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ARTICLE INFO ABSTRACT

Keywords: Uncertainties in a structure is inevitable, which generally lead to variation in dynamic response predictions. For a
Structural dynamic response complex structure, brute force Monte Carlo simulation for response variation analysis is infeasible since one
Uncertainties

single run may already be computationally costly. Data driven meta-modeling approaches have thus been
explored to facilitate efficient emulation and statistical inference. The performance of a meta-model hinges upon
both the quality and quantity of training dataset. In actual practice, however, high-fidelity data acquired from
high-dimensional finite element simulation or experiment are generally scarce, which poses significant challenge
to meta-model establishment. In this research, we take advantage of the multi-level response prediction oppor-
tunity in structural dynamic analysis, i.e., acquiring rapidly a large amount of low-fidelity data from reduced-
order modeling, and acquiring accurately a small amount of high-fidelity data from full-scale finite element
analysis. Specifically, we formulate a composite neural network fusion approach that can fully utilize the multi-
level, heterogeneous datasets obtained. It implicitly identifies the correlation of the low- and high-fidelity
datasets, which yields improved accuracy when compared with the state-of-the-art. Comprehensive in-
vestigations using frequency response variation characterization as case example are carried out to demonstrate
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the performance.

1. Introduction

Vibration analysis is commonly used in assessing engineering
structures [1,2]. The dynamic responses extracted are utilized to facili-
tate diverse applications [3-5]. It is worth mentioning that engineering
structures are usually subject to uncertainties due to material imper-
fection, manufacturing tolerance, and assemblage error etc. Conse-
quently, their dynamic responses have variations. In order to adequately
assess the effect of structural uncertainties, uncertainty propagation
analysis of structural dynamic responses becomes an important task.
Frequency response function (FRF), as one representative dynamic
response, characterizes the fundamental properties of a structure in the
frequency domain. As FRF is sensitive to uncertainties especially around
resonant frequencies, quantification of FRF variation is commonly
involved in robust design and control [6,7]. One straightforward
approach for FRF variation prediction is Monte Carlo simulation
through a parametrized, stochastic finite element model [8,9]. While
generally considered accurate when high-fidelity finite element model is
employed, a well-known issue of propagating uncertainties from the
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high-dimensional model to FRF is the high computational cost. For a
complex structure, a single run of finite element dynamic analysis may
already be costly. Brute force Monte Carlo simulation thus yields pro-
hibitive computational burden [10].

Built upon the rapid advancement in statistical inference, recent
exploration of uncertainty quantification of structural dynamic response
has focused on various meta-modeling methods that have the prospect of
fundamentally reducing the computational cost. The basic idea of meta-
modeling such as the Gaussian process is to utilize a small amount of
training data, i.e., output response associated with sampled uncertainty
parameters, to establish a regression-type relationship of response pre-
diction with respect to the uncertainty parameter set. This can
dramatically reduce the number of repetitive simulations or experiments
as compared with brute force Monte Carlo methods since the size of
training dataset becomes much smaller [11-13]. The meta-model
trained can quickly predict frequency responses under given uncertainty
parameter samples, which is referred to as emulation. While earlier in-
vestigations often resort to single-response meta-model, frequency re-
sponses essentially represent the relation of dynamic response of a
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distributed structure versus excitation frequency and thus feature
inherently multiple responses. That is, the frequency responses at
different locations have intrinsic correlation and, moreover, the re-
sponses at one specific location under different excitation frequencies
have intrinsic correlation. In order to account for such correlations and
to avoid training multiple meta-models for multiple responses, multi-
response Gaussian process (MRGP) technique has been employed
which introduces a non-spatial correlation matrix to capture the statis-
tical correlation of different response variables [14-16]. The hyper-
parameters dependent on the response correlation are identified
through maximizing the multivariate likelihood function. Alternatively,
neural network based methods have also been attempted in meta-
modeling of structural dynamic response. Actually, neural network can
allow directly the multi-response emulation through designing an ar-
chitecture with multiple neurons/nodes at the output layer [17-19]. The
correlation of multiple responses can be implicitly established by mutual
interaction of different layers. The flexibility and extensibility of neural
networks have enabled them to be increasingly used in engineering
analysis [13,20-22].

Intuitively, the performance of a meta-model hinges upon both the
quality and quantity of training dataset. That is, larger dataset with high
numerical or experimental accuracy is always desired. In actual practice,
however, high-fidelity data acquired from high-dimensional finite
element simulation or experiment are generally scarce. In order to
mitigate this issue, some recent investigations have proposed to incor-
porate datasets at multiple levels/resolutions to train Gaussian process
meta-model. It was suggested that the combination of data with different
fidelities for Gaussian process emulation could maintain both prediction
accuracy and efficiency [23-25]. In the realm of structural dynamic
analysis, a natural way of carrying out fast, low-fidelity simulation is
through reduced-order modeling [10,26]. A large amount of first
principle-based simulation data can be produced easily with reduced-
order model and then employed in the multi-level Gaussian process
meta-modeling. At the same time, a small amount of high-fidelity, full-
scale finite element simulation data will also be employed in the
training. With the large amount of low-fidelity data, the Gaussian pro-
cess emulator can avoid those errors associated with the inference
procedure. With the introduction of a few high-fidelity data, we can
correct the error of the low-fidelity data inherited from the order-
reduction procedure. The advantage of such a heterogeneous data-
driven meta-modeling that combines low- and high-fidelity datasets
has been demonstrated in structural vibration analysis case [27]. Since
structural dynamic responses are generally characterized in a distrib-
uted manner, the above-mentioned multi-response Gaussian process has
recently been extended to multi-level and multi-response Gaussian
process (MLMRGP) that is capable of emulating distributed outputs (i.e.,
predicting multiple output variables simultaneously) [28]. One chal-
lenging issue in these Gaussian process trainings is the overall training
cost and numerical stability in large-scale matrix operations. Another
intriguing issue in multi-level Gaussian process meta-modeling is the
treatment of the correlation between datasets at different levels/reso-
lutions. In [27], it was assumed that there was linear correlation which
was characterized by a linear autoregressive scheme. Perdikaris et al
[29] however argued that in such fusion between multi-level datasets,
nonlinear correlation should be learned which requires complex, addi-
tional computational efforts. Therefore, the objective of this research is
to explore new computational approach to address the aforementioned
issues in existing methods.

