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Abstract

Diagnosis and prognosis of gear systems play an important role in modern manufacturing. While first-principle-based inverse
analysis is subject to various limitations, data-driven approaches such as many machine learning techniques have shown great
promise in recent years. Nevertheless, major challenges remain. Machine learning generally requires large amount of high-
quality training data which may not be available for many industrial systems. In particular, while gear faults are continuous in
nature and exhibit many different scenarios, in practical situations owing to the high cost in data acquisition especially for fault
scenarios, only a small number of discrete classes of faults, i.e., fault types and severities, can be recorded and employed in
training. As such, the neural networks trained will need to deal with unseen faults when they are actually implemented. To tackle
this challenge, in this research, we develop a fuzzy classification approach capable of handling fault scenarios that are not
included in the training dataset. Through the integration of a fuzzification procedure, this fuzzy neural network (FNN) can
produce classification outcome with probability and confidence level. An unseen fault scenario will be classified into the nearest
fault class with probability, effectively yielding the diagnosis result under limited data. While fault features in gear vibration
signals are hidden and have complex nonlinear relations with respect to fault scenarios, it is found that the kernel principal
component analysis (KPCA) can enable the FNN to facilitate the correlation of fault features. Systematic case studies using
experimental data acquired from a lab-scale gear system are carried out to validate the new approach.

Keywords Gear fault diagnosis - Unseen fault scenarios - Fuzzy neural network (FNN) - Kernel principal component analysis
(KPCA) - Fuzzy classification

1 Introduction features in gear vibration include the sideband frequencies
and the keynote meshing frequency and its harmonics, which

Gear systems are widely used in modern manufacturing in-  may offer insights to gear faults [27]. The vibration-based gear

dustry. Condition monitoring and fault diagnosis and progno-
sis of gears play an important role in ensuring the system
integrity and performance. Different types of signals, such as
vibration [32, 34], acoustic emission [46], and eddy current
measurement [16], are employed to facilitate fault diagnosis.
Among them, vibration signals are most commonly used be-
cause they can be readily measured through a variety of low-
cost sensors and data acquisition systems. The physical
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fault diagnosis methods include the model-based and model-
free methods. The model-based methods are built upon the
first principle where the effect of gear fault is reflected with
the parametric variation of the healthy system that is numeri-
cally or analytically modeled. After updating the associated
parameters in the numerical/analytical model by using exper-
imental measurement, one can estimate the actual fault [8, 28].
This type of method resorts to an inverse analysis—based op-
timization procedure. A major challenge in these methods is
the difficulty in establishing high-fidelity baseline model, as
gear vibrations are intrinsically multi-scale problem with sig-
nificant modeling uncertainties. In comparison, the model-
free methods analyze experimental data directly to infer fault
occurrence, thereby avoiding the challenge in establishing the
baseline model. Many model-free gear fault diagnosis
methods are built upon signal processing and feature
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extraction techniques, including but not limited to spectrum
analysis [14], Wigner-Ville distribution [39], cyclostationary
signals [5], envelope analysis [29], and various wavelet trans-
forms [10, 24, 43]. While these methods have shown different
levels of success, selection of specific features is often based
on empirical judgement and experience.

With the rapid advancement of machine learning tech-
niques, data-driven approaches have shown many advanta-
geous aspects in gear fault diagnosis and prognosis [21,
35-37, 40, 42, 50]. Various neural networks and surrogate
models can be trained to develop the mapping relation be-
tween signals and fault conditions, known as classifiers. To
enhance the classification performance, they oftentimes are
executed in conjunction with the aforementioned signal pro-
cessing techniques. Li et al. [22, 23] proposed a combination
of Kalman filter-based signal processing and the least square
support vector machine to identify the fault types of planetary
gearboxes. Dibaj et al. [13] developed a signal decomposition
technique to extract the dominant vibration modes, upon
which the support vector machine classifier was then applied
to detect the defective status of gearbox system. Chen et al. [9]
presented a gear fault diagnosis approach by integrating the
empirical mode decomposition, singular value decomposi-
tion, and random forest. Unsurprisingly, like in many other
disciplines, the deep learning neural network models have
been increasingly investigated and employed for gear fault
diagnosis due to their powerful inference capability. Indeed,
when the amount of training data is large, deep learning can
facilitate the analysis of raw vibration data even without going
through pre-processing [2, 36, 37, 44, 49]. That is, when the
parameters of a deep leaming model are properly trained via
large dataset, representative features can be automatically ex-
tracted in a hierarchy of conceptual abstractions. Jing et al.
[19] developed a convolutional neural network to learn fea-
tures from raw data, frequency spectrum, and combined time-
frequency data, and indicated that it outperformed other infer-
ence methods. Wang et al. (2018) proposed an intelligent di-
agnosis scheme based upon the generative adversarial deep
learning neural networks, in which the generator and discrim-
inator networks were concurrently optimized to enhance the
ability of fault classification. Li et al. [22, 23] performed plan-
etary gear fault diagnosis using deep learning neural network
with motor current signal. Wu et al. [41] constructed a one-
dimensional convolutional neural network model for gear
fault diagnosis, and verified its feasibility through gearbox
challenge data and a planetary gearbox test rig.

