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ABSTRACT: Antioxidants play important roles in eliminating reactive oxygen species [GAH]
(ROS), which have been associated with various degenerative diseases, such as cancer, o .
aging, and inflammatory diseases. Gallic acid (GA) and propyl gallate (PG) are well- - ; LS
known antioxidants and have been widely studied in vitro and in vivo. The biological 2 e S
antioxidant abilities of GA and PG are related to the electronic structure of their dehydro- £
radicals. In this work, we report a combined photoelectron spectroscopic and § = R ]
computational study of the deprotonated gallic acid anion, [GA — H]", and deprotonated 3 PG R
propyl gallate anion, [PG — H]™. Adiabatic electron affinities of the dehydro-gallic acid & o, 93
radical, [GA — H]- and of the dehydro-propyl gallate radical, [PG — H]-, are measured to o 5T
be 2.90 + 0.05 eV and 2.85 + 0.05 eV, respectively, and compared to computational e h
results.
0.0 0'5 ! } y 4'0 45

B INTRODUCTION

Reactive oxygen species (ROS), primarily generated in the
mitochondria of cells, have been regarded as toxic byproducts
resulting from metabolism processes involved in cancer and
other diseases.'~* Common ROS exist in the form of hydroxyl
radicals (OH-), alkoxyl radicals (RO-), peroxyl radicals
(ROO-), and hydrogen peroxide (H,0,).” Excessive levels of
these species are thought to have destructive consequences on
cellular macromolecules, e.g, lipids, proteins, and DNA,
resulting in cell and tissue injury that is often associated with
degenerative diseases.””'” Nutritional and medical studies have
identified several antioxidants that prevent the oxidative stress
caused by ROS.'>'* The antioxidants react with ROS faster
than relevant biological targets react with ROS, thus protecting
lipids, fats, and proteins from the attack of free radicals.
Among the various antioxidants, gallic acid (GA) and its
derivative propyl gallate (PG) are thought to possess strong
abilities to scavenge ROS.'¥'® Gallic acid, also known as 3,4,5-
trihydroxybenzoic acid, is widely present in the plant kingdom
and found in various food sources, such as tea, grapes, and red
wine."” ™' Propyl gallate, commonly used as an antioxidant in
food, is a synthetic derivative of GA.””*’ Both of them act as
antioxidants, antibacterial agents, antitumor agents, and anti-
inflammatory agents in the body.”*””’ The mechanism of
action among phenolic antioxidants has been extensively
investigated.”” ' For polyphenols, hydrogen atom transfer
(HAT) and single electron transfer (SET) are the two
dominant mechanistic pathways.”””” They are represented in
Figure 1. Via HAT, GA and PG react with free radicals as
hydrogen donors and form the relatively stable dehydro-gallate,
[GA — H]-, and dehydro-propyl gallate, [PG — H]-, radicals.
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In the case of SET, antioxidants lose an electron to the radical
first and then undergo the proton transfer process. Previous
DFT computational analysis suggested that GA in the gas
phase reacts by HAT.” In aqueous and lipid media at
physiological pH, PG reacts with OOH, -OOCH;, and

OOCHCH, radicals by transferring the hydrogen from the

phenolic hydroxyl(s) group.”* In particular, the bond
dissociation enthalpy (BDE) of O—H bonds has been shown
to be a good indicator of antioxidant activity due to the HAT
mechanism.>® The BDE values of O—H bonds for GA and PG
are estimated to be 347.4 and 334.6 kJ/mol, respectively, based
on the experimentally measured rate constants of reactions of
the antioxidants with the lipid peroxy radicals.>®3”  Also,
computational investigations of BDE values for GA and PG in
different environments have been carried out. The computed
BDE values range from 318 to 385 kJ/mol for GA and from
297 to 371 kJ/mol for PG.***"~*

However, despite results from decades of spectroscopic and
theoretical studies on the antioxidant capabilities and stabilities
of GA and PG, the electron affinity (EA) values of the [GA —
H]- and the [PG — H]- radicals had not been measured.**~**
These EA values would be particularly useful, however,
because they could be used to determine O—H BDE values
in the acidity/electron affinity thermochemical cycle proposed
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HAT

Figure 1. HAT and SET mechanisms of the radical scavenging process.
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Figure 2. Photoelectron spectra of [GA — H] ™ recorded with (a) 3.49 eV photons at room temperature, (b) 3.49 eV photons at 77 K, (c) 4.66 eV

photons at room temperature, and (d) 4.66 eV photons at 77 K.

