
Errors in Collective Robotic Construction

Jiahe Chen1�, Yifang Liu1�, Adam Pacheck2�, Hadas Kress-Gazit2, Nils Napp1, and

Kirstin Petersen1

1 School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA,

{jc3472, yl892, nnapp, kirstin}@cornell.edu
2 Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY

14853, USA, {akp84, hadaskg}@cornell.edu

Abstract. We investigate the effect of errors in collective robotic construction

(CRC) on both construction time and the probability of correctly completing a

specified structure. We ground our investigation in the TERMES distributed con-

struction system, which uses local sensing and stigmergic rules that enable robots

to navigate and build 3D structures. We perform an in depth analysis and catego-

rization of action failures in CRC systems. We present an approach to mitigating

action failures and preventing errors that prohibit completion of a structure by

adding predictive local checks. We show that the predictive local checks can in-

crease the probability of success by orders of magnitude in large structures. This

work demonstrates the need to consider both construction time and the effect of

errors in collective robotic construction.

1 Introduction
Collective robotic construction (CRC) involves multiple robots collaborating to build

structures much larger than themselves [1]. This approach can enable construction by

teams of dispensable robots in places dangerous or inaccessible to humans, such as

disaster sites or extraterrestrial environments. CRC is a growing research field span-

ning complex industrial robots cooperating through detailed global planners to simple,

locally-aware robots cooperating through a combination of global plans and stigmer-

gic rule sets [2–7]. The latter are of special interest in task settings that provide little

pre-existing infrastructure yet demand scalability in deployment, high redundancy, and

speed through parallelism. Applications range from building pre-determined structures

using traditional materials (e.g., clay bricks and concrete) or custom bricks to ease robot

manipulation [8], to functional structures such as access paths built out of amorphous

materials [9, 10]. Most of these systems focus purely on additive manufacturing, which

makes occasional errors especially problematic since they cannot be undone.

Due to the relatively small scale of robot-built structures shown in the past, errors

and error propagation in CRC have been largely overlooked. The majority of prior work

has focused on decreasing construction time through improving system efficiency and

maximizing parallelism [3–5, 7] while relying on systems where errors are mitigated

through engineering effort or simulations that do not incorporate errors. However, in

bigger structures and larger collectives, even unlikely errors are bound to occur and it

is critical to understand how these affect the overall system. Similar tendencies were

shown in the related field of swarm robotics when they grew in numbers from tens to a

thousand [11]. Comparatively, errors in CRC often have bigger repercussions because

� The first three authors contributed equally to this work.

2 J. Chen∗, Y. Liu∗, A. Pacheck∗, H. Kress-Gazit, N. Napp, K. Petersen

Fig. 1: (a) Sketch of a TERMES robot assembling a structure. b) A blueprint with an

example policy overlaid. (c) The composition of actions required to complete (b) given

different policies. (d) The cumulative action time (robot hours) required to build (b)

given different policies. (e) The probability of completing (b) without having an action

failure, using policy ‘a’.

robots with limited sensing and motion capabilities are physically and permanently

altering their environment. Therefore, when evaluating CRC systems, the probability of

successful structure completion must be considered in addition to construction time.

In this work, we focus explicitly on CRC of pre-determined structures, with local

stigmergic rules that have a non-zero probability of action failure (Fig. 1). When actions

fail, the effect on the collective construction effort varies. While some action failures

make no difference beyond the wasted effort, others can lead to a partial structure that

is impossible to complete, a situation which we term a fatal error. We show that by ana-

lyzing which action failures are most likely to cause fatal errors, we can make informed

modifications to the system and improve the probability of success. First, we discuss an

intuitive way to increase the probability of success by using policies that minimize the

number of required sequential actions. We show that this is closely related to finding

the policy that results in the lowest construction time, and investigate the difference be-

tween a parallel policy that minimizes the number of sequential actions, but may lead to

wasted trips without assembly actions, versus a sequential policy where robots are al-

ways able to perform assembly actions. The approach of minimizing action sequences,

however, still has a fundamental limit based on structure size and robot reliability. We

further show that we can improve the probability of success by adding predictive local

checks to detect when an action fails, thereby preventing errors from cascading. We

show that while adding predicitive local checks can substantially improve reliability, it

too has a fundamental limit to its practical application due to an increase in construction

time. While preventing fatal errors, structures may never be completed because robots

abandon trips when action failures occur.