Although machine learning for gear diagnosis and prog-
nosis is extremely promising, the performance hinges upon
both the quantity and quality of the training data. Fault
occurrence in modern systems is relatively infrequent. In
practical situations owing to the high cost in data acquisi-
tion especially for different fault scenarios, the inadequacy
of labeled training samples, i.e., experimental data of
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known fault classes, is a common issue. As such, Cao
et al. [6] proposed to employ deep convolutional neural
network—based transfer learning (e.g., Alexnet) to solve
the data quantity issue. In their approach, the issue of lim-
ited data is overcome by formulating a new neural network
architecture that consists of two parts. Massive image data
from ImageNet (http://www.image-net.org/challenges/
LSVRC/2010/) were used first to train an original deep
neural network model, the parameters of which were
transferred to the new architecture as the first part. The
second part of the architecture, an untrained neural
network, then accommodated the gear fault diagnosis task
and was further trained using experimentally generated
gear fault data. It was found that this technique could
effectively address the issue of insufficient labeled data
for the system analyzed. Similar transfer-learning strate-
gies were recently adopted by He et al. [18] and Chen
et al. [11]. It is worth noting that, despite these advance-
ments, there are still major challenges in terms of the qual-
ity of training data. In particular, while gear faults are con-
tinuous in nature and exhibit many different scenarios, on-
ly a small number of discrete classes of faults, e.g., fault
with different severity levels, can be recorded and
employed in training. As such, the training data do not
have sufficient quality to distinguish different fault sever-
ity levels, and the neural networks trained will need to deal
with unseen faults when they are actually implemented.
Intuitively, a regression-type neural network may offer
the extrapolation capability to handle the unseen fault sce-
narios. There are, nevertheless, significant obstacles. First
and foremost, gear faults feature both categorical and con-
tinuous scenarios, which makes it nearly infeasible to de-
velop simple regression to cover all fault scenarios.
Secondly, even for those continuous scenarios (i.e., same
fault with different severity levels), their relations with
respect to the underlying features in vibration signals are
generally nonlinear. These, coupled with the fact that the
number of labels (i.e., fault scenarios) is usually small,
make it difficult for the neural network to carry out extrap-
olation in a deterministic sense. Massive scenarios would
be needed to produce reasonable regression analysis,
which will yield extremely high data acquisition cost and
computational cost.

An alternative way of handling unseen fault scenarios, as
proposed in this research, is to adopt a non-deterministic,
probability (i.e., confidence level)-based decision-making,
which to a large extent mimics human cognizance. Instead
of extrapolation, we want to fully utilize the existing labels
in measurement data available. That is, when an unseen fault
scenario is analyzed, the neural network will produce a prob-
ability assessment of its correlation with respect to all existing
labels. We aim at developing a neural network that is capable
of predicting correctly that an unseen scenario has the highest
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probability of being correlated to the closest fault severity
level in the training data. For example, if 30% chipping gear
tip is an unseen scenario but the neural network can classify it
to be highly similar with labeled scenario of 20% or 40%
chipping tip, the neural network can indeed fulfill the diagno-
sis mission. To facilitate this, we leverage upon the concept of
fuzzy neural network (FNN) which is a type of neuro-fuzzy
inference systems [25]. FNN starts with the development of
“fuzzy neurons” to describe the fuzzy rules, building the syn-
aptic connections which incorporate fuzziness into the neural
network. The perception in response to the linguistic state-
ments is used as an input vector to a neural network with fully
connected layers [7, 26]. There have been recent efforts in
utilizing FNN concept toward machinery diagnosis. For ex-
ample, Soualhi et al. [33] developed an FNN model to conduct
diagnosis of critical components of the gear reducer. Ahuja
et al. [1] integrated an FNN model with the continuous wave-
let transform to identify the faults of two different types of
gearboxes under nonstationary conditions. It should be noted
that in previous investigations, the FNN concept and its lin-
guistic description were employed to mainly handle the un-
certain and imprecise data and the associated features, where-
as the fault classifications were still deterministic with respect
to existing labels. Nevertheless, the issue of limited fault la-
bels, which commonly exists in manufacturing industry, has
not yet been tackled. In this research, taking advantage of the
versatile architecture of neuro-fuzzy inference, we plan to for-
mulate a FNN where a fuzzification procedure is incorporated
into the backpropagation network to specifically analyze un-
seen fault scenarios based on features extracted. Moreover,
this new FNN is built upon a data pre-processing procedure
through the kernel principal component analysis (KPCA)
[12, 47, 48] that leads to a nonlinear feature transformation
and dimension reduction.

The remainder of this paper is organized as follows. In
Section 2, the architecture of the new FNN specifically tai-
lored for gear fault diagnosis with limited labels is outlined,
followed by the KPCA method employed to enable the prob-
abilistic assessment. Section 3 provides FNN implementation
details and systematic case studies with experimental investi-
gation. Concluding remarks are summarized in Section 4.

2 Fuzzy fault diagnosis framework

In this section, we first present the fuzzy neural network
(FNN) designed and tailored to allow gear fault diagnosis with
limited labels. The FNN model construction and the subse-
quent classification analysis are further integrated with the
kernel principal component analysis (KPCA) which aims at
reducing the feature dimensionality and yielding the feature
correlation for unseen scenarios.

