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A B S T R A C T   

Uncertainties in a structure is inevitable, which generally lead to variation in dynamic response predictions. For a 
complex structure, brute force Monte Carlo simulation for response variation analysis is infeasible since one 
single run may already be computationally costly. Data driven meta-modeling approaches have thus been 
explored to facilitate efficient emulation and statistical inference. The performance of a meta-model hinges upon 
both the quality and quantity of training dataset. In actual practice, however, high-fidelity data acquired from 
high-dimensional finite element simulation or experiment are generally scarce, which poses significant challenge 
to meta-model establishment. In this research, we take advantage of the multi-level response prediction oppor
tunity in structural dynamic analysis, i.e., acquiring rapidly a large amount of low-fidelity data from reduced- 
order modeling, and acquiring accurately a small amount of high-fidelity data from full-scale finite element 
analysis. Specifically, we formulate a composite neural network fusion approach that can fully utilize the multi- 
level, heterogeneous datasets obtained. It implicitly identifies the correlation of the low- and high-fidelity 
datasets, which yields improved accuracy when compared with the state-of-the-art. Comprehensive in
vestigations using frequency response variation characterization as case example are carried out to demonstrate 
the performance.   

1. Introduction 

Vibration analysis is commonly used in assessing engineering 
structures [1,2]. The dynamic responses extracted are utilized to facili
tate diverse applications [3–5]. It is worth mentioning that engineering 
structures are usually subject to uncertainties due to material imper
fection, manufacturing tolerance, and assemblage error etc. Conse
quently, their dynamic responses have variations. In order to adequately 
assess the effect of structural uncertainties, uncertainty propagation 
analysis of structural dynamic responses becomes an important task. 
Frequency response function (FRF), as one representative dynamic 
response, characterizes the fundamental properties of a structure in the 
frequency domain. As FRF is sensitive to uncertainties especially around 
resonant frequencies, quantification of FRF variation is commonly 
involved in robust design and control [6,7]. One straightforward 
approach for FRF variation prediction is Monte Carlo simulation 
through a parametrized, stochastic finite element model [8,9]. While 
generally considered accurate when high-fidelity finite element model is 
employed, a well-known issue of propagating uncertainties from the 

high-dimensional model to FRF is the high computational cost. For a 
complex structure, a single run of finite element dynamic analysis may 
already be costly. Brute force Monte Carlo simulation thus yields pro
hibitive computational burden [10]. 

Built upon the rapid advancement in statistical inference, recent 
exploration of uncertainty quantification of structural dynamic response 
has focused on various meta-modeling methods that have the prospect of 
fundamentally reducing the computational cost. The basic idea of meta- 
modeling such as the Gaussian process is to utilize a small amount of 
training data, i.e., output response associated with sampled uncertainty 
parameters, to establish a regression-type relationship of response pre
diction with respect to the uncertainty parameter set. This can 
dramatically reduce the number of repetitive simulations or experiments 
as compared with brute force Monte Carlo methods since the size of 
training dataset becomes much smaller [11–13]. The meta-model 
trained can quickly predict frequency responses under given uncertainty 
parameter samples, which is referred to as emulation. While earlier in
vestigations often resort to single-response meta-model, frequency re
sponses essentially represent the relation of dynamic response of a 

* Corresponding author. 
E-mail address: jiong.tang@uconn.edu (J. Tang).  

Contents lists available at ScienceDirect 

Engineering Structures 

journal homepage: www.elsevier.com/locate/engstruct 

https://doi.org/10.1016/j.engstruct.2021.111878 
Received 6 May 2020; Received in revised form 19 December 2020; Accepted 8 January 2021   

mailto:jiong.tang@uconn.edu
www.sciencedirect.com/science/journal/01410296
https://www.elsevier.com/locate/engstruct
https://doi.org/10.1016/j.engstruct.2021.111878
https://doi.org/10.1016/j.engstruct.2021.111878
https://doi.org/10.1016/j.engstruct.2021.111878
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engstruct.2021.111878&domain=pdf


Engineering Structures 232 (2021) 111878

2

distributed structure versus excitation frequency and thus feature 
inherently multiple responses. That is, the frequency responses at 
different locations have intrinsic correlation and, moreover, the re
sponses at one specific location under different excitation frequencies 
have intrinsic correlation. In order to account for such correlations and 
to avoid training multiple meta-models for multiple responses, multi- 
response Gaussian process (MRGP) technique has been employed 
which introduces a non-spatial correlation matrix to capture the statis
tical correlation of different response variables [14–16]. The hyper- 
parameters dependent on the response correlation are identified 
through maximizing the multivariate likelihood function. Alternatively, 
neural network based methods have also been attempted in meta- 
modeling of structural dynamic response. Actually, neural network can 
allow directly the multi-response emulation through designing an ar
chitecture with multiple neurons/nodes at the output layer [17–19]. The 
correlation of multiple responses can be implicitly established by mutual 
interaction of different layers. The flexibility and extensibility of neural 
networks have enabled them to be increasingly used in engineering 
analysis [13,20–22]. 

Intuitively, the performance of a meta-model hinges upon both the 
quality and quantity of training dataset. That is, larger dataset with high 
numerical or experimental accuracy is always desired. In actual practice, 
however, high-fidelity data acquired from high-dimensional finite 
element simulation or experiment are generally scarce. In order to 
mitigate this issue, some recent investigations have proposed to incor
porate datasets at multiple levels/resolutions to train Gaussian process 
meta-model. It was suggested that the combination of data with different 
fidelities for Gaussian process emulation could maintain both prediction 
accuracy and efficiency [23–25]. In the realm of structural dynamic 
analysis, a natural way of carrying out fast, low-fidelity simulation is 
through reduced-order modeling [10,26]. A large amount of first 
principle-based simulation data can be produced easily with reduced- 
order model and then employed in the multi-level Gaussian process 
meta-modeling. At the same time, a small amount of high-fidelity, full- 
scale finite element simulation data will also be employed in the 
training. With the large amount of low-fidelity data, the Gaussian pro
cess emulator can avoid those errors associated with the inference 
procedure. With the introduction of a few high-fidelity data, we can 
correct the error of the low-fidelity data inherited from the order- 
reduction procedure. The advantage of such a heterogeneous data- 
driven meta-modeling that combines low- and high-fidelity datasets 
has been demonstrated in structural vibration analysis case [27]. Since 
structural dynamic responses are generally characterized in a distrib
uted manner, the above-mentioned multi-response Gaussian process has 
recently been extended to multi-level and multi-response Gaussian 
process (MLMRGP) that is capable of emulating distributed outputs (i.e., 
predicting multiple output variables simultaneously) [28]. One chal
lenging issue in these Gaussian process trainings is the overall training 
cost and numerical stability in large-scale matrix operations. Another 
intriguing issue in multi-level Gaussian process meta-modeling is the 
treatment of the correlation between datasets at different levels/reso
lutions. In [27], it was assumed that there was linear correlation which 
was characterized by a linear autoregressive scheme. Perdikaris et al 
[29] however argued that in such fusion between multi-level datasets, 
nonlinear correlation should be learned which requires complex, addi
tional computational efforts. Therefore, the objective of this research is 
to explore new computational approach to address the aforementioned 
issues in existing methods. 