Errors in Collective Robotic Construction 3

Action Success rate (Pr(a)) Execution time

Move forward (Flevel) 0.998 7.6 s

Climb up (Fup) 0.999 18.96 s

Climb down (Fdown) 0.9999 10.88 s

Turn 90 degrees (TU) 0.986 6.4 s

Pick up a brick (PU) 1 5.6 s

Place a brick (PL) 0.998 21.6 s

Table 1: Action success rate and execution time in our simulated TERMES system.

We chose values proportional to those reported for the real TERMES system [8], but

decreased the failure probability by 20% to enable more interesting outcomes.

We study these implications in the context of the TERMES system [6] (Fig. 1(a)),

an autonomous multi-robot system with distributed control in which robots use only

local sensing and follow a stochastic plan to place bricks to build a structure. Although

we use the TERMES system as a platform to ground our findings, many of the insights

gained translate to other CRC systems, especially the critical importance of considering

the system error characteristics when robots with limited sensing and motion constraints

manipulate a shared environment.

Contributions: I An in depth analysis and categorization of action failures and fatal

errors in CRC systems; II A general approach to mitigating action failures and pre-

venting fatal errors by using predictive local checks; III An evaluation of construction

times and success rates for the TERMES system based on published error rates as well

as examples of predictive local checks that can increase the probability of success by

orders of magnitude, especially in large structures.

2 Terminology
This section briefly summarizes background information and terminology. We focus

on CRC systems in which robots with local information move over and assemble pre-

determined structures, as in [6] and shown in Fig. 1. For clarity, we define the following

terms, and include examples of how these apply to the TERMES system:

Blueprint: The desired structure is an N×M grid, where each grid cell, or location, is

associated with a number representing the number of bricks at that location, and if they

serve as a structure entrance or exit (Fig. 1(b)). For simplicity, we assume that the en-

trance and exit are always located in the upper left and lower right corner, respectively.

Note that the robot always picks up a brick at the entrance. In the following, an N×N×1

blueprint is a square structure of height 1 without any holes.

Path: The sequence of locations visited by the robot as it navigates through a structure.

Policy: The blueprint is passed to a compiler which generates one or more solutions
specifying possible transitions between locations (Fig. 2(a)). The policy combines so-

lutions with transition probabilities, such that transition probabilities out of a location

always sum to one [7]. Robots travel on top of the structure from the entrance to the

exit by following these stochastic policies.

Child and parent locations: The parents of a location are those for which the robot has

a non-zero probability of transitioning from; the children are those which the robot has

a non-zero probability of transitioning to. Parents and children are specific to policies.

4 J. Chen∗, Y. Liu∗, A. Pacheck∗, H. Kress-Gazit, N. Napp, K. Petersen

Assembly rules: The assembly rules define valid assembly locations, where it is valid

to place a brick, based on locally available information. A TERMES robot can place a

brick in a location if and only if [6]: 1) The location height is less than the blueprint-

specified height; 2) All parents are of height greater than the location, or have reached

their blueprint-specified height; 3) All children are of equal height to the location, or

their blueprint-specified height differ from the location blueprint-specified height by

more than 1. If these are true, the robot executes a sequence of placement actions.

Actions: Robots have a set of actions. In TERMES, these actions correspond to “move

forward”, either on level bricks or by climbing one brick up or down (F), “turn 90 de-

grees left or right” (TU), “pick up a brick” (PU), or “place a brick” (PL). The sequence

of placement actions is always either TU−F−TU−TU−PL or F−TU−TU−PL.

Action failure: Physical robots have a non-zero probability of failing to correctly per-

form an action. The TERMES failure characteristics are reported in [6] and listed in

Table 1, where Pr(a) is the probability of action a executing successfully. For simplic-

ity, we assume that failure of locomotion actions means that the robot believes it has

performed the action correctly, but physically remains in its current pose. For errors in

the placement action (PL), the robot is assumed to have made an error placing that

brick and the structure is no longer traversable.

Cumulative Action Time (CAT): The total robot time taken to complete a structure, given

by the average action execution time ([6], Table 1). Note that the actual construction

time will depend on the number of robots deployed.