by Blanksby and Ellison.”” Knowledge of O—H BDE values
can provide insight into the antioxidant nature of GA and PG,
as they have for other radical scavengers, such as vitamin E and
vitamin C. Here we present our experimental and computa-
tional studies of the electronic structure of [GA — H]- and [PG
— H]J-. The experimental part of this work involved forming
their anions through electrospray ionization and measuring
their anion photoelectron spectra. This led to the determi-
nation of the electron affinities and excitation energies of the
[GA — H]- and [PG — H]
compared to results from our computations. This work takes

radicals, which were then

its place alongside previous anion photoelectron spectroscopic
. L Lo 250,51
studies of vitamin E and vitamin C.

B METHODS

Experimental Section. Deprotonated gallate anions, [GA
— H]", and deprotonated propyl gallate anions, [PG — H]~,
were generated via electrospray ionization, one of the anion
sources on our existing pulsed anion photoelectron spec-
trometer. Details of the electrospray ionization source have
been described elsewhere previously.”" Millimolar solutions of
propyl gallate (Sigma-Aldrich, >98.0%) in 3:1 MeOH:H,O
were prepared over a range of pH values (9 < pH < 11). These
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Table 1. Experimentally and Computationally Determined Values for Deprotonated Propyl Gallate and Gallic Acid Anions and
Their Corresponding Neutral Radicals (eV)

expt EA caled EA expt VDE
[GA — H]-/ [GA — H]~ 2.90 + 0.05 2.96 3.32 + 0.08
[PG — H]./ [PG — H]™ 2.85 + 0.05 2.87 3.06 + 0.05

caled VDE expt. first excitation energy® caled first excitation energy
3.20 ~1.25 1.40
3.08 ~1.30 1.39

“This value was obtained by subtracting the VDE from the EBE value of the second peak in the spectrum.
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Figure 3. Photoelectron spectra of [PG — H]™ recorded with (a) 3.49 eV photons at room temperature, (b) 4.66 eV photons at room temperature,
(c) 3.49 eV photons at 77 K, and (d) an expanded view of (c), beginning at EBE = 2.5 eV.

solutions were injected through a ~10 um pulled silica
capillary, floated at negative 3—5 kV, into a humidity
controlled, ambient atmosphere chamber. A buffer gas
composed of 20% H, with a balance of He was employed in
the ion trap to facilitate cooling of the ions, as well as
promoting collision focusing. The ions were accumulated and
cooled in the trap for 100 ms before being pulsed into a time-
of-flight mass spectrometer to be mass-analyzed. The mass
spectrum is displayed in Figure S1 of the Supporting
Information. The time-of-flight mass spectrometer portion of
our apparatus has also been previously described elsewhere.”

The anions of interest were then mass-selected and
decelerated before entering a magnetic bottle region of our
anion photoelectron spectrometer. Anion photoelectron spec-
troscopy is conducted by crossing the mass-selected beam of
negative ions with a fixed frequency photon beam and energy-
analyzing the resultant photodetached electrons. These
photoelectrons are governed by the energy-conserving relation-
ship: v = EBE + EKE, where Av is the photon energy, EBE is
the electron binding (photodetachment transition) energy, and
EKE is the measured electron kinetic energy. Our magnetic
bottle, electron energy analyzer has a resolution of ~50 meV at

an EKE of 1 eV. The photoelectron spectra were collected with
both the third and fourth harmonic light from a Nd:YAG laser
(355, 3.49, and 266 nm, 4.66 eV photons, respectively) and
with the jon trap at both ambient (~300 K) temperature and
77 K. The photoelectron spectra were calibrated against the
well-known transitions of I7.>%**

Computational. All calculations were performed using the
Gaussian 09 program package.”> DFT calculations were
conducted by applyir}g the M06-2X functional with the D3
dispersion correction.”*” All geometries, including that of the
anions and their corresponding neutral molecules, were fully
optimized without any geometrical constraints while using the
aug-cc-pVDZ basis set.””” Frequency analyses were carried
out for all optimized structures to ensure the absence of
imaginary frequencies. The electronic energies were improved
by single-point calculations with a larger basis set, i.e., aug-cc-
pVTZ, at the optimized geometries. The excitation energies of
the neural radicals were obtained by TD-DFT method.
Franck—Condon simulations were carried out using the tools
available in the PESCAL2016 package.””°" The temperature
(~77 K) was adjusted to obtain the best match to the
experimental spectra.
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Figure 4. Optimized geometries of [GA — H]™ and [PG — H]~ with their respective HOMO and HOMO—1 molecular orbitals.