Indeed, structural dynamic systems offer interesting potentials that 
could be leveraged upon to yield efficient and accurate uncertainty 
quantification. One may formulate multi-level analyses to produce 
multi-level datasets of frequency responses. The responses of a structure 
are distributed in nature, leading to multiple outputs with intrinsic 
correlations. In view of the prospect of meta-modeling as well as the pros 
and cons of methods developed so far, in this research we explore a new 
framework of frequency response variation characterization built upon 

the neural network concept. Neural networks can accommodate both 
classification and regression based on supervised learning, and possess 
flexible architectures. Uncertainty quantification of dynamic responses 
falls into the category of regression. Neural networks generally are 
capable of providing multiple outputs. Recent progresses indicate that it 
is possible to synthesize a composite neural network that can fuse 
together heterogeneous data to facilitate learning, known as multi- 
fidelity physics-informed neural network (MFPINN) [30]. Our hypoth
esis here is that, exploiting the architecture of such heterogeneous data- 
driven neural network and its inherent learning capability, we can 
establish a new path toward multi-level meta-modeling. Specifically, the 
proposed new approach, hereafter referred to as multi-fidelity data 
fusion composite neural network (MFDF-CNN), will use a large amount 
of low-fidelity data produced by reduced-order analysis, and a small 
amount of high-fidelity data generated by full-scale finite element 
model. The key advancement is that this MFDF-CNN will feature the 
built-in function of incorporating the generic correlation between low- 
and high-fidelity datasets used in training, thereby addressing the cur
rent issues in multi-level meta-modeling. In other words, the network 
can synergistically fuse multi-fidelity datasets in an integral manner, 
yielding improved accuracy in uncertainty quantification of frequency 
response. To enable the multi-fidelity data fusion, the neural network 
training under different sizes of low- and high-fidelity datasets have 
been realized. This new framework is constructed upon the novel design 
of neural network architecture, leading to the enhanced performance as 
compared with the state-of-the-art techniques. 

The rest of this paper is organized as follows. Section 2 outlines the 
generation of high- and low-fidelity datasets for frequency response 
analysis. In Section 3, we start from presenting a multi-level multi- 
response Gaussian process (MLMRGP) for frequency response emula
tion, and then formulate the proposed multi-fidelity data fusion com
posite neural network (MFDF-CNN) for meta-modeling. Through direct 
comparison, the advantage of MFDF-CNN is elaborated. Section 4 pro
vides comprehensive case studies to demonstrate the new methodology 
and the improved performance. Section 5 summarizes the concluding 
remarks. 

2. Problem setup and Multi-Fidelity datasets generalization 

2.1. High-fidelity data generation through full-scale finite element 
frequency response analysis 

We assume the full-scale finite element model of a structure is 
available, i.e., 

M(θ)z̈ + C(θ)ż + K(θ)z = f (1)  

where M(θ), C(θ), and K(θ) are, respectively, the mass, damping, and 
stiffness matrices with dimension N × N, and θ is an m-dimensional 
vector representing the set of m uncertain parameters in the model. N is 
the number of degrees of freedoms (DOFs), z is the displacement vector, 
and f is the external excitation vector. Without loss of generality, we 
assume proportional damping. The uncertainties in the structural model 
yield the variation of the response. In this research, we are specifically 
interested in frequency response of the structure. Let us consider a 
harmonic excitation f(t) = Fejωt where F is a constant vector of force 
magnitude and ω is the sweeping frequency. We then have the vector- 
form frequency response function of the structure as 

Z(θ) = [−ω2M(θ) + jωC(θ) + K(θ)]
−1F (2)  

where Z(θ) is the vector-form response amplitude of the entire structure, 
and subjected to variations owing to structural uncertainties. 

In actual practice, usually only the responses at a selected number of 
DOFs are of interest for design and control applications. Meanwhile, 
experimental results can only be acquired at a small number of locations 
due to the usual constraint in the number of sensors. Therefore, hereafter 
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we analyze U, a subset of Z. To begin with, U is an n-dimensional vector 
(n < N) and is dependent upon ω. We further assume that frequency 
responses at pre-specified p discrete frequency points, ω = [ω1, ω2, ⋯,

ωp], are of interest. For simplicity in notation, the responses of the 
structure at these n DOFs and p frequency points are collectively 
expressed as 

U(θ) = [U1,1, ⋯Un,1, U1,2, ⋯, Un,2, ⋯⋯, U1,p, ⋯, Un,p]
T (3) 

Obviously, U is dependent upon uncertainty parameter set θ. In order 
to avoid brute force Monte Carlo simulation that leads to prohibitive 
computational cost, we resort to meta-modeling for the uncertainty 
quantification of frequency response U. High-fidelity data can be pro
duced from Equation (2) (i.e., full-scale finite element model) directly 
under sampled uncertainty parameter set θ. In actual practice, the 
amount of high-fidelity data is usually limited, due to the computational 
cost involved in full-scale finite element analysis. 

2.2. Low-fidelity data generation through reduced-order frequency 
response analysis 

Since dynamic analysis of high-dimensional finite element model is 
computationally costly, model order reduction has been an important 
research subject. A variety of approaches have been proposed in recent 
decades. The goal of this research is to establish a new meta-modeling 
approach that can integrally utilize a small amount of high-fidelity data 
together with a large amount of low-fidelity data. Specifically, we hope 
the usage of large amount of low-fidelity data, to be produced by a 
reduced-order model, can mitigate the error associated with the infer
ence procedure. Meanwhile, we hope that the introduction of a small 
amount of high-fidelity data based on the preceding subsection can 
correct the error of the low-fidelity data inherited from the order- 
reduction procedure. Without loss of generality and in order to make 
it easy for interested readers to re-produce the case investigation, here 
we adopt the Guyan reduction for reduced-order modeling [31] which is 
commonly used in structural dynamic analysis. 

In Guyan reduction, the DOFs in the finite element model are divided 
into the master DOFs and the slave DOFs. The effects of the slave DOFs 
are transformed onto the master DOFs through static condensation, 
thereby eliminating the slave DOFs in the original model. We thus re- 
write the equation of motion of as 
[

Mmm Mms
Msm Mss

][
z̈m
z̈s

]

+

[
Cmm Cms
Csm Css

][
żm
żs

]

+

[
Kmm Kms
Ksm Kss

][
zm
zs

]

=

[
f m
f s

]

(4)  

where subscripts m and s denote the master and slave DOFs, respec
tively. Neglecting the inertia and damping terms and assuming free vi
bration without external excitation, we can obtain the following 
approximate relation between the slave and master DOFs, 

zs = − K−1
ss Ksmzm (5) 

which yields 
[

zm
zs

]

=

[
I

−K−1
ss Ksm

]

zm = TGzm (6)  

where TG is the condensation transformation matrix for Guyan reduc
tion. Utilizing the coordinate transformation shown above, we have 

Mr z̈m + Cr żm + Krzm = f r (7)  

where Mr = TT
GMTG, Cr = TT

GCTG, Kr = TT
GKTG and f r = TT

Gf are the 
order-reduced mass, damping, stiffness matrices and the corresponding 
order-reduced external excitation, respectively. Assuming harmonic 
excitation f r = Frejωt where Fris a constant vector of force magnitude 
and ω is the sweeping frequency, we obtain the frequency response 

function of the reduced-order system, 

Zm = [−ω2Mr + jωCr + Kr]
−1Fr (8)  

where Zm is the vector-form response amplitude of the reduced-order 
system. Recall Equation (6). The vector-form response amplitude of 
the original model can be obtained as 

Z =

[
Zm
Zs

]

=

[
I

−K−1
ss Ksm

]

Zm = TGZm (9) 

The system coefficient matrices and the response vectors are all 
subjected to variations and uncertainties, and thus are θ dependent. For 
notation simplicity, we have omitted θ in the above equations. 

