```
1
     Bacterial approaches for assembling iron-sulfur proteins.
 2
 3
     Karla Esquilin-Lebron<sup>1</sup>, Sarah Dubrac<sup>2</sup>, Frédéric Barras<sup>2*</sup>, Jeffrey M. Boyd<sup>1*</sup>
 4
 5
     <sup>1</sup> Department of Biochemistry and Microbiology, Rutgers, the State University of New
 6
     Jersey, New Brunswick, NJ 08904
 7
 8
     <sup>2</sup> Institut Pasteur, Université de Paris, CNRS UMR 2001, Department of Microbiology,
 9
     SAMe Unit, F-75015 Paris, France
10
11
     *Corresponding authors:
12
     Jeffrey M. Boyd, Ph.D.
13
     Rutgers, the State University of New Jersey
14
     Department of Biochemistry and Microbiology
15
     76 Lipman Dr.
16
     New Brunswick NJ 08901
     Phone: (848) 932-5604
17
     FAX: (848) 932-8965
18
     E-mail address: jeffboyd@SEBS.Rutgers.edu
19
20
21
     Frédéric Barras
22
     Stress Adaptation and Metabolism (SAMe) Unit,
23
     Department of Microbiology,
24
     UMR CNRS-Institut Pasteur 2001
25
     Paris, France.
26
     Phone: +33 7 88550851
27
     E-mail address: fbarras@pasteur.fr
28
29
     Running Title: Assembling iron-sulfur proteins.
30
     Keywords: bacteria, iron-sulfur cluster, iron, sulfide, SUF, ISC, NIF
31
```

Abstract

Building iron-sulfur (Fe-S) clusters and assembling Fe-S proteins are essential actions for life on Earth. The three processes that sustain life, photosynthesis, nitrogen fixation, and respiration, require Fe-S proteins. Genes coding for Fe-S proteins can be found in nearly every sequenced genome. Fe-S proteins have a wide variety of functions, and therefore, defective assembly of Fe-S proteins results in cell death or global metabolic defects. When compared to alternative essential cellular processes, there is less known about Fe-S cluster synthesis and Fe-S protein maturation. Moreover, new factors involved in Fe-S protein assembly continue to be discovered. These facts highlight the growing need to develop a deeper biological understanding of Fe-S cluster synthesis, holo-protein maturation, and Fe-S cluster repair. Herein we outline bacterial strategies used to assemble Fe-S proteins and the genetic regulation of these processes. We focus on recent and relevant findings and discuss future directions including the proposal of using Fe-S protein assembly as an anti-pathogen target.

1. Iron-Sulfur proteins

Iron (Fe) is an essential nutrient for nearly all organisms. The importance of Fe for the survival of microbes is highlighted by the fact that many organisms encode multiple Fe acquisition systems. These acquisition systems aid in competition and allow cells to acquire Fe under a variety of conditions to meet demand.

A large proportion of internalized Fe is housed within inorganic prosthetic groups called iron-sulfur (Fe-S) clusters, which are utilized by organisms in the three primary branches of life. Protein Fe-S clusters are typically ligated using cysteine thiolates and are commonly found as rhombic [2Fe-2S] or cubic [4Fe-4S] clusters; however, more complex Fe-S cofactors are utilized for specialized processes such as nitrogen fixation and hydrogen metabolism. When *Escherichia coli* is cultured in a defined medium with glucose or acetate as a carbon source approximately 30% of the intracellular Fe is located in Fe-S clusters and low-spin ferrous heme centers (1).

As a result of their structural and electronic plasticity, Fe-S clusters are utilized for a variety of cellular functions. The genome of *E. coli* is predicted to encode ~140 Fe-S proteins (out of the ~4,300 total protein coding ORFs (2)) that have wide-ranging functions including carbon transformations, environmental sensing, DNA repair, and respiration (3). Likewise, the metabolisms of most organisms are highly reliant on the functionalities of the Fe-S proteins. Failure to properly maturate Fe-S proteins results in widespread metabolic disorders and in some cases can lead to cell death (4-6). *Bacillus subtilis* strains (lacking Suf) and *E. coli* strains (lacking Suf and lsc) cannot build Fe-S clusters and are non-viable because they cannot properly maturate the essential Fe-S proteins lspG and lspH, which are required isoprenoid synthesis (7, 8). Bypassing the need for lspG and lspH, by engineering the organisms to utilize the eukaryotic Fe-S protein-independent mevalonate pathway for isoprenoid synthesis, circumvents the necessity for Fe-S biosynthesis for survival (9).

2. Building iron-sulfur clusters

Because of the toxic nature of free Fe²⁺ and sulfide (S²⁻), tightly controlled mechanisms have evolved to synthesize Fe-S clusters from its monoatomic precursors, thereby minimizing the cytosolic concentrations of these elements not ligated to macromolecules (10). Three multiprotein assembly systems (nitrogen fixation (NIF), sulfur mobilization (SUF), and iron-sulfur cluster (ISC)) have been described in bacteria and archaea for the synthesis of Fe-S clusters for assembly of [2Fe-2S] and [4Fe-4S] proteins (11-13). These systems function similarly, but they are biochemically discrete. Additional systems have been described for building more complex Fe-S clusters such as those found in dinitrogenase reductases and hydrogenases (reviewed here (14, 15)).

The NIF system was the first described Fe-S synthesis system. NIF was discovered because it is essential for nitrogen fixation (13). NIF functions to provide basic Fe-S clusters for nitrogenase maturation and it is often found in diazotrophs (16). SUF and ISC are responsible for building the Fe-S clusters for the maturation of the majority of non-nitrogenase Fe-S proteins. Bioinformatic analyses have identified the SUF system as the most prevalent machinery in prokaryotic genomes (17). Bacterial genomes can encode one (*Staphylococcus aureus*), two (*Escherichia coli*), or all three (*Erwinia chrysanthemi* and some nitrogen fixing Cyanobacteria) of the synthesis systems ((17, 18) and regulation section).

The SUF, NIF, and ISC macromolecular machines all use a common strategy to synthesize Fe-S clusters (Figure 1). Iron, sulfur, and electrons are combined upon a cytosolic molecular scaffolding protein(s) to form an Fe-S cluster. SufBCD, IscU, and NifU are the scaffold proteins for the SUF, ISC, and NIF systems, respectively (Figure 2) (16, 19, 20). Although the Suf proteins can be isolated with various ratios, it is thought that the active form of the SUF system has the ratio of one SufB, two SufC, and one SufD (SufBC₂D) (Figure 2B) (21, 22). The SufBD heterodimer interface may be the site of Fe-S cluster synthesis (22).

2.1. Sulfur. Sulfur is typically mobilized from a free cysteine (Cys) by PLP-dependent cysteine desulfurases (SufS, IscS, NifS) (13). Cysteine desulfurases form a covalent persulfide intermediate and alanine as a byproduct (23). The persulfide can subsequently be transferred to the synthesis machinery scaffold directly or through a surrogate carrier molecule (i.e. SufU or SufE) (19, 24). Thus far, the only described

persulfide sulfur carrier molecules are associated with SUF systems. Biochemical analyses suggest that these persulfide carrier proteins allow for a controlled delivery that protects the system from poisoning by oxidants, such as hydrogen peroxide, which would be deleterious to sulfur transfer (25, 26). SufU and SufE act as persulfide carriers for SufBC₂D in *Bacillus subtilis* and *E. coli*, respectively. SufU was initially thought to be a scaffold protein because of its ability to bind Fe-S clusters and its homology to IscU and NifU; however, biochemical analyses of the SufS-SufU complex demonstrated a unique sulfur transfer mechanism dependent on a zinc ligand from SufU (24, 27). Although SufU and SufE primary amino acid sequences differ, they can individually act as protective persulfide carriers for SufBC₂D; however, a *suf* operon usually only codes for one, suggesting that this functionality may have evolved twice. Some Archaea such as *Methanococcus maripaludis* lack homologs of cysteine desulfurases. When this archaean was cultured with ³⁵S²⁻ there was an enrichment of ³⁵S²⁻ in Fe-S cluster containing proteins, but not in free Cys suggesting that sulfide, and not Cys, is the source of the sulfur for Fe-S synthesis (28).

2.2. Electrons. The *isc* operon typically encodes a [2Fe-2S] ferredoxin (Fdx), which can provide electrons for ISC directed Fe-S synthesis. Fdx interacts with IscS and reduced Fdx provides an electron to the IscS complex for sulfane (S⁰) reduction (29, 30). A second reduction event is required to produce S²-, which is the substrate for Fe-S cluster synthesis on IscU. NADH and NADP+-ferredoxin-reductase can provide electrons for Fdx reduction in vitro (31). The electron donors to the scaffold proteins NifU and SufBC₂D are unknown. SufBC₂D co-purifies with FADH₂ consistent with the complex conducting redox chemistry (21). NifU, from the NIF system, contains a stable redoxactive [2Fe-2S] cluster that may provide electrons for NIF-directed synthesis (32). The membrane-associated Rnf complex has a role in dinitrogen fixation in A. vinelandii, by donating electrons from NADH to ferredoxin using reverse electron flow and ΔμNa⁺ or ΔμH⁺ (33). Azotobacter vinelandii rnf mutants have a decreased capacity for dinitrogen reduction because of poor Fe-S cluster occupancy of the dinitrogenase reductase NifH (34). The *rnf* mutants also have decreased activity of the Fe-S enzyme aconitase. It is tempting to speculate that Rnf has a role in providing electrons for Fe-S cluster synthesis or repair.

2.3. Iron. The source of Fe for cluster building remains unknown. Several candidates such as CyaY and IscX have been proposed based on *in vitro* considerations, but subsequent *in vivo* investigations failed to provide supporting evidence. CyaY is the counterpart of mitochondrial frataxin. The reason frataxin/CyaY was predicted to act as an iron donor came from (i) observing iron homeostasis disturbance in mitochondria from frataxin-deficient tissues or organisms, and (ii) iron-binding to CyaY *in vitro* although with weak affinity. Frataxin, both in eukaryotes and prokaryotes, forms a tri-partite complex with cysteine desulfurase NFS1/IscS and scaffold ISU/IscU. *in vitro*, frataxin appears to have the opposite effect on Fe-S formation whether one studies the prokaryote (*i.e.* inhibition) or the eukaryote system (*i.e.* stimulation) (35). Possible explanations lie in differences in IscS (prokaryote) and NFS1 (eukaryote) cysteine desulfurases intrinsic biochemical features. In any case, studies *in vivo* in *E. coli* confirmed that CyaY is a positive effector of ISC-mediated Fe-S cluster biogenesis (36, 37).

The *E. coli isc* operon codes for IscX, which also binds Fe^{2+} with low affinity and has a role in ISC-directed Fe-S synthesis (36, 38). IscX binds to IscS at a location that overlaps the CyaY binding site (39). The presence of Fe^{2+} increases the affinity between IscX and IscU and stabilizes the complex (38). IscX associates with IscS-IscU forming a tripartite complex resulting in inhibition of cysteine desulfurase activity. Analyses using both CyaY and IscX, in conjunction with the IscU-IscS complex, found that CyaY inhibits Fe-S cluster formation on IscU, which is mitigated by the addition of IscX at low Fe concentrations (<20 μ M); however, the effect of IscX is negligible at higher concentrations (40).

While evidence suggests that IscA is a Fe-S cluster carrier (discussed below), one group of researchers found that *E. coli* IscA copurified with Fe, but not sulfide [55]. ApolscA could be loaded with Fe²⁺ *in vitro* ($K_a = 3.0 \times 10^{-19} \, \text{M}^{-1}$) and it bound one Fe per IscA. The Fe-loaded IscA could provide Fe for IscS-directed Fe-S cluster synthesis on IscU. An IscA_{Y40F} variant was defective in Fe²⁺ binding but appeared to bind an Fe-S cluster. A K_a for Fe association, Fe-S cluster stability, Fe-S cluster transfer kinetics, and labile Fe and sulfide concentrations were not reported for the reconstituted IscA_{Y40F} variant (41). A wild-type *iscA* allele, but not an *iscA*_{Y40F} allele could complement an *iscA* mutant. Whether IscA is a *bona fide* Fe donor *in vivo* remains to be established.