B RESULTS

Gallic Acid. The photoelectron spectra of the deprotonated
gallic acid anion, [GA — H], are shown in Figure 2. These
spectra were measured at 77 K to reduce the presence
vibrational hot bands, i.e., photoelectrons from vibrationally
excited anions. A broad EBE band, beginning at EBE = 2.90 eV
and reaching its maximum at EBE = 3.32 eV, was observed in
all of the spectra. The vertical detachment energy (VDE) is the
transition energy, i.e, EBE, at which the Franck—Condon
overlap between the wave functions of the anion and its neutral
counterpart is greatest. The EBE value corresponding to this
maximum intensity in the observed band, i.e., 3.32 €V for the
[GA — H]™ anion, is its vertical detachment energy. When
significant Franck—Condon overlap exists between v = 0 of the
anion and v’ = 0 of its corresponding neutral (the origin
transition) and no vibrational hot bands are present, the EBE
of the spectrum’s threshold value corresponds to the adiabatic
electron affinity (EA). The EA is the energy difference between
the lowest energy, relaxed geometry of the anion and the
lowest energy isomer (global minimum) of its neutral
counterpart. By extrapolating the lowest EBE edge, we
determine the EA value to be 2.90 + 0.05 eV. As illustrated
in Table 1, our calculated EA = 2.96 eV and VDE = 3.20 eV
agree well with the experimental values. In the 266 nm (4.66
€V) spectrum, a second band appears approximately 1.2 eV
above the first one. This transition represents photoelectron
detachment from an inner molecular orbital. In other words,
the second EBE band is also the transition from the ground
state of the anion to the first excited state of the neutral radical.
After cooling to 77 K, vibrational features spaced by 0.1 eV
were also observed at both photon energies. In Figure 2(b) and

2(d), blue stick spectra represent transitions from v = 0 of the
anion to all of the vibrationally excited states of its
corresponding neutral, these being the result of a Franck—
Condon analysis.

Propyl Gallate. The photoelectron spectra of the
deprotonated propyl gallate anion, [PG — H]~, are presented
in Figure 3. These spectra were obtained at the ambient
temperature of the ion trap using both 355 nm (3.49 eV) and
266 nm (4.66 V) photons and at an ion trap temperature of
77 K (to eliminate vibrational hot bands) using 355 nm
photons. The ambient temperature 355 nm spectrum consists
of a single broad band with a maximum at EBE = 3.06 eV. The
ambient temperature 266 nm spectrum reveals a second band,
representative of electron detachment from an inner molecular
orbital. Upon cooling the ion trap to 77 K, as shown in Figure
3(c), a strong EBE peak at 2.85 eV and its vibrational features
are revealed. Figure 3(d) presents an expanded view of Figure
3(c). Displayed in Figure 3(d) is a Franck—Condon
simulation-based stick spectrum (in blue) which depicts
transitions from v = 0 of the anion to all vibrational ground
and excited states of its corresponding neutral. The red curve is
the simulated spectrum with its features having been subjected
to Gaussian broadening of 400 cm™" fwhm. The overall profiles
of the experimental and simulated spectra are in good
agreement. Additionally, due to the negligible geometrical
structure difference between the [PG — H]~ anion and its
corresponding neutral radical, [PG — HJ, the Franck—
Condon overlap between their ground vibrational wave
functions is significant, resulting in a strong EA-determining
(origin) peak in the spectrum at EBE = 2.85 eV. Our calculated
EA = 2.87 and VDE = 3.08 eV values are in excellent
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agreement with the experimental values, ie., 2.85 + 0.05 eV
and 3.06 + 0.05 eV, respectively.

