D ring boundary forming metachronal
waves in which the phase of their gait and their spatial posi-
tions around the ring are splayed similar to the static phase
wave [13,14] (although note the winding number for the
metachronal waves is k > 1; a full rotation in physical space
x produces k > 1 rotations in phase θ ).
C. elegans are another type of microswimmer which also

swarm and sync the gait of their tails. When confined to 1D
channels they form synchronous clusters analogous to the
static sync state [63]. Though not strictly consistent with the
ring model, a channel being a 1D line as opposed to a 1D
ring, we mention them here because it is natural to expect sync
clusters would persist in a 1D ring also.

V. DISCUSSION

The first aim of the paper was to model real-world swar-
malators swarming in one dimension. This was a success. The
model captured the behavior of vinegar eels, sperm, and C.
elegans. Even so, the model failed to capture the phenomenol-
ogy of other 1D swarmalators such as the the two-cluster
states of bordertaxic Japanese tree frogs [52] or the cluster
dynamics of synthetic microswimmers [64]. Crafting a model
that mimics these systems is a challenge for the future.
The second aim of the paper was to provide a stepping

stone (i.e., the ring model) to an analytic understanding of
the 2D swarmalator model’s phenomenology, in particular its
bifurcations. To this end, we studied the destabilization of
the static async state, deriving a 1D version of K1. But an

a two-way coupling in the sense that they encoded it in a model
that produced behavior similar to the observed data (like magnetic
domain walls [32] or myxobacteria [69]). In other words, we are
trying to be conservative in any claims we make.
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analog of the active phase wave state did not appear in the ring
model,8 so we could not study the second bifurcation at K2
beyond which S+ declines (Fig. 1). On the upside, a 1D analog
of the static phase wave was observed, and we were able to
specify its stability exactly (in the 2D model this state was
only observed for K = 0 and its stability was not calculated).
Moreover, this stability calculation certified the existence of
the new active async state (we say certify because we orig-
inally thought the state was just a long transient or perhaps
a numerical artifact; our results prove it exists for all finite
N) in which the swarmalators execute noisy, Brownian-like
motion. What is interesting here is that this motion occurs for
identical, noise-free swarmalators. This suggests any jittery
behavior observed in real-world swarmalator systems may
arise purely from the cross-talk between units’ tendency to
sync and swarm, and not from thermal agitation or other forms
of noise.
Taken together, our analytic findings take us one step closer

to understanding the bifurcations of the swarmalator model,
which for now remain unexplained.
We would love to see future work analyze the ring model

using the Ott-Antonsen (OA) theory [65–68]. A breakthrough
fromOtt and Antonsen, the theory states that the density of the
infinite-N Kuramoto model ρ(θ, t ) has an invariant manifold
of Poissonian kernels which allows dynamics for the classic
sync order parameter Z := N−1 ∑

j eiθ j to be derived explic-
itly. This is a big win. It reduces an N � 1D nonlinear system
to a simple 2D system (one ODE for the complex quantity
Z): a drastic simplification which effectively solves the Ku-
ramoto model. Given the ring model in (ξ, η) coordinates
[Eqs. (8) and (9)] resembles the Kuramoto model so closely,
we suspect it may be solved with the OA theory’s magic: If
regular oscillators are defined on the unit circle θi ∈ S1 and
have an invariant manifold of Poissonian kernels, could ring
swarmalators, defined on the unit torus (x, θ ) ∈ (S1, S1), have
an invariant manifold of some “toroidal” Poissonian kernel?
If so, explicit dynamics for the rainbow order parametersW±
may be derivable and in that sense the ring model solved
exactly.

APPENDIX A: BASIN OF ATTRACTIONS FOR
STATIC SYNC AND π STATE

Are the static sync and π states the only stable collective
states when K > 0? Answering this question conclusively is
difficult since it would mean integrating the equations of mo-
tion for every initial condition in the phase space T N = SN ×
SN . Figure 9 explores a subset of T N : initial position xi spaced
uniformly on (0, aπ ) and initial phases θi spaced uniformly

8We note the splintered phase wave and active phase waves
are realized in a 1D ring model presented in the Supplementary
Information of [61]. But that model does not have the clean format of
the current model Eqs. (8) and (9), which, being so simple, seem to
be the natural model to study 1D swarmalator phenomena. Moreover,
the analogues of the splintered phase wave and active phase wave
states there are unsteady, with the order parameters varying in time.
So in that sense that are not simpler warm-up versions of the states
in two dimensions.