2.4. Energy. The assembly of Fe-S proteins can require an input of energy. SufC, of the SUF system, has both Walker A and Walker B nucleotide-binding motifs and functions as an ATPase (42, 43). ATPase activity is stimulated by interaction with either SufD or SufB (44). The presence of SufC is necessary for SufB to interact with the sulfur transfer protein SufE (19). A conserved lysine (Lys40) in the Walker A motif is required for ATPase activity (45). The SufC_{K40R} variant interacts with SufB and SufD *in vitro*, but the *sufC_{K40R}* allele cannot replace *sufC*, suggesting that ATPase activity is necessary for SUF function (22). Consistent with these findings, the SufBC₂(K40R)D variant does not assemble an Fe-S cluster *in vivo* whereas SufBC₂D does (46).

In the ISC system, the scaffold IscU interacts with a Hsp70-like chaperone (HscA) and a J-protein co-chaperone (HscB) (47). Hsp70 chaperones have an ATP binding domain and a protein substrate-binding domain. Biochemical and biophysical studies found that interactions between IscU and HscAB aid in building the Fe-S cluster on IscU and/or the transfer of the Fe-S cluster from holo-IscU to a target apo-protein (48). The proposed role of the co-chaperone HscB is to escort IscU to HscA-ATP and promote ATP hydrolysis (49). After ATP hydrolysis, HscB is released, because it has low affinity for HscA-ADP, and IscU is prompted to deliver the Fe-S cluster to an apo-protein or Fe-S cluster carrier protein (48). ADP release by HscA induces conformational changes that promote IscU release prompting a new cycle of chaperone-mediated Fe-S cluster synthesis and transfer (50, 51). The roles of HscAB were recently reviewed (52).

3. Delivery of iron-sulfur clusters to target apo-proteins.

After Fe-S cluster construction on a scaffolding protein, it is passed to a client apoprotein forming the holo-protein. *In vitro* evidence for a direct Fe-S cluster transfer from a scaffold to an apo-protein was demonstrated, but *in vivo* observations stress the essential role of carriers and cast doubt on the physiological relevance of the direct scaffold-apoprotein connection (53-56).

Fe-S cluster carriers have been shown to bind [4Fe-4S] clusters, [2Fe-2S] clusters, or both (57). It is thought that the carriers typically deliver the Fe-S cluster they are provided; however, the Fe-S carrier IscA (A-type carrier) from *Azotobacter vinelandii* can

bind both [4Fe-4S]²⁺ and [2Fe-2S]²⁺ clusters and can convert the [2Fe-2S]²⁺ form to the [4Fe-4S]²⁺ form using a two-electron reductive coupling (57). It was proposed that the [4Fe-4S]²⁺ form could cycle back to the [2Fe-2S]²⁺ form by dioxygen catalyzed cleavage, but this has not been experimentally demonstrated. Whether these cluster dynamics have a physiological role is unknown.

The number of carriers varies within different bacterial species. For instance, *E. coli* synthesizes at least six carriers (the A-type carriers (IscA, SufA, ErpA) and NfuA, GrxD, Mrp) while *Bacillus subtilis* and *Staphylococcus aureus* only have two characterized carriers (SufA and Nfu). Strains lacking one or more Fe-S cluster carrier can often maintain the assembly of Fe-S proteins, suggesting that, in general, the carriers have a degree of functional overlap (53, 58). Note, however, that *erpA* is essential under aerobic growth in *E. coli* (9).

The number of targets exceeds the number of carriers raising questions about the dynamic and specificity of the delivery network. While *in vitro* transfer assays have provided evidence that carriers can transfer clusters to apo-proteins, they did not reveal substantial insights into substrate specificity (55). In *E. coli*, the six carriers are not synthesized to the same levels, and expression varies upon growth state and condition, suggesting that genetic control is key for orchestrating functional redundancy (59). We briefly discuss some of these intermediate actors below.

3.1. A-type carriers. A-type carriers are predicted to bind Fe-S clusters using three cysteine ligands. An X-ray structure of *Thermosynechococcus elongatus* IscA ligating a [2Fe-2S] cluster is illustrated in Figure 3A (60). The three cysteinyl ligands (C37, C101, and C103) to the Fe-S cluster are highlighted. Phylogenetic analysis allowed researchers to divide the A-type carriers (ATC) into two groups: ATC-I and ATC-II (53). Further functional studies showed that ATC-I proteins directly interact with the apoproteins, while the ATC-II proteins associate with the scaffold (53). In *E. coli*, ErpA belongs to the ATC-I family and IscA and SufA are of the ATC-II family. ErpA interacts physically with apo-proteins, whereas SufA and IscA, to an appreciable degree, do not. This suggests that the ATC-II carriers pass their Fe-S clusters to ATC-I for delivery to their final destinations (61). However, this simple view, mostly derived from normal growth conditions, might change under stress conditions. Indeed, SufA is predicted to interact

directly with targets in such conditions, while ErpA could also interact with another type of carrier, NfuA, to form a stress-resistant heteromer (61). Fe-S clusters on holo-ErpA, holo-IscA, and holo-SufA are equally stable in the presence of dioxygen; however, the addition of the Fe-S cluster carrier NfuA to holo-ErpA nearly doubled the half-life of the ErpA Fe-S cluster (61). These data suggest that NfuA and ErpA may work in conjunction to form an oxidant-resistant Fe-S cluster delivery system. Altogether, the associations between NfuA and ErpA, as well as ErpA and apo-target proteins, supports the hypothesis that, under balanced aerobic conditions, ErpA conducts the last step of Fe-S cluster delivery in *E. coli*. As a matter of fact, with the exception of SoxR, *in vivo* maturation of all target proteins studied depended upon ErpA (see below) (62).

3.2. Nfu-type carriers. The C-terminal domain of the *A. vinelandii* NifU Fe-S cluster scaffold is referred to as Nfu (Figure 3B). The Nfu domain was demonstrated to bind and transfer a [4Fe-4S]²⁺ cluster to an apo-protein (63). An alternate protein, named NfuA, contains a C-terminal domain with homology to the Nfu-domain of NifU, and an N-terminal domain with homology to an A-type carrier (Figure 3C). The NfuA A-type domain is referred to as "degenerated" because it lacks a cysteine required for Fe-S cluster ligation (64, 65). The C-terminal Nfu domain, but not the "degenerated" A-type domain, binds a [4Fe-4S]²⁺ cluster and can transfer this cluster to apo-proteins. The Fe-S cluster bound by holo-NfuA is more stable in the presence of dioxygen than that of holo-A-type carriers suggesting a role for NfuA under oxidative stress conditions (61). Consistent with this hypothesis, strains lacking *nfuA* are defective in maturating Fe-S proteins facing oxidative stress (64, 65). Both the Nfu and A-type domains are necessary for NfuA function *in vivo* (64, 65). The A-type domain was demonstrated to function in targeting NfuA to apo-proteins (66, 67).

Three additional bacterial proteins consisting solely of a Nfu domain have been described. Nfu was necessary for the proper maturation of the Fe-S protein photosystem complex I (PS1) in *Synechococcus* and the maturation of several Fe-S proteins in *Staphylococcus aureus* and *Helicobacter pylori* (58, 68, 69). Holo-Nfu is a dimer with a bridging [2Fe-2S]²⁺ or [4Fe-4S]²⁺ cluster. Holo-Nfu could activate apo-PS1 and apo-aconitase. A *S. aureus nfu* mutant had decreased virulence in murine models of infection

and decreased survival in neutrophils. A *H. pylori nfu* mutant was defective in colonizing murine stomachs.

- **3.3. Mrp-type carriers.** Genetic studies identified apbC, encoding a member of the Mrp class, as necessary to maturate the Fe-S enzymes ThiH and/or ThiC in Salmonella enterica (70). Biochemical studies demonstrated that ApbC can bind and effectively transfer Fe-S clusters to apo-proteins (71). ApbC is a dimer and each monomer contains two cysteines separated by two amino acids (C-X-X-C motif). These cysteines are thought to provide four ligands, two from each monomer, for ligation of a [4Fe-4S] cluster that bridges the dimer interface. Mrp proteins contain Walker A and B ATP hydrolysis motifs. An ApbC_{K116A} variant was defective in ATP hydrolysis and inactive in vivo. The addition of ATP did not accelerate ApbC-directed cluster transfer in vitro and the ApbC_{K116A} variant proficiently transferred Fe-S clusters. These data led to the hypothesis that ATP hydrolysis is required for loading ApbC with an Fe-S cluster [85]. ApbC was required for growth on the carbon source tricarballylate presumably because it functions in assembling the Fe-S enzyme tricarballylate reductase (TcuB) (72). The absence of ApbC could be bypassed by increasing expression of *iscU*, or by decreasing tricarballylate influx, and thereby preventing tricarballylate accumulation which inhibits isocitrate dehydrogenase (73, 74).
- **3.4. Monothiol glutaredoxins.** As the name suggests, monothiol glutaredoxins lack the traditional dithiol C-X-X-C motif and instead have a C-G-F-S motif. The *E. coli grxD* encodes a monothiol glutaredoxin (75). Combining a *grxD* mutation with an *iscU* mutation resulted in synthetic lethality, suggesting that GrxD functions in conjunction with the SUF machinery to assembly Fe-S proteins (*E. coli* must have functional SUF or ISC for viability (7)). GrxD purified from *E. coli* contained a [2Fe-2S] cluster. To chemically reconstitute an Fe-S cluster on apo-GrxD the reaction mixture required glutathione (GSH) (76). GrxD binds a [2Fe-2S] cluster that bridges a homodimer interface using one cysteine ligand from each monomer and GSH thiolates provide two additional ligands (77). Holo-GrxD homodimer can transfer an Fe-S cluster to apo-Fdx forming the [2Fe-2S] holo-Fdx. GrxD was recently shown to cooperate with NfuA in the maturation of the Fe-S enzyme MiaB (78).

E. coli BolA is an ortholog of *Saccharomyces cerevisiae* Fra2, which forms a heterodimer with a monothiol glutaredoxin to bind a [2Fe-2S] cluster [89, 92]. When purified from *E. coli*, BolA co-purifies with GrxD and vice versa. An Fe-S cluster could not be reconstituted on BolA; however, an Fe-S cluster could be reconstituted on the BolA-GrxD heterodimer and the cluster could be transferred to apo-Fdx (76). *E. coli bolA* and *grxD* mutants do not phenocopy one another suggesting that they can also function independently.

4. Auxiliary factors utilized in iron-sulfur protein maturation.

Several loci have been identified that function in the assembly of Fe-S proteins but are not considered part of the core Fe-S cluster biosynthetic apparatus. These factors are not typically found within operons encoding for the core ISC, SUF, or NIF machineries.

- **4.1. SufT.** The *sufT* gene is often associated with *suf* operons (defined by having sufB and sufC) in bacterial and archaeal genomes (79). Typically, SufT proteins, such as those encoded by *S. aureus* and *B. subtilis*, are composed entirely of a domain of unknown function 59 (DUF59). Larger proteins containing a DUF59 domain have roles in Fe-S cluster assembly, including the eukaryotic cytosolic Fe-S cluster assembly (CIA) factor CIA2, which functions in the maturation of nuclear and cytosolic Fe-S proteins (80-82). *S. aureus* strains lacking SufT have decreased activities of Fe-S enzymes during conditions requiring a high demand for Fe-S clusters. The phenotypes associated with the $\Delta sufT$ and Δnfu mutations were synergistic (79, 83). Moreover, overproduction of Nfu mitigated the phenotypes of the $\Delta sufT$ strain. These data suggest that SufT functions in Fe-S carriage and has some degree of functional overlap with Nfu; however, Fe-S cluster binding by SufT remains elusive. SufT was reported to be essential in *Mycobacterium tuberculosis* (84).
- **4.2. Low molecular weight (LMW) thiols.** The role of LMW thiols in Fe-S protein assembly is likely multifaceted and they could function in all four steps of Fe-S protein assembly: biogenesis, trafficking, assembly, and repair. In eukaryotes, glutathione (GSH) has been associated with the synthesis and trafficking of Fe-S clusters from the mitochondrion to the cytosol (85, 86). In bacteria, genetic and biochemical studies

demonstrated a role for GSH in assembling Fe-S proteins, in addition to its roles in maintaining proper intracellular redox (87). GSH can act as an Fe buffer by binding non-incorporated cytosolic Fe (88, 89). GSH can also provide electrons to reduce Fe³⁺ to Fe²⁺ (90). GSH, in conjunction with monothiol glutaredoxins, delivers Fe-S clusters to the apoprotein targets (77, 91, 92). GSH can bind and deliver Fe-S clusters *in vitro*, but the *in vivo* relevance of this chemistry is unknown (93). GSH can also reduce oxidized protein cysteine residues before Fe-S cluster insertion.