Once again, we assume only the responses at a selected number of n 
DOFs are of interest, and furthermore the frequency responses at pre- 
specified p discrete frequency points, ω = [ω1, ω2, ⋯, ωp], are acquired. 
The responses of the structure at these n DOFs and p frequency points, 
obtained through reduced-order finite element-based simulations, are 
collectively expressed as 

Ur(θ) = [Ur1,1, ⋯Urn,1, Ur1,2, ⋯, Urn,2, ⋯⋯, Ur1,p, ⋯, Urn,p]
T (10) 

Indeed, vector Ur corresponds to U shown in Equation (3), whereas 
the subscript r indicates reduced-order analysis result. As the dimension 
of the finite element-based model is reduced from N to Nm (the number 
of master DOFs) after Guyan reduction, the computational cost involved 
in Equation (10) is significantly reduced. We may conduct frequency 
response simulations with a large sample size of uncertainty parameters 
to acquire a large amount of low-fidelity training data. Nevertheless, the 
order-reduction introduces truncation errors because the inertia and 
damping effects of the slave DOFs are neglected in the transformation 
(Eqs. (5) and (6)). 

3. Multi-fidelity data fusion composite neural network for 
response variation characterization 

In this section, we outline the new computational framework of 
multi-fidelity data fusion composite neural network (MFDF-CNN) for 
meta-modeling to facilitate efficient and accurate uncertainty quantifi
cation of frequency responses of structures. We intend to employ a small 
amount of high-fidelity data generated by full-scale finite element 
analysis (Section 2.1) and a large amount of low-fidelity data generated 
by reduced-order analysis (Section 2.2) to train the meta-model. As will 
be shown, the new approach exploits the architecture of heterogeneous 
data-driven neural network and its inherent learning capability, and can 
overcome certain shortcoming of multi-level multi-response Gaussian 
process approach. For comparison purpose and to highlight the 
improvement, we start from outlining a multi-level multi-response 
Gaussian process (MLMRGP) for frequency response emulation, and 
then formulate the proposed composite neural network. Both methods 
will be tested in the subsequent case investigations. 

3.1. Response variation emulation using MLMRGP as baseline 

Gaussian processes based meta-modeling has seen wide applications 
especially in uncertainty quantification. The underlying idea is to extend 
the multivariate Gaussian distribution from a finite dimensional space to 
an infinite dimensional space. It essentially yields a probabilistic 
framework for nonparametric regression. Commonly used Gaussian 
processes include multi-response regression with single-type training 
dataset or single-response regression with multi-fidelity datasets 
[14–16,23]. In a recent effort, a multi-level multi-response Gaussian 
process (MLMRGP) meta-model was attempted to integrate multi- 
fidelity datasets to emulate multi-responses in the uncertainty quanti
fication of dynamic responses [28]. The mathematical foundation is 
briefly outlined here. 
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In Gaussian process formulation, an unknown system is denoted 
asg(x), in which £ is an input vector. In the context of uncertainty 
quantification discussed in this research, the input vector is the sample 
of the set of uncertainty parameters θ mentioned in Section 2. We aim at 
finding the best g(x) such that g(x) ≈ y, where yis an output vector or the 
frequency response vector U (i.e., multi-responses) mentioned in Section 
2, through utilizing training dataset(s). In MLMRGP, we use two-level 
datasets, i.e., low- and high-fidelity datasets in training. They are 
denoted as ϑ(u) = {(y(u)

i , x(u)

i ), i = 1, 2, ....n(u)
s ; u = 1, 2}, where super

script u indicates the u-th data level and n(u)
s is the number of the data 

points. The dimension of x(u)

i (i.e., θ) is m, and the dimension of y(u)

i is n ×

p. Here ϑ(2) is the low-fidelity dataset (Ur shown in Equation (10)) 
produced by the reduced-order frequency response analysis, and ϑ(u) is 
the high-fidelity dataset (U shown in Equation (3)) produced by the full- 
scale finite element frequency response analysis. We assume a quasi- 
linear relation between the low- and high-fidelity outputs, expressed 
with an autoregressive scheme [23], 

y(2) = ρ(1)y(1) + δ(2) (11)  

where ρ(1) is a regression variable. y(1)and δ(2)are two independent sta
tionary multivariate Gaussian processes. As the summation of inde
pendent Gaussians remains in the closed form, we can derive the 
Gaussian process representation of observed low- and high-fidelity data 
points as 
[

y(1)

y(2)

]

̃GP(h(x)β, QΣ(x, x′

)) (12) 

The first item at the right-side of Equation (12), h(x)β, represents the 
linear mean functions of all outputs. Σ(x, x′

) is the spatial covariance 
matrix. Each entry of Σ(x, x′

) is a value evaluated with the covariance 
function/kernel, describing the behavior of the process regarding the 
separation of any two input points. In this research, a commonly 
adopted covariance function/kernel, i.e., the squared exponential 

functionΣ(u)

ij = exp
{

−
∑r

k=1b(u)

k

(
xi,k − xj,k

)2
}

, is used. Q is non-spatial 

correlation matrix that is intended to characterize the internal correla
tion among multiple output variables. 

The training process follows the Bayesian framework that aims at 
maximizing the likelihood formulated in terms of the training datasets. 
The likelihood is expressed as 

p(y(2)*|x(1),y(1),x(2),y(2),x(2)*,φ)=
p(y(2)*|x(2)*,φ)p(y(1),y(2)|x(1),x(2),x(2)*,y(2)∗,φ)

p(y(1),y(2)|x(1),x(2),φ)

(13) 

φ represents the hyper-parameters from the mean and covariance 
functions to be optimized. The inputs of the high-fidelity dataset should 
be a subset of that of the low-fidelity dataset in order to facilitate the 
emulation. The low- and high-fidelity datasets can be sequentially 
plugged into training process. Once training is completed, the high-level 
prior will be updated to the posterior with optimized hyper-parameters, 
[
y(2)*]

̃GP(h(x(2)*)β̂, Q̂ Σ̂(x(2)*, x(2)*
′

)) (14)  

where β̂,Q̂and Σ̂ are coefficients of the updated mean function, and the 
updated non-spatial and spatial covariance functions in terms of the 
optimized hyper-parameters φ̂. It is worth noting that this multi-level 
meta-modeling approach is performed upon the premise that the data 
with different fidelities follow the linear relation (Equation (11)). 
However, the real-world data relation usually is much more complex, 
exhibiting high level of nonlinearity. Such assumption in this approach 
may degrade its learning and inference capabilities. 