FIG. 9. Left panel: R1(a, b). Right panel: R2(a, b). Data were
collected by integrating Eqs. (1) and (2) using an RK4 method with
(dt, T ) = (0.1, 500) for N = 100 swarmalators.

on (0, bπ ) where 0 � a, b � 2 and then perturbed slightly
with noise of order 10−3 to both xi, θi. When (a, b) = (2, 2)
these initial conditions correspond to swarmalators spread out
evenly over the unit circle in both space and phase. When
a, b < 2, the swarmalators are spread out over subsets of the
unit circle.
We use the Daido order parameters R1eiφ1 := N−1 ∑

j eiθ j

and R2eiφ2 = N−1 ∑
j e2iθ j to distinguish between the static

and π states. The conditions for each state are as follows.
(1) Condition for static sync: (R1, R2) = (1, 1),
(2) Condition for π -state: (R1, R2) = (0, 1).
While R2 = 1 for both the static sync and π states, and thus

cannot distinguish between them, we include it to rule out the
existence of some other collective state for which R2 �= 0.
Figure 9 shows that the static sync is stable when (0 � a �

1) ∩ (0 � b � 1) and the π state is stable in the remaining
space. No other collective states were observed.

APPENDIX B: CONNECTION OF RING MODEL TO
2D SWARMALATOR MODEL

Here we show how the ring model is contained within the
2D swarmalator model which is given by

ẋi = vi + 1

N

N∑
j=1
[Iatt (x j − xi )F (θ j − θi )− Irep(x j − xi )],

(B1)

θ̇i = ωi + K

N

N∑
j=1

Hatt (θ j − θi )Gσ (x j − xi ). (B2)

In [61], the choices Iatt = x/|x|, Irep = x/|x|2, F (θ ) =
1+ J cos(θ ), G(x) = 1/|x|, Hatt(θ ) = sin(θ ) were made.
However, choosing linear spatial attraction Iatt(x) = x,
inverse square spatial repulsion Irep(x) = x/|x|2, and
truncated parabolic space-phase coupling G(x) =
(1− |x|2/σ 2)Hheaviside(σ − |x|)

ẋi = 1

N

N∑
j �=i

[
x j − xi(1+ J cos(θ j − θi ))− x j − xi

|x j − xi|2
]
,

(B3)

θ̇i = K

N

N∑
j �=i

sin(θ j − θi )
(
1− |x j − xi|2

σ 2

)

× Hheaviside(σ − |x j − xi|) (B4)
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FIG. 10. (a) S+ for the unit vector model which has the same qualitative shape as that of the linear parabolic model presented in Fig. 1.
Results for T = 500, 1000 are shown to establish convergence. (b) Zoom in of S+(K ) showing the nonmonotonic dip. Results were generated
using an RK4 solver with dt = 0.1.

gives the same qualitative behavior, but is nicer to work with
analytically.
First we show it demonstrates the same behavior. Figure 2

shows its collective states are the same as those of the original
model, and Fig. 1 shows its order parameters S±(K ) have the
same shape: monotonic increase from (K1, K2) as K → 0−1,
then a dip at from (K2, 0). Note the plot of S±(K) in Fig. 6 of
[61], the dip on (K2, 0) of S+ is slight and hard to see, so we
plot in for finer K and show a zoom in for small K in Fig. 10.
Now we show the “linear parabolic” model, so called be-

cause Iatt = x and G(x) is a parabolic, is cleaner analytically.
In polar coordinates it takes the form

ṙi = Hr (ri, φi )− JriR0 cos(
0 − θi )

+ J

2
[S̃+ cos [�+ − (φi + θi )]

+ S̃− cos [�− − (φi − θi )]],

φ̇i = Hφ (ri, φi )+ J

2ri
[S̃+ sin [
+ − (φi + θi )]

+ S̃− sin [
− − (φi − θi )]],

θ̇i = K

(
1− r2i

σ 2

)
R0 sin(�0 − θi )− K

σ 2
R1 sin(�1 − θi )

+ Kri

σ 2
[S̃+ sin [
+ − (φi + θi )]

− S̃− sin [
− − (φi − θi )]],

where

Hr (ri, φi ) = 1

N

∑
j

(r j cos(φ j − φi )− ri )
(
1− d−2

i j

)
, (B5)

Hφ (ri, φi ) = 1

N

∑
j

r j

ri
sin(φ j − φi )

(
1− d−2

i j

)
, (B6)

Z0 = R0e
i
0 = 1

N

∑
j

eiθ j , (B7)

Ẑ0 = R̂0e
i
̂0 = 1

N

∑
j∈Ni

eiθ j , (B8)

Z2 = R2e
i
2 = 1

N

∑
j

r2j e
iθ j , (B9)

Ẑ2 = R̂2e
i
̂2 = 1

N

∑
j∈Ni

r2j e
iθ j , (B10)

W̃± = S̃±ei
± = 1

N

∑
j

r je
i(φ j±θ j ), (B11)

Ŵ± = Ŝ±ei
̂± = 1

N

∑
j∈Ni

r je
i(φ j±θ j ), (B12)

where the Ẑ0, . . . , order parameters are summed over all the
neighbors Ni of the ith swarmalator: those within a distance σ .
Notice that rainbow order parameters W̃ here are weighted by
the radial distance r j , which is not the case for the ring model
Eqs. (10) and (11) (that is why we put a tilde over the W ).
Assuming σ > max(di j ), we can set Ẑ0 = Z0, Ẑ1 = Z1,Ŵ± =
W±. Then S± sin[�± − (φ ± θ )] and so on of the ring model
starting to emerge. If we assume there is no global synchrony
Z0 = Z2 = 0, which happens generically in the frustrated pa-
rameter regime K < 0, J > 0, and transform to ξi = φi + θi

and ηi = φi − θi coordinates the ring model is revealed (the
terms in the square parentheses in the later two equations)