Many microorganisms, including *S. aureus*, do not produce GSH but instead produce the LMW thiol bacillithiol (BSH) (94). A *S. aureus* strain defective in producing BSH exhibits phenotypes similar to cells lacking Fe-S cluster carriers including decreased activities of Fe-S dependent enzymes (95). The phenotypes of a BSH minus strain were suppressed by multicopy expression of *sufA* or *nfu*, but not by overexpression of the SUF system. These data suggest that the phenotypes of a BSH minus strain were not the result of faulty *de novo* Fe-S synthesis, but rather defective assembly or repair of Fe-S proteins (96). A strain lacking BSH did not appear to suffer from decreased ROS metabolism, but a protective role for BSH in buffering against metal ion poisoning of Fe-S enzymes or the maturation machinery has not been ruled out (97).

- **4.3. Folic acid-binding protein (YgfZ).** *E. coli* YgfZ (COG0354) is a homolog of yeast Iba57p, which is a mitochondrial protein that participates in the assembly of mitochondrial Fe-S proteins (98). A $\Delta ygfZ$ mutant strain has decreased activities of selected Fe-S enzymes including MiaB and is sensitive to ROS stress (99). YgfZ binds tetrahydrofolate (THF) and an *E. coli* strain lacking the ability to synthesize folate has similar MiaB activity as a $\Delta ygfZ$ mutant suggesting that folate, as well as YgfZ, is utilized in assembling some Fe-S proteins. The COG0354 proteins are paralogous to enzymes that utilize THF to accept formaldehyde units leading to the hypothesis that YgfZ functions to remove one-carbon units that deleteriously affect the functions of Fe-S proteins (100).
- **4.4. Repair of iron clusters (RIC) proteins.** The *E. coli ytfE* encodes a RIC protein that has increased expression during nitric oxide stress (101). The expression of *ytfE* is directly controlled by NsrR, which directly responds to nitric oxide (NO•) levels (102, 103). An *E. coli ytfE* mutant is sensitive to NO• or H₂O₂ stress and Fe-S enzymes have decreased activities after cell-free extracts from the *ytfE* mutant are treated with hydrogen

peroxide (H₂O₂) or NO•. Importantly, damaged Fe-S proteins had a slower rate of repair in the *ytfE* mutant (104). YtfE, and its homologs, are di-Fe hemerythrin-like proteins (105, 106). The Fe atoms of holo-YtfE are labile and can be used as an Fe source for Fe-S cluster synthesis *in vitro* (107). These findings resulted in renaming these proteins as "repair of iron clusters (RIC)". The mechanism by which RIC proteins may repair damaged Fe-S clusters is unknown. YtfE interacts with the Fe scavenger Dps *in vivo*, and their corresponding genes have genetic interactions. These findings led to the hypothesis that Dps may be providing Fe to YtfE to be used for the repair of damaged Fe-S clusters (108). In *S. aureus*, *ytfE* (*scdA*) and *dps* protect against H₂O₂ damage and are both transcriptionally regulated by SrrAB which responds to electron flux through respiratory pathways (109, 110).

Physiological, genetic, and biochemical data suggest that a *ytfE* mutant has more NO•-induced damage and reduced activity of the Fe-S cluster utilizing transcription factor NsrA. Structural data show that YtfE has a hydrophobic channel where NO• could access the Fe ions and the Fe atoms have been shown to ligate NO• (106, 111). These data support the hypothesis that YtfE functions in S-trans-nitrosylation or the removal of NO• from nitrosylated proteins (112). However, YtfE was not able to release NO• from nitrosylated fumarase, a [4Fe-4S] requiring dehydratase. YtfE contributes to Y. *pseudotuberculosis* and *Haemophilus influenzae* pathogenesis (113, 114).

5. Regulation of Iron-Sulfur Cluster Synthesis

Fe-S cluster biosynthesis is controlled by regulators that sense environmental conditions potentially adverse for Fe-S cluster assembly such as Fe limitation, or oxidative and nitrosative stress, which affect the stability and integrity of the cofactors. Integrating these stimuli with Fe-S synthesis ensures demand is met and fitness is maintained.

5.1. The situation in *E. coli*: adapting to fluctuating conditions and switching between machineries.

In *E. coli*, Fe-S cluster biosynthesis is achieved by using two types of machineries, ISC and SUF, which permit maturation of the same set of apo-proteins under a wide

breadth of growth conditions. Particularly, genetic control circuits occur that endow *E. coli* with the capacity to synthesize one or the other machinery in different growth conditions, and thereby have the Fe-S cluster biogenesis capacity match the Fe-S demand, regardless of the growth conditions. Two transcriptional regulators, IscR and Fur, and a non-coding RNA, RyhB, are key actors in orchestrating this adaptative response, as all three control, directly or indirectly, expression of the *isc* and *suf* operons.

5.1.1. IscR-mediated Fe-S cluster homeostasis control. IscR is a transcription factor (TF) that belongs to the Rrf2 family of winged helix-turn-helix TFs. It hosts a [2Fe-2S] cluster, which allows sensing aerobiosis, oxidative stress, iron limitation, and possibly reactive nitrogen species. Mutagenesis and structural studies have identified residues Cys92, Cys98, Cys104, and His107 as Fe-S cluster ligands (Figure 4A) (115, 116). A His ligand is uncommon, and this might render the cluster labile and sensitive to stress signals. It is particularly useful for the IscR regulator since its activity is not influenced by the oxidative state of its cluster but is strictly dependent on the presence/absence of the cluster (116, 117). IscR is found in the apo- and holo-forms and both types can have regulatory functions (118).

Two types of binding sites, type 1 and 2, are found within IscR-regulated promoters. Holo-IscR binds type 1 sites and the holo- and apo-forms bind the type 2 sites (Figure 4B) (115). The type 1 inverted repeat sequence is well conserved and is mainly found upstream genes encoding Fe-S building proteins (the *isc*, *erpA*, and *nfuA* loci) (119). The type 2 sequence is an imperfect palindrome and highly degenerated, which causes large variations in binding affinities between operator regions (119). Interestingly, while the type 1 sequence containing promoters are all repressed by IscR, genes preceded by a type 2 sequence can be either repressed or activated by IscR. This does not correlate with the position of the IscR binding site as shown with the *hyaA* and the *sufA* genes. Both promoters exhibit a type 2 sequence within their -35 consensus promoter sequence, yet show opposite expression patterns as *hyaA* expression is repressed by holo-IscR whereas *sufA* expression is activated by apo-IscR (119).

In *E. coli*, *iscR* is the proximal gene in the *isc* operon and is separated from the next gene (*iscS*) by an unusually long untranslated region that is targeted by RyhB, a non-coding RNA (see below). Under balanced conditions, IscR is maturated by the ISC

machinery and holo-IscR acts as a repressor of its own expression, as well as the expression of downstream *isc* genes, until equilibrium shifts towards a low level of apolscR. At this point, repression is alleviated, more IscR is synthesized, and the ISC machinery is produced, resulting in an increased level of holo-IscR in the cell. A feedback loop is then set up and holo-IscR represses its own expression as well as those of the following *isc* genes. Upon an increase in the cellular demand for Fe-S cluster synthesis (iron limitation, oxidative stress), there is a competition between apo-protein substrates and newly synthesized apo-IscR for the ISC machinery. Then, apo-IscR accumulates, and this form activates the expression of the *suf* operon (120). In summation, IscR represses transcription of *isc* and activates *suf* transcription in its Fe-S-bound and unbound forms, respectively, directly connecting both cell's Fe-S cluster biogenesis capacity and Fe-S cluster demand (Figure 4C).

Evidence has been provided that the efficiency of ISC proteins, in particular IscU, would be lowered under stress conditions, opening the possibility that the contribution of the ISC machinery declines under such conditions and the cell would rather switch from ISC to SUF, rather than cumulating both (25). Importantly, IscR appears to be a poor substrate for the SUF system, and therefore, IscR is likely to remain mostly in its apoform if the cell thrives under stress conditions (54). The iron responding Fur-RhyB genetic circuit also favors such a switch (see below).

5.1.2. Iron-mediated control of Fe-S biogenesis by Fur and RyhB. Iron availability is sensed by the transcriptional regulator Fur, which represses synthesis of the non-coding RNA, RyhB, among others. Because both Fur and RyhB regulate the expression of the *isc* and *suf* operons, directly or indirectly, they are likely to contribute to the switch between the ISC and SUF machineries as a mode of adaptation to iron bioavailability. Holo-Fur acts as a repressor of *suf* operon transcription. Under iron limiting conditions, the Fe²⁺ cofactor of Fur is lost, and repression is alleviated, providing an opportunity for IscR-dependent *suf* operon expression (121). Meanwhile, *ryhB*, which is also repressed by holo-Fur, is expressed and targets the intergenic region between *iscR* and *iscS*, causing translation inhibition of the downstream *iscSUA* genes, and probably mRNA decay whereas a stem-loop structure forms enabling stabilization of the upstream *iscR* messenger moiety (Figure 4C) (122). Under these conditions, apo-IscR accumulates and

activates expression of the *suf* operon. Consequently, iron limitation enhances expression of the *suf* operon by both alleviating Fur repression and favoring apo-IscR activation, while expression of the *iscSUA* is shut off by RyhB-mediated translation inhibition and possibly poor activity of the encoded IscU scaffold protein. It should be noted that a recent study suggests that Fur senses iron homeostasis by binding a [2Fe-2S] cluster instead of Fe²⁺ as it is currently suggested (123). If this observation were to be confirmed *in vivo*, it would link the Fur repressing activity to both iron availability and Fe-S biogenesis, in which case the interplay between IscR and Fur would be an important issue to decipher *in vivo*.

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

5.1.3 Switching the Fe-S cluster synthesis machineries under redox stress. The OxyR transcriptional regulator activates the expression of *suf* genes in response to H₂O₂ (Figure 4C). The OxyR binding site is located far upstream from the sufA promoter (operon sufABCDSE), and the OxyR-dependent activation requires the binding activity of IHF to bring the OxyR site closer to the -10 and -35 promoter elements (124). OxyR and apo-IscR mediated activations have been found to be additive (120). Thus, because oxidative stress could well favor the shift from holo-lscR to apo-lscR, it is possible, that under such conditions, E. coli cumulates synthesis of both ISC, following alleviation of IscR repression, and SUF, following activation by OxyR. However, oxidative stress is known to lower iron bioavailability (by oxidizing Fe²⁺ to Fe³⁺). This could alleviate holo-Fur-dependent repressions, leading to ryhB expression and subsequently isc repression, thereby preventing the accumulation of both systems. Moreover, IscU activity was reported to be altered by oxidative stress (25). Thus, under oxidative stress, a genetic switch, like that observed under iron limiting conditions, might prevail. Expression of the suf operon is also repressed by the [4Fe-4S] cluster containing transcription factor NsrR under normal growth conditions. Under nitrosative stress, the Fe-S cluster is lost, and NsrR-dependent repression is alleviated (125). Again, because IscR could shift from holo to apo under such redox stress conditions, a shift between the machinery could take place.