2.1 Architecture of fuzzy neural network for fuzzy
classification

FNN refers to the combination of fuzzy logic and neural net-
work. It incorporates fuzzy algorithm to process information
that is intrinsically fuzzy and then to learn the nature of data
through a high-speed parallel structure [45]. The concept of
FNN combines the advantages of both artificial neural net-
works and fuzzy qualitative modeling approaches, leading to
adaptation capability, rapid learning capacity, and simplicity
and ease in handling vagueness, uncertain, and imprecise data
[15]. The fuzzy rules and the neural network in the FNN model
function as fuzzification and defuzzification, respectively. The
backpropagation training tunes optimally both the rule weights
(i.e., the membership function parameters) and the weights in
the fully connected layers. While previous investigations were
mainly focused on deterministic classification, it was recog-
nized that FNN would possess better generalization capability
to overcome overfitting. Here, we investigate fuzzy classifica-
tion with limited labels. We start from presenting the specific
FNN architecture tailored for this purpose.

The FNN to be established consists of six layers, as shown in
Fig. 1. The first layer is the usual input layer, which feeds the
input information into the neural network. Each node of this
layer carries one feature of input sample. As will be shown
later, in the proposed classification system for fuzzy gear diag-
nosis, each input sample is a vector x|, x», ..., X, ] representing
the features of the principal component (PC) information of
sampled raw vibration signal. n denotes the number of input
variables. The node input-output function is given as,

gEl):xi i=1,2,..,n (1)
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Fig. 1 FNN architecture

@ Springer



1008

Int J Adv Manuf Technol (2021) 115:1005-1019

The second layer is the fuzzification layer, which is
one of the core elements to incorporate fuzzy reasoning.
The fuzzy rules are integrated into this layer, and they
are characterized by membership functions mapping the
point from input space into a membership value (or
degree of membership). Mathematically, the membership
value can be interpolated in terms of the output of the
input layer as shown in Fig. 2. The node input-output
functions can be described as

gf]z) :gl(f) (gl(l)/ S]) = 1,2’ ceay J: 1/2,,(1 (2)

where (3; is the vector of parameters associated with the
jth membership function, and ¢ is the number of mem-
bership functions for each input. Membership functions
can generally be modeled as basic functions such as
piecewise linear functions, Gaussian distribution func-
tion, sigmoid curve, and quadratic and cubic polynomial
curves [25]. The membership function usually can be
selected either by looking into the distribution of phys-
ical data or by resorting to trial-and-error. Gaussian
membership functions that are defined by two parame-
ters have the advantage of simplicity, enabling the effi-
cient computation in model training. Additionally, they
are able to specify the fuzzy sets with smoothness and
concise notation [30]. For this reason, we adopt
Gaussian membership function in this research (More
details will be presented in Section 3).

The third layer is the fuzzy reasoning/rule layer. It activates
its affiliated rule nodes to take actions accordingly in terms of
antecedents from the fuzzification layer. The output of this
layer is the firing strength, which mathematically is represent-
ed as a multiplication form of related membership values. For
example, given the fuzzification layer antecedent, i.e., if (x| is
M,;) and if (x, is M>))... and if (x,, is M,;), then
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Fig. 2 Illustration of membership value interpolation
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Here, only g firing strength items are involved in the
above equation for illustration purposes. Theoretically, the
maximum number of firing strength items can reach up to
¢". The inclusion of firing strength allows it to differenti-
ate the samples in terms of their input information, i.e.,
membership values. Intuitively, the discrepancy of sam-
ples will become more notable when more input informa-
tion is fed into the layer. In the fuzzy classification of gear
faults, the fuzzy reasoning provides a form of many-
valued logic, yielding the probabilities of different ob-
served fault types that range from 0 to 1. The fourth layer
is the defuzzification layer. Corresponding to the
fuzzification layer, i.e., the second layer, the fourth layer
will produce a quantifiable result in crisp logic, given
fuzzy sets and corresponding membership values.

q
g = (!)(Z wiug! +bk) k=1.2,...m 4)
J=1 '

In training, the model using available dataset and known
labels, the defuzzification layer is employed to yield determin-
istic results. On the other hand, in prediction and actual diag-
nosis, since the network will deal with unseen fault scenarios
where our goal is not to produce crisp outcome of classifica-
tion, the weight matrix of this layer will be replaced with an
identity matrix. In other words, the defuzzification step is
employed in training the model, but not involved for fuzzy
classification.

