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Abstract

Building iron-sulfur (Fe-S) clusters and assembling Fe-S proteins are essential actions
for life on Earth. The three processes that sustain life, photosynthesis, nitrogen fixation,
and respiration, require Fe-S proteins. Genes coding for Fe-S proteins can be found in
nearly every sequenced genome. Fe-S proteins have a wide variety of functions, and
therefore, defective assembly of Fe-S proteins results in cell death or global metabolic
defects. When compared to alternative essential cellular processes, there is less known
about Fe-S cluster synthesis and Fe-S protein maturation. Moreover, new factors involved
in Fe-S protein assembly continue to be discovered. These facts highlight the growing
need to develop a deeper biological understanding of Fe-S cluster synthesis, holo-protein
maturation, and Fe-S cluster repair. Herein we outline bacterial strategies used to
assemble Fe-S proteins and the genetic regulation of these processes. We focus on
recent and relevant findings and discuss future directions including the proposal of using

Fe-S protein assembly as an anti-pathogen target.
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1. Iron-Sulfur proteins

Iron (Fe) is an essential nutrient for nearly all organisms. The importance of Fe for
the survival of microbes is highlighted by the fact that many organisms encode multiple
Fe acquisition systems. These acquisition systems aid in competition and allow cells to
acquire Fe under a variety of conditions to meet demand.

A large proportion of internalized Fe is housed within inorganic prosthetic groups
called iron-sulfur (Fe-S) clusters, which are utilized by organisms in the three primary
branches of life. Protein Fe-S clusters are typically ligated using cysteine thiolates and
are commonly found as rhombic [2Fe-2S] or cubic [4Fe-4S] clusters; however, more
complex Fe-S cofactors are utilized for specialized processes such as nitrogen fixation
and hydrogen metabolism. When Escherichia coli is cultured in a defined medium with
glucose or acetate as a carbon source approximately 30% of the intracellular Fe is
located in Fe-S clusters and low-spin ferrous heme centers (1).

As a result of their structural and electronic plasticity, Fe-S clusters are utilized for
a variety of cellular functions. The genome of E. coli is predicted to encode ~140 Fe-S
proteins (out of the ~4,300 total protein coding ORFs (2)) that have wide-ranging functions
including carbon transformations, environmental sensing, DNA repair, and respiration (3).
Likewise, the metabolisms of most organisms are highly reliant on the functionalities of
the Fe-S proteins. Failure to properly maturate Fe-S proteins results in widespread
metabolic disorders and in some cases can lead to cell death (4-6). Bacillus subtilis strains
(lacking Suf) and E. coli strains (lacking Suf and Isc) cannot build Fe-S clusters and are
non-viable because they cannot properly maturate the essential Fe-S proteins IspG and
IspH, which are required isoprenoid synthesis (7, 8). Bypassing the need for IspG and
IspH, by engineering the organisms to utilize the eukaryotic Fe-S protein-independent
mevalonate pathway for isoprenoid synthesis, circumvents the necessity for Fe-S

biosynthesis for survival (9).

2. Building iron-sulfur clusters
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Because of the toxic nature of free Fe?* and sulfide (S%), tightly controlled
mechanisms have evolved to synthesize Fe-S clusters from its monoatomic precursors,
thereby minimizing the cytosolic concentrations of these elements not ligated to
macromolecules (10). Three multiprotein assembly systems (nitrogen fixation (NIF), sulfur
mobilization (SUF), and iron-sulfur cluster (ISC)) have been described in bacteria and
archaea for the synthesis of Fe-S clusters for assembly of [2Fe-2S] and [4Fe-4S] proteins
(11-13). These systems function similarly, but they are biochemically discrete. Additional
systems have been described for building more complex Fe-S clusters such as those
found in dinitrogenase reductases and hydrogenases (reviewed here (14, 15)).

The NIF system was the first described Fe-S synthesis system. NIF was
discovered because it is essential for nitrogen fixation (13). NIF functions to provide basic
Fe-S clusters for nitrogenase maturation and it is often found in diazotrophs (16). SUF
and ISC are responsible for building the Fe-S clusters for the maturation of the maijority
of non-nitrogenase Fe-S proteins. Bioinformatic analyses have identified the SUF system
as the most prevalent machinery in prokaryotic genomes (17). Bacterial genomes can
encode one (Staphylococcus aureus), two (Escherichia coli), or all three (Erwinia
chrysanthemi and some nitrogen fixing Cyanobacteria) of the synthesis systems ((17, 18)
and regulation section).