Probability of Success (PoS): Probability that a structure will be completed, given the

particular failure characteristics of the robots and policy.

Productive and wasted trips: In a productive trip, a robot finds a legal assembly location

and correctly places a brick; in a wasted trip the robot does not place a brick.

3 Influence of Policy Choice on System Performance
The number of policies can grow exponentially with the size of the structure, e.g. a

3×3×1 structure has 5 policies while a 5×5×1 structure has 1010 policies. Each policy

may lead to a different CAT and PoS due to different lengths of action sequences and

number of wasted trips. We modified the TERMES simulator from [7] to investigate

which policies perform the best given the failure characteristics in Table 1. We pay

special attention to two policies: parallel and sequential (Fig. 2(a)). Parallel policies

minimize the longest path robots can take through the structure, and further facilitate

the maximum number of simultaneously legal assembly locations. Sequential policies

have a single path and thus force robots to visit every assembled location on every trip

but eliminate wasted trips. Note that these policies are not necessarily unique, and that

not every blueprint has a sequential policy. For example, a square structures with sides

of even length and opposing entrance and exit locations lacks a sequential policy.

We found that for larger structures, the benefit of minimizing the path lengths out-

weighs the risk of wasting trips, making the parallel policies superior to the sequential

policies in terms of both PoS and CAT, as shown in Fig. 2(b,e). Fig. 2(c,f) show that

the parallel policy also consistently outperforms other randomly selected policies for a

7×7×1 blueprint in terms of both PoS and CAT. Similarly, in Fig. 2(d) we show that the

parallel policy has a higher PoS than 19 randomly selected policies and the sequential

Errors in Collective Robotic Construction 5

Fig. 2: The PoS and CAT for different policies, based on 1000 and 100 simulations per

policy respectively. (a) Example transitions between locations for a parallel, sequential,

and random policy. Smaller arrows denote small (∼0) transition probabilities. (b,e) Par-

allel versus sequential policy for N×N×1 blueprints. (c,f) Parallel, sequential, and 100

random policies for a 7×7×1 blueprint. Purple and pink lines denote the parallel and

sequential policies; shaded regions the 95% confidence interval (in (f) the error bars are

too small to be seen). (d,g) Parallel, sequential, and 19 randomly selected policies for

ten 7×7 blueprints with random heights between 0 and 3.

policy for eight out of ten 7×7 blueprints with random heights. In Fig. 2(g) we show

that the CAT of the parallel policy is lower than other policies on all tested blueprints.

As parallel policies are (usually) the better option in terms of both CAT and PoS, this

will be our focus for the remainder of the paper.

For the structures and policies we tested, the parallel policy has the lowest CAT

and usually the highest PoS, but still only allows practical construction of relatively

small structures; a 9×9×1 structure, for example, has 10.1% PoS. For comparison, an

average American family house consists of 8,000 bricks [7]. To enable such large-scale

structures, we need to investigate how errors are caused and methods to mitigate them.

4 Error Analysis

In this section, we investigate how action failures reduce the PoS. It is important to note

that the probability of completing a structure without any action failures happening is

much smaller than the PoS. The PoS for a 9×9×1 structure is 10.1%, as determined

by 1000 simulations. However, on average it takes 2885 actions to complete the same

structure and the probability of each of these actions completing successfully is ap-

proximately 0.9992885 ≈ 0. The reason for this mismatch is that not all action failures

prevent a structure from being completed; only fatal errors prevent structure completion.

A fatal error occurs when a brick is mistakenly placed such that robots are no longer

able to physically move through the structure to place additional bricks, or because the

combination of the construction state and assembly rules prevent future placements. In

6 J. Chen∗, Y. Liu∗, A. Pacheck∗, H. Kress-Gazit, N. Napp, K. Petersen

the TERMES system, fatal errors are due to the fact that robots cannot climb more than

one brick at a time or fill gaps that are restricted on both sides by other bricks.

To further analyze the impact of action failures and fatal errors on the PoS, we define

three categories for the consequences of action failures:

Category I: No brick is placed, either because the robot never finds a valid assem-

bly location or because the robot is capable of detecting the failure and leaves the

structure. Both lead to a wasted trip.