Subsequently, the normalization function is performed
through the Softmax layer, i.e., the fifth layer, in order to
facilitate the training with numerical stability. The output of
Softmax layer is the probability value of the target sample
with respect to the specific known fault classes/labels, which
is denoted as

(5) g5c4)
V= k=1,2,...,
&k n (4) Ehnd 1 (5)

'Z:l &i

where m is the number of outputs. The last layer is the final
output layer that makes the decision based on the normalized
probability values from the Softmax layer. The criterion for
decision-making is simply expressed as

y= argmax([ggj),...,gf),...,gs)]) (6)

One may notice that the scale of the FNN model is highly
dependent on the hyperparameters n, ¢, and m mentioned
above. Once all those hyperparameters are finalized, the total
number of unknown parameters to be optimized can be esti-
mated through the equation below,

Q=nxgxI(B)+(g"+1)xm (7)
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where /(3) denotes the number of parameters in the member-
ship function. For example, Gaussian membership function
usually is modeled by two parameters, i.e., the center and
width. The first part at the right hand side of Eq. (7) indicates
the number of unknowns in the fuzzification layer, while the
second part represents the number of weights and biases in the
defuzzification layer. The backpropagation optimization
scheme is usually adopted to identify the best unknown pa-
rameters in associated layers [17]. In this research, the number
of outputs, i.e., m, is the number of fault labels involved in
training. » is the number of representative feature components
extracted via KPCA analysis to be presented in the succeeding
subsection, which is a key hyperparameter to be investigated.
All the hyperparameters will be optimally determined to en-
sure both the computational accuracy and efficiency of FNN.

One key idea in this proposed FNN is that the training
using existing labels and the actual classification will be
conducted differently. For training, since all data samples
are known to belong to respective classes/labels, all six
layers of the FNN will be involved, aiming at accurately
classifying all the data samples with respect to known
classes/labels. For actual classification, since we expect
the neural network to be able to deal with unseen scenar-
ios and compare them with existing classes/labels to pro-
vide probabilistic assessment of similarity, only the first
five layers will be utilized as the fifth layer is capable of
providing the probabilistic assessment as outputs for di-
agnosis. Also as mentioned, the treatment in
defuzzification layer (i.e., the fourth layer) is different in
training and actual classification/diagnosis. Specifically,
an additional fuzzification step will be employed in actual
classification. This strategy can take full advantage of the
versatility and fuzzy logic functionality of the FNN
concept.

2.2 Kernel principal component analysis for data pre-
processing and feature extraction

Although for the sake of simplicity it is tempting to di-
rectly utilize raw vibration signals for classification, ow-
ing to the high sampling frequency, these signals are gen-
erally of high dimension, requiring an FNN model with
very high dimension as well which may pose a computa-
tional challenge. Therefore, feature extraction with dimen-
sion reduction appears to be a natural pre-processing step.
Moreover, in order to take advantage of its fuzzy logic
nature, the inputs to the FNN will need to be the key
features of the signals rather than the raw time-domain
responses, because it is much more pertinent to apply
the fuzzification procedure, i.e., the second layer in FNN
as indicated in the preceding section, to a small number of
features extracted. As mentioned in Section 1, various
feature extraction approaches exist for gear diagnosis,

including frequency analysis, joint time-frequency analy-
sis, and principal component analysis (PCA) techniques.
It is worth noting that selecting feature extraction ap-
proaches for gear diagnosis remains to be an open and
on-going research topic. In this research, we propose to
incorporate kernel principal component analysis (KPCA)
for pre-processing, owing to its capability of facilitating
nonlinear dimensionality reduction and feature
correlation.

Principal component analysis (PCA) is a statistical ap-
proach that uses an orthogonal transformation to convert a
set of observations of possibly correlated variables into a
set of values of linearly uncorrelated variables, referred to
as the principal components (PCs). The principal compo-
nents are ranked in terms of feature variances among all
data samples [20]. Through discarding the insignificant
PCs, PCA can drastically reduce the data dimensionality
in an interpretable way, such that only the most important
information in the data is preserved. While the standard or
linear PCA is formulated for representing the features in
linear space, the KPCA allows us to extract and correlate
features in a nonlinear manner [12, 47, 48], which is im-
portant for fuzzy classification of unseen scenarios. Let D;
be the ith (i=1, ---, N) gear vibration response sample
with dimension u, we assume that the data with zero mean
is operated, which yields

1~
¥ 2 eD) =0 (®)

(.) is the nonlinear transformation operator. The covari-
ance matrix of data D can be calculated as

=y 2 eD)e(m) ©)

Correspondingly, we have the following eigenvalue prob-
lem,

CV;( - /\ka (10)
Based on Egs. (8) to (10), we can obtain

1 N

v T e){ed) v | = My, (1)
i1
Equation (11) can be re-written as

N
vi = % rap(Di) (12)

i=1

where ry; — % Substituting Eq. (12) into (11) yields

P(D)o(D) % ryp(D) = A X rue(D)

Jj=1

1

N (13)

M=

@ Springer



1010

Int J Adv Manuf Technol (2021) 115:1005-1019

Without loss of generality, the kernel function can be
expressed as

r:.(Di, Dj) = ‘P(Di)T(P(D.f)

Multiplying both sides of Eq. (14) by ¢(D,)" yields

(14)

N N
k(D D;) Y rk (D, D;) = A Y rgk(D,, D) (15)
1 = =1

M=

1
N

We can further re-write the above equation using matrix
notation,

Kr; = M Nry (16)

where 1= [r4. Fro. ... v’ and K ;= k(D;, D)). Apparently,
r; and A can be solved through an eigenvalue problem. The
kernel principal components eventually can be obtained as

YD) = % rti(D, D;) (17)

i=1

The PCs with larger eigenvalues )\, are more domi-
nant. By retaining the most dominant / PCs (/< u), fea-
ture extraction and dimension reduction can be
achieved. In this research, these features will be used
as inputs to the FNN.