Indeed, structural dynamic systems offer interesting potentials that
could be leveraged upon to yield efficient and accurate uncertainty
quantification. One may formulate multi-level analyses to produce
multi-level datasets of frequency responses. The responses of a structure
are distributed in nature, leading to multiple outputs with intrinsic
correlations. In view of the prospect of meta-modeling as well as the pros
and cons of methods developed so far, in this research we explore a new
framework of frequency response variation characterization built upon
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the neural network concept. Neural networks can accommodate both
classification and regression based on supervised learning, and possess
flexible architectures. Uncertainty quantification of dynamic responses
falls into the category of regression. Neural networks generally are
capable of providing multiple outputs. Recent progresses indicate that it
is possible to synthesize a composite neural network that can fuse
together heterogeneous data to facilitate learning, known as multi-
fidelity physics-informed neural network (MFPINN) [30]. Our hypoth-
esis here is that, exploiting the architecture of such heterogeneous data-
driven neural network and its inherent learning capability, we can
establish a new path toward multi-level meta-modeling. Specifically, the
proposed new approach, hereafter referred to as multi-fidelity data
fusion composite neural network (MFDF-CNN), will use a large amount
of low-fidelity data produced by reduced-order analysis, and a small
amount of high-fidelity data generated by full-scale finite element
model. The key advancement is that this MFDF-CNN will feature the
built-in function of incorporating the generic correlation between low-
and high-fidelity datasets used in training, thereby addressing the cur-
rent issues in multi-level meta-modeling. In other words, the network
can synergistically fuse multi-fidelity datasets in an integral manner,
yielding improved accuracy in uncertainty quantification of frequency
response. To enable the multi-fidelity data fusion, the neural network
training under different sizes of low- and high-fidelity datasets have
been realized. This new framework is constructed upon the novel design
of neural network architecture, leading to the enhanced performance as
compared with the state-of-the-art techniques.

The rest of this paper is organized as follows. Section 2 outlines the
generation of high- and low-fidelity datasets for frequency response
analysis. In Section 3, we start from presenting a multi-level multi-
response Gaussian process (MLMRGP) for frequency response emula-
tion, and then formulate the proposed multi-fidelity data fusion com-
posite neural network (MFDF-CNN) for meta-modeling. Through direct
comparison, the advantage of MFDF-CNN is elaborated. Section 4 pro-
vides comprehensive case studies to demonstrate the new methodology
and the improved performance. Section 5 summarizes the concluding
remarks.

2. Problem setup and Multi-Fidelity datasets generalization

2.1. High-fidelity data generation through full-scale finite element
frequency response analysis

We assume the full-scale finite element model of a structure is
available, i.e.,

M(6); +C(0); +K(0)z =f )

where M(0), C(9), and K(0) are, respectively, the mass, damping, and
stiffness matrices with dimension N x N, and € is an m-dimensional
vector representing the set of m uncertain parameters in the model. N is
the number of degrees of freedoms (DOFs), z is the displacement vector,
and f is the external excitation vector. Without loss of generality, we
assume proportional damping. The uncertainties in the structural model
yield the variation of the response. In this research, we are specifically
interested in frequency response of the structure. Let us consider a
harmonic excitation f(t) = Feé®* where F is a constant vector of force
magnitude and o is the sweeping frequency. We then have the vector-
form frequency response function of the structure as

Z(0) = [-0*M(0) + jwC(9) + K(0)]'F (2

where Z(6) is the vector-form response amplitude of the entire structure,
and subjected to variations owing to structural uncertainties.

In actual practice, usually only the responses at a selected number of
DOFs are of interest for design and control applications. Meanwhile,
experimental results can only be acquired at a small number of locations
due to the usual constraint in the number of sensors. Therefore, hereafter
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we analyze U, a subset of Z. To begin with, U is an n-dimensional vector
(n < N) and is dependent upon @w. We further assume that frequency
responses at pre-specified p discrete frequency points, © = [w1,®2, -,
wp], are of interest. For simplicity in notation, the responses of the
structure at these n DOFs and p frequency points are collectively
expressed as

UO) = (Ui, Uy, U, o+, Uppy oo »Ul.pv'"ﬁUn.p]T 3

Obviously, U is dependent upon uncertainty parameter set 6. In order
to avoid brute force Monte Carlo simulation that leads to prohibitive
computational cost, we resort to meta-modeling for the uncertainty
quantification of frequency response U. High-fidelity data can be pro-
duced from Equation (2) (i.e., full-scale finite element model) directly
under sampled uncertainty parameter set #. In actual practice, the
amount of high-fidelity data is usually limited, due to the computational
cost involved in full-scale finite element analysis.

2.2. Low-fidelity data generation through reduced-order frequency
response analysis

Since dynamic analysis of high-dimensional finite element model is
computationally costly, model order reduction has been an important
research subject. A variety of approaches have been proposed in recent
decades. The goal of this research is to establish a new meta-modeling
approach that can integrally utilize a small amount of high-fidelity data
together with a large amount of low-fidelity data. Specifically, we hope
the usage of large amount of low-fidelity data, to be produced by a
reduced-order model, can mitigate the error associated with the infer-
ence procedure. Meanwhile, we hope that the introduction of a small
amount of high-fidelity data based on the preceding subsection can
correct the error of the low-fidelity data inherited from the order-
reduction procedure. Without loss of generality and in order to make
it easy for interested readers to re-produce the case investigation, here
we adopt the Guyan reduction for reduced-order modeling [31] which is
commonly used in structural dynamic analysis.

In Guyan reduction, the DOFs in the finite element model are divided
into the master DOFs and the slave DOFs. The effects of the slave DOFs
are transformed onto the master DOFs through static condensation,
thereby eliminating the slave DOFs in the original model. We thus re-
write the equation of motion of as

My M |2 | 1 G Cos | Zn | Ko Ko | 2o | | o
M, M ||z Con Cs || % K, K,]|z]| |f
(€3]

where subscripts m and s denote the master and slave DOFs, respec-
tively. Neglecting the inertia and damping terms and assuming free vi-
bration without external excitation, we can obtain the following
approximate relation between the slave and master DOFs,

2= —K.'Kuzn (5)
which yields
Zm | _ I =T (6)
Z - 7K;1K:m Zm = LG

where T is the condensation transformation matrix for Guyan reduc-
tion. Utilizing the coordinate transformation shown above, we have

M2+ CZp + Koz = f, )

where M, = ToMTg, C; = T5CTg, Ky = TEKT; and f, = T4f are the
order-reduced mass, damping, stiffness matrices and the corresponding
order-reduced external excitation, respectively. Assuming harmonic
excitation f, = F,é® where F,is a constant vector of force magnitude
and o is the sweeping frequency, we obtain the frequency response
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function of the reduced-order system,
Z, = [~0*M, + joC, + K,]"'F, (8)

where Z,, is the vector-form response amplitude of the reduced-order
system. Recall Equation (6). The vector-form response amplitude of
the original model can be obtained as

Z’ﬂ
= [%]-

The system coefficient matrices and the response vectors are all
subjected to variations and uncertainties, and thus are # dependent. For
notation simplicity, we have omitted 6 in the above equations.