3.2. Response variation emulation using MFDF-CNN 

Owing to the advancements in computational power and data sci
ence, machine learning through neural network has seen rapid progress 
in recent years. In this subsection we outline the architecture of a 
composite neural network specifically tailored toward multi-fidelity 
data training for frequency response variation emulation. The basic 
unit of a neural network is neuron, or node [32]. Its function is to 
compute the output based on the input received from other nodes, as 
illustrated in Fig. 1. As can be seen, each input xi has its corresponding 
weight ωi, and each node has one bias bj. A nonlinear activation function 
f is applied onto the linear weighted sum to yield output of node yj. The 
purpose of the activation function is to introduce inherent non-linearity 
of the input–output relation into the process. Frequently employed 
activation functions include sigmoid 1/(1 + e−x), hyperbolic tangent 
(ex − e−x)/(ex + e−x), and ReLU expressed as f(x) = max(0,x). 

A neural network essentially is built upon different layers such as 
input layer, hidden layer, and output layer, by linking nodes. Hidden 
layers undertake the major computation to extract underlying data 
features. According to the respective configuration, hidden layers can be 
further divided into fully connected layers, convolutional layers, and 
max pooling layers. While fully connected layers are widely utilized, 
convolutional layers and max pooling layers are oftentimes integrated 
into deep learning convolutional neural networks to deal with large 
amount of training data [33–35]. In terms of node connection pattern, 
there exist feedforward neural networks and recurrent neural networks 
[36]. The key step in neural network training is to identify the weights 
and biases through learning, e.g., minimizing a cost/loss function using 
training dataset, 

Loss =
1
s

∑

j

(

yj −
∑

i
(ωixi + bj)

)2

(15)  

where s is the number of training data. Back propagation optimization is 
typically used [36]. In general, the architecture of a neural network can 
be quite flexible. 

In this research we aim at advancing the meta-modeling of frequency 
response variation analysis utilizing multi-fidelity datasets. An 
assumption made in MLMRGP meta-modeling outlined in the preceding 
subsection is that the autoregressive correlation between the low- and 
high-fidelity outputs is linear (Equation (11)), which has been adopted 
in similar investigations [23,27]. In reality, however, there is no guar
antee that such correlation is linear. In fact, generally, the relation be
tween the low- and high-fidelity outputs should be re-written as 

y(2) = v(y(1), x) (16)  

where v(⋅) is an unknown function that reflects the implicit and generic 
relation between the low- and high-fidelity outputs. Obviously, one may 
not be able to solve this problem using Gaussian processes, since only 
explicitly linear correlation can maintain y(2)as a Gaussian distribution 
(Equation (11)). To solve this fundamental issue, hereafter we resort to 
the neural network approach owing to its flexibility in architecture 
design and customization. In particular, we develop a multi-fidelity data 
fusion composite neural network (MFDF-CNN) that is capable of taking 
the implicit relation between the low- and high-fidelity outputs into 

Fig. 1. A single node in a neural network.  
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account. The architecture of MFDF-CNN is shown in Fig. 2. The rationale 
of this proposed approach is outlined as follows. Algorithmic details will 
be further discussed in the subsequent section through implementing to 
frequency response variation prediction. 

We start from the model training process. As we aim at emulating the 
frequency response of the structural system with uncertainties, the input 
of this model is the sampled set of uncertainty parameters. Two outputs 
are produced, including the low-fidelity response in the middle of Fig. 2 
and the high-fidelity response at the rightmost side of Fig. 2. First, the 
model instance is randomly initialized by assigning arbitrary weights 
and biases to all layers. The performance of the initial model is then 
checked by forward propagation analysis, including two sequential 
procedures. Let us consider one data point, i.e., the i-th data point di =

(xi, y(1)

i , y(2)

i ), that is passed into the model. Here,xiis the i-th set of un
certainty parameters, and y(1)

i and y(2)

i are the corresponding low- and 
high-fidelity frequency response vectors. In the first procedure (boxed 
by dashed lines in Fig. 2), the goal is to facilitate the prediction of low- 
fidelity output under current input, i.e., xi, which thus yields the low- 
fidelity propagation error with respect to the actual low-fidelity 
output, i.e., y(1)

i . In the second procedure (boxed by dash-dotted lines 
in Fig. 2), we let the same input, together with the predicted low-fidelity 
output, further propagate through the rest of the model (i.e., a number of 
hidden layers). This essentially realizes the characterization of implicit 
relation shown in Equation (16). Indeed, we decompose such implicit 
relation into the linear and nonlinear parts with associated weights in 
the second procedure, expressed as [30] 

ỹ(2)

i = αvL(y(1)

i , xi) + (1 − α)vNL(y(1)

i , xi)α ∈ [0, 1] (17)  

where αis the weight of the linear part, i.e., linearity weight. Subscripts L 
and NL indicate the linear and nonlinear parts, respectively. ỹ(2)

i repre
sents the predicted high-fidelity output through forward propagation 
analysis. Specifically, in the second procedure the propagation proceeds 

along two parallel passages. The hidden layer ensemble with linear 
activation functions at the top passage represents an implicitly linear 
function, i.e.,vL(y(1)

i ,xi), which is to learn the linear behavior within data. 
Multiplying vL(y(1)

i , xi) by a fraction, i.e., the linearity weight α, hence 
indicates the portion of the resulting high-fidelity output, i.e., ̃y(2)

i , that is 
linearly associated with the input and the low-fidelity output. Likewise, 
vNL(y(1)

i , xi) located at the bottom passage is an implicitly nonlinear 
function by specifying nonlinear activation functions in the hidden 
layers. Accordingly, the nonlinear portion of the resulting high-fidelity 
output, i.e., ỹ(2)

i can be characterized as (1 − α)vNL(y(1)

i , xi). It is worth 
pointing out that vL(y(1)

i , xi) and vNL(y(1)

i , xi) are mathematically 
described with related weights and biases in the hidden layers. To 
accurately construct vL(y(1)

i , xi) and vNL(y(1)

i ,xi), those layer weights and 
biases need to be optimized through training process. The high-fidelity 
output finally can be predicted by merging the information in two 
passages following Equation (17). By comparing the predicted high- 
fidelity output with the actual high-fidelity output, i.e., y(2)

i , the high- 
fidelity propagation error can be calculated. 

As mentioned, there are two types of propagation errors generated. 
To take advantage of both low- and high-fidelity datasets, both errors 
should be taken into account during the training. However, neural 
network training generally is performed upon one single loss in order to 
concurrently optimize all inter-related weights and biases. One direct 
solution is to properly aggregate different errors together into one. 
Therefore, in this study we let the initial loss of the i-th data point be 
expressed as a combination of the low-fidelity propagation error and the 
high-fidelity propagation error, i.e., 

ηi = γ
⃦
⃦y(1)

i − τ(xi)
⃦
⃦ + (1 − γ)

⃦
⃦y(2)

i − v(xi, τ(xi))
⃦
⃦ (18)  

where τ(⋅) is an implicit function that characterizes the relation between 
the low-fidelity input and output. γis the weight of loss contributed by 

Fig. 2. Architecture of multi-fidelity data fusion composite neural network (MFDF-CNN).  
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the low-fidelity output, and (1 −γ) is the weight of loss contributed by 
the high-fidelity output. v(⋅) is the high-level emulator shown in Equa
tion (16), and ‖⋅‖is the Euclidean distance employed to measure the 
propagation errors of two output vectors. The weights of linearity and 
loss are the hyper-parameters of MFDF-CNN, and are tuned based on 
output data characteristics empirically. In certain cases, one may opti
mize these hyper-parameters through grid search [37]. 