Care must be taken regarding the fact that, regardless D has
zero mean in its original space, it is not guaranteed to be
centered. We can use the Gram matrix K to substitute the
kernel matrix K [3, 4]. The Gram matrix is given as

K = K- 1yK-Kly + 1yK1y (18)

where 1y is the N x N matrix with all elements equal to 1/N
[3]. An important step in KPCA is to define the structure of
kernel x(D;, D;) (Eq. (14)). There exist several common
choices, including Gaussian kernel (Eq. (19a)), polynomial
kernel (Eq. (19b)), and sigmoid kernel (Eq. (19¢)).

k(Z1,2;) = exp (—||z|—zz||2/2r72) (19a)
K(z1,22) = (222 + a)’ (19b)
k(z1,22) = tanh(az] 2,) (19¢)

K(21,2:) = (2]z2 + a)b As will be shown in the subse-
quent section, using KPCA and selecting Gaussian kernel
can effectively lead to feature extraction and correlation for
the proposed FNN. Fundamentally, KPCA is a generic, non-
linear feature extraction approach that is capable of exploiting
the complicated spatial structure of high-dimensional features
[38]. Itis particularly suitable to fuzzy analysis of gear signals.

Integrating KPCA into FNN yields the fuzzy fault diagno-
sis framework as illustrated in Fig. 3.
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Fig. 3 Proposed fuzzy fault diagnosis framework

3 Fuzzy fault diagnosis practice
with experimental investigation

In this section, the proposed fuzzy classification scheme is
implemented to the fault diagnosis of a lab-scale gearbox sys-
tem using experimental vibration measurement. Our focus is
on how the FNN can handle limited labels in classification.
The details of experimental data acquisition and pre-process-
ing, specific FNN setup and tuning, and result discussion are
presented as follows.

3.1 Experimental data acquisition and fault labeling

While many types of gear faults can occur, vibration re-
sponses measured are commonly used as information car-
riers that reflect the health status of a gearbox system. In
this study, we employ a lab-scale two-stage gearbox sys-
tem with replaceable gears shown in Fig. 4, upon which
the experimental data is directly acquired for the subse-
quent fault diagnosis. The gear speed is controlled by a
motor. The torque is supplied through a magnetic brake
which can be adjusted by changing its input voltage. A
32-tooth pinion and an 80-tooth gear are installed on the
first-stage input shaft. The second stage consists of a 48-
tooth pinion and a 64-tooth gear. The input shaft speed
and gear vibration signals are measured by a tachometer
and an accelerometer, respectively. The signals are re-
corded through a dSPACE system (DS1006 processor
board, dSPACE Inc.) with sampling frequency 20 KHz.
The vibratory responses of a system involving gear mech-
anism are angle-periodic. In reality, while the gearbox
system is recorded in a fixed sampling rate, the time-
domain responses are generally not time-periodic due to
speed variations under uncertainty. In this research, we
apply the time synchronous averaging (TSA) approach
to solve the nonstationary issue and minimize the effect
of uncertainty caused by speed varying, where the time-
even signals are resampled based on the shaft speed mea-
sured by the tachometer and averaged in angular domain
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Fig. 4 Gearbox setup for data Tachometer
acquisition Mot
otor — NI=32
Input Shaft
i N3=48
. Accelerometer - T
Idle Shaft
N2=80
Output Shaft ]
Nd—64 Brake

[48]. As TSA converts the signals from the time-even to
the angle-even representation, it can significantly reduce
the non-coherent components in the system response.

In this research, 9 different gear conditions are intro-
duced into the pinion on the input shaft, including the
healthy condition, missing tooth, root crack, spalling,
and chipping tip with 5 different severities/levels (to be
detailed in Section 3.3), as shown in Fig. 5. Altogether,
we have 9 classes or labels in the overall data collected.
For each gear condition, 104 signals are collected. For
each signal, 3600 angle-even data points are recorded in
the course of 4 gear revolutions. Hence, we have a total of
936 (104 x 9) samples corresponding to 9 gear conditions.
Each sample can be considered one data point containing
3600 raw features. The balance of data samples under
different gear conditions is the prerequisite for ensuring
the rationality of general classification analysis. All the
data used in this study is made public at https://figshare.
com/articles/Gear Fault Data/6127874/1. Since our focus
in this research is the development of FNN to handle
unseen fault scenarios, in the subsequent case
demonstrations, we will use 8 gear conditions/classes in
FNN training and examine the fuzzy classification results
of the FNN using the remaining hold-out data as one
unseen fault condition.

Fig. 5 Nine fault types on
pinions. For chipping tip, 5
different severities are included

3.2 FNN configuration with hyperparameter setup

The core of this research is a specifically designed FNN to
facilitate the training using existing labels and then the predic-
tion that is capable of handling unseen scenarios. In what
follows, we present the FNN configuration details for gear
diagnosis.