Category II: A brick is placed without violating the assembly rules, either by luck

(Fig. 3(a)) or the robot detecting a failure and finding a new valid assembly location.

Category III: A brick is placed causing a fatal error, either because the placement

itself failed or because one or more prior action failures led to a brick placement

that violates the assembly rules. This category can be further divided into 3 cases:
1. Motion constraint violation, because the newly placed brick forms a cliff;

2. Manipulation constraint violation, because the newly placed brick forms an un-

fillable gap in the structure (Fig. 3(b)), or because the robot attempts to place

the brick at a different height from where it is standing (Fig. 3(d));

3. Child locations are assembled before their parents (Figs. 3(c,e,f)); although a

robot is physically capable of resolving the error, doing so would violate the

assembly rules.

Among these categories, our primary interest is in category III, as the consequences

of failures that lead to this category directly impact the PoS. It is important to note that

an action failure may occur several steps before the fatal error occurs. For example, in

Fig. 3(f) the robot attempts to move forward, but fails. It then takes another step forward,

turns, and places a brick at what it thinks is the beginning of a row, but is actually the

middle of a row. This results in a fatal error, because a robot can never legally place a

brick at the far right location of the middle row.

Using our simulator, we recorded which action failures most commonly lead to fa-

tal errors given different policies (Table 2 rows 2-4). We distinguish between action

failures that occur during navigation and the brick placement action sequence. Failures

to turn (TUe) (Table 2 columns 4 and 5) result in more than 70% of the fatal errors

across different policies. The number of placement failures (PLe) is stable since it only

depends on the number of attempted brick placements. The rest of the fatal errors are

(a) (b) (c) (d) (e) (f)

Fig. 3: Examples of action failures. (a-c) show failure to turn (TUe); (d-f) show failure

to move forward (Fe). (a) does not lead to a fatal error; (b-f) lead to fatal errors.

Errors in Collective Robotic Construction 7

caused by failures to move forward (Fe), either during navigation or placement. Differ-

ent policies also have different error distributions. For the parallel policy, the percentage

of fatal errors caused by Fe failures during navigation is 0.78%, as opposed to 17.3%

for the sequential policy. This is because the sequential policy enforces much longer

paths, increasing the probability of Fe failures.

Based on analyzing the action failures that lead to fatal errors through the examples

shown in Fig. 3 and Table 2, we can determine if and how a robot can detect and mitigate

the effects of action failures. If a robot can predict what the surroundings should look

like after an action, then it can recognize action failures that cause a mismatch between

the expected surroundings and what is physically sensed, and react accordingly. In the

next section, we discuss how to mitigate errors by adding such local predictive checks

based on the failures shown in Fig. 3.

5 Mitigating Errors through Predictive Local Checks
The ability to sense and reason about legal assembly locations given knowledge of

only the local environment is critical in stigmergy coordinated CRC. Here, we suggest

several additional local checks a robot can perform to detect if an action failure has

occurred, either immediately or after a sequence of actions. The goal of these checks

is to convert action failures from category III to category I before they lead to a fatal

error. Theoretically, turning category III failures into category II failures would be a

better choice, but that requires significant additional effort in relocalizing, estimating

the true assembly state, and probabilistic reasoning, so we leave this for future work.

In this section, we first discuss predictive local checks to improve the PoS, then discuss

how additional wasted trips caused by detected action failures impact the CAT.

5.1 Predictive Local Checks
We propose predictive local checks that compare what the robot expects to sense fol-

lowing a successful action to what it actually senses. This allows a robot to detect some

failures to move forward and turn. Here, we assume that the robot can navigate off the

structure once a failure is detected without changing the current construction state even

if its localization is wrong. The difficulties in designing predictive local checks are that

sometimes the local view of the construction state is the same before and after an action,

and that the exact construction state in non-sequential policies is not known as actions

can be completed in many different orders. As shown in Table 2, the majority of fatal

errors stemming from failures to turn occur during brick placement, which means these

must be detected immediately. Conversely, we do not need to immediately detect fatal

errors stemming from failures to move forward as the majority of such failures hap-

pen during navigation, leaving more steps before a brick is placed. We do not attempt

to avoid errors stemming from placement failures (PLe), as these are only associated

with hardware reliability and cannot be mitigated by better execution plans. Consider-

ing the effort and cost of re-designing the hardware, we focus on local checks that can

be accomplished with minimal hardware changes or entirely in software. Specifically,

we propose the following two predictive local checks to avoid fatal errors:

Front checking: This check is implemented entirely in software. The TERMES

robots have two sensors that permit them to reason about the height of the current and

8 J. Chen∗, Y. Liu∗, A. Pacheck∗, H. Kress-Gazit, N. Napp, K. Petersen

solution TUe,n TUe,p Fe,n Fe,p PLe unsuccessful builds successful builds

2 TERMES baseline parallel 0 768 7 62 57 894 166

3 TERMES baseline sequential 2 837 198 53 56 1146 104

4 TERMES baseline random 106 770 130 65 54 1125 105

5 w/ predictive checks parallel 0 392 3 2 53 450 304

6 w/ predictive checks sequential 0 224 165 10 55 454 326

7 w/ predictive checks random 0 284 81 13 50 428 322

Table 2: We had a robot repeatedly construct a 7×9×1 blueprint until it successfully

placed 30,000 bricks. This table shows the number of action failures that directly lead to

fatal errors, without (rows 2-4) and with (rows 5-7) predictive local checks. Subscript e
indicates an action failure, and subscript p and n means that the failure occurred during

brick placement or navigation, respectively.

neighboring location: a tilt-sensor that indicates when the robot is climbing up or down

and a downward-facing sensor mounted on the claw that detects the relative height of a

neighboring location. Using these sensors, we can ensure that the robot never attempts

to place a brick at a height different from its own location. This means that the types

of errors shown in Fig. 3(d) are eliminated. Similarly, the robot can detect the action

failures shown in Fig. 3(e,f). In Fig. 3(f), when the robot believes it is facing right at the

top right corner, the height of the front location is outside of the structure and should be

lower than the robot’s current height. If not, the robot can determine that one or more

actions failures occurred. Similarly, in Fig. 3(e), when the robot is at the top right corner

facing downwards, it can detect that going forward should result in a climb down, when

it doesn’t, the robot knows an error occurred.

Side checking: By adding three distance sensors to the left, right, and rear of the

robot, similar to the front distance sensor that already exists, the robot can detect dis-

crepancies associated with failed turns, such as the ones shown in Fig. 3(b).

By incorporating front and side checking, we are able to reduce the number of fatal

errors and increase the PoS. As shown in Table 2 rows 5-7, the number of Fe and TUe

decreases. Most significantly, the number of turn failures during placement decreased

by over 45%. Additionally, no fatal errors resulted from turn failures during navigation

in all tested policies. The addition of predictive local checks increases the PoS for all

policies (Fig. 4). The PoS for parallel and sequential policies on N×N×1 structures im-

proved by an average of 2.6(±1.7) times and 9.7(±12.2) times, respectively (Fig. 4(a)).

The PoS of random policies becomes much closer to that of parallel polices, with some

random policies even outperforming the parallel policy. The PoS of policies for a 7×7×
[1, 3] random structure as shown in Fig. 4(c) improved by 100.5(±95.3) times. This oc-

curs because most action failures that lead to fatal errors in the parallel policy arise

from turn failures like the one in Fig. 3(c), which the robot cannot detect right away, as

all the surrounding locations have the same relative height, while all other turn failures

that occur more often in random and sequential policies can be detected immediately.

Notice that not all action failures can be detected by the robot, even with the virtually

updated hardware. For instance, the robot cannot immediately detect a failure to move

forward unless the front location has a different height. Even in this case, the robot may

still detect that a failure has occurred later on. The robot also cannot immediately detect

a failure to turn if all the surroundings have the same relative height.

Errors in Collective Robotic Construction 9

Fig. 4: Adding predictive local checks improves the PoS. Each policy was simulated

1000 times (except for the 11×11×1 blueprint, which was simulated 2000 times) (a)

The PoS for both parallel and sequential policies increases with the additional checks.

(b) The PoS for all policies is higher than the original PoS of the parallel policy (solid

purple line, shaded region is error), and similar to the parallel policy with additional

checks (dashed purple line) for a 4×4×1 blueprint. (c) Additional checks also improve

the PoS of a blueprint with randomly varying heights (7×7×[1,3]).