5.1.4. Switching between machineries promotes antibiotic tolerance. One phenotypic consequence of the stress-controlled switch between the ISC and SUF systems is enhanced resistance to aminoglycoside antibiotics (126). The uptake of aminoglycosides is dependent upon the proton motive force (PMF), and therefore, the

bactericidal activity of these antibiotics is proportional to respiration efficiency. Mechanistic causes of the aminoglycoside tolerance resulting from iron limitation are: (i) down and up regulation of ISC and SUF, respectively, by the IscR- and Fur/RyhB-dependent controls described above, (ii) inefficient maturation of Respiratory Complexes I and II by the SUF system resulting in decreased respiratory efficiency, and (iii) Fur/RyhB-dependent downregulation of Complex I and II synthesis (126, 127).

Another illustration of the link between switching machinery and antibiotic tolerance is demonstrated in the case of fluoroquinolones. Exposing *E. coli* to phenazine methosulfate (PMS), a redox cycling compound that causes oxidative stress and NAD(P)H exhaustion, yielded an enhanced tolerance to norfloxacin, a DNA gyrase inhibitor (62). Under PMS exposure, *E. coli* switches to the SUF system, which can target Fe-S clusters to the transcriptional activator SoxR. The Fe-S cluster bound to SoxR gets oxidized and allows SoxR to activate *soxS* transcription. SoxS then activates expression of *acrAB*, encoding an efflux pump, which exports fluoroquinolones out of the cell.

5.2. A feed forward loop mediated by IscR and RyhB.

Acting at both transcription and translation initiation permits finely tuned gene expression. An example is given by the dual control afforded by IscR and RyhB on the expression of *erpA* in *E. coli*. As mentioned above, *E. coli* synthesizes multiple Fe-S carriers and whether they have a degree of functional redundancy has been a matter of debate. Transcription of *erpA* is repressed by holo-IscR while *erpA* mRNA translation is negatively regulated by RyhB (59). These data led to the hypothesis that ErpA is synthesized neither under Fe replete conditions (repression by IscR) nor Fe limitation conditions (inhibition by RyhB). This double control allows ErpA synthesis within a window of intermediate Fe concentrations. The added value of this double control is that ErpA is synthesized under conditions in which neither of the two other A-type carriers, SufA and IscA, are fully synthesized. This control ensures a continuing presence of at least one carrier throughout fluctuating iron concentrations (59).

5.3. IscR as a sensor of the anaerobic/aerobic switch.

Regulation of gene transcription often involves multiple transcriptional regulators, which might compete (or synergize) for closely located operator sites and modify the importance of each other's influence. The influence of IscR on alternate regulators is well documented by an unexpected role of IscR in cell-to-cell variability during the shift from dioxygen respiration to trimethyl amine oxide (TMAO) respiration. The genes that encode TMAO reductase are under the transcriptional control of the TorT/TorS/TorR three-component regulatory system (128, 129). In the presence of dioxygen, *torT/S* expression is repressed by IscR and the level of TorT/S is so low that a stochastic effect prevails leading to cell-to-cell variability in TMAO reductase synthesis. In contrast, under anoxic TMAO-respiring conditions, IscR titers decrease, and *torT/S* expression is derepressed. Levels of TorT/S are now high enough to cancel any effect from stochasticity in gene expression. Therefore, IscR is determining in this "regulated stochasticity" by acting upstream in the cascade, controlling the level of TorT/S, and mediating the oxygen regulation of cell-to-cell variability (130).

5.4. The role of IscR in pathogenic bacteria

IscR is widely conserved and was studied in several bacteria including the pathogens *Erwinia chrysanthemi* (18), *Pseudomonas aeruginosa* (131), *Burkholderia mallei* (132), *Vibrio vulnificus* (133), *Salmonella enterica* (134), and *Yersinia pseudotuberculosis* (135). Because Fe-S-based biology is central to cellular bioenergetics and metabolism, it is expected to be important for bacterial fitness and multiplication within its host. Moreover, both iron limitation and oxidative stress are conditions met by pathogens during host colonization suggesting that IscR may be instrumental in coordinating adaption.

Less expected, however, was that IscR would directly control the synthesis of key virulence determinants as it was reported in both *S. enterica* and *Yersinia pseudotuberculosis*. Both pathogens rely on type 3 secretion systems (T3SS) utilized to inject effectors in the host cells and IscR controls synthesis of T3SS in both bacterial species. *S. enterica* synthesizes two T3SS, referred to SPI1 and SPI2. SPI1 is required for the passage of the bacterium across the epithelial border while SPI2 is required to establish a *S. enterica*-containing vacuole in macrophages. The *spi1* locus includes *hilD*,

encoding a major virulence regulator, which controls its own synthesis and that of effectors. A type 2 IscR binding site is present upstream of hilD and IscR binding was proposed to interfere with HilD positive autoregulation, thereby lowering virulence (134). Consistently, an iscU mutant, which has a high level of apo-IscR, exhibited reduced invasion capacity in epithelial cells and attenuated virulence in a murine model of infection. Conversely, an iscR mutant was hyper-invasive in HeLa cells (134). In Y. pseudotuberculosis IscR binds a type 2 motif within the promoter of a gene encoding the transcription factor LcrF. The *lcrF* gene is located in the virulence plasmid pYV that also encodes a T3SS. LcrF regulates transcription of the T3SS secreted effectors genes, and thereby, virulence. IscR was essential for T3SS-dependent secretion and an iscR mutant was deficient in colonization of the Peyer's patches, spleen, and liver in murine models (135). In V. vulnificus IscR directly activates expression of the vvhBA genes encoding a cytolysin in response to host-derived signals such as nitrosative stress and iron starvation (136). In E. coli some fimbriae genes are directly regulated by IscR, such as cfaA and fimE (137, 138). And lastly, IscR has been shown to coordinate oxidative stress resistance during pathogenesis in Pseudomonas aeruginosa and Xanthomonas campestris (131, 139).

5.5. Regulation of Fe-S biogenesis by SufR.

SufR, first described in Cyanobacteria, is another Fe-S biogenesis-dedicated transcriptional regulator (140). Interestingly, while Cyanobacteria have the two main Fe-S biogenesis machineries, ISC and SUF (and sometimes the NIF system dedicated to nitrogenase maturation), the IscR regulator only regulates transcription of the *isc* locus. The expression of the *suf* locus is under the transcriptional control of its own regulator, SufR. SufR belongs to the DeoR family of helix-loop-helix regulators. Its DNA binding domain is located in the N-terminal portion of the protein and it has a non-conventional Fe-S binding site in the C-terminal portion (C-X₁₂-C-X₁₃-C-X₁₄-C) where a [4Fe-4S] cluster is coordinated (141). Holo-SufR is a repressor of the *suf* locus, thereby down-regulating its own expression. It binds a perfect palindromic sequence (CAAC-N6-GTTG) that is highly conserved in the promoter regions of *suf* loci in Cyanobacteria (141). SufR regulatory activity is sensitive to redox stress, oxidative stress, and iron starvation (140,

141). It is interesting to note that the SUF system appears to be the most important in Cyanobacteria and all the genes of the *suf* locus are essential. This could be why a dedicated regulator controls *suf* expression. Most of the Gram-positive bacteria possess only the SUF system; however, SufR seems to be under-represented with only two examples described in Actinobacteria: *Mycobacterium tuberculosis* and *Streptomyces avermitilis* (142, 143). How the *suf* locus is regulated in most of the Gram-positive bacteria lacking SufR is unknown.

Overall, IscR, and to a lower extent SufR, appear to have primary functions as regulators of Fe-S biosynthesis. IscR is conserved among the bacterial species producing an ISC machinery and coordinates Fe-S biosynthesis with other cellular functions including pathogenesis. In contrast, SufR was only found in Cyanobacteria and some Actinobacteria and is dedicated to regulating the *suf* locus. Both regulators coordinate Fe-S biogenesis to Fe-S bioavailability, and they are assisted in this task by stress specific regulators such as Fur for iron availability, OxyR for oxidative stress, and NsrR for nitrosative stress.

6. Iron-sulfur protein assembly as an anti-pathogen target.

The susceptibility of bacteria to host-distributed chemicals such as copper (Cu) ions, ROS, and RNS, which act, in part, to poison the Fe-S cluster requiring proteins, implies that higher eukaryotes have evolved to prevent bacterial growth by targeting Fe-S protein assembly (5, 144, 145). High-density transposon screens or directed mutagenesis studies suggest that the assembly of Fe-S proteins is essential for many human bacterial pathogens (6). Importantly, microbes synthesize Fe-S clusters using machineries that are functionally similar but biochemically distinct from the machineries used by higher eukaryotes. Bacteria defective in maturating Fe-S proteins have decreased virulence or fitness in models of infection (6, 58, 146). An inability to assemble Fe-S proteins affects numerous metabolic pathways resulting in metabolic chaos. These facts imply that Fe-S protein assembly is a viable target for antimicrobial therapy.

As an example, a small molecule called '882 decreased the activity of aconitase *in vivo*, but not *in vitro* (147). A "pull-down" assay using immobilized '882 as bait found that

it associates with SufBCD. SufC associated with '882 with a K_d for '882 of ~3 μ M. These data led to the hypothesis that '882 inhibited Fe-S protein assembly by inhibiting Sufdependent Fe-S cluster synthesis. The Suf system has also been proposed to be a target for other non-bacterial pathogens including *Toxoplasma gondii* and *Plasmodium falciparum* (148). For the latter, the molecule D-cycloserine, which can form a covalent adduct with PLP, can inhibit the cysteine desulfurase SufS resulting in growth inhibition (149).

7. Future directions.

New Fe-S cluster assembly factors are continually being discovered lending support to the hypothesis that additional factors exist and that our current knowledge is incomplete. To move forward, we need to broaden our approaches by using newly available techniques and expand the organisms studied. Studies using *E. coli* and *A. vinelandii* have provided the bulk of the information about how bacteria assemble Fe-S proteins. These Gram-negative organisms are relatively unique in the fact that they have more than one biosynthetic system, which are, for the most part, functionally redundant. In contrast, very few studies have been conducted on Fe-S cluster assembly in Gram-positive bacteria, which typically encode only one Fe-S cluster biosynthesis system.

Several questions remain about Fe-S protein maturation and its regulation. The Fe and electron donors for Fe-S cluster synthesis and repair remain elusive. We also do not fully understand the mechanism by which Suf synthesizes Fe-S clusters, or the functions of many factors utilized for maturating Fe-S proteins. We need to increase our understanding of how the Fe-S cluster assembly machinery is integrated with metabolic pathways that require Fe-S proteins. It is not well understood if Fe-S cluster carriers transfer Fe-S clusters to all apo-targets with the same efficacy or if there is an apo-protein hierarchy driven by carrier specificity. Understanding this integration will provide insights into metabolite balance and the consequences of decreasing metabolic flux through a pathway that requires an Fe-S protein since it is a costly process for the cells (150). This knowledge will not only be important for medicine and the development of specific anti-pathogen targets, but also for scientists using organisms to conduct green chemistry.

Inefficient Fe-S protein maturation, such as in organisms engineered to produce biofuels, fix dinitrogen, or generate secondary metabolites, could decrease the yields and the efficiency of desired processes, ultimately decreasing profits and productivity (151).

Acknowledgments.

We thank members of the Boyd and Barras Units for discussions. Support to the Barras lab was provided by the ANR-10-LABX-62-IBEID and Pasteur Institute. The Boyd lab is funded by National Science Foundation Award 1750624.

642 Figure Legends.

Figure 1. General mechanism of bacterial Fe-S protein assembly. Monoatomic Fe²⁺ and S⁰ are combined with electrons on a proteinaceous molecular scaffold forming an Fe-S cluster. The Fe-S cluster is transferred to one or more carrier proteins before being transferred to an apo-protein forming a holo-protein. Reactive oxygen species (ROS) can either damage the Fe-S cluster, which can subsequently be repaired, or destroy it,

resulting in apo-protein formation.