Once again, we assume only the responses at a selected number of n
DOFs are of interest, and furthermore the frequency responses at pre-
specified p discrete frequency points, ® = [w1, w2, -+, wp], are acquired.
The responses of the structure at these n DOFs and p frequency points,

obtained through reduced-order finite element-based simulations, are
collectively expressed as

I
-K_'K,,

:|Zm =T¢Z, ©)

U 0) = [Uni, - Uniy Unz, =, Uy =, Uy ooy U] 10)

Indeed, vector U, corresponds to U shown in Equation (3), whereas
the subscript r indicates reduced-order analysis result. As the dimension
of the finite element-based model is reduced from N to N,, (the number
of master DOFs) after Guyan reduction, the computational cost involved
in Equation (10) is significantly reduced. We may conduct frequency
response simulations with a large sample size of uncertainty parameters
to acquire a large amount of low-fidelity training data. Nevertheless, the
order-reduction introduces truncation errors because the inertia and
damping effects of the slave DOFs are neglected in the transformation
(Egs. (5) and (6)).

3. Multi-fidelity data fusion composite neural network for
response variation characterization

In this section, we outline the new computational framework of
multi-fidelity data fusion composite neural network (MFDF-CNN) for
meta-modeling to facilitate efficient and accurate uncertainty quantifi-
cation of frequency responses of structures. We intend to employ a small
amount of high-fidelity data generated by full-scale finite element
analysis (Section 2.1) and a large amount of low-fidelity data generated
by reduced-order analysis (Section 2.2) to train the meta-model. As will
be shown, the new approach exploits the architecture of heterogeneous
data-driven neural network and its inherent learning capability, and can
overcome certain shortcoming of multi-level multi-response Gaussian
process approach. For comparison purpose and to highlight the
improvement, we start from outlining a multi-level multi-response
Gaussian process (MLMRGP) for frequency response emulation, and
then formulate the proposed composite neural network. Both methods
will be tested in the subsequent case investigations.

3.1. Response variation emulation using MLMRGP as baseline

Gaussian processes based meta-modeling has seen wide applications
especially in uncertainty quantification. The underlying idea is to extend
the multivariate Gaussian distribution from a finite dimensional space to
an infinite dimensional space. It essentially yields a probabilistic
framework for nonparametric regression. Commonly used Gaussian
processes include multi-response regression with single-type training
dataset or single-response regression with multi-fidelity datasets
[14-16,23]. In a recent effort, a multi-level multi-response Gaussian
process (MLMRGP) meta-model was attempted to integrate multi-
fidelity datasets to emulate multi-responses in the uncertainty quanti-
fication of dynamic responses [28]. The mathematical foundation is
briefly outlined here.
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In Gaussian process formulation, an unknown system is denoted
asg(x), in which x is an input vector. In the context of uncertainty
quantification discussed in this research, the input vector is the sample
of the set of uncertainty parameters # mentioned in Section 2. We aim at
finding the best g(x) such that g(x) ~ y, where yis an output vector or the
frequency response vector U (i.e., multi-responses) mentioned in Section
2, through utilizing training dataset(s). In MLMRGP, we use two-level
datasets, i.e., low- and high-fidelity datasets in training. They are
denoted as 9% = {(yi(”),xl(”)), i=1,2,..n" u = 1,2}, where super-
script u indicates the u-th data level and n is the number of the data
points. The dimension of xl(”) (i.e., @) is m, and the dimension of yﬁ“) isn x
p. Here 9@ is the low-fidelity dataset (U, shown in Equation (10))
produced by the reduced-order frequency response analysis, and 9 is
the high-fidelity dataset (U shown in Equation (3)) produced by the full-
scale finite element frequency response analysis. We assume a quasi-
linear relation between the low- and high-fidelity outputs, expressed
with an autoregressive scheme [23],

Y@ = p0ym 4 5@ an

where p(1) is a regression variable. y(and §®are two independent sta-
tionary multivariate Gaussian processes. As the summation of inde-
pendent Gaussians remains in the closed form, we can derive the
Gaussian process representation of observed low- and high-fidelity data
points as

BEZ}GP(h(mez(nx’)) a2

The first item at the right-side of Equation (12), h(x)g, represents the
linear mean functions of all outputs. X(x,x') is the spatial covariance
matrix. Each entry of £(x,x) is a value evaluated with the covariance
function/kernel, describing the behavior of the process regarding the
separation of any two input points. In this research, a commonly
adopted covariance function/kernel, i.e., the squared exponential
functionZg.”) = exp{ — Z,::lb}f‘) (xix 7xj‘k)2 }, is used. Q is non-spatial
correlation matrix that is intended to characterize the internal correla-
tion among multiple output variables.

The training process follows the Bayesian framework that aims at
maximizing the likelihood formulated in terms of the training datasets.
The likelihood is expressed as

:p(y(Z)*‘ |x(2)*’¢)p(y(1) .y(Z) |x(1) 7x(2) ’x(Z)*"y(Z)* ®)

O ) y(1) x@ @) L@

13

@ represents the hyper-parameters from the mean and covariance
functions to be optimized. The inputs of the high-fidelity dataset should
be a subset of that of the low-fidelity dataset in order to facilitate the
emulation. The low- and high-fidelity datasets can be sequentially
plugged into training process. Once training is completed, the high-level
prior will be updated to the posterior with optimized hyper-parameters,

’

[y<2>*]~GP(h(x(2)*)ﬁ, OS2 14)

where §,0and  are coefficients of the updated mean function, and the
updated non-spatial and spatial covariance functions in terms of the
optimized hyper-parameters @. It is worth noting that this multi-level
meta-modeling approach is performed upon the premise that the data
with different fidelities follow the linear relation (Equation (11)).
However, the real-world data relation usually is much more complex,
exhibiting high level of nonlinearity. Such assumption in this approach
may degrade its learning and inference capabilities.
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Fig. 1. A single node in a neural network.
3.2. Response variation emulation using MFDF-CNN

Owing to the advancements in computational power and data sci-
ence, machine learning through neural network has seen rapid progress
in recent years. In this subsection we outline the architecture of a
composite neural network specifically tailored toward multi-fidelity
data training for frequency response variation emulation. The basic
unit of a neural network is neuron, or node [32]. Its function is to
compute the output based on the input received from other nodes, as
illustrated in Fig. 1. As can be seen, each input x; has its corresponding
weight ;, and each node has one bias b;. A nonlinear activation function
f is applied onto the linear weighted sum to yield output of node y;. The
purpose of the activation function is to introduce inherent non-linearity
of the input-output relation into the process. Frequently employed
activation functions include sigmoid 1/(1 + e™), hyperbolic tangent
(e¥ —e™X)/(e*+ e ™), and ReLU expressed as f(x) = max(0,x).