In training MFDF-CNN, we aim at minimizing the total loss or loss 
function of all training data. In this research, we adopt the mean squared 
error (MSE) given as 

η =
1
ns

∑ns

i=1
η2

i (19)  

where ns is the number of training data points. Once all training data are 
introduced, the back propagation optimization will be utilized to update 
the weights and biases of the model iteratively until the loss function 
reaches the minimum. It is still worth noting that the proposed archi
tecture (Fig. 2) is intended to utilize the low- and high-fidelity data in a 
carefully designed, inter-related parallel manner. If additional levels of 
data are available, we can easily generalize this hierarchical architecture 
to handle more than two data fidelities. This can be achieved by further 
incorporating sequential and interactive layer ensembles similar to the 
boxed ones in Fig. 2. 

4. Algorithmic details and implementation 

In this section, we first produce high-fidelity and low-fidelity data of 
frequency responses from a benchmark plate structure. We then 
implement multi-fidelity data fusion to establish meta-models using 
MLMRGP (the baseline) and MFDF-CNN (the proposed method), 
respectively. Our focus is on the algorithmic details of MFDF-CNN as 
well as its advantages over MLMRGP. In this research we specifically 
choose frequency responses as the platform to deliver the method 
formulation and result demonstration, as frequency response is an 
important and representative aspect of vibration analysis. The method 
can be readily applied to other cases such as the uncertainty quantifi
cation of forced responses in a vibratory system. 

4.1. Benchmark structure setup and data preparation 

We analyze a benchmark plate structure (Fig. 3) for case demon
stration. The mass density, Young’s modulus and Poisson’s ratio of this 
plate are 7.85 × 103 kg/m3, 206 GPa and 0.3, respectively. Proportional 
damping, i.e., C = aMM +aKK is used in Equations (1) and (4), where 
aMand aKare 0.01 and 0.0001, respectively. We use 8-node solid element 
in discretization. The finite element model has 3,510 DOFs. We choose 
this structural configuration so interested readers can readily re- 

construct the mesh for validation and comparison. The same structural 
configuration in [28] is adopted in this study to ensure the fair perfor
mance comparison. As can be observed, this structure consists of three 
smaller plates joined together, which resembles topologies of complex 
engineering structures consisting of multiple substructures. 

In this research, the result of full-scale finite element analysis (Sec
tion 2.1) is referred to as the high-fidelity data. A reduced-order model 
using Guyan reduction (Section 2.2) is developed and employed to 
generate the low-fidelity data. The reduced-order model has 230 DOFs, 
and thus is computationally efficient. On the other hand, since inertia 
effects of slave DOFs are omitted, the reduced-order results are subject 
to error. A comparison of the natural frequencies computed from the 
full-scale model and the Guyan reduced-order model is given in Table 1. 
Generally, the reduced-order model yields larger error for higher order 
natural frequencies. We focus on frequency responses in this study for 
case demonstration. As indicated in Fig. 3, frequency sweeping har
monic forces with unit amplitude are applied at 6 locations/DOFs. We 
are interested in the response amplitudes at one of these locations/DOFs. 
Specifically, we pick a total of 10 frequency points that are uniformly 
discretized from 120 Hz to 170 Hz, i.e., 120 Hz, 125.56 Hz, 131.11 Hz, 
136.67 Hz, 142.22 Hz, 147.78 Hz, 153.33 Hz, 158.89 Hz, 164.44 Hz and 
170 Hz, to acquire the corresponding frequency responses. As will be 
shown later, these frequency points essentially cover the first resonance 
of the structure when it is subject to uncertainties. Thus, we have n =

1andp = 10in Equations (3) and (10). In this research, we employ finite 
element code developed by ourselves using MATLAB to carry out the 
investigation. This will facilitate a streamlined process for response 
variation prediction. 

Our goal is to accomplish the efficient frequency response variation 
characterization under uncertainties. For illustration, we divide the 
structure into 6 segments (Fig. 3). We let the mass denisty and the 
Young’s modulus of each segment be subject to variations. Therefore, we 
have 12 uncertainty parameters and the dimension of θ shown in 
Equation (1) is 12. We assume the uncertainty parameters are statisti
cally independent and subject to a multivariate normal distribution with 

Fig. 3. Benchmark plate structure. and indicate location where harmonic 
unit force is applied and where response is of interest. 

Table 1 
Comparison of natural frequencies between full-scale finite element analysis and 
Guyan reduced-order analysis (Hz).  

Mode Order Full-Scale Analysis Guyan Reduction 

1 144.3078 144.5716 
2 334.7630 345.8223 
3 367.8749 373.9271 
4 571.4485 596.7220 
5 709.2347 828.6293  

Fig. 4. High-fidelity frequency response data (1,000 samples).  
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zero means and 10% standard deviations with respect to the nominal 
values. Although the uncertainties here are parametrized using mass 
density and Young’s modulus, they are reflected in the variations of 
mass and stiffness matrices of the respective segments. Therefore 
implicitily a variety of root causes of uncertainties are covered. Using 
this distribution, 1,000 samples of uncertainty parameters are produced 
by Latin Hypercube sampling method [38]. These sampled parameters 
are then employed in full-scale finite element analysis (Section 2.1) and 
reduced-order analysis (Section 2.2), respectively, to facilitate Monte 
Carlo simulation to generate the high- and low-fidelity frequency re
sponses. These datasets will be utilized for meta-model training and 
validation. 

Figs. 4 and 5 show the aggregations of 1,000 high- and low-fidelty 
frequency response data. The frequency range selected, i.e., from 120 
Hz to 170 Hz, can cover the resonances of all samples. In both figures, 
envelops of the upper and lower bounds are included, and the same 
range of vertical axis is used for clear comparison. The low-fidelity re
sponses have considerable errors when compared to high-fidelity ones in 
term of response magnitude. We also examine the statistical distribution 
of high-fidelity response data in Fig. 6. Recall that the responses at 10 
excitation frequency points are of interest. One may notice that the 

response distributions under the 4th to 7th excitation frequencies, which 
are close to the first natural frequency, are quite different from the 
normal distribution even though the uncertainty parameters are subject 
to normal distributions. The underlying reason is that, near the natural 
frequency, the responses are close to being singular and thus are espe
cially sensitive to uncertainties. As a result, the relation between un
certainty parameters (i.e., inputs) and the frequency responses (i.e., 
outputs) is quite nonlinear. Meanwhile, while some other response 
distributions under the 3rd and 8th excitation frequencies resemble the 
normal distribution, there are a plenty of outliers that exist. Apparently, 
the error in low-fidelity dataset, the nonlinearity observed, and the 
outliers altogether pose a challenge to developing meta-model. 