The SUF, NIF, and ISC macromolecular machines all use a common strategy to
synthesize Fe-S clusters (Figure 1). Iron, sulfur, and electrons are combined upon a
cytosolic molecular scaffolding protein(s) to form an Fe-S cluster. SufBCD, IscU, and NifU
are the scaffold proteins for the SUF, ISC, and NIF systems, respectively (Figure 2) (16,
19, 20). Although the Suf proteins can be isolated with various ratios, it is thought that the
active form of the SUF system has the ratio of one SufB, two SufC, and one SufD
(SufBC:2D) (Figure 2B) (21, 22). The SufBD heterodimer interface may be the site of Fe-
S cluster synthesis (22).

2.1. Sulfur. Sulfur is typically mobilized from a free cysteine (Cys) by PLP-
dependent cysteine desulfurases (SufS, IscS, NifS) (13). Cysteine desulfurases form a
covalent persulfide intermediate and alanine as a byproduct (23). The persulfide can
subsequently be transferred to the synthesis machinery scaffold directly or through a

surrogate carrier molecule (i.e. SufU or SufE) (19, 24). Thus far, the only described
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persulfide sulfur carrier molecules are associated with SUF systems. Biochemical
analyses suggest that these persulfide carrier proteins allow for a controlled delivery that
protects the system from poisoning by oxidants, such as hydrogen peroxide, which would
be deleterious to sulfur transfer (25, 26). SufU and SufE act as persulfide carriers for
SufBC:2D in Bacillus subtilis and E. coli, respectively. SufU was initially thought to be a
scaffold protein because of its ability to bind Fe-S clusters and its homology to IscU and
NifU; however, biochemical analyses of the SufS-SufU complex demonstrated a unique
sulfur transfer mechanism dependent on a zinc ligand from SufU (24, 27). Although SufU
and SufE primary amino acid sequences differ, they can individually act as protective
persulfide carriers for SufBC2D; however, a suf operon usually only codes for one,
suggesting that this functionality may have evolved twice. Some Archaea such as
Methanococcus maripaludis lack homologs of cysteine desulfurases. When this archaean
was cultured with 3°S2% there was an enrichment of 35S?- in Fe-S cluster containing
proteins, but not in free Cys suggesting that sulfide, and not Cys, is the source of the
sulfur for Fe-S synthesis (28).

2.2. Electrons. The isc operon typically encodes a [2Fe-2S] ferredoxin (Fdx),
which can provide electrons for ISC directed Fe-S synthesis. Fdx interacts with IscS and
reduced Fdx provides an electron to the IscS complex for sulfane (S°) reduction (29, 30).
A second reduction event is required to produce S?, which is the substrate for Fe-S
cluster synthesis on IscU. NADH and NADP*-ferredoxin-reductase can provide electrons
for Fdx reduction in vitro (31). The electron donors to the scaffold proteins NifU and
SufBC2D are unknown. SufBC2D co-purifies with FADH2 consistent with the complex
conducting redox chemistry (21). NifU, from the NIF system, contains a stable redox-
active [2Fe-2S] cluster that may provide electrons for NIF-directed synthesis (32). The
membrane-associated Rnf complex has a role in dinitrogen fixation in A. vinelandii, by
donating electrons from NADH to ferredoxin using reverse electron flow and AuNa* or
ApH* (33). Azotobacter vinelandii rnf mutants have a decreased capacity for dinitrogen
reduction because of poor Fe-S cluster occupancy of the dinitrogenase reductase NifH
(34). The rnf mutants also have decreased activity of the Fe-S enzyme aconitase. It is
tempting to speculate that Rnf has a role in providing electrons for Fe-S cluster synthesis

or repair.
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2.3. Iron. The source of Fe for cluster building remains unknown. Several
candidates such as CyaY and IscX have been proposed based on in vitro considerations,
but subsequent in vivo investigations failed to provide supporting evidence. CyaY is the
counterpart of mitochondrial frataxin. The reason frataxin/CyaY was predicted to act as
an iron donor came from (i) observing iron homeostasis disturbance in mitochondria from
frataxin-deficient tissues or organisms, and (ii) iron-binding to CyaY in vitro although with
weak affinity. Frataxin, both in eukaryotes and prokaryotes, forms a tri-partite complex
with cysteine desulfurase NFS1/IscS and scaffold ISU/IscU. in vitro, frataxin appears to
have the opposite effect on Fe-S formation whether one studies the prokaryote (i.e.
inhibition) or the eukaryote system (i.e. stimulation) (35). Possible explanations lie in
differences in IscS (prokaryote) and NFS1 (eukaryote) cysteine desulfurases intrinsic
biochemical features. In any case, studies in vivo in E. coli confirmed that CyaY is a
positive effector of ISC-mediated Fe-S cluster biogenesis (36, 37).