5.2 Impact of Predictive Local Checks on Construction Time

While predictive local checks significantly improve the PoS, they also impair the CAT

by introducing additional wasted trips. To study this impact, we developed an analytical

expression for the parallel policy CAT. This method not only allows us to quickly reason

about the number of robots to deploy for a given structure; it also allows us to study

how the CAT scales with the structure size given predictive local checks, enabling us to

consider structures that are too large to effectively simulate.

To introduce the model, we define a snapshot of the structure in time, as it is being

built, as a construction state. Given a construction state, robots navigate through the

structure until they reach a location where a brick still needs to be placed; there can be

multiple such locations per construction state. If a robot reaches a location that complies

with the assembly rules (a reachable legal assembly location), it places a brick and

leaves the structure. If a robot reaches a location that violates any assembly rules (a

reachable but non-legal assembly location), it leaves the structure. The probability of

following a particular path in the structure is the product of the transition probabilities

between the corresponding locations. We define the duration of a path, excluding the

time to place a brick, as trip time. The time to place a brick after the arrival is counted

separately, as the number of placements is fixed. We do not include the time it takes for

the robot to return to the entrance after exiting the structure into account. For a location

that can be reached through multiple valid paths, the weighted average trip time is used.

To approximate the CAT, we split the construction process into construction cycles.

In each cycle, the robot has to visit all reachable legal assembly locations at least once,

and a brick will be placed at each location (Fig. 5(b)). Modeling the construction process

as a sequence of construction cycles leads to an over-approximation, since in reality

once some of the locations have been visited and assembled, new locations can become

reachable and “legal”, but visiting them still counts as wasted trips in our calculations.

10 J. Chen∗, Y. Liu∗, A. Pacheck∗, H. Kress-Gazit, N. Napp, K. Petersen

Fig. 5: (a) A possible construction state where λ is the transition probability. (b) Con-

struction cycles for a 3×3×1 blueprint, as assumed in the general model proposed in

Eq. 1. (c) Simulated versus estimated CAT obtained from the simplified model in Eq. 2

of N×N×1 (3 ≤ N ≤ 14) blueprints simulated 100 times. (d) Simulated vs estimated

CAT obtained from the general model in Eq. 1 of N×N (5 ≤ N ≤ 7) blueprints with

random heights between 0 and 3 simulated 100 times. (e) Wasted CAT caused by action

failures and no placement at different structure size. p̂ is set to the action success rate of

turning 90 degrees (Table 1). (f) Crossover point at different p̂.

We can now produce a closed form expression for a CAT over-approximation. For

each construction cycle d, we denote the weighted average trip time of all reachable

legal assembly locations and all reachable but non-legal assembly locations as tI,d and

tJ,d respectively; we denote the probability of visiting any reachable legal assembly lo-

cation as pI,d. We consider two random variables: Xd as the number of trips needed to

visit all reachable legal assembly locations at least once given that only reachable legal

assembly locations will be visited, and Yd as the number of trips needed until a reach-

able legal assembly location is visited. Since visiting a location does not affect the prob-

ability of visiting any other location, Xd and Yd are independent. The expected number

of trips to visit all reachable legal assembly locations at least once is then E[Xd] E[Yd].
The expectation of Yd is 1/pI,d. Since only one out of the E[Yd] number of trips goes to

a reachable legal assembly location, the trip time is (E[Yd]−1)tJ,d+ tI,d. Computation

of E[Xd] can be cast as a general coupon collector’s problem. Each location can be

considered as a coupon with certain probability to collect it and E[Xd] is the expected

number of trials needed to collect all of them. A closed form solution has been proposed

in [12](Eq. 14b) and is used in our model. Then for a construction process that has D
construction cycles, the estimated expected CAT E[T] is given by the general model:

Errors in Collective Robotic Construction 11

E[T] = TPL +

D∑
d=1

E[Xd]
((1

pI,d
− 1

)
tJ,d + tI,d

)
, (1)

where TPL = 48.4NB is the total brick placement time in seconds and NB is the total

number of bricks that need to be placed in the structure. To place a brick the robot will

execute 1 move, 1 placement, and at most 3 turns which amounts to a maximum of 48.4s

(Table 1). Fig. 5(d) compares the expected CAT obtained from the general model (Eq. 1)

and simulation results and shows that although the model is an over-approximation of

the expected CAT, it has a linear relationship with the simulation result and can be used

to predict CAT growth as a function of the structure size.