A neural network essentially is built upon different layers such as
input layer, hidden layer, and output layer, by linking nodes. Hidden
layers undertake the major computation to extract underlying data
features. According to the respective configuration, hidden layers can be
further divided into fully connected layers, convolutional layers, and
max pooling layers. While fully connected layers are widely utilized,
convolutional layers and max pooling layers are oftentimes integrated
into deep learning convolutional neural networks to deal with large
amount of training data [33-35]. In terms of node connection pattern,
there exist feedforward neural networks and recurrent neural networks
[36]. The key step in neural network training is to identify the weights
and biases through learning, e.g., minimizing a cost/loss function using
training dataset,

2
1
Loss = S Z (yj - Z(wix,» + b,-)) (15)

J

i

where s is the number of training data. Back propagation optimization is
typically used [36]. In general, the architecture of a neural network can
be quite flexible.

In this research we aim at advancing the meta-modeling of frequency
response variation analysis utilizing multi-fidelity datasets. An
assumption made in MLMRGP meta-modeling outlined in the preceding
subsection is that the autoregressive correlation between the low- and
high-fidelity outputs is linear (Equation (11)), which has been adopted
in similar investigations [23,27]. In reality, however, there is no guar-
antee that such correlation is linear. In fact, generally, the relation be-
tween the low- and high-fidelity outputs should be re-written as

y(Z) _ v(y(l),x) (16)

where v(+) is an unknown function that reflects the implicit and generic
relation between the low- and high-fidelity outputs. Obviously, one may
not be able to solve this problem using Gaussian processes, since only
explicitly linear correlation can maintain y(®'as a Gaussian distribution
(Equation (11)). To solve this fundamental issue, hereafter we resort to
the neural network approach owing to its flexibility in architecture
design and customization. In particular, we develop a multi-fidelity data
fusion composite neural network (MFDF-CNN) that is capable of taking
the implicit relation between the low- and high-fidelity outputs into
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Fig. 2. Architecture of multi-fidelity data fusion composite neural network (MFDF-CNN).

account. The architecture of MFDF-CNN is shown in Fig. 2. The rationale
of this proposed approach is outlined as follows. Algorithmic details will
be further discussed in the subsequent section through implementing to
frequency response variation prediction.

We start from the model training process. As we aim at emulating the
frequency response of the structural system with uncertainties, the input
of this model is the sampled set of uncertainty parameters. Two outputs
are produced, including the low-fidelity response in the middle of Fig. 2
and the high-fidelity response at the rightmost side of Fig. 2. First, the
model instance is randomly initialized by assigning arbitrary weights
and biases to all layers. The performance of the initial model is then
checked by forward propagation analysis, including two sequential
procedures. Let us consider one data point, i.e., the i-th data pointd; =

(xi, yl(l), y?)), that is passed into the model. Here,x;is the i-th set of un-

certainty parameters, and ygl) and yl(z) are the corresponding low- and
high-fidelity frequency response vectors. In the first procedure (boxed
by dashed lines in Fig. 2), the goal is to facilitate the prediction of low-
fidelity output under current input, i.e., x;, which thus yields the low-
fidelity propagation error with respect to the actual low-fidelity
output, i.e., yﬁl). In the second procedure (boxed by dash-dotted lines
in Fig. 2), we let the same input, together with the predicted low-fidelity
output, further propagate through the rest of the model (i.e., a number of
hidden layers). This essentially realizes the characterization of implicit
relation shown in Equation (16). Indeed, we decompose such implicit
relation into the linear and nonlinear parts with associated weights in
the second procedure, expressed as [30]

72 = av, 0 x) + (1 — v 0", x)a € [0, 1] 17

where ais the weight of the linear part, i.e., linearity weight. Subscripts L
and NL indicate the linear and nonlinear parts, respectively. i§2> repre-
sents the predicted high-fidelity output through forward propagation
analysis. Specifically, in the second procedure the propagation proceeds

along two parallel passages. The hidden layer ensemble with linear
activation functions at the top passage represents an implicitly linear

function, i.e.,v; (ylm ,Xi), which is to learn the linear behavior within data.
Multiplying v;, (ylm,xi) by a fraction, i.e., the linearity weight a, hence
indicates the portion of the resulting high-fidelity output, i.e., il(z), thatis
linearly associated with the input and the low-fidelity output. Likewise,

vNL(yEI),xi) located at the bottom passage is an implicitly nonlinear
function by specifying nonlinear activation functions in the hidden
layers. Accordingly, the nonlinear portion of the resulting high-fidelity
~(2)
i

output, i.e., y;/ can be characterized as (1 — a)vnL (yl(l),xi). It is worth

pointing out that v (yl(l),xl—) and vy (ylgl),xl—) are mathematically
described with related weights and biases in the hidden layers. To
accurately construct vy, (yl(l),xi) and vyg, (yﬁ”m), those layer weights and
biases need to be optimized through training process. The high-fidelity
output finally can be predicted by merging the information in two
passages following Equation (17). By comparing the predicted high-
fidelity output with the actual high-fidelity output, i.e., ygz), the high-
fidelity propagation error can be calculated.

As mentioned, there are two types of propagation errors generated.
To take advantage of both low- and high-fidelity datasets, both errors
should be taken into account during the training. However, neural
network training generally is performed upon one single loss in order to
concurrently optimize all inter-related weights and biases. One direct
solution is to properly aggregate different errors together into one.
Therefore, in this study we let the initial loss of the i-th data point be
expressed as a combination of the low-fidelity propagation error and the
high-fidelity propagation error, i.e.,

" = 2]+ (1 =)y = vl 7)) (€2

n=v

where 7(+) is an implicit function that characterizes the relation between
the low-fidelity input and output. yis the weight of loss contributed by
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Fig. 3. Benchmark plate structure. ©@and [Jindicate location where harmonic
unit force is applied and where response is of interest.

the low-fidelity output, and (1 —y) is the weight of loss contributed by
the high-fidelity output. v(-) is the high-level emulator shown in Equa-
tion (16), and ||-||is the Euclidean distance employed to measure the
propagation errors of two output vectors. The weights of linearity and
loss are the hyper-parameters of MFDF-CNN, and are tuned based on
output data characteristics empirically. In certain cases, one may opti-
mize these hyper-parameters through grid search [37].

In training MFDF-CNN, we aim at minimizing the total loss or loss
function of all training data. In this research, we adopt the mean squared
error (MSE) given as

1 ng
n= ; 2’7,2 (19)
s =l

where n, is the number of training data points. Once all training data are
introduced, the back propagation optimization will be utilized to update
the weights and biases of the model iteratively until the loss function
reaches the minimum. It is still worth noting that the proposed archi-
tecture (Fig. 2) is intended to utilize the low- and high-fidelity data in a
carefully designed, inter-related parallel manner. If additional levels of
data are available, we can easily generalize this hierarchical architecture
to handle more than two data fidelities. This can be achieved by further
incorporating sequential and interactive layer ensembles similar to the
boxed ones in Fig. 2.