648649

650 Figure 2. Iron-sulfur cluster synthesis. Panel A. Structure of IscU from *Thermus*

651 thermophiles (PDB: 2qq4). The grey ball is a Zn(II) ion and the three ligating cysteines

are highlighted. Panel B. The structure of SufBC₂D from *Escherichia coli* (PDB: 5awf).

SufC is shown in green and SufB and SufD are shown in purple and tan, respectively.

Panel C. Working models for ISC and SUF-directed iron-sulfur protein maturation in

655 Escherichia coli.

656

658

659

660

661

Figure 3. Iron-sulfur cluster carriage. Panel A. structure of the A-type carrier lscA from

Thermosynechococcus elongatus (PDB: 1x0g) with [2Fe-2S] cluster bound. Panel B.

Structure of Nfu from Staphylococcus epidermidis (PDB: 1xhj). The cysteine thiols that

are proposed iron-sulfur cluster ligands are highlighted. Panel C. A schematic

representation of iron-sulfur cluster scaffolds and carriers.

662

664

665

666

667668

Figure 4. Regulation of iron-sulfur cluster synthesis in *Escherichia coli*. Panel A. An X-

ray structure of apo-IscR monomer with the proposed Fe-S cluster ligands (C92A, C98A,

C104A, and H107) are highlighted in red (PDB: 4hf1). Note that in this IscR variant the

ligating cysteines have been changed to alanines. Panel B. An X-ray structure of dimeric

apo-lscR bound to the hya promoter which is a type 2 binding site (PDB: 4hf1). Each

monomer is differently colored (blue and pink). Panel C. Model for the regulation of ISC

and SUF expression in Escherichia coli.

670

References

672

- 673 1. Wofford JD, Bolaji N, Dziuba N, Outten FW, Lindahl PA. 2019. Evidence that a respiratory 674 shield in *Escherichia coli* protects a low-molecular-mass Fe(II) pool from O₂-dependent 675 oxidation. J Biol Chem 294:50-62.
- Blattner FR, Plunkett III G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J,
 Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose
 DJ, Mau B, Shao Y. 1997. The complete genome sequence of *Escherichia coli* K-12.
 Science 277:1453-1474.
- Rocha AG, Dancis A. 2016. Life without Fe-S clusters. Mol Microbiol 99:821-6.
- 4. Jang S, Imlay JA. 2007. Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron-sulfur enzymes. J Biol Chem 282:929-937.
- 5. Imlay JA. 2006. Iron-sulphur clusters and the problem with oxygen. Mol Microbiol 59:1073-82.
- 685 6. Roberts CA, Al-Tameemi HM, Mashruwala AA, Rosario-Cruz Z, Chauhan U, Sause WE,
 686 Torres VJ, Belden WJ, Boyd JM. 2017. The Suf Iron-Sulfur Cluster Biosynthetic System Is
 687 Essential in *Staphylococcus aureus*, and Decreased Suf Function Results in Global
 688 Metabolic Defects and Reduced Survival in Human Neutrophils. Infect Immun 85.
- 7. Tanaka N, Kanazawa M, Tonosaki K, Yokoyama N, Kuzuyama T, Takahashi Y. 2016. Novel features of the ISC machinery revealed by characterization of *Escherichia coli* mutants that survive without iron-sulfur clusters. Mol Microbiol 99:835-48.
- Yokoyama N, Nonaka C, Ohashi Y, Shioda M, Terahata T, Chen W, Sakamoto K,
 Maruyama C, Saito T, Yuda E, Tanaka N, Fujishiro T, Kuzuyama T, Asai K, Takahashi Y.
 2018. Distinct roles for U-type proteins in iron-sulfur cluster biosynthesis revealed by
 genetic analysis of the *Bacillus subtilis sufCDSUB* operon. Mol Microbiol
 doi:10.1111/mmi.13907.
- 697 9. Loiseau L, Gerez C, Bekker M, Ollagnier-de Choudens S, Py B, Sanakis Y, Teixeira de 698 Mattos J, Fontecave M, Barras F. 2007. ErpA, an iron sulfur (Fe S) protein of the A-type 699 essential for respiratory metabolism in *Escherichia coli*. Proc Natl Acad Sci U S A 700 104:13626-31.
- 701 10. Roche B, Aussel L, Ezraty B, Mandin P, Py B, Barras F. 2013. Iron/sulfur proteins 702 biogenesis in prokaryotes: formation, regulation and diversity. Biochim Biophys Acta 703 1827:455-69.
- Takahashi Y, Tokumoto U. 2002. A third bacterial system for the assembly of iron-sulfur clusters with homologs in archaea and plastids. J Biol Chem 277:28380-28393.
- 706 12. Zheng L, Cash VL, Flint DH, Dean DR. 1998. Assembly of iron-sulfur clusters.
 707 Identification of an *iscSUA-hscBA-fdx* gene cluster from *Azotobacter vinelandii*. J Biol
 708 Chem 273:13264-13272.
- Zheng L, White RH, Cash VL, Jack RF, Dean DR. 1993. Cysteine desulfurase activity
 indicates a role for NIFS in metallocluster biosynthesis. Proceedings of the National
 Academy of Sciences of the United States of America 90:2754-2758.
- 712 14. Buren S, Jimenez-Vicente E, Echavarri-Erasun C, Rubio LM. 2020. Biosynthesis of Nitrogenase Cofactors. Chem Rev doi:10.1021/acs.chemrev.9b00489.

- 714 15. Dinis P, Wieckowski BM, Roach PL. 2016. Metallocofactor assembly for [FeFe]-715 hydrogenases. Curr Opin Struct Biol 41:90-97.
- 716 16. Yuvaniyama P, Agar JN, Cash VL, Johnson MK, Dean DR. 2000. NifS-directed assembly of a transient [2Fe-2S] cluster within the NifU protein. Proc Nat Acad Sci U S A 97:599-604.
- 718 17. Boyd ES, Thomas KM, Dai Y, Boyd JM, Outten FW. 2014. Interplay between oxygen and Fe-S cluster biogenesis: insights from the Suf pathway. Biochemistry 53:5834-47.
- 720 18. Rincon-Enriquez G, Crete P, Barras F, Py B. 2008. Biogenesis of Fe/S proteins and pathogenicity: IscR plays a key role in allowing Erwinia chrysanthemi to adapt to hostile conditions. Mol Microbiol 67:1257-73.
- 19. Layer G, Gaddam SA, Ayala-Castro CN, Ollagnier-de Choudens S, Lascoux D, Fontecave
 724 M, Outten FW. 2007. SufE transfers sulfur from SufS to SufB for iron-sulfur cluster
 725 assembly. J Biol Chem 282:13342-50.
- 726 20. Agar JN, Krebs C, Frazzon J, Huynh BH, Dean DR, Johnson MK. 2000. IscU as a scaffold for
 727 iron-sulfur cluster biosynthesis: sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in
 728 IscU. Biochemistry 39:7856-7862.
- Wollers S, Layer G, Garcia-Serres R, Signor L, Clemancey M, Latour JM, Fontecave M,
 Ollagnier de Choudens S. 2010. Iron-sulfur (Fe-S) cluster assembly: the SufBCD complex
 is a new type of Fe-S scaffold with a flavin redox cofactor. J Biol Chem.
- Hirabayashi K, Yuda E, Tanaka N, Katayama S, Iwasaki K, Matsumoto T, Kurisu G, Outten FW, Fukuyama K, Takahashi Y, Wada K. 2015. Functional Dynamics Revealed by the Structure of the SufBCD Complex, a Novel ATP-binding Cassette (ABC) Protein That Serves as a Scaffold for Iron-Sulfur Cluster Biogenesis. J Biol Chem 290:29717-31.
- Black KA, Dos Santos PC. 2015. Shared-intermediates in the biosynthesis of thio-cofactors: Mechanism and functions of cysteine desulfurases and sulfur acceptors.
 Biochim Biophys Acta 1853:1470-80.
- Selbach BP, Chung AH, Scott AD, George SJ, Cramer SP, Dos Santos PC. 2014. Fe-S cluster
 biogenesis in Gram-positive bacteria: SufU is a zinc-dependent sulfur transfer protein.
 Biochemistry 53:152-60.
- 742 25. Dai Y, Outten FW. 2012. The *E. coli* SufS-SufE sulfur transfer system is more resistant to oxidative stress than IscS-IscU. FEBS Lett 586:4016-22.
- 744 26. Selbach BP, Pradhan PK, Dos Santos PC. 2013. Protected sulfur transfer reactions by the 745 *Escherichia coli* Suf system. Biochemistry 52:4089-96.
- 746 27. Selbach B, Earles E, Dos Santos PC. 2010. Kinetic analysis of the bisubstrate cysteine desulfurase SufS from *Bacillus subtilis*. Biochemistry 49:8794-802.
- Liu Y, Sieprawska-Lupa M, Whitman WB, White RH. 2010. Cysteine is not the sulfur source for iron-sulfur cluster and methionine biosynthesis in the methanogenic archaeon *Methanococcus maripaludis*. J Biol Chem 285:31923-9.
- 751 29. Kim JH, Frederick RO, Reinen NM, Troupis AT, Markley JL. 2013. [2Fe-2S]-ferredoxin 752 binds directly to cysteine desulfurase and supplies an electron for iron-sulfur cluster 753 assembly but is displaced by the scaffold protein or bacterial frataxin. J Am Chem Soc 754 135:8117-20.
- 755 30. Yan R, Konarev PV, Iannuzzi C, Adinolfi S, Roche B, Kelly G, Simon L, Martin SR, Py B, Barras F, Svergun DI, Pastore A. 2013. Ferredoxin competes with bacterial frataxin in binding to the desulfurase IscS. J Biol Chem 288:24777-87.

- 758 31. Yan R, Adinolfi S, Pastore A. 2015. Ferredoxin, in conjunction with NADPH and
 759 ferredoxin-NADP reductase, transfers electrons to the IscS/IscU complex to promote
 760 iron-sulfur cluster assembly. Biochim Biophys Acta 1854:1113-7.
- Agar JN, Yuvaniyama P, Jack RF, Cash VL, Smith AD, Dean DR, Johnson MK. 2000.
 Modular organization and identification of a mononuclear iron-binding site within the
 NifU protein. J Biol Inorg Chem 5:167-77.
- 33. Biegel E, Schmidt S, Gonzalez JM, Muller V. 2011. Biochemistry, evolution and
 physiological function of the Rnf complex, a novel ion-motive electron transport
 complex in prokaryotes. Cell Mol Life Sci 68:613-34.
- 767 34. Curatti L, Brown CS, Ludden PW, Rubio LM. 2005. Genes required for rapid expression of nitrogenase activity in *Azotobacter vinelandii*. Proc Natl Acad Sci U S A 102:6291-6.
- 35. Bridwell-Rabb J, Iannuzzi C, Pastore A, Barondeau DP. 2012. Effector role reversal during evolution: the case of frataxin in Fe-S cluster biosynthesis. Biochemistry 51:2506-14.
- 771 36. Roche B, Huguenot A, Barras F, Py B. 2015. The iron-binding CyaY and IscX proteins assist the ISC-catalyzed Fe-S biogenesis in *Escherichia coli*. Mol Microbiol 95:605-23.
- 773 37. Roche B, Agrebi R, Huguenot A, Ollagnier de Choudens S, Barras F, Py B. 2015. Turning 774 Escherichia coli into a Frataxin-Dependent Organism. PLoS Genet 11:e1005134.
- 775 38. Kim JH, Bothe JR, Frederick RO, Holder JC, Markley JL. 2014. Role of IscX in iron-sulfur cluster biogenesis in *Escherichia coli*. J Am Chem Soc 136:7933-42.
- 777 39. Prischi F, Konarev PV, Iannuzzi C, Pastore C, Adinolfi S, Martin SR, Svergun DI, Pastore A.
 2010. Structural bases for the interaction of frataxin with the central components of
 iron-sulphur cluster assembly. Nat Commun 1:95.
- Adinolfi S, Puglisi R, Crack JC, Iannuzzi C, Dal Piaz F, Konarev PV, Svergun DI, Martin S, Le
 Brun NE, Pastore A. 2017. The Molecular Bases of the Dual Regulation of Bacterial Iron
 Sulfur Cluster Biogenesis by CyaY and IscX. Front Mol Biosci 4:97.
- Handry AP, Cheng Z, Ding H. 2013. Iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis. Dalton Trans 42:3100-6.
- Garcia PS, Gribaldo S, Py B, Barras F. 2019. The SUF system: an ABC ATPase-dependent protein complex with a role in Fe-S cluster biogenesis. Res Microbiol 170:426-434.
- 787 43. Nachin L, Loiseau L, Expert D, Barras F. 2003. SufC: an unorthodox cytoplasmic ABC/ATPase required for [Fe-S] biogenesis under oxidative stress. EMBO J 22:427-437.
- 789 44. Petrovic A, Davis CT, Rangachari K, Clough B, Wilson RJ, Eccleston JF. 2008.
 790 Hydrodynamic characterization of the SufBC and SufCD complexes and their interaction

with fluorescent adenosine nucleotides. Protein Sci 17:1264-74.