4.2. Meta-model training and implementation details 

The prediction of frequency response variation requires the devel
opment of a learning approach to be able to emulate responses at 
different locations and employ concurrently multi-fidelity datasets 
generated from different first principle models. We aim at overcoming 
the limitations of existing approaches including Gaussian processes 
[27,39,40]. As indicated in Section 3.2, we resort to the MFDF-CNN 
architecture which has the prospect of addressing the implicit, 
nonlinear relation between the high- and low-fidelity datasets. We 
further want to examine its performance in the case that the low-fidelity 
data have considerable error as shown in Section 4.1. 

We now re-visit Fig. 2 and explain the layout details of MFDF-CNN 
with the case demonstration. Input layer #1 has 12 nodes, carrying 
the information of 12 uncertainty parameters as input variables. Hidden 
layers #2 to #5, each with 512 nodes, are constructed to emulate the 
relation between the input and the low-fidelity output that is charac
terized by output layer #5 with 10 nodes. Here, the number of nodes in 
the output layer is equal to the number of response variables, i.e., 
response amplitudes evaluated under 10 excitation frequencies of in
terest. Input layer #1 once again will be concatenated with output layer 
#5 that are used as new input for high-fidelity output prediction. There 
are two parallel hidden layer ensembles, #6 to #7, and #8 to #10, that 
are built respectively to characterize implicitly the linear and nonlinear 
correlations between the abovementioned new input and the high- 
fidelity output. As mentioned in Section 3.2, the effect of linearity cor
relation is considered under weighting coefficientα, which is a hyper- 

Fig. 5. Low-fidelity frequency response data (1,000 samples).  

Fig. 6. Statistical distributions of high-fidelity frequency response data (1,000 samples).  
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parameter to be tuned. Thus, the nonlinear or linear behavior of hidden 
layers can be simply realized by assigning proper activation function. 
The layer information and the relevant parameters are listed in Table 2. 
The total number of weights and biases in the model that need to be 
optimized is 751,390. By using the loss function defined in Equation 
(19), MFDF-CNN training can be executed. 

One major difference between MLMRGP and MFDF-CNN in data 
usage in the training process exists. As outlined in Section 3.1, MLMRGP 
allows the independent training of dataset within the same fidelity level, 
and thus finishes the training of the multi-fidelity datasets sequentially. 
MFDF-CNN, on the other hand, requires the simultaneous usage of 
multi-fidelity data points under the same inputs (i.e., sampled uncer
tainty parameters) for all data points involved. In practice, however, 
high-fidelity data are usually scarce, and one usually cannot afford to 
have the same amount of high- and low-fidelity data. Here we introduce 
an important step to address this issue of data size inconsistency. We 
expand the size of high-fidelity dataset into the same as the low-fidelity 
dataset. The missing high-fidelity response data are filled with the cor
responding low-fidelity response data under the same uncertainty pa
rameters. In other words, the additional data in the high-fidelity dataset 
are in fact low-fidelity data. For notation purpose, we refer to them as 
‘pseudo’ high-fidelity data, as shown in Fig. 7. We then generate sample 

weights and assign them for all training samples. To evaluate the loss of 
one sample, Equation (18) can be re-written as Fig. 9. 

ηi = β(1)

i γ
⃦
⃦y(1)

i − τ(xi)
⃦
⃦ + β(2)

i (1 − γ)
⃦
⃦y(2)

i − v(xi, τ(xi))
⃦
⃦ (20)  

where β(1)

i and β(2)

i denote, respectively, the i-th sample weight values for 
losses from the low- and high-fidelity outputs. It is noted that the sample 
weights also will impact the final loss contribution, as in a abroad sense 
β(1)

i γand β(2)

i (1 − γ)literally represent the final loss weights. Specifically, 
we set sample weights β(2)

i as close to zero for the samples coming from 
the pseudo high-fidelity training data. Such sample weight assignment 
removes the effect of those pseudo high-fidelity data on training. 

We then proceed to employing the data generated in Section 4.1 to 
train the MFDF-CNN meta-model. For comparison purpose, the same 
data are used to train a MLMRGP meta-model which will be subse
quently used to elucidate the performance improvement. The same 
random split of training and testing datasets is applied. The setup of the 
two algorithms are listed in Table 3. As indicated in Section 4.1, we 
generate 1,000 samples of model parameters with uncertainty and 
subsequently acquire 1,000 high-fidelity data (using finite element 
analysis) and 1,000 low-fidelity data (using reduced-order analysis). 
Here for both algorithms, we use 400 low-fidelity data and 40 high- 
fidelity data for the purpose of training. 

4.3. Frequency response emulation result discussion 

The performance of a meta-model trained can be observed by 
comparing its emulation result with respect to the actual result obtained 
through simulation such as finite element analysis. In this research, we 
are interested in the efficient characterization of frequency response 
variation induced by model parameter uncertainties. In the data prep
aration stage, we obtain 1,000 high-fidelity data and 1,000 low-fidelity 

Table 2 
Layer description and operating parameter set-up in MFDF-CNN.  

ID Layer Description Size 

#1 Input layer (dense) (12,1) 
#2 Hidden layer (dense , ‘relu’ activiation) (512, 1) 
#3 Hidden layer (dense , ‘relu’ activiation) (512, 1) 
#4 Hidden layer (dense , ‘relu’ activiation) (512, 1) 
#5 Output layer (dense, ‘linear’ activiation)/low-fidelity (10, 1) 
#6 Hidden layer (dense , no activiation) (256, 1) 
#7 Hidden layer (dense , no activiation) (256, 1) 
#8 Hidden layer (dense , ‘relu’ activiation) (256, 1) 
#9 Hidden layer (dense , relu activiation) (256, 1) 
#10 Hidden layer (dense , relu activiation) (256, 1) 
#11 Output layer (dense, ‘linear’ activiation) /high-fidelity (linear) (10, 1) 
#12 Output layer (dense, ‘linear’ activiation) /high-fidelity 

(nonlinear) 
(10, 1) 

#13 Output layer (dense, ‘linear’ activiation) /high-fidelity (10, 1)  

Fig. 7. Illustration of treatment of data size inconsistency in MFDF-CNN.  

Table 3 
Algorithmic setups of MFDF-CNN and MLMRGP.   