4. Algorithmic details and implementation

In this section, we first produce high-fidelity and low-fidelity data of
frequency responses from a benchmark plate structure. We then
implement multi-fidelity data fusion to establish meta-models using
MLMRGP (the baseline) and MFDF-CNN (the proposed method),
respectively. Our focus is on the algorithmic details of MFDF-CNN as
well as its advantages over MLMRGP. In this research we specifically
choose frequency responses as the platform to deliver the method
formulation and result demonstration, as frequency response is an
important and representative aspect of vibration analysis. The method
can be readily applied to other cases such as the uncertainty quantifi-
cation of forced responses in a vibratory system.

4.1. Benchmark structure setup and data preparation

We analyze a benchmark plate structure (Fig. 3) for case demon-
stration. The mass density, Young’s modulus and Poisson’s ratio of this
plate are 7.85 x 103 kg/m>, 206 GPa and 0.3, respectively. Proportional
damping, i.e., C = ayM +agK is used in Equations (1) and (4), where
ayand agare 0.01 and 0.0001, respectively. We use 8-node solid element
in discretization. The finite element model has 3,510 DOFs. We choose
this structural configuration so interested readers can readily re-
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Table 1
Comparison of natural frequencies between full-scale finite element analysis and
Guyan reduced-order analysis (Hz).

Mode Order Full-Scale Analysis Guyan Reduction
1 144.3078 144.5716
2 334.7630 345.8223
3 367.8749 373.9271
4 571.4485 596.7220
5 709.2347 828.6293
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Fig. 4. High-fidelity frequency response data (1,000 samples).

construct the mesh for validation and comparison. The same structural
configuration in [28] is adopted in this study to ensure the fair perfor-
mance comparison. As can be observed, this structure consists of three
smaller plates joined together, which resembles topologies of complex
engineering structures consisting of multiple substructures.

In this research, the result of full-scale finite element analysis (Sec-
tion 2.1) is referred to as the high-fidelity data. A reduced-order model
using Guyan reduction (Section 2.2) is developed and employed to
generate the low-fidelity data. The reduced-order model has 230 DOFs,
and thus is computationally efficient. On the other hand, since inertia
effects of slave DOFs are omitted, the reduced-order results are subject
to error. A comparison of the natural frequencies computed from the
full-scale model and the Guyan reduced-order model is given in Table 1.
Generally, the reduced-order model yields larger error for higher order
natural frequencies. We focus on frequency responses in this study for
case demonstration. As indicated in Fig. 3, frequency sweeping har-
monic forces with unit amplitude are applied at 6 locations/DOFs. We
are interested in the response amplitudes at one of these locations/DOFs.
Specifically, we pick a total of 10 frequency points that are uniformly
discretized from 120 Hz to 170 Hz, i.e., 120 Hz, 125.56 Hz, 131.11 Hz,
136.67 Hz, 142.22 Hz, 147.78 Hz, 153.33 Hz, 158.89 Hz, 164.44 Hz and
170 Hz, to acquire the corresponding frequency responses. As will be
shown later, these frequency points essentially cover the first resonance
of the structure when it is subject to uncertainties. Thus, we have n =
landp = 10in Equations (3) and (10). In this research, we employ finite
element code developed by ourselves using MATLAB to carry out the
investigation. This will facilitate a streamlined process for response
variation prediction.

Our goal is to accomplish the efficient frequency response variation
characterization under uncertainties. For illustration, we divide the
structure into 6 segments (Fig. 3). We let the mass denisty and the
Young’s modulus of each segment be subject to variations. Therefore, we
have 12 uncertainty parameters and the dimension of # shown in
Equation (1) is 12. We assume the uncertainty parameters are statisti-
cally independent and subject to a multivariate normal distribution with



K. Zhou and J. Tang

0.0005

—~0.0004

0.0003

0.0002

Response Amplitude (m

0.0001

/\

- e

120 130 140 150 160 170
Excitation Frequency (Hz)

Fig. 5. Low-fidelity frequency response data (1,000 samples).

zero means and 10% standard deviations with respect to the nominal
values. Although the uncertainties here are parametrized using mass
density and Young’s modulus, they are reflected in the variations of
mass and stiffness matrices of the respective segments. Therefore
implicitily a variety of root causes of uncertainties are covered. Using
this distribution, 1,000 samples of uncertainty parameters are produced
by Latin Hypercube sampling method [38]. These sampled parameters
are then employed in full-scale finite element analysis (Section 2.1) and
reduced-order analysis (Section 2.2), respectively, to facilitate Monte
Carlo simulation to generate the high- and low-fidelity frequency re-
sponses. These datasets will be utilized for meta-model training and
validation.

Figs. 4 and 5 show the aggregations of 1,000 high- and low-fidelty
frequency response data. The frequency range selected, i.e., from 120
Hz to 170 Hz, can cover the resonances of all samples. In both figures,
envelops of the upper and lower bounds are included, and the same
range of vertical axis is used for clear comparison. The low-fidelity re-
sponses have considerable errors when compared to high-fidelity ones in
term of response magnitude. We also examine the statistical distribution
of high-fidelity response data in Fig. 6. Recall that the responses at 10
excitation frequency points are of interest. One may notice that the
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response distributions under the 4th to 7th excitation frequencies, which
are close to the first natural frequency, are quite different from the
normal distribution even though the uncertainty parameters are subject
to normal distributions. The underlying reason is that, near the natural
frequency, the responses are close to being singular and thus are espe-
cially sensitive to uncertainties. As a result, the relation between un-
certainty parameters (i.e., inputs) and the frequency responses (i.e.,
outputs) is quite nonlinear. Meanwhile, while some other response
distributions under the 3rd and 8th excitation frequencies resemble the
normal distribution, there are a plenty of outliers that exist. Apparently,
the error in low-fidelity dataset, the nonlinearity observed, and the
outliers altogether pose a challenge to developing meta-model.

4.2. Meta-model training and implementation details

The prediction of frequency response variation requires the devel-
opment of a learning approach to be able to emulate responses at
different locations and employ concurrently multi-fidelity datasets
generated from different first principle models. We aim at overcoming
the limitations of existing approaches including Gaussian processes
[27,39,40]. As indicated in Section 3.2, we resort to the MFDF-CNN
architecture which has the prospect of addressing the implicit,
nonlinear relation between the high- and low-fidelity datasets. We
further want to examine its performance in the case that the low-fidelity
data have considerable error as shown in Section 4.1.