- 792 45. Koonin EV. 1993. A superfamily of ATPases with diverse functions containing either classical or deviant ATP-binding motif. J Mol Biol 229:1165-74.
- 794 46. Saini A, Mapolelo DT, Chahal HK, Johnson MK, Outten FW. 2010. SufD and SufC ATPase activity are required for iron acquisition during *in vivo* Fe-S cluster formation on SufB. Biochemistry 49:9402-12.
- Hoff KG, Silberg JJ, Vickery LE. 2000. Interaction of the iron-sulfur cluster assembly
 protein IscU with the Hsc66/Hsc20 molecular chaperone system of *Escherichia coli*.
 Proceedings of the National Academy of Sciences of the United States of America

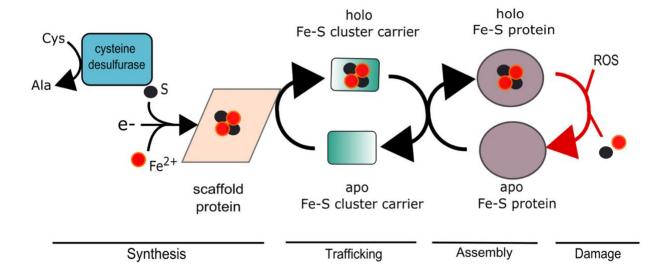
800 97:7790-7795.

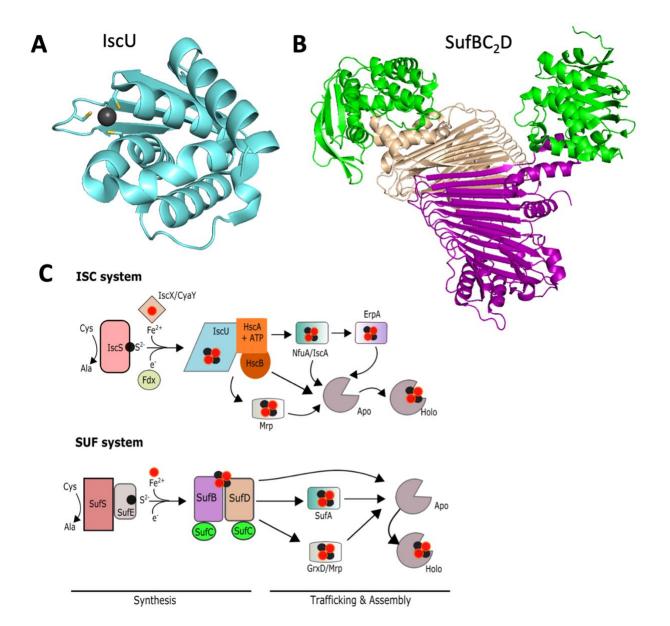
- 801 48. Bonomi F, Iametti S, Morleo A, Ta D, Vickery LE. 2008. Studies on the mechanism of catalysis of iron-sulfur cluster transfer from IscU[2Fe2S] by HscA/HscB chaperones.
 803 Biochemistry 47:12795-801.
- Silberg JJ, Hoff KG, Tapley TL, Vickery LE. 2001. The Fe/S assembly protein IscU behaves as a substrate for the molecular chaperone Hsc66 from *Escherichia coli*. J Biol Chem 276:1696-700.
- Hoff KG, Silberg JJ, Vickery LE. 2000. Interaction of the iron-sulfur cluster assembly
 protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli. Proc
 Natl Acad Sci U S A 97:7790-5.
- Silberg JJ, Tapley TL, Hoff KG, Vickery LE. 2004. Regulation of the HscA ATPase reaction cycle by the co-chaperone HscB and the iron-sulfur cluster assembly protein IscU. J Biol Chem 279:53924-31.
- Puglisi R, Pastore A. 2018. The role of chaperones in iron-sulfur cluster biogenesis. FEBS Lett 592:4011-4019.
- Vinella D, Brochier-Armanet C, Loiseau L, Talla E, Barras F. 2009. Iron-sulfur (Fe/S) protein biogenesis: phylogenomic and genetic studies of A-type carriers. PLoS Genet 5:e1000497.
- Vinella D, Loiseau L, Ollagnier de Choudens S, Fontecave M, Barras F. 2013. In vivo [Fe-S] cluster acquisition by IscR and NsrR, two stress regulators in *Escherichia coli*. Mol Microbiol 87:493-508.
- S5. Chahal HK, Outten FW. 2012. Separate FeS scaffold and carrier functions for SufB(2)C(2) and SufA during *in vitro* maturation of [2Fe2S] Fdx. J Inorg Biochem 116:126-34.
- 56. Dos Santos PC, Smith AD, Frazzon J, Cash VL, Johnson MK, Dean DR. 2004. Iron-sulfur cluster assembly: NifU-directed activation of the nitrogenase Fe protein. J Biol Chem 279:19705-19711.
- 826 57. Mapolelo DT, Zhang B, Naik SG, Huynh BH, Johnson MK. 2012. Spectroscopic and functional characterization of iron-sulfur cluster-bound forms of *Azotobacter vinelandii* (Nif)IscA. Biochemistry 51:8071-84.
- Mashruwala AA, Pang YY, Rosario-Cruz Z, Chahal HK, Benson MA, Mike LA, Skaar EP,
 Torres VJ, Nauseef WM, Boyd JM. 2015. Nfu facilitates the maturation of iron-sulfur
 proteins and participates in virulence in *Staphylococcus aureus*. Mol Microbiol 95:383-409.
- Mandin P, Chareyre S, Barras F. 2016. A Regulatory Circuit Composed of a Transcription Factor, IscR, and a Regulatory RNA, RyhB, Controls Fe-S Cluster Delivery. mBio 7.
- 835 60. Morimoto K, Yamashita E, Kondou Y, Lee SJ, Arisaka F, Tsukihara T, Nakai M. 2006. The asymmetric IscA homodimer with an exposed [2Fe-2S] cluster suggests the structural basis of the Fe-S cluster biosynthetic scaffold. J Mol Biol 360:117-32.
- Py B, Gerez C, Huguenot A, Vidaud C, Fontecave M, Ollagnier de Choudens S, Barras F.
 2018. The ErpA/NfuA complex builds an oxidation-resistant Fe-S cluster delivery
 pathway. J Biol Chem 293:7689-7702.
- 62. Gerstel A, Zamarreno Beas J, Duverger Y, Bouveret E, Barras F, Py B. 2020. Oxidative stress antagonizes fluoroquinolone drug sensitivity via the SoxR-SUF Fe-S cluster homeostatic axis. PLoS Genet 16:e1009198.

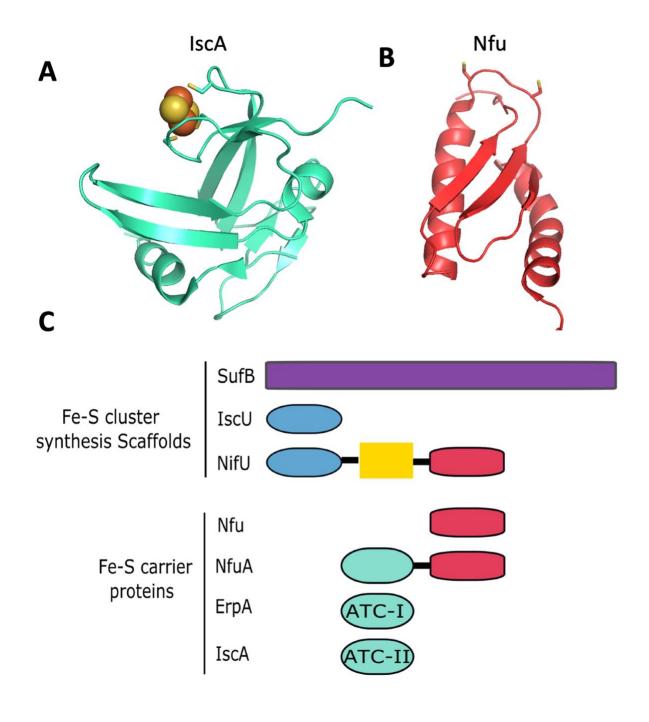
- Smith AD, Jameson GN, Dos Santos PC, Agar JN, Naik S, Krebs C, Frazzon J, Dean DR, Huynh BH, Johnson MK. 2005. NifS-mediated assembly of [4Fe-4S] clusters in the N- and C-terminal domains of the NifU scaffold protein. Biochemistry 44:12955-12969.
- 847 64. Angelini S, Gerez C, Ollagnier-de Choudens S, Sanakis Y, Fontecave M, Barras F, Py B.
 848 2008. NfuA, a new factor required for maturing Fe/S proteins in *Escherichia coli* under
 849 oxidative stress and iron starvation conditions. J Biol Chem 283:14084-91.
- 850 65. Bandyopadhyay S, Naik SG, O'Carroll IP, Huynh BH, Dean DR, Johnson MK, Dos Santos PC. 2008. A proposed role for the *Azotobacter vinelandii* NfuA protein as an intermediate iron-sulfur cluster carrier. J Biol Chem 283:14092-9.
- 853 66. Py B, Gerez C, Angelini S, Planel R, Vinella D, Loiseau L, Talla E, Brochier-Armanet C,
 854 Garcia Serres R, Latour JM, Ollagnier-de Choudens S, Fontecave M, Barras F. 2012.
 855 Molecular organization, biochemical function, cellular role and evolution of NfuA, an
 856 atypical Fe-S carrier. Mol Microbiol 86:155-71.
- 857 67. McCarthy EL, Rankin AN, Dill ZR, Booker SJ. 2019. The A-type domain in Escherichia coli 858 NfuA is required for regenerating the auxiliary [4Fe-4S] cluster in Escherichia coli lipoyl 859 synthase. J Biol Chem 294:1609-1617.
- Jin Z, Heinnickel M, Krebs C, Shen G, Golbeck JH, Bryant DA. 2008. Biogenesis of iron-sulfur clusters in photosystem I: Holo-NfuA from the cyanobacterium Synechococcus sp.
 PCC 7002 rapidly and efficiently transfers [4Fe-4S] clusters to apo-PsaC in vitro. J Biol
 Chem.
- 864 69. Benoit SL, Holland AA, Johnson MK, Maier RJ. 2018. Iron-sulfur protein maturation in 865 *Helicobacter pylori*: identifying a Nfu-type cluster carrier protein and its iron-sulfur 866 protein targets. Mol Microbiol 108:379-396.
- Skovran E, Downs DM. 2003. Lack of the ApbC or ApbE protein results in a defect in Fe-S cluster metabolism in *Salmonella enterica* serovar Typhimurium. J Bacteriol 185:98-106.
- 869 71. Boyd JM, Pierik AJ, Netz DJ, Lill R, Downs DM. 2008. Bacterial ApbC can bind and effectively transfer iron-sulfur clusters. Biochemistry 47:8195-202.
- Lewis JA, Escalante-Semerena JC. 2007. Tricarballylate catabolism in Salmonella
 enterica. The TcuB protein uses 4Fe-4S clusters and heme to transfer electrons from
 FADH2 in the tricarballylate dehydrogenase (TcuA) enzyme to electron acceptors in the
 cell membrane. Biochemistry 46:9107-15.
- 875 73. Boyd JM, Teoh WP, Downs DM. 2012. Decreased transport restores growth of a Salmonella enterica apbC mutant on tricarballylate. J Bacteriol 194:576-83.
- 877 74. Boyd JM, Lewis JA, Escalante-Semerena JC, Downs DM. 2008. Salmonella enterica 878 requires ApbC function for growth on tricarballylate: evidence of functional redundancy 879 between ApbC and IscU. J Bacteriol 190:4596-602.
- 880 75. Butland G, Babu M, Diaz-Mejia JJ, Bohdana F, Phanse S, Gold B, Yang W, Li J, Gagarinova 881 AG, Pogoutse O, Mori H, Wanner BL, Lo H, Wasniewski J, Christopolous C, Ali M, Venn P, 882 Safavi-Naini A, Sourour N, Caron S, Choi JY, Laigle L, Nazarians-Armavil A, Deshpande A, 883 Joe S, Datsenko KA, Yamamoto N, Andrews BJ, Boone C, Ding H, Sheikh B, Moreno-
- Hagelseib G, Greenblatt JF, Emili A. 2008. eSGA: *E. coli* synthetic genetic array analysis.
- 885 Nat Methods 5:789-95.