MFDF-CNN MLMRGP 

Data 
preparation 

40% low-fidelity data (400) and 4% high-fidelity data (40) employed as training datasets. 60% high-fidelity data (600) used as testing dataset – same data split for 
both of models 

Operating 
variables 

1. Epoch size is set as 40. Batch size is set as 52. αiand γiin Eqs. (17) and (18) are 
defined as 0.6 and 0.8, respectively3. β(1)

i and β(2)

i in Eq. (20) are selected as 0.5 
and 2 respectively for samples with high-fidelity output, and 0.5 and 10−5 

respectively for samples without high-fidelity output  

1. Linear mean kernel2. Anisotropic exponential covariance kernel with 6 
reciprocals of lengthscales at each level’s emulator plus 1 regression coefficient 
at high-level’s emulator, yielding a total of 13 hyper-parameters 

Training 
algorithm 

Adam optimizer [41] Particle swarm optimizer [42] 

Data 
preprocessing 

Not necessary Data scaling  

Fig. 8. Scatter distribution of response amplitudes under excitation frequency 
point 1 (120 Hz) over testing space. : testing/actual outputs; : prediction by 
MFDF-CNN; : prediction by MLMRGP. 
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data. As pointed out in Section 4.2, we use 400 low-fidelity data and 40 
high-fidelity data to train the metal models. Recall that in total we have 
1,000 sampled model parameters with uncertainties. Each low-fidelity 
data point corresponds to a specific model parameter sample. We now 
use those 600 high-fidelity data corresponding to the rest of the model 

parameter samples for validation/testing. 
We compare the emulation results predicted by MLMRGP and MFDF- 

CNN with respect to the high-fidelity data. In Figs. 8-17, we plot the 
frequency response amplitudes versus the testing uncertainty parameter 
samples, where each figure shows the result comparison under a specific 

Fig. 9. Scatter distribution of response amplitudes under excitation frequency 
point 2 (125.56 Hz) over testing space. : testing/actual outputs; : prediction 
by MFDF-CNN; : prediction by MLMRGP. 

Fig. 10. Scatter distribution of response amplitudes under excitation frequency 
point 3 (131.11 Hz) over testing space. : testing/actual outputs; : prediction 
by MFDF-CNN; : prediction by MLMRGP. 

Fig. 11. Scatter distribution of response amplitudes under excitation frequency 
point 4 (136.67 Hz) over testing space. : testing/actual outputs; : prediction 
by MFDF-CNN; : prediction by MLMRGP. 

Fig. 12. Scatter distribution of response amplitudes under excitation frequency 
point 5 (142.22 Hz) over testing space. : testing/actual outputs; : prediction 
by MFDF-CNN; : prediction by MLMRGP. 

Fig. 13. Scatter distribution of response amplitudes under excitation frequency 
point 6 (147.78 Hz) over testing space. : testing/actual outputs; : prediction 
by MFDF-CNN; : prediction by MLMRGP. 

Fig. 14. Scatter distribution of response amplitudes under excitation frequency 
point 7 (153.33 Hz) over testing space. : testing/actual outputs; : prediction 
by MFDF-CNN; : prediction by MLMRGP. 
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excitation frequency. The frequency response amplitudes shown in 
Figs. 10 to 14 are generally larger, as the corresponding excitation fre
quencies are closer to the natural frequency. We can readily observe that 
discrepancies between the testing data and the predicted responses ob
tained by MFDF-CNN are much smaller than those by MLMRGP, 

especially for those with large response amplitudes. From the physics 
perspective, large response occurs in the vicinity of resonance which 
exhibits the complex relation with respect to the model parameter 
variation. This is the first indication that MFDF-CNN outperforms 
MLMRGP in terms of accuracy. 

To quantify the comparison, here we also employ the mean squared 
error (MSE) between the emulation result and the actual result as 

η*
r =

1
M

∑M

k=1
η2

k,r (21)  

where 

η*
k,r =

⃒
⃒
⃒y(2)*

k,r − v̂(xk,r , τ̂(xk,r))

⃒
⃒
⃒ (22) 

In above equations, the subscripts k and r indicate the k-th testing 
sample and the r-th excitation frequency, respectively. For example, the 
vector y(2)*

k,r represents the r-th frequency response amplitudes of the k-th 
testing sample. τ̂and v̂ represent the well-trained low-and high-level 
emulators in MFDF-CNN, respectively. M is the number of testing sam
ples and is 600 in this analysis. It is worth noting that in the training 
process, all frequency responses are introduced to formulate the mean 
squared error loss function as shown in Equation (18) or (20) which 
takes into consideration the weights of different outputs. MSE defined in 
Equation (21) is different, and intends to measure the difference be
tween the testing and the predicted outputs. It is used to evaluate the 
prediction accuracy of frequency response at each frequency point over 
the entire testing samples. The comparison of MSE values is shown in 
Table 4. In general, MFDF-CNN yields smaller MSE values than 
MLMRGP. The improvement is more significant at frequencies close to 
the natural frequency. This indicates that MFDF-CNN can deal with high 
sensitivity of uncertainty parameters. 

It is still worth mentioning that there is subtle difference between 
MFDF-CNN and MLMRGP in terms of optimization objective. Training of 
MLMRGP essentially follows the Bayesian framework, which aims at 
maximizing the marginal likelihood upon the training data. On the other 
hand, MFDF-CNN, as one regression neural network, allows one to adopt 
different loss functions, such as mean squared error, mean squared 
logarithmic error, and mean absolute error, etc. One may argue that 
MLMRGP is subject to a somewhat different optimization objective. 
Nevertheless, from prediction accuracy standpoint, MFDF-CNN indeed 
leads to reduced error as a whole. 

Discussed above are the frequency response values at individual 
excitation frequency points. We also randomly select frequency response 
curves of 6 testing samples for comparison, as shown in Fig. 18. It can be 
seen that the low-fidelity frequency response curves contain large errors. 
Both MLMRGP and MFDF-CNN, after incorporating high-fidelity dataset 
for meta-model training, perform better than the low-fidelity data as the 
predictions results are pushed towards the corresponding high-fidelity 
responses (i.e., actual responses). Nevertheless, MFDF-CNN 

Fig. 15. Scatter distribution of response amplitudes under excitation frequency 
point 8 (158.89 Hz) over testing space. : testing/actual outputs; : prediction 
by MFDF-CNN; : prediction by MLMRGP. 

Fig. 16. Scatter distribution of response amplitudes under excitation frequency 
point 9 (164.44 Hz) over testing space. : testing/actual outputs; : prediction 
by MFDF-CNN; : prediction by MLMRGP. 

Fig. 17. Scatter distribution of response amplitudes under excitation frequency 
point 10 (170 Hz) over testing space. : testing/actual outputs; : prediction 
by MFDF-CNN; : prediction by MLMRGP. 

Table 4 
Comparison of MSE values (m2) between MFDF-CNN and MLMRGP.  

Frequency Point MFDF-CNN MLMRGP 

1 1.3928 × 10−11  9.2191 × 10−10  

2 3.6517 × 10−11  2.7928 × 10−9  

3 7.9976 × 10−11  6.2554 × 10−9  

4 9.9773 × 10−11  6.5601 × 10−9  

5 8.3908 × 10−11  2.1034 × 10−9  

6 1.1425 × 10−10  2.4425 × 10−9  

7 8.0084 × 10−11  3.1576 × 10−9  

8 2.7335 × 10−11  1.7564 × 10−9  

9 3.0455 × 10−11  7.2190 × 10−10  

10 1.9315 × 10−11  3.0172 × 10−10   
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outperforms MFMRGP, as the frequency response curves it predicts 
basically overlap those of the actual values. 