We now re-visit Fig. 2 and explain the layout details of MFDF-CNN
with the case demonstration. Input layer #1 has 12 nodes, carrying
the information of 12 uncertainty parameters as input variables. Hidden
layers #2 to #5, each with 512 nodes, are constructed to emulate the
relation between the input and the low-fidelity output that is charac-
terized by output layer #5 with 10 nodes. Here, the number of nodes in
the output layer is equal to the number of response variables, i.e.,
response amplitudes evaluated under 10 excitation frequencies of in-
terest. Input layer #1 once again will be concatenated with output layer
#5 that are used as new input for high-fidelity output prediction. There
are two parallel hidden layer ensembles, #6 to #7, and #8 to #10, that
are built respectively to characterize implicitly the linear and nonlinear
correlations between the abovementioned new input and the high-
fidelity output. As mentioned in Section 3.2, the effect of linearity cor-
relation is considered under weighting coefficienta, which is a hyper-
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Fig. 6. Statistical distributions of high-fidelity frequency response data (1,000 samples).
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Table 2

Layer description and operating parameter set-up in MFDF-CNN.
ID Layer Description Size
#1 Input layer (dense) (12,1)
#2 Hidden layer (dense , ‘relu’ activiation) (512,1)
#3 Hidden layer (dense , ‘relu’ activiation) (512,1)
#4 Hidden layer (dense , ‘relu’ activiation) (512,1)
#5 Output layer (dense, ‘linear’ activiation)/low-fidelity (10, 1)
#6 Hidden layer (dense , no activiation) (256, 1)
#7 Hidden layer (dense , no activiation) (256, 1)
#8 Hidden layer (dense , ‘relu’ activiation) (256, 1)
#9 Hidden layer (dense , relu activiation) (256, 1)
#10 Hidden layer (dense , relu activiation) (256, 1)
#11 Output layer (dense, ‘linear’ activiation) /high-fidelity (linear) (10, 1)
#12 Output layer (dense, ‘linear’ activiation) /high-fidelity (10, 1)

(nonlinear)

#13  Output layer (dense, ‘linear’ activiation) /high-fidelity (10, 1)

S A
(¢} )
D=| X Yv, ¥ P
o G Y2 | “Pseudo” high-fidelity outputs
X yO ==
AN, +1 N, +1 | |
| 1
i w ! I' N,: number of low-fidelity data points
L Xy, Y, P J' N,: number of high-fidelity data points

Fig. 7. Illustration of treatment of data size inconsistency in MFDF-CNN.

parameter to be tuned. Thus, the nonlinear or linear behavior of hidden
layers can be simply realized by assigning proper activation function.
The layer information and the relevant parameters are listed in Table 2.
The total number of weights and biases in the model that need to be
optimized is 751,390. By using the loss function defined in Equation
(19), MFDF-CNN training can be executed.

One major difference between MLMRGP and MFDF-CNN in data
usage in the training process exists. As outlined in Section 3.1, MLMRGP
allows the independent training of dataset within the same fidelity level,
and thus finishes the training of the multi-fidelity datasets sequentially.
MFDF-CNN, on the other hand, requires the simultaneous usage of
multi-fidelity data points under the same inputs (i.e., sampled uncer-
tainty parameters) for all data points involved. In practice, however,
high-fidelity data are usually scarce, and one usually cannot afford to
have the same amount of high- and low-fidelity data. Here we introduce
an important step to address this issue of data size inconsistency. We
expand the size of high-fidelity dataset into the same as the low-fidelity
dataset. The missing high-fidelity response data are filled with the cor-
responding low-fidelity response data under the same uncertainty pa-
rameters. In other words, the additional data in the high-fidelity dataset
are in fact low-fidelity data. For notation purpose, we refer to them as
‘pseudo’ high-fidelity data, as shown in Fig. 7. We then generate sample
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Fig. 8. Scatter distribution of response amplitudes under excitation frequency
point 1 (120 Hz) over testing space. []: testing/actual outputs; ~: prediction by
MFDF-CNN; —: prediction by MLMRGP.

weights and assign them for all training samples. To evaluate the loss of
one sample, Equation (18) can be re-written as Fig. 9.

n =By = o) ||+ 7 (1= )|y — vl t(x)| (20)

where /}EI) and ﬁgz) denote, respectively, the i-th sample weight values for
losses from the low- and high-fidelity outputs. It is noted that the sample
weights also will impact the final loss contribution, as in a abroad sense

ﬁgl)yand [152) (1 — y)literally represent the final loss weights. Specifically,

we set sample weights ﬂl@) as close to zero for the samples coming from
the pseudo high-fidelity training data. Such sample weight assignment
removes the effect of those pseudo high-fidelity data on training.

We then proceed to employing the data generated in Section 4.1 to
train the MFDF-CNN meta-model. For comparison purpose, the same
data are used to train a MLMRGP meta-model which will be subse-
quently used to elucidate the performance improvement. The same
random split of training and testing datasets is applied. The setup of the
two algorithms are listed in Table 3. As indicated in Section 4.1, we
generate 1,000 samples of model parameters with uncertainty and
subsequently acquire 1,000 high-fidelity data (using finite element
analysis) and 1,000 low-fidelity data (using reduced-order analysis).
Here for both algorithms, we use 400 low-fidelity data and 40 high-
fidelity data for the purpose of training.

4.3. Frequency response emulation result discussion

The performance of a meta-model trained can be observed by
comparing its emulation result with respect to the actual result obtained
through simulation such as finite element analysis. In this research, we
are interested in the efficient characterization of frequency response
variation induced by model parameter uncertainties. In the data prep-
aration stage, we obtain 1,000 high-fidelity data and 1,000 low-fidelity

Table 3
Algorithmic setups of MFDF-CNN and MLMRGP.
MFDF-CNN MLMRGP
Data 40% low-fidelity data (400) and 4% high-fidelity data (40) employed as training datasets. 60% high-fidelity data (6 00) used as testing dataset — same data split for
preparation both of models
Operating 1. Epoch size is set as 40. Batch size is set as 52. ¢;and y;in Egs. (17) and (18) are 1. Linear mean kernel2. Anisotropic exponential covariance kernel with 6
variables defined as 0.6 and 0.8, respectively3. ﬂlwand 1152) in Eq. (20) are selected as 0.5 reciProcals of lengthscales ’flt ee.lch level’s emulator plus 1 regression coefficient
and 2 respectively for samples with high-fidelity output, and 0.5 and 10~% at high-level’s emulator, yielding a total of 13 hyper-parameters
respectively for samples without high-fidelity output
Training Adam optimizer [41] Particle swarm optimizer [42]
algorithm
Data Not necessary Data scaling

preprocessing
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Fig. 9. Scatter distribution of response amplitudes under excitation frequency
point 2 (125.56 Hz) over testing space. []: testing/actual outputs; <: prediction
by MFDF-CNN; - prediction by MLMRGP.
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Fig. 10. Scatter distribution of response amplitudes under excitation frequency
point 3 (131.11 Hz) over testing space. [J: testing/actual outputs; ~: prediction
by MFDF-CNN; - prediction by MLMRGP.
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Fig. 11. Scatter distribution of response amplitudes under excitation frequency
point 4 (136.67 Hz) over testing space. [J: testing/actual outputs; ~: prediction
by MFDF-CNN; - prediction by MLMRGP.