B DISCUSSION

Deprotonation of gallic acid can yield three kinds of
deprotomers which are carboxylate ion, p-phenoxide ion, and
o-phenoxide ion. Even if the carboxylate isomer had been
present, it would not have been observed in the photodetach-
ment spectrum, because its calculated VDE is 4.87 eV and
photon energy is 4.66 eV. While it is conceivable that both o-
and p-phenoxide ions can be made by ESI, Boltzmann
distribution favors the population of p-phenoxide ion of
deprotonated gallic acid because p-phenoxide ion lies 0.39 eV
lower than the ortho one in energy. Additionally, the measured
and calculated VDE favors the p-phenoxide of gallic acid
deprotomer, too. p-Phenoxide ion of deprotonated propyl
gallate is also thermodynamically preferred due to the large
energy gap (0.37 eV) between para and ortho isomers. The
geometry and energetics of the isomers are provided in the
Figure S2. Figure 4 presents the calculated structures of the
most stable conformers of the [GA — H]™ and [PG — H]~
anions, i.e., p-phenoxide ions of deprotonated gallic acid and
propyl gallate, along with their highest occupied molecular
orbitals (HOMO) and their second highest occupied
molecular orbitals (HOMO—1). In the left panel of Figure 4,
the optimized [GA — H]™ anion structure reveals a singlet
ground state and a planar geometry due to conjugation effects.
Additionally, two intramolecular hydrogen bonds, each 2.05 A
in length, are formed between two ortho hydroxyl groups and
the central oxygen atom on the benzene ring. The neutral [GA
— H]- radical also shares a similar geometry with two 2.16 A
intramolecular hydrogen bonds. Intramolecular hydrogen
bonds have an enhancing effect on the antioxidant ability,
because they stabilize the structure of the [GA — H]- radical
and lower the bond dissociation enthalpy of the center O—H
bond.***

The [PG — H] ™ anion also forms two intramolecular
hydrogen bonds between hydroxyl groups and an oxygen atom
of the same length as in the [GA — H]™ anion, ie, 2.05 A.
However, the neutral [PG — HJ- radical has two hydrogen
bonds with lengths of 2.16 A each, which are longer and
weaker than its anionic counterpart. We assigned the EBE =
2.85 eV peak to the 0—0 transition, and the VDE = 3.06 eV
peak to the transition from the ground state of the anion to a
vibrationally excited state in its neutral counterpart, 1262 cm™"
above its vibrational ground state. In the 1262 cm™" vibrational
mode, two intramolecular hydrogen bonds are stretched,
leading to a smaller geometric difference between the anion
and neutral, and a larger Franck—Condon overlap.

The HOMO and HOMO-1 molecular orbital structures of
[GA — H]™ are both delocalized over the benzene ring and
show strong z-like orbital features (Figure 4). The calculated
energy difference between these molecular orbitals is 1.29 eV,
closely matching the observed interval in the experimental
spectrum. The direct detachment feature at EBE values ranging
from 2.9 to 3.6 eV corresponds to the loss of an electron from
the doubly occupied HOMO in the anion, while the second
band, ie., from 4.0 to 4.5 eV, corresponds to that from
HOMO-1. For the [PG — H]", the energy difference between
the HOMO and HOMO-1 is 1.31 eV, which is in accordance
with the spacing observed between the two bands in the
spectrum taken at 266 nm (Figure 3b). Our TD-DFT
calculations also show that the first excited state for both

[GA — H]- and [PG — H]- radicals corresponds to the
promotion of an electron from HOMO-1 to singly occupied
HOMO. The calculated excitation energies of the first excited
state are 1.40 and 1.39 eV for [GA — H]- and [PG — H]-
radicals, respectively. Additionally, the modest difference in EA
values between the [GA — H]- radical (2.90 eV) and the [PG
— HJ- radical (2.85 eV) is attributed to the small electron
density of the HOMO on the propyl group.

B CONCLUSION

In this work, the photoelectron spectra of the deprotonated
gallic acid anion, [GA — H]7, and the deprotonated propyl
gallate anion, [PG — H]~, were measured at both ambient
temperature and at 77 K. Electron affinities of the dehydro-
gallic acid radical, [GA — H]J-, as well as of the dehydro-propyl
gallate radical, [PG — H]-, were determined to be 2.90 + 0.05
eV and 2.85 + 0.0S eV, respectively. Our DFT calculations and
Franck—Condon analyses confirm the electron affinities and
the excitation energies of these two radicals. The measured
electron affinity values of these two important antioxidant
radicals together with properties, such as acidity and BDE, can
provide further insight into their antioxidant natures.
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Bl ABBREVIATIONS

GA, gallic acid

PG, propyl gallate

[GA — H], dehydro-gallic acid radical

[PG — H], dehydro-propyl gallate radical

[GA — H]~, deprotonated gallic acid anion
[PG — H]~, deprotonated propyl gallate anion
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