Input layer According to the experimental setup, each input
sample includes 3600 raw features, i.e., time series responses.
Incorporating all these features into the neural network thus
would require 3600 input nodes (i.e., n=3600 in Eq. (1)),
which makes it computationally costly to develop an FNN
model. Furthermore, it is infeasible to formulate the subse-
quent fuzzification procedure with so many raw features.
For the sake of feature extraction and dimension reduction,
we carry out KPCA and employ the Gaussian kernel (Eq.
(19a)). Hyperparameter n thus becomes the number of princi-
pal components (PCs). The best value of » will be determined
through the FNN training convergence analysis to be shown in
Section 3.3.

Fuzzification layer In this study, we choose the Gaussian mem-
bership function to describe the fuzzy sets. For illustration, the
single cluster is used, which allows each input feature to be
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Table 1 Fuzzy logic rules employed in FNN
Rule ID Fuzzification layer #2/antecedent Fuzzy reasoning layer #3/consequent
n
If (x, is M11) AND (x5 is M>1) AND ... AND (x, is M,,)) v, = 11 v
If (x; is M) AND (x5 is M>5) AND ... AND (x, is M,;») Yy = T Vi2
i
If (x; is M13) AND (x5 is M>3) AND ... AND (x,, is M,;3) v = T Vi3
i=1
.................. )
m If (x, is M},,) AND (x; is M,,,) AND ... AND (x, is M,,,)) Y = 11 Vim

processed by ¢ numbers of membership functions (Eq. (2)). As
such, the total number of membership functions in this layer is
n % g. To facilitate the subsequent fuzzy rule definition, here,
we let g =m. As will be shown later, m is the number of
observed’known fault classes employed in fraining (i.e., 8).

Fuzzy reasoning/rule layer Theoretically, the total number of
fuzzy rules to cover all scenarios is m" or ¢” (when ¢ = m). For
methodology demonstration, here, we assume that the rules
are subject to self-correlation, which reduces the rule number
from m" to m. The details of the rules employed are tabulated
in Table 1. Such rule definition has the following merits: (1)
each rule solely affects the probability output of the related
fault type, which enables simple interpretation; and (2) the
model stays as small-scale by only taking into account a small
number of nodes, i.e., m in this layer.

Defuzzification layer The total number of nodes in this layer
also is m. This layer performs like a fully connected layer.
Given the m nodes in the preceding layer, there are m x m
weights and m biases to be optimized. ReLU activation func-
tion is applied onto the nodes to realize the space mapping. As
mentioned in Section 2.1, in the classification/prediction pro-
cess, since our purpose is to obtain probabilistic assessment
rather than crisp decision for unseen scenarios, we can just
replace the optimized weight matrix (m % m) and optimized
bias vector (m x 1) of defuzzification layer with a unit diago-
nal matrix and a zero vector.

Softmax layer m nodes produced in this layer indicate the
probability values of the actual data sample with respect to
the observed/labeled fault types. This yields the outcome of
the FNN when used for diagnosis purposes.

Output layer Single node indicates the result of decision-
making based on Eq. (6). This yields the outcome of FNN
when used in training, where all data samples belong to certain
known labels/scenarios.

M denotes the membership function; v is the degree of
membership through interpolation (same concept with g(z)
shown in Eq. (2)); 7y is the firing strength (same concept with
gm shown in Eq. (3)).

3.3 FNN implementation and case demonstrations

In this section, we present FNN implementation details
and demonstrate the fuzzy classification performance.
As mentioned, 9 classes of gear conditions have been
recorded. Among the gear faults, chipping tip is essen-
tially a fault pattern with continuous severity, i.e., dif-
ferent chipping levels. It is infeasible to collect many
severity levels in actual practice. In our data acquisition,
we have obtained 5 different severity levels. In order to
examine the fuzzy classification performance, in case
demonstration, we purposely hold out one of the
chipping tip class in network training. That is, we as-
sume that only 4 chipping tip severities are available as

Table 2 Data split for training

and testing of fuzzy fault ID Fault types FNN output Data size FNN roles
diagnosis (case 1)
1 Healthy Labeled 104 Training
2 Missing tooth Labeled 104 Training
3 Crack Labeled 104 Training
4 Spalling Labeled 104 Training
5 Chipping tip 5 (least severe) Labeled 104 Training
6 Chipping_tip 4 Labeled 104 Training
7 Chipping tip 3 Labeled 104 Training
8 Chipping_tip 2 Unknown 104 Testing/validation
9 Chipping tip 1 (most severe) Labeled 104 Training
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Fig. 6 Gaussian kernel PCs of gear vibration data

known labels to train the FNN, and we use the remain-
ing chipping tip data to evaluate the FNN performance
in terms of handling unseen fault scenarios. We analyze
two different cases, i.e., holding out a severe chipping
tip case, and holding out a weak chipping tip case.
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Fig. 7 Training confusion matrices under different numbers of PCs (case 1)

0.4

3.3.1 Fuzzy classification of a severe chipping tip fault
as the unseen fault scenario (case 1)

Altogether we have acquired 9 gear conditions, each with 104
vibration signal samples, yielding a total of 936 samples. The
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details of training and testing data split are given in Table 2.
The module of the gear is 1.59 mm. In this table,
chipping tip 5 to chipping tip 1 refer to 5 different levels
of tip removal, i.e., 0.15 mm, 024 mm, 0.38 mm, 0.48 mm,
and 0.69mm, respectively. Here, chipping tip 5 represents
the weakest level of chipping tip fault. In this first case dem-
onstration, we hold out chipping tip 2 with 0.48-mm tip re-
moval, and use the other 8 labels/classes in FNN training.
Therefore, 832 (104 x 8) samples corresponding to 8 fault
types will be utilized to train the FNN model. Afterwards,
we will examine the classification results. If the data of
chipping tip 2, which is unseen by the FNN in training, is
classified as being close to chipping tip 1 or chipping tip 3,
then the FNN can successfully fulfill the diagnosis mission.