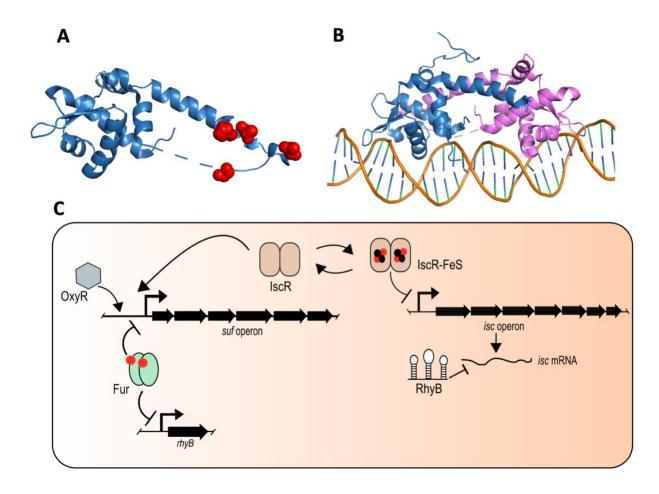
- Yeung N, Gold B, Liu NL, Prathapam R, Sterling HJ, Willams ER, Butland G. 2011. The E.
 coli monothiol glutaredoxin GrxD forms homodimeric and heterodimeric FeS cluster
 containing complexes. Biochemistry 50:8957-69.
- Wema T, Picciocchi A, Traore DA, Ferrer JL, Chauvat F, Jacquamet L. 2009. Structural basis for delivery of the intact [Fe2S2] cluster by monothiol glutaredoxin. Biochemistry 48:6041-3.
- 892 78. Boutigny S, Saini A, Baidoo EE, Yeung N, Keasling JD, Butland G. 2013. Physical and functional interactions of a monothiol glutaredoxin and an iron sulfur cluster carrier protein with the sulfur-donating radical S-adenosyl-L-methionine enzyme MiaB. J Biol Chem 288:14200-11.
- Mashruwala AA, Bhatt S, Poudel S, Boyd ES, Boyd JM. 2016. The DUF59 Containing
 Protein SufT Is Involved in the Maturation of Iron-Sulfur (FeS) Proteins during Conditions
 of High FeS Cofactor Demand in *Staphylococcus aureus*. PLoS Genet 12:e1006233.
- 899 80. Paul VD, Lill R. 2014. SnapShot: eukaryotic Fe-S protein biogenesis. Cell Metab 20:384-900 384 e1.
- 901 81. Stehling O, Mascarenhas J, Vashisht AA, Sheftel AD, Niggemeyer B, Rosser R, Pierik AJ, Wohlschlegel JA, Lill R. 2013. Human CIA2A-FAM96A and CIA2B-FAM96B integrate iron homeostasis and maturation of different subsets of cytosolic-nuclear iron-sulfur proteins. Cell Metab 18:187-98.
- 905 82. Luo D, Bernard DG, Balk J, Hai H, Cui X. 2012. The DUF59 family gene AE7 acts in the cytosolic iron-sulfur cluster assembly pathway to maintain nuclear genome integrity in *Arabidopsis*. Plant Cell 24:4135-48.
- 908 83. Mashruwala AA, Roberts CA, Bhatt S, May KL, Carroll RK, Shaw LN, Boyd JM. 2016. 909 Staphylococcus aureus SufT: An essential iron-sulfur cluster assembly factor in cells 910 experiencing a high-demand for lipoic acid. Mol Microbiol doi:10.1111/mmi.13539.
- 911 84. Huet G, Daffe M, Saves I. 2005. Identification of the *Mycobacterium tuberculosis* SUF machinery as the exclusive mycobacterial system of [Fe-S] cluster assembly: evidence for its implication in the pathogen's survival. J Bacteriol 187:6137-46.
- 914 85. Srinivasan V, Pierik AJ, Lill R. 2014. Crystal structures of nucleotide-free and glutathione-915 bound mitochondrial ABC transporter Atm1. Science 343:1137-40.
- 916 86. Rodriguez-Manzaneque MT, Tamarit J, Belli G, Ros J, Herrero E. 2002. Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol Biol Cell 13:1109-21.
- 919 87. Gardner PR, Fridovich I. 1993. Effect of glutathione on aconitase in *Escherichia coli*. 920 Archives of Biochemistry and Biophysics 301:98-102.
- 921 88. Thorgersen MP, Downs DM. 2008. Analysis of yggX and gshA mutants provides insights into the labile iron pool in Salmonella enterica. J Bacteriol 190:7608-13.
- 923 89. Hider RC, Kong XL. 2011. Glutathione: a key component of the cytoplasmic labile iron pool. Biometals 24:1179-87.
- 925 90. Nappi AJ, Vass E. 1997. Comparative studies of enhanced iron-mediated production of hydroxyl radical by glutathione, cysteine, ascorbic acid, and selected catechols. Biochim Biophys Acta 1336:295-302.
- 928 91. Zhang B, Bandyopadhyay S, Shakamuri P, Naik SG, Huynh BH, Couturier J, Rouhier N, Johnson MK. 2013. Monothiol glutaredoxins can bind linear [Fe3S4]+ and [Fe4S4]2+

- clusters in addition to [Fe2S2]2+ clusters: spectroscopic characterization and functional implications. J Am Chem Soc 135:15153-64.
- 932 92. Feng Y, Zhong N, Rouhier N, Hase T, Kusunoki M, Jacquot JP, Jin C, Xia B. 2006. Structural 933 insight into poplar glutaredoxin C1 with a bridging iron-sulfur cluster at the active site. 934 Biochemistry 45:7998-8008.
- 935 93. Qi W, Li J, Chain CY, Pasquevich GA, Pasquevich AF, Cowan JA. 2012. Glutathione complexed fe-s centers. J Am Chem Soc 134:10745-8.
- 937 94. Newton GL, Rawat M, La Clair JJ, Jothivasan VK, Budiarto T, Hamilton CJ, Claiborne A, 938 Helmann JD, Fahey RC. 2009. Bacillithiol is an antioxidant thiol produced in Bacilli. Nat 939 Chem Biol 5:625-7.
- 940 95. Rosario-Cruz Z, Chahal HK, Mike LA, Skaar EP, Boyd JM. 2015. Bacillithiol has a role in Fe-941 S cluster biogenesis in *Staphylococcus aureus*. Mol Microbiol 98:218-42.
- 942 96. Fang Z, Dos Santos PC. 2015. Protective role of bacillithiol in superoxide stress and Fe-S metabolism in *Bacillus subtilis*. Microbiologyopen 4:616-31.
- 944 97. Rosario-Cruz Z, Boyd JM. 2016. Physiological roles of bacillithiol in intracellular metal processing. Curr Genet 62:59-65.
- 946
 98. Gelling C, Dawes IW, Richhardt N, Lill R, Muhlenhoff U. 2008. Mitochondrial Iba57p is
 947 required for Fe/S cluster formation on aconitase and activation of radical SAM enzymes.
 948 Mol Cell Biol 28:1851-61.
- 949
 99. Waller JC, Alvarez S, Naponelli V, Lara-Nunez A, Blaby IK, Da Silva V, Ziemak MJ, Vickers
 950
 951 Everley SM, Edison AS, Rocca JR, Gregory JF, 3rd, de Crecy-Lagard V, Hanson AD.
 951 2010. A role for tetrahydrofolates in the metabolism of iron-sulfur clusters in all
 952 domains of life. Proc Natl Acad Sci U S A 107:10412-7.
- Teplyakov A, Obmolova G, Sarikaya E, Pullalarevu S, Krajewski W, Galkin A, Howard AJ,
 Herzberg O, Gilliland GL. 2004. Crystal structure of the YgfZ protein from Escherichia coli
 suggests a folate-dependent regulatory role in one-carbon metabolism. J Bacteriol
 186:7134-40.
- 957 101. Justino MC, Vicente JB, Teixeira M, Saraiva LM. 2005. New genes implicated in the 958 protection of anaerobically grown Escherichia coli against nitric oxide. J Biol Chem 959 280:2636-43.
- Filenko N, Spiro S, Browning DF, Squire D, Overton TW, Cole J, Constantinidou C. 2007.
 The NsrR regulon of *Escherichia coli* K-12 includes genes encoding the hybrid cluster
 protein and the periplasmic, respiratory nitrite reductase. J Bacteriol 189:4410-7.
- 963 103. Bodenmiller DM, Spiro S. 2006. The *yjeB* (*nsrR*) gene of *Escherichia coli* encodes a nitric oxide-sensitive transcriptional regulator. J Bacteriol 188:874-81.
- Justino MC, Almeida CC, Teixeira M, Saraiva LM. 2007. Escherichia coli di-iron YtfE
 protein is necessary for the repair of stress-damaged iron-sulfur clusters. J Biol Chem
 282:10352-9.
- 968 105. Overton TW, Justino MC, Li Y, Baptista JM, Melo AM, Cole JA, Saraiva LM. 2008.
 969 Widespread distribution in pathogenic bacteria of di-iron proteins that repair oxidative and nitrosative damage to iron-sulfur centers. J Bacteriol 190:2004-13.
- 971 106. Strube K, de Vries S, Cramm R. 2007. Formation of a dinitrosyl iron complex by NorA, a 972 nitric oxide-binding di-iron protein from Ralstonia eutropha H16. J Biol Chem 973 282:20292-300.