data. As pointed out in Section 4.2, we use 400 low-fidelity data and 40
high-fidelity data to train the metal models. Recall that in total we have
1,000 sampled model parameters with uncertainties. Each low-fidelity
data point corresponds to a specific model parameter sample. We now
use those 600 high-fidelity data corresponding to the rest of the model
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Fig. 12. Scatter distribution of response amplitudes under excitation frequency
point 5 (142.22 Hz) over testing space. [: testing/actual outputs; ~: prediction
by MFDF-CNN; -t prediction by MLMRGP.
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Fig. 13. Scatter distribution of response amplitudes under excitation frequency
point 6 (147.78 Hz) over testing space. []: testing/actual outputs; <: prediction
by MFDF-CNN; - prediction by MLMRGP.
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Fig. 14. Scatter distribution of response amplitudes under excitation frequency
point 7 (153.33 Hz) over testing space. [: testing/actual outputs; <: prediction
by MFDF-CNN; - prediction by MLMRGP.

parameter samples for validation/testing.

We compare the emulation results predicted by MLMRGP and MFDF-
CNN with respect to the high-fidelity data. In Figs. 8-17, we plot the
frequency response amplitudes versus the testing uncertainty parameter
samples, where each figure shows the result comparison under a specific
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Fig. 15. Scatter distribution of response amplitudes under excitation frequency
point 8 (158.89 Hz) over testing space. [: testing/actual outputs; ~: prediction
by MFDF-CNN; - prediction by MLMRGP.

0.0005 T T T T T

0.0004 [ 1

0.0003 |- 1
o

0.0002 |, o o 1

Response Amplitude (m)

0
0 100

200 300 400
Testing Sample ID

Fig. 16. Scatter distribution of response amplitudes under excitation frequency
point 9 (164.44 Hz) over testing space. []: testing/actual outputs; <: prediction
by MFDF-CNN; - prediction by MLMRGP.
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Fig. 17. Scatter distribution of response amplitudes under excitation frequency
point 10 (170 Hz) over testing space. []: testing/actual outputs; ~: prediction
by MFDF-CNN; - prediction by MLMRGP.

excitation frequency. The frequency response amplitudes shown in
Figs. 10 to 14 are generally larger, as the corresponding excitation fre-
quencies are closer to the natural frequency. We can readily observe that
discrepancies between the testing data and the predicted responses ob-
tained by MFDF-CNN are much smaller than those by MLMRGP,

10
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Table 4
Comparison of MSE values (%) between MFDF-CNN and MLMRGP.

Frequency Point MFDF-CNN MLMRGP

1 1.3928 x 10711 9.2191 x 10710
2 3.6517 x 10~ 2.7928 x 107°
3 7.9976 x 10~ 6.2554 x 10~°
4 9.9773 x 1071 6.5601 x 10~°
5 8.3908 x 10~ 2.1034 x 10°°
6 1.1425 x 10710 2.4425 x 107°
7 8.0084 x 10711 3.1576 x 10~°
8 2.7335x 10711 1.7564 x 107
9 3.0455 x 10711 7.2190 x 10710
10 1.9315x 10~ 3.0172 x 10710

especially for those with large response amplitudes. From the physics
perspective, large response occurs in the vicinity of resonance which
exhibits the complex relation with respect to the model parameter
variation. This is the first indication that MFDF-CNN outperforms
MLMRGP in terms of accuracy.

To quantify the comparison, here we also employ the mean squared
error (MSE) between the emulation result and the actual result as

L1 E,
n, == Mer @D
P>
where
Mo = ) = ks Pl 22)

In above equations, the subscripts k and r indicate the k-th testing
sample and the r-th excitation frequency, respectively. For example, the

vector y,((zr) represents the r-th frequency response amplitudes of the k-th

testing sample. 7and V represent the well-trained low-and high-level
emulators in MFDF-CNN, respectively. M is the number of testing sam-
ples and is 600 in this analysis. It is worth noting that in the training
process, all frequency responses are introduced to formulate the mean
squared error loss function as shown in Equation (18) or (20) which
takes into consideration the weights of different outputs. MSE defined in
Equation (21) is different, and intends to measure the difference be-
tween the testing and the predicted outputs. It is used to evaluate the
prediction accuracy of frequency response at each frequency point over
the entire testing samples. The comparison of MSE values is shown in
Table 4. In general, MFDF-CNN yields smaller MSE values than
MLMRGP. The improvement is more significant at frequencies close to
the natural frequency. This indicates that MFDF-CNN can deal with high
sensitivity of uncertainty parameters.

It is still worth mentioning that there is subtle difference between
MFDF-CNN and MLMRGP in terms of optimization objective. Training of
MLMRGP essentially follows the Bayesian framework, which aims at
maximizing the marginal likelihood upon the training data. On the other
hand, MFDF-CNN, as one regression neural network, allows one to adopt
different loss functions, such as mean squared error, mean squared
logarithmic error, and mean absolute error, etc. One may argue that
MLMRGP is subject to a somewhat different optimization objective.
Nevertheless, from prediction accuracy standpoint, MFDF-CNN indeed
leads to reduced error as a whole.

Discussed above are the frequency response values at individual
excitation frequency points. We also randomly select frequency response
curves of 6 testing samples for comparison, as shown in Fig. 18. It can be
seen that the low-fidelity frequency response curves contain large errors.
Both MLMRGP and MFDF-CNN, after incorporating high-fidelity dataset
for meta-model training, perform better than the low-fidelity data as the
predictions results are pushed towards the corresponding high-fidelity
responses (i.e., actual responses). Nevertheless, MFDF-CNN
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Fig. 18. Frequency response curve comparison of 6 selected samples.

outperforms MFMRGP, as the frequency response curves it predicts

basically overlap those of the actual values. 0

While this research primarily focuses on meta-model training accu- C
racy, training efficiency is still one important aspect. Here MFDF-CNN L% S |
and MLMRGP are implemented at the same computational platform, i. 5
e., Intel CPU E5-2640 @2.40 GHz (2 processors). We employ the deep § -10 I
learning library, i.e., Keras written in Python, to develop MFDF-CNN g
because it is powerful. Meanwhile, we use MATLAB for MLMRGP c 18] I
meta-modeling as it provides efficient matrix operation functions 2
involved in the training of MLMRGP. For each single run, MFDF-CNN 5 20 1] i
and MLMRGP take 57 and 483 s, respectively. While these two models E = T
are established upon different integrated development environments T -25¢ ERun 2 ]
(IDEs), i.e., Python (Anaconda Spider) and MATLAB, MFDF-CNN ap- §’ [ JRun3
pears to be more efficient for the case investigated in this research. Even -30 I Run 4 .
though MFDF-CNN involves a large number of weights and biases to be ‘ s \ s _|EERRun5] s s
trained, it can take advantage of the built-in Adam optimizer [41]. 1 2 3 4 5 6 7 8 9 10
MLMRGP on the other hand includes a number of non-sparse matrix Excitation Frequency Points

operations in the training process, which leads to higher computational
cost. Future research may investigate situations where larger amount of
training data and larger number of response variables are considered,
and conduct a more rigorous comparison of these algorithms under the
same integrated development environment (IDE).