For flat, square structures with the parallel policy, each construction cycle contains

only reachable legal assembly locations, and each location has equal probability of be-

ing visited (Fig. 5(b)), enabling a direct mapping to a closed-form solution from [12]:

for n locations, the expected number of trips until all locations have been visited at least

once is nHn, where Hn =
∑n

k=1
1
k is the nth harmonic number. For an N×N×1 struc-

ture, there are 2(N−1) construction cycles and the number of reachable legal assembly

locations in each cycle is {2, 3, ..., N −1, N,N −1, ..., 2, 1}. For each construction cy-

cle d, a trip contains 1 pickup, d moves and on average 2 + d/4 turns. Thus, for an

N×N×1 structure with the parallel policy, the CAT over-approximation E[TN×N×1] is:

E[TN×N×1] = TPL +

2(N−1)∑
d=1

E[Xd] tI,d,

with E[Xd] =

{
(d+ 1)Hd+1 for 1 ≤ d ≤ N − 1

(2N − 1− d)H2N−1−d for N ≤ d ≤ 2(N − 1)
,

tI,d = τF d+ τTU (2 + d/4) + τPU ,

(2)

where τF , τTU and τPU are the execution time of move, turn, and pickup, respectively

(Table. 1). Fig. 5(c) shows that the simplified model still maintains a linear relationship

with the simulation results. We will use this simplified model to study the scaling behav-

ior of the CAT due to its computation efficiency. We can also express the expected time

of trips during which a robot actually places a brick (productive CAT) for an N×N×1

structure with a parallel policy in Eq. 3.

E[T productive
N×N×1] = TPL +

2(N−1)∑
d=1

nI,d tI,d, (3)

where nI,d is the number of reachable legal assembly locations in construction cycle d;

tI,d is the same as in Eq. 2. The time over the productive CAT is wasted CAT.

To examine the effect of predictive local checks, we assume an ideal scenario where

a robot can detect all action failures and then leave the structure. For simplicity, we as-

sume that every action has the same average success rate p̂. For each construction cycle

d, we define a random variable Zd as the number of trials needed until a “successful”

trip, i.e. a trip without failures, occurs. Zd and the two random variables Xd and Yd

defined in the general model (Eq. 1) are independent. Therefore, the expected number

of trips needed to visit all reachable legal assembly locations at least once successfully

12 J. Chen∗, Y. Liu∗, A. Pacheck∗, H. Kress-Gazit, N. Napp, K. Petersen

is E[Xd] E[Yd] E[Zd]. We denote the weighted average number of actions in the trips

to all reachable legal assembly locations as aI,d = 3 + 5d/4. Then E[Zd] = 1/p̂aI,d .

To further simplify the model, we assume that action failures do not occur during brick

placement since that time only amounts to a small portion of the total CAT. Under these

assumptions, the CAT over-approximation with predictive local checks E[T checks
N×N×1]:

E[T checks
N×N×1] = TPL +

2(N−1)∑
d=1

E[Xd]
1

p̂aI,d
tI,d, (4)

Eq. 4 tells us that the CAT can be wasted due to both action failures, and the situation

where there is “no placement” because the robot does not find a valid assembly loca-

tion. The wasted CAT caused by action failures is E[T checks
N×N×1] − E[TN×N×1] and the

wasted CAT caused by no placement is E[TN×N×1]− E[T productive
N×N×1]. Fig. 5(e) compares

the wasted CAT associated with each, and shows that as the structure size increases,

the effect of action failures grows and ultimately surpasses the effect of trips without

placement. We define the structure size at which the action failures and the trips with-

out placements lead to the same wasted CAT as the crossover point. Beyond this point,

action failures become the dominant cause of wasted CAT and the scaling behavior of

the CAT becomes undesirable. Therefore the crossover point can also be interpreted as

the structure size limit under which predictive local checks are a good strategy. Fig. 5(f)

shows the crossover point at different p̂ and supports the intuitive notion that improv-

ing the action success rate can significantly shift the crossover point higher, making the

system more capable of building larger structures within reasonable time span.