While this research primarily focuses on meta-model training accu
racy, training efficiency is still one important aspect. Here MFDF-CNN 
and MLMRGP are implemented at the same computational platform, i. 
e., Intel CPU E5-2640 @2.40 GHz (2 processors). We employ the deep 
learning library, i.e., Keras written in Python, to develop MFDF-CNN 
because it is powerful. Meanwhile, we use MATLAB for MLMRGP 
meta-modeling as it provides efficient matrix operation functions 
involved in the training of MLMRGP. For each single run, MFDF-CNN 
and MLMRGP take 57 and 483 s, respectively. While these two models 
are established upon different integrated development environments 
(IDEs), i.e., Python (Anaconda Spider) and MATLAB, MFDF-CNN ap
pears to be more efficient for the case investigated in this research. Even 
though MFDF-CNN involves a large number of weights and biases to be 
trained, it can take advantage of the built-in Adam optimizer [41]. 
MLMRGP on the other hand includes a number of non-sparse matrix 
operations in the training process, which leads to higher computational 
cost. Future research may investigate situations where larger amount of 
training data and larger number of response variables are considered, 
and conduct a more rigorous comparison of these algorithms under the 
same integrated development environment (IDE). 

4.4. Performance robustness and parametric influence 

The accuracy of meta-model, strictly speaking, is subject to certain 
randomness, due to the random split of training and testing datasets as 
well as the training process. In the case of neural network, training is 
facilitated by optimizing the model parameters, i.e., weights and biases, 
which is influenced by the initial parameter guess, stochastic or 
gradient-based parameter search, and random training batch generation 
at each epoch/iteration. To examine the performance robustness, we 
carry out multiple runs of training and summarize the results statisti
cally. Here we implement 5 runs with random training and testing data 
splits. In each run, we use 400 low-fidelity and 40 high-fidelity data for 
training and then use the rest 600 high-fidelity data for testing, which is 
the same configuration used in Section 4.3. In each run, the same split of 
training and testing datasets is adopted for both MFDF-CNN and 
MLMRGP. While we still resort to the MSE defined in Eq. (21) as metrics, 
we take the logarithm for the convenience of illustration, i.e., 

Fig. 18. Frequency response curve comparison of 6 selected samples.  

Fig. 19. Error expressed as L*
t,rof multiple training/emulation runs through 

MFDF-CNN. 

Fig. 20. Error expressed asL*
t,rof multiple training/emulation runs 

through MLMRGP. 
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L*
t,r = ln(η*

r ) (23) 

And the mean logarithm MSE is defined as 

L*
r =

1
Q

∑Q

t=1
L*

t,r (24) 

In the above equations, r indicates the r-th excitation frequency 
point, and t indicates the t-th training/emulation run under the t-th 
dataset split. Q is total number of emulation runs/dataset splits, which is 
5 in this case. The smaller L*

r is, the better accuracy the meta-model has. 
Figs. 19 and 20 show the values of defined metric, logarithm MSE L*

t,r, 
under different training/emulation runs using MFDF-CNN and 
MLMRGP. In both methods, the values of L*

t,r slightly differ under 
different training/emulation runs. This indicates that both methods 
perform in a robust manner without obvious accuracy difference. Both 
methods do not exhibit overfitting. The logarithm values of MSE L*

t,r of 
MFDF-CNN are consistently smaller than those of MLMRGP. The mean 
logarithm MSE L*

r of MFDF-CNN and that of MLMRGP are compared in 
Fig. 21. As can be observed, the accuracy of MFDF-CNN is significantly 

better than that of MLMRGP. 
In multi-fidelity data fusion, the error of low fidelity data is inherited 

from the order-reduction procedure, and we hope to correct such error 
through data fusion by introducing a few high-fidelity data. In Fig. 18, 
we can observe such positive influence of the high-fidelity data. In meta- 
model training, in general, more training data yields better performance 
in terms of accuracy. Specifically, in multi-fidelity data fusion, intui
tively, introducing more high-fidelity data while maintaining the 
amount of low-fidelity data is expected to further improve the prediction 
accuracy. Here we examine how the size of high-fidelity training data
sets affects the prediction accuracy. In the abovementioned analyses, we 
use 400 low-fidelity data and 40 high-fidelity data. This amount of high- 
fidelity data corresponds to 10% of the low-fidelity data. We now in
crease the size of high-fidelity data to 20% and 30% of the low-fidelity 
data, and respectively train the meta-models. The logarithm MSE values 
at the first 5 frequency points under the two meta-modeling approaches 
are shown in Fig. 22. The results of the other 5 frequency points that are 
essentially symmetric with respect to the first 5 along the first natural 
frequency exhibit similar trends. As can be observed, increasing high- 
fidelity dataset leads to the performance improvement. Interestingly, 
it can be observed that MFDF-CNN always outperforms MLMRGP even 
as the high-fidelity dataset size increases. 

One advantage of MFDF-CNN, as compared to MLMRGP, is that it 
can take implicitly both linear and nonlinear correlations of multi- 
fidelity outputs into account. As shown in Equation (17), the effects of 
linear and nonlinear correlations can be quantitatively represented by α 
and 1 −α. Observe the frequency response curves shown in Fig. 18. The 
high-fidelity result and the low-fidelity result exhibit more significant 
difference near the natural frequency. Intuitively, there is more signifi
cant nonlinear correlation at frequency points near the natural fre
quency. Here we specifically investigate the effect of linearity weight α 
(Equation (17)). As mentioned, αis a hyper-parameter of MFDF-CNN 
meta-model, which cannot be directly identified through training. 
Here, we apply the uniform-grid discretization of αwithin range [0,1] 
with 0.1 increment, and evaluate the errors (i.e., L*

t,rin Equation (23a)) of 
all αvalues given the same split of training and testing datasets. The 
result shown in Fig. 23 indicates that the errors vary with respect to α. In 
Section 4.3, we adopt α = 0.6 for the MFDF-CNN meta-modeling. In 
Fig. 23, it is found that α = 0.6 indeed yields a relatively small error. In 
other words, there exists considerable nonlinear correlations between 

Fig. 21. Comparison of average error expressed as L*
r under MFDF-CNN 

and MLMRGP. 

Fig. 22. Comparison of prediction errors with respect to high-fidelity training data size. : result of MFDF-CNN; : result of MLMRGP.  
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the low-fidelity and high-fidelity datasets. As compared with other 
techniques such as MLMRGP that are built upon the linear relation 
assumption, this MFDF-CNN allows the characterization of more generic 
relation of multi-fidelity datasets. As a result, it exhibits much enhanced 
predictive capability. 

5. Conclusion 

In this research, a multi-fidelity data fusion composite neural 
network (MFDF-CNN) is developed to efficiently and accurately char
acterize the frequency response variation of a structure under un
certainties. This approach, by taking advantage of the architecture of 
composite neural network, allows one to integrate together a small 
amount of high-fidelity data acquired from full-scale finite element 
analysis and a large amount of low-fidelity data acquired from Guyan 
reduced-order analysis. This can significantly reduce the computational 
cost of data acquisition for the subsequent meta-model training and 
validation. Moreover, this approach enables the characterization of the 
implicit relation between low- and high-fidelity datasets, which can 
yield the improved accuracy as compared with the state-of-the-art 
techniques. The case studies demonstrate that this approach out
performs the baseline Gaussian process-based approach with improved 
variation prediction capability and performance robustness. 
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