0
4.4. Performance robustness and parametric influence 5 i
The accuracy of meta-model, strictly speaking, is subject to certain

Fig. 19. Error expressed as L;,of multiple training/emulation runs through
MFDF-CNN.

randomness, due to the random split of training and testing datasets as 10
well as the training process. In the case of neural network, training is
facilitated by optimizing the model parameters, i.e., weights and biases,
which is influenced by the initial parameter guess, stochastic or

-15

Logarithm of Mean Squared Error

gradient-based parameter search, and random training batch generation 20 I
at each epoch/iteration. To examine the performance robustness, we I Run 1
carry out multiple runs of training and summarize the results statisti- 27 I Run 2 ]
cally. Here we implement 5 runs with random training and testing data E Eﬂ:i
splits. In each run, we use 400 low-fidelity and 40 high-fidelity data for 301 ERun 5|

training and then use the rest 600 high-fidelity data for testing, which is ‘ ' : ‘ : : ' :
X . . . . 1 2 3 4 5 6 7 8 9 10
the same configuration used in Section 4.3. In each run, the same split of L .
.. . . Excitation Frequency Points
training and testing datasets is adopted for both MFDF-CNN and
MLMRGP. While we still resort to the MSE defined in Eq. (21) as metrics, Fig. 20. Error expressed asL;,of multiple training/emulation runs
we take the logarithm for the convenience of illustration, i.e., through MLMRGP.
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Fig. 21. Comparison of average error expressed as L, under MFDF-CNN
and MLMRGP.

L,, = In(n,) (23)
And the mean logarithm MSE is defined as
< 1 .
L= N ML, (24)

t=1

In the above equations, r indicates the r-th excitation frequency
point, and t indicates the t-th training/emulation run under the t-th
dataset split. Q is total number of emulation runs/dataset splits, which is
5 in this case. The smaller L, is, the better accuracy the meta-model has.

Figs. 19 and 20 show the values of defined metric, logarithm MSE L:‘,,
under different training/emulation runs using MFDF-CNN and
MLMRGP. In both methods, the values of L:‘r slightly differ under
different training/emulation runs. This indicates that both methods
perform in a robust manner without obvious accuracy difference. Both
methods do not exhibit overfitting. The logarithm values of MSE L, of
MFDF-CNN are consistently smaller than those of MLMRGP. The mean
logarithm MSE L of MFDF-CNN and that of MLMRGP are compared in
Fig. 21. As can be observed, the accuracy of MFDF-CNN is significantly
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better than that of MLMRGP.

In multi-fidelity data fusion, the error of low fidelity data is inherited
from the order-reduction procedure, and we hope to correct such error
through data fusion by introducing a few high-fidelity data. In Fig. 18,
we can observe such positive influence of the high-fidelity data. In meta-
model training, in general, more training data yields better performance
in terms of accuracy. Specifically, in multi-fidelity data fusion, intui-
tively, introducing more high-fidelity data while maintaining the
amount of low-fidelity data is expected to further improve the prediction
accuracy. Here we examine how the size of high-fidelity training data-
sets affects the prediction accuracy. In the abovementioned analyses, we
use 400 low-fidelity data and 40 high-fidelity data. This amount of high-
fidelity data corresponds to 10% of the low-fidelity data. We now in-
crease the size of high-fidelity data to 20% and 30% of the low-fidelity
data, and respectively train the meta-models. The logarithm MSE values
at the first 5 frequency points under the two meta-modeling approaches
are shown in Fig. 22. The results of the other 5 frequency points that are
essentially symmetric with respect to the first 5 along the first natural
frequency exhibit similar trends. As can be observed, increasing high-
fidelity dataset leads to the performance improvement. Interestingly,
it can be observed that MFDF-CNN always outperforms MLMRGP even
as the high-fidelity dataset size increases.

One advantage of MFDF-CNN, as compared to MLMRGP, is that it
can take implicitly both linear and nonlinear correlations of multi-
fidelity outputs into account. As shown in Equation (17), the effects of
linear and nonlinear correlations can be quantitatively represented by a
and 1 —a. Observe the frequency response curves shown in Fig. 18. The
high-fidelity result and the low-fidelity result exhibit more significant
difference near the natural frequency. Intuitively, there is more signifi-
cant nonlinear correlation at frequency points near the natural fre-
quency. Here we specifically investigate the effect of linearity weight a
(Equation (17)). As mentioned, ais a hyper-parameter of MFDF-CNN
meta-model, which cannot be directly identified through training.
Here, we apply the uniform-grid discretization of awithin range [0,1]
with 0.1 increment, and evaluate the errors (i.e., L; in Equation (23a)) of
all avalues given the same split of training and testing datasets. The
result shown in Fig. 23 indicates that the errors vary with respect to a. In
Section 4.3, we adopt a = 0.6 for the MFDF-CNN meta-modeling. In
Fig. 23, it is found that a = 0.6 indeed yields a relatively small error. In
other words, there exists considerable nonlinear correlations between
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Fig. 23. Prediction error with respect to linearity weight.

the low-fidelity and high-fidelity datasets. As compared with other
techniques such as MLMRGP that are built upon the linear relation
assumption, this MFDF-CNN allows the characterization of more generic
relation of multi-fidelity datasets. As a result, it exhibits much enhanced
predictive capability.

5. Conclusion

In this research, a multi-fidelity data fusion composite neural
network (MFDF-CNN) is developed to efficiently and accurately char-
acterize the frequency response variation of a structure under un-
certainties. This approach, by taking advantage of the architecture of
composite neural network, allows one to integrate together a small
amount of high-fidelity data acquired from full-scale finite element
analysis and a large amount of low-fidelity data acquired from Guyan
reduced-order analysis. This can significantly reduce the computational
cost of data acquisition for the subsequent meta-model training and
validation. Moreover, this approach enables the characterization of the
implicit relation between low- and high-fidelity datasets, which can
yield the improved accuracy as compared with the state-of-the-art
techniques. The case studies demonstrate that this approach out-
performs the baseline Gaussian process-based approach with improved
variation prediction capability and performance robustness.
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