Selection of FNN hyperparameter As pointed out in
Section 3.2., the hyperparameters of FNN need to be optimal-
ly selected to ensure computational performance. To facilitate
efficient training and classification with sufficient accuracy,
the scale of FNN model will need to be properly decided. In

Fig. 9 Optimized Gaussian
membership function (case 1)

0.999998

Membership

0.999996

this research, one hyperparameter to be identified is the num-
ber of PCs (i.e., n). The 4 lowest-order Gaussian kernel PCs
calculated from the original gear vibration signals are shown
in Fig. 6. The distribution of PCs over the entire collection of
samples shows good differentiation ability of different fault
types especially for the lower-order PCs. As the order of PC
increases, the fault boundaries start to become unclear. In
terms of computational efficiency, increasing the number of
PCs will increase the dimension of FNN as the numbers of
nodes in the subsequent layers will grow accordingly. In terms
of computational accuracy, too small or too large numbers of
PCs will cause the underfitting and overfitting issues, respec-
tively. To facilitate the hyperparameter selection, a strategy
based upon the FNN training convergence analysis is
established as follows.

The FNN development and analysis are carried out using
an in-house code, where the MATLAB Fuzzy Logic Toolbox
is used to facilitate some basic operations. A total of 100
epoch size is adopted for training, which takes less than
1 min on a desktop with Intel CPU E5-2640 @2.40GHz (2
processors). The training accuracy of this classification anal-
ysis is reflected by the confusion matrix [31]. We employ a
series of the numbers of principal components, i.e., n in an
ascending order from 1 to 6 to examine the training accuracy
tendency. For illustration, the confusion matrices obtained
with n=1 and n =2, respectively, are given in Fig. 7a and
7b. Underfitting is clearly observed from Fig. 7a where n is
selected as | because of large training error. Fundamentally,
such underfitting is due to the lack of useful features intro-
duced. On the contrary, when # increases to 2, as shown in
Fig. 7b, 100% accuracy can be achieved. As the confusion
matrix provides the comprehensive information, multiple met-
rics such as precision, recall, F1 score, and ACC (accuracy),
can be further employed to quantify the training accuracy [31].
Here, we specifically use ACC. The training accuracy (i.e.,
ACC) tendency with respect to the number of PCs is obtained
as shown in Fig. 8. Based on the convergence results, in this
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Fig. 10 Probability distribution of 104 testing samples through FNN
classification (case 1)

case, we select n =2 for the subsequent fuzzy classification
analysis. Interestingly, this shows the capability of KPCA in
efficient feature extraction for this particular gearbox system.

FNN performance analysis and result demonstration For FNN
training purposes, the original samples are transformed into
the reduced-dimensional feature space. In total, 832 training
samples of PCs are shuffled and fed into the FNN model for
training that optimizes the unknown parameters in
fuzzification and defuzzification layers. The unknown param-
eters in the fuzzification layer essentially refer to the parame-
ters that characterize the membership functions. The member-
ship functions are the core of this proposed methodology,
allowing one to graphically represent the fuzzy sets. As a
result, the membership functions can represent the physical
behavior of the target system. In this study, the Gaussian
membership functions are optimized and shown in Fig. 9.
Eight membership functions are used to represent 8
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Fig. 11 Fuzzy classification accuracy (case 1)

Fig. 12 Feature location of misclassified sample (case 1)

observed/known fault types. The degree of membership can
be interpolated via the associated PC value in the horizontal
axis. It is found that the membership functions of the Ist PC
have narrower width (i.e., variance) than that of the 2nd PC,
because the lower-order PC is more discriminative as indicat-
ed in Fig. 6. In other words, the membership functions of the
Ist PC indicate higher level of fuzziness than that of the 2nd
PC.

After the FNN model is well-trained, a fuzzification step is
incorporated, which takes advantage of the necessary opti-
mized model parameters retained for testing/prediction. We
now examine the performance of FNN in terms of unseen fault
scenarios by testing the hold-out data of chipping tip 2. As
we have 8 known labels, the distribution of probability values
of the testing dataset with respect to 8 labels over the entire
testing space is shown in Fig. 10. Clearly, the majority of
testing samples with actual fault, i.e., chipping tip 2, are
identified as being close to fault chipping tip 1. This indi-
cates that the FNN is capable of providing the closest fault
classification with respect to known labels. The probability
values appear to be well-separated, which shows the high
confidence level of fuzzy classification result.