6 Conclusion
In this work, we investigated the effect of errors in CRC. Grounding our work in the

TERMES system, we have shown that the parallel policy, compared to a sequential or

random policy, is in general the policy that will yield the highest probability of success

and lowest cumulative action time. Additionally, we proposed a categorization of mis-

takes into action failures and fatal errors, showing how certain action failures are more

likely to yield fatal errors. Using insights gained from the investigation of errors, we

proposed predictive local checks requiring software modifications and minimal hard-

ware changes. We showed how these predictive local checks substantially increase the

probability of success, in some cases by an order of magnitude. Adding these checks

also reduces the differences in success probability between the various policies, so that

the worst ones are the most improved. In addition, we showed that these local predictive

checks can result in an increase in cumulative action time.

This work has many potential future directions. Here, we considered action failures

that do not change the robot state; next, it would be interesting to investigate more

complex classes of failures or sensing errors. We showed that when constructing large

structures, local predictive checks increase the probability of success, while increasing

the cumulative action time. It would also be interesting to develop localization methods

that allow the robots to recover from failures instead of simply detecting them.

Acknowledgments
This project was funded by the Packard Fellowship for Science and Engineering, GET-

TYLABS, and the National Science Foundation (NSF) Grant #1846340 and #2042411.

References

[1] K. H. Petersen, N. Napp, R. Stuart-Smith, D. Rus, and M. Kovac, “A review of

collective robotic construction,” Science Robotics, vol. 4, no. 28, 2019.

[2] J. Solly, N. Frueh, S. Saffarian, M. Prado, L. Vasey, B. Felbrich, D. Reist, J. Knip-

pers, and A. Menges, “Icd/itke research pavilion 2016/2017: integrative design of

a composite lattice cantilever,” in Proceedings of IASS Annual Symposia. Inter-

national Association for Shell and Spatial Structures (IASS), 2018, pp. 1–8.

[3] F. Augugliaro, S. Lupashin, M. Hamer, C. Male, M. Hehn, M. W. Mueller, J. S.

Willmann, F. Gramazio, M. Kohler, and R. D’Andrea, “The flight assembled archi-

tecture installation: Cooperative construction with flying machines,” IEEE Control
Systems Magazine, vol. 34, no. 4, pp. 46–64, 2014.

[4] I. O’hara, J. Paulos, J. Davey, N. Eckenstein, N. Doshi, T. Tosun, J. Greco, J. Seo,

M. Turpin, V. Kumar et al., “Self-assembly of a swarm of autonomous boats into

floating structures,” in 2014 IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE, 2014, pp. 1234–1240.

[5] Q. Lindsey, D. Mellinger, and V. Kumar, “Construction of cubic structures with

quadrotor teams,” Proc. Robotics: Science & Systems VII, 2011.

[6] J. Werfel, K. Petersen, and R. Nagpal, “Designing collective behavior in a termite-

inspired robot construction team,” Science, vol. 343, no. 6172, pp. 754–758, 2014.

[7] Y. Deng, Y. Hua, N. Napp, and K. Petersen, “A Compiler for Scalable Construc-

tion by the TERMES Robot Collective,” Robotics and Autonomous Systems, vol.

121, 2019.

[8] K. Petersen, R. Nagpal, and J. Werfel, “TERMES: An autonomous robotic system

for three-dimensional collective construction,” in Robotics: Science and Systems,

vol. 7, 2012, pp. 257–264.

[9] N. Napp and R. Nagpal, “Distributed amorphous ramp construction in unstruc-

tured environments,” Robotica, vol. 32, no. 2, pp. 279–290, 2014.

[10] T. Soleymani, V. Trianni, M. Bonani, F. Mondada, and M. Dorigo, “Bio-inspired

construction with mobile robots and compliant pockets,” in Robotics and Au-
tonomous Systems, 2015.

[11] M. Rubenstein, A. Cornejo, and R. Nagpal, “Programmable self-assembly in a

thousand-robot swarm,” Science, vol. 345, no. 6198, pp. 795–799, 2014.

[12] P. Flajolet, D. Gardy, and L. Thimonier, “Birthday paradox, coupon collectors,

caching algorithms and self-organizing search,” Discrete Applied Mathematics,

vol. 39, no. 3, pp. 207–229, 1992.