ṙi = ν̃(ri)+ J

2
[S̃+ cos(�+ − ξi )+ S̃− cos(�− − ηi )],

(B13)

ξ̇i = ω̃(ri, φi )

+ [J+(ri)S̃+ sin(
+ − ξi )+ J−(ri)S̃− sin(
− − ηi )],
(B14)

η̇i = ω̃(ri, φi )

+ [J−(ri )S̃+ sin(
+ − ξi )− J+(ri )S̃− sin(
− − ηi )],
(B15)

where

ν̃(ri, φi ) = Hr (ri, φi ), (B16)

ω̃(ri, φi ) = Hφ (ri, φi ), (B17)

J±(ri) = J

2ri
± Kri

σ 2
. (B18)

APPENDIX C: STABILITY OF STATIC ASYNC STATE

The density obeys the continuity equation

ρ̇ + ∇(vρ) = 0, (C1)

014211-11



O’KEEFFE, CERON, AND PETERSEN PHYSICAL REVIEW E 105, 014211 (2022)

and the velocity v = (vx, vθ ) is given by the N → ∞ limit of
Eqs. (1) and (2)

vx = J
∫
sin(x′ − x) cos(θ ′ − θ )ρ(x′, θ ′, t )dx′dθ ′, (C2)

vθ = K
∫
sin(θ ′ − θ ) cos(x′ − x)ρ(x′, θ ′, t )dx′dθ ′. (C3)

Consider a perturbation around the static async state ρ0 =
1/(4π2)

ρ = ρ0 + εη = (4π2)−1 + εη(x, θ, t ). (C4)

Normalization requires
∫

ρ(x, θ ) = 1, which implies∫
η(x, θ, t )dxdθ = 0. (C5)

The density ansatz (C4) decomposes the velocity

v = v0 + εv1 = εv1, (C6)

where v0 is velocity in the static async state v0 = 0. The
perturbed velocity v1 is given by Eq. (C9) with ρ replaced
by η. Plugging Eqs. (C4) and (C6) into Eq. (C1) yields

η̇ + ρ0(∇v1) = 0. (C7)

To tackle this, first write the v1 in terms of the order parame-
tersW±

v1x = J

2
Im(W 1

+e−i(x+θ ) + W 1
−e−i(x−θ ) ), (C8)

v1θ = K

2
Im(W 1

+e−i(x+θ ) − W 1
−e−i(x−θ ) ), (C9)

where the perturbed order parameters are

W 1
± =

∫
ei(x′±θ ′ )η(x′, θ ′)dx′dθ ′. (C10)

The divergence term is ∇v1. = ∂xvx + ∂θvθ is easy to com-
pute since only exponential terms

∇v1 = −J + K

2
Re(W 1

+e−i(x+θ ) + W 1
−e−i(x−θ ) ). (C11)

Plugging this into the evolution equation for η Eq. (C7) yields

η̇(x, θ, t ) = J + K

8π2
Re(W 1

+e−i(x+θ ) + W 1
−e−i(x−θ ) ). (C12)

Using Re z = 1
2 (z + z̄) we get

η̇ = J + K

16π2
(W 1

+e−i(x+θ ) + W̄ 1
+ei(x+θ )

+ W 1
−e−i(x−θ ) + W̄ 1

−ei(x−θ ) ). (C13)

Only a few Fourier modes are distinguished so we expand
η(x, θ, t ) in terms of complex exponentials

η = (2π )−1(α0,0(t )+ α0,1(t )e
iθ + α1,0(t )e

ix (C14)

+
∞∑

n=1

∞∑
m=1

ᾱn,m(t )e
i(nx+mθ ) + β̄n,m(t )e

i(nx−mθ ) + c.c.),

(C15)

where c.c. denotes the complex conjugate. Unconventionally,
we associate the complex conjugate ᾱ, β̄ with the first har-
monic. This is so that the order parameters are expressed
in terms of W 1

+ = α1,1(t ) and W 1
− = β1,1(t ) (i.e., without the

bar overhead). Also, notice the normalization condition (C5)
implies α0,0(t ) = 0.
Integrating Eq. (C13) with respect to

∫
(.)ei(nx±nθ ) extracts

the evolution equations for each mode. The ones of interest
are

Ẇ 1
± = J + K

4π
W 1

± (C16)

and α̇n,m = β̇n,m = 0 for all (n, m) �= (1, 1). Setting W 1
± =

w1
±eλ±t yields

λ± = J + K

4π
, (C17)

which implies the static async state is stable for

K < Kc = −J, (C18)

consistent with simulations.
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