A fault scenario with the highest probability value will be
assigned to the relevant testing sample as the most probable
fault (Fig. 10). Counting the numbers of different fault types
that are probabilistically identified over the entire testing space
yields the classification accuracy result (Fig. 11). In this case
study, if a testing sample belonging to chipping tip 2 is clas-
sified either as chipping tip 3 or as chipping tip 1, i.e., the
neighboring class, the classification is correct. Obviously, the
result in Fig. 11 indicates very high fuzzy classification accu-
racy, i.e., 99% (103/104). Only 1 sample is misclassified as
the missing tooth fault class.

Error investigation As can be observed from the above
analysis, there exists one sample that is misclassified as
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Table 3 Data split for training

and testing of fuzzy fault ID Fault types FNN output Data size FNN roles
diagnosis (case 2)
1 Healthy Labeled 104 Training
2 Missing tooth Labeled 104 Training
3 Crack Labeled 104 Training
4 Spalling Labeled 104 Training
5 Chipping_tip 5 (least severe) Labeled 104 Training
6 Chipping tip 4 Unknown 104 Testing/validation
7 Chipping tip 3 Labeled 104 Training
8 Chipping tip 2 Labeled 104 Training
9 Chipping_tip 1 (most severe) Labeled 104 Training

belonging to missing tooth fault class. Identifying the root
cause of this misclassification can shed light on how fea-
tures are extracted and how to minimize misclassification
in future implementation. Taking advantage of KPCA
analysis, we take a closer look at the PC distribution,
i.e., only covering the fault classes of missing tooth,
chipping_tip 1, and chipping tip 2. As shown in Fig.
12, the misclassified sample is highlighted as a solid star.
It can be observed that the feature of this sample is situ-
ated at the left boundary of the chipping tip 2 feature
cluster, which is closest to the missing tooth cluster.
Considering that only 1 out of 104 samples exhibits such
feature ambiguity, we can conclude that KPCA with 2
PCs is indeed effective in this particular implementation.

3.3.2 Fuzzy classification of a weak chipping tip fault
as the unseen fault scenario (case 2)

To further validate the FNN, we formulate another case
and revisit the FNN modeling and analysis for perfor-
mance re-examination. In this second case, we hold out
the data samples belonging to chipping tip 4. The data
of chipping tip 4 corresponds to 0.24-mm tip removal,

which is a weak chipping tip fault. The details of train-
ing and testing data split in this second case are given
in Table 3. Similarly, Gaussian kernel KPCA is
employed for nonlinear feature reduction and transfor-
mation. We first implement the training convergence
analysis to optimally determine the number of PCs,
which again is 2 in this case. The same configuration
of FNN model and associated parameters defined in
Section 3.2 is utilized here. Model training leads to
the optimized membership functions shown in Fig. 13.
Apparently, the observation is consistent with that of
Fig. 9.

We then carry out testing of FNN training using the
hold-out data. In this case, the classification is considered
correct if a testing sample is classified as being close to
chipping tip 5 or chipping_tip 3. In testing, 104 samples
are fed into the FNN model to produce the probability
distribution and the final classification result, shown in
Figs. 14 and 15 respectively. We can immediately observe
that the majority of testing samples are classified as being
close to chipping tip 5. The classification accuracy is
calculated as 98%; i.e., 102 out of 104 samples are cor-
rectly classified. Error analysis is carried out for the 2
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Fig. 14 Probability distribution of 104 testing samples through FNN
classification (case 2)

misclassified samples. As shown in Fig. 16, the features
of these 2 samples are situated at the bottom boundary of
the feature cluster of chipping tip 4, which is very close
to the feature cluster of the missing tooth fault. These
results again demonstrate the effectiveness of the pro-
posed FNN to handle unseen fault scenarios.

4 Conclusion

The lack of sufficient data labels, i.e., fault types, in experi-
mental data collected poses a major challenge for the practical
implementation of gear fault diagnosis. The state-of-the-art
machine learning techniques generally only allow the identi-
fication of gear faults within the known fault labels. To tackle
this challenge, a new fuzzy classification method is
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Fig. 16 Feature location of misclassified sample (case 2)

established in this research to deal with the gear fault diagnosis
with limited data labels. A fuzzification procedure through
tuning the architecture of the well-trained fuzzy neural net-
work is adopted to achieve the classification of unseen fault
scenarios that are not included in the training dataset.
Particularly, those unseen fault scenarios will be classified
based on their closeness with respect to known fault classes
with probability. The vibration data acquired from a lab-scale
gearbox system is preprocessed by means of the kernel prin-
cipal component analysis (KPCA) in order to reduce the fea-
ture dimensionality and meanwhile capture the primary non-
linear features within data. This indeed facilitates the FNN
model training and the subsequent classification analysis.
The number of kernel principal components is optimally iden-
tified through FNN model training convergence analysis. Two
cases with different levels of fault severities are carried out to
examine the performance of this enhanced FNN in terms of
dealing with unseen fault scenarios. In both cases, the FNN
can successfully classify the unseen data as being close to the
neighboring fault scenarios with 99% and 98% accuracy, re-
spectively, thereby fulfilling the diagnosis purpose in actual
practice.
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