- 974 107. Nobre LS, Garcia-Serres R, Todorovic S, Hildebrandt P, Teixeira M, Latour JM, Saraiva 975 LM. 2014. Escherichia coli RIC is able to donate iron to iron-sulfur clusters. PLoS One 976 9:e95222.
- 977 108. Silva LSO, Baptista JM, Batley C, Andrews SC, Saraiva LM. 2018. The Di-iron RIC Protein 978 (YtfE) of Escherichia coli Interacts with the DNA-Binding Protein from Starved Cells (Dps) 979 To Diminish RIC Protein-Mediated Redox Stress. J Bacteriol 200.
- 980
 981
 982
 Mashruwala AA, Boyd JM. 2017. The Staphylococcus aureus SrrAB Regulatory System
 981 Modulates Hydrogen Peroxide Resistance Factors, Which Imparts Protection to
 982 Aconitase during Aerobic Growth. PLoS One 12:e0170283.
- 983 110. Mashruwala AA, Van De Guchte A, Boyd JM. 2017. Impaired respiration elicits SrrAB-984 dependent programmed cell lysis and biofilm formation in *Staphylococcus aureus*. eLife 985 6.
- Lo FC, Hsieh CC, Maestre-Reyna M, Chen CY, Ko TP, Horng YC, Lai YC, Chiang YW, Chou
 CM, Chiang CH, Huang WN, Lin YH, Bohle DS, Liaw WF. 2016. Crystal Structure Analysis
 of the Repair of Iron Centers Protein YtfE and Its Interaction with NO. Chemistry
 22:9768-76.
- 990 112. Balasiny B, Rolfe MD, Vine C, Bradley C, Green J, Cole J. 2018. Release of nitric oxide by the *Escherichia coli* YtfE (RIC) protein and its reduction by the hybrid cluster protein in an integrated pathway to minimize cytoplasmic nitrosative stress. Microbiology 164:563-575.
- 994 113. Davis KM, Krupp J, Clark S, Isberg RR. 2019. Iron-Sulfur Cluster Repair Contributes to 995 *Yersinia pseudotuberculosis* Survival within Deep Tissues. Infect Immun 87.
- Harrington JC, Wong SM, Rosadini CV, Garifulin O, Boyartchuk V, Akerley BJ. 2009.
 Resistance of *Haemophilus influenzae* to reactive nitrogen donors and gamma interferon-stimulated macrophages requires the formate-dependent nitrite reductase regulator-activated *ytfE* gene. Infect Immun 77:1945-58.
- 1000 115. Rajagopalan S, Teter SJ, Zwart PH, Brennan RG, Phillips KJ, Kiley PJ. 2013. Studies of IscR reveal a unique mechanism for metal-dependent regulation of DNA binding specificity.


 Nat Struct Mol Biol 20:740-7.
- 1003 116. Fleischhacker AS, Stubna A, Hsueh KL, Guo Y, Teter SJ, Rose JC, Brunold TC, Markley JL,
 1004 Munck E, Kiley PJ. 2012. Characterization of the [2Fe-2S] cluster of *Escherichia coli* 1005 transcription factor IscR. Biochemistry 51:4453-62.
- 1006 117. Bak DW, Elliott SJ. 2014. Alternative FeS cluster ligands: tuning redox potentials and chemistry. Curr Opin Chem Biol 19:50-8.
- 1008 118. Nesbit AD, Giel JL, Rose JC, Kiley PJ. 2009. Sequence-specific binding to a subset of IscR-1009 regulated promoters does not require IscR Fe-S cluster ligation. J Mol Biol 387:28-41.
- 1010 119. Giel JL, Rodionov D, Liu M, Blattner FR, Kiley PJ. 2006. IscR-dependent gene expression links iron-sulphur cluster assembly to the control of O2-regulated genes in *Escherichia coli*. Mol Microbiol 60:1058-75.
- 1013 120. Yeo WS, Lee JH, Lee KC, Roe JH. 2006. IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe-S assembly proteins. Mol Microbiol 61:206-18.
- 1015 121. Lee KC, Yeo WS, Roe JH. 2008. Oxidant-responsive induction of the suf operon, encoding a Fe-S assembly system, through Fur and IscR in Escherichia coli. J Bacteriol 190:8244-7.


- 1017 122. Desnoyers G, Morissette A, Prevost K, Masse E. 2009. Small RNA-induced differential degradation of the polycistronic mRNA *iscRSUA*. EMBO J 28:1551-61.
- 1019 123. Fontenot CR, Tasnim H, Valdes KA, Popescu CV, Ding H. 2020. Ferric uptake regulator (Fur) reversibly binds a [2Fe-2S] cluster to sense intracellular iron homeostasis in Escherichia coli. J Biol Chem 295:15454-15463.
- 1022 124. Outten FW, Djaman O, Storz G. 2004. A *suf* operon requirement for Fe-S cluster assembly during iron starvation in *Escherichia coli*. Mol Microbiol 52:861-72.
- 1024 125. Partridge JD, Bodenmiller DM, Humphrys MS, Spiro S. 2009. NsrR targets in the
 1025 Escherichia coli genome: new insights into DNA sequence requirements for binding and
 1026 a role for NsrR in the regulation of motility. Mol Microbiol 73:680-94.
- 1027 126. Ezraty B, Vergnes A, Banzhaf M, Duverger Y, Huguenot A, Brochado AR, Su SY, Espinosa L, Loiseau L, Py B, Typas A, Barras F. 2013. Fe-S cluster biosynthesis controls uptake of aminoglycosides in a ROS-less death pathway. Science 340:1583-7.
- 1030 127. Chareyre S, Barras F, Mandin P. 2019. A small RNA controls bacterial sensitivity to gentamicin during iron starvation. PLoS Genet 15:e1008078.
- Simon G, Mejean V, Jourlin C, Chippaux M, Pascal MC. 1995. The torR gene of
 Escherichia coli encodes a response regulator protein involved in the expression of the
 trimethylamine N-oxide reductase genes. J Bacteriol 177:275.
- 1035 129. Baraquet C, Theraulaz L, Guiral M, Lafitte D, Mejean V, Jourlin-Castelli C. 2006. TorT, a member of a new periplasmic binding protein family, triggers induction of the Tor respiratory system upon trimethylamine N-oxide electron-acceptor binding in Escherichia coli. J Biol Chem 281:38189-99.
- 1039
 130. Carey JN, Mettert EL, Roggiani M, Myers KS, Kiley PJ, Goulian M. 2018. Regulated
 1040 Stochasticity in a Bacterial Signaling Network Permits Tolerance to a Rapid
 1041 Environmental Change. Cell 175:1989-1990.
- 1042 131. Kim SH, Lee BY, Lau GW, Cho YH. 2009. IscR modulates catalase A (KatA) activity, peroxide resistance and full virulence of Pseudomonas aeruginosa PA14. J Microbiol Biotechnol 19:1520-6.
- 1045
 132. Jones-Carson J, Laughlin J, Hamad MA, Stewart AL, Voskuil MI, Vazquez-Torres A. 2008.
 1046 Inactivation of [Fe-S] metalloproteins mediates nitric oxide-dependent killing of
 1047 Burkholderia mallei. PLoS One 3:e1976.
- 1048 133. Lim JG, Choi SH. 2014. IscR is a global regulator essential for pathogenesis of Vibrio vulnificus and induced by host cells. Infect Immun 82:569-78.
- 1050 134. Vergnes A, Viala JP, Ouadah-Tsabet R, Pocachard B, Loiseau L, Meresse S, Barras F,
 1051 Aussel L. 2017. The iron-sulfur cluster sensor IscR is a negative regulator of Spi1 type III
 1052 secretion system in Salmonella enterica. Cell Microbiol 19.
- 1053 135. Miller HK, Kwuan L, Schwiesow L, Bernick DL, Mettert E, Ramirez HA, Ragle JM, Chan PP,
 1054 Kiley PJ, Lowe TM, Auerbuch V. 2014. IscR is essential for yersinia pseudotuberculosis
 1055 type III secretion and virulence. PLoS Pathog 10:e1004194.
- 1056 136. Choi G, Jang KK, Lim JG, Lee ZW, Im H, Choi SH. 2020. The transcriptional regulator IscR integrates host-derived nitrosative stress and iron starvation in activation of the *vvhBA* operon in *Vibrio vulnificus*. J Biol Chem 295:5350-5361.


- Haines S, Arnaud-Barbe N, Poncet D, Reverchon S, Wawrzyniak J, Nasser W, Renauld Mongenie G. 2015. IscR Regulates Synthesis of Colonization Factor Antigen I Fimbriae in
 Response to Iron Starvation in Enterotoxigenic *Escherichia coli*. J Bacteriol 197:2896-907.
- 1062 138. Wu Y, Outten FW. 2009. IscR controls iron-dependent biofilm formation in *Escherichia coli* by regulating type I fimbria expression. J Bacteriol 191:1248-57.
- 1064
 139. Fuangthong M, Jittawuttipoka T, Wisitkamol R, Romsang A, Duang-nkern J,
 1065 Vattanaviboon P, Mongkolsuk S. 2015. IscR plays a role in oxidative stress resistance and
 1066 pathogenicity of a plant pathogen, *Xanthomonas campestris*. Microbiol Res 170:139-46.
- 1067 140. Wang T, Shen G, Balasubramanian R, McIntosh L, Bryant DA, Golbeck JH. 2004. The sufR gene (sll0088 in *Synechocystis* sp. strain PCC 6803) functions as a repressor of the sufBCDS operon in iron-sulfur cluster biogenesis in cyanobacteria. J Bacteriol 186:956-1070 67.
- 141. Shen G, Balasubramanian R, Wang T, Wu Y, Hoffart LM, Krebs C, Bryant DA, Golbeck JH. 2007. SufR coordinates two [4Fe-4S]2+, 1+ clusters and functions as a transcriptional repressor of the *sufBCDS* operon and an autoregulator of *sufR* in cyanobacteria. J Biol Chem 282:31909-19.
- 1075 142. Cheng Y, Lyu M, Yang R, Wen Y, Song Y, Li J, Chen Z. 2020. SufR, a [4Fe-4S] Cluster 1076 Containing Transcription Factor, Represses the *sufRBDCSU* Operon in *Streptomyces* 1077 avermitilis Iron-Sulfur Cluster Assembly. Appl Environ Microbiol 86.
- 1078 143. Willemse D, Weber B, Masino L, Warren RM, Adinolfi S, Pastore A, Williams MJ. 2018.
 1079 Rv1460, a SufR homologue, is a repressor of the *suf* operon in *Mycobacterium* 1080 tuberculosis. PLoS One 13:e0200145.
- 1081 144. Macomber L, Imlay JA. 2009. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci U S A 106:8344-9.
- 1083 145. Tan G, Cheng Z, Pang Y, Landry AP, Li J, Lu J, Ding H. 2014. Copper binding in IscA inhibits iron-sulphur cluster assembly in *Escherichia coli*. Mol Microbiol 93:629-44.
- 1085 146. Valentino MD, Foulston L, Sadaka A, Kos VN, Villet RA, Santa Maria J, Jr., Lazinski DW,
 1086 Camilli A, Walker S, Hooper DC, Gilmore MS. 2014. Genes contributing to
 1087 Staphylococcus aureus fitness in abscess- and infection-related ecologies. MBio
 1088 5:e01729-14.
- 1089 147. Choby JE, Mike LA, Mashruwala AA, Dutter BF, Dunman PM, Sulikowski GA, Boyd JM,
 1090 Skaar EP. 2016. A Small-Molecule Inhibitor of Iron-Sulfur Cluster Assembly Uncovers a
 1091 Link between Virulence Regulation and Metabolism in *Staphylococcus aureus*. Cell Chem
 1092 Biol 23:1351-1361.
- 1093 148. Tonini ML, Pena-Diaz P, Haindrich AC, Basu S, Kriegova E, Pierik AJ, Lill R, MacNeill SA,
 1094 Smith TK, Lukes J. 2018. Branched late-steps of the cytosolic iron-sulphur cluster
 1095 assembly machinery of Trypanosoma brucei. PLoS Pathog 14:e1007326.
- 1096 149. Charan M, Singh N, Kumar B, Srivastava K, Siddiqi MI, Habib S. 2014. Sulfur mobilization for Fe-S cluster assembly by the essential SUF pathway in the *Plasmodium falciparum* apicoplast and its inhibition. Antimicrob Agents Chemother 58:3389-98.
- 1099 150. Corless EI, Mettert EL, Kiley PJ, Antony E. 2020. Elevated Expression of a Functional Suf 1100 Pathway in *Escherichia coli* BL21(DE3) Enhances Recombinant Production of an Iron-1101 Sulfur Cluster-Containing Protein. J Bacteriol 202.

1102	151.	Shomar H, Garcia PS, Fernández-Fueyo E, D'Angelo F, Pelosse M, Manuel RR, Büke F, Liu
1103		S, van den Broek N, Duraffourg N, de Ram C, Pabst M, Gribaldo S, Py B, de Choudens SO,
1104		Bokinsky G, Barras F. 2021. Resolving phylogenetic and biochemical barriers to
1105		functional expression of heterologous iron-sulphur cluster enzymes. bioRxiv
1106		doi:10.1101/2021.02.02.429153:2021.02.02.429153.
1107		
1100		
1108		