The E. coli isc operon codes for IscX, which also binds Fe?* with low affinity and
has a role in ISC-directed Fe-S synthesis (36, 38). IscX binds to IscS at a location that
overlaps the CyaY binding site (39). The presence of Fe?* increases the affinity between
IscX and IscU and stabilizes the complex (38). IscX associates with IscS-IscU forming a
tripartite complex resulting in inhibition of cysteine desulfurase activity. Analyses using
both CyaY and IscX, in conjunction with the IscU-IscS complex, found that CyaY inhibits
Fe-S cluster formation on IscU, which is mitigated by the addition of IscX at low Fe
concentrations (<20 uM); however, the effect of IscX is negligible at higher concentrations
(40).

While evidence suggests that IscA is a Fe-S cluster carrier (discussed below), one
group of researchers found that E. coli IscA copurified with Fe, but not sulfide [55]. Apo-
IscA could be loaded with Fe?* in vitro (Ka = 3.0 x 10-'® M-") and it bound one Fe per IscA.
The Fe-loaded IscA could provide Fe for IscS-directed Fe-S cluster synthesis on IscU. An
IscAvaor variant was defective in Fe?* binding but appeared to bind an Fe-S cluster. A Ka
for Fe association, Fe-S cluster stability, Fe-S cluster transfer kinetics, and labile Fe and
sulfide concentrations were not reported for the reconstituted IscAvaor variant (41). A wild-
type iscA allele, but not an iscAvaor allele could complement an iscA mutant. Whether

IscA is a bona fide Fe donor in vivo remains to be established.
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2.4. Energy. The assembly of Fe-S proteins can require an input of energy. SufC,
of the SUF system, has both Walker A and Walker B nucleotide-binding motifs and
functions as an ATPase (42, 43). ATPase activity is stimulated by interaction with either
SufD or SufB (44). The presence of SufC is necessary for SufB to interact with the sulfur
transfer protein SufE (19). A conserved lysine (Lys40) in the Walker A motif is required
for ATPase activity (45). The SufCkaor variant interacts with SufB and SufD in vitro, but
the sufCkaor allele cannot replace sufC, suggesting that ATPase activity is necessary for
SUF function (22). Consistent with these findings, the SufBCzka40r)D variant does not
assemble an Fe-S cluster in vivo whereas SufBC:2D does (46).

In the ISC system, the scaffold IscU interacts with a Hsp70-like chaperone (HscA)
and a J-protein co-chaperone (HscB) (47). Hsp70 chaperones have an ATP binding
domain and a protein substrate-binding domain. Biochemical and biophysical studies
found that interactions between IscU and HscAB aid in building the Fe-S cluster on IscU
and/or the transfer of the Fe-S cluster from holo-IscU to a target apo-protein (48). The
proposed role of the co-chaperone HscB is to escort IscU to HscA-ATP and promote ATP
hydrolysis (49). After ATP hydrolysis, HscB is released, because it has low affinity for
HscA-ADP, and IscU is prompted to deliver the Fe-S cluster to an apo-protein or Fe-S
cluster carrier protein (48). ADP release by HscA induces conformational changes that
promote IscU release prompting a new cycle of chaperone-mediated Fe-S cluster

synthesis and transfer (50, 51). The roles of HscAB were recently reviewed (52).

3. Delivery of iron-sulfur clusters to target apo-proteins.

After Fe-S cluster construction on a scaffolding protein, it is passed to a client apo-
protein forming the holo-protein. /n vitro evidence for a direct Fe-S cluster transfer from a
scaffold to an apo-protein was demonstrated, but in vivo observations stress the essential
role of carriers and cast doubt on the physiological relevance of the direct scaffold-apo-
protein connection (53-56).

Fe-S cluster carriers have been shown to bind [4Fe-4S] clusters, [2Fe-2S] clusters,
or both (57). It is thought that the carriers typically deliver the Fe-S cluster they are

provided; however, the Fe-S carrier IscA (A-type carrier) from Azotobacter vinelandii can
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bind both [4Fe-4S]?>* and [2Fe-2S]?* clusters and can convert the [2Fe-2S]?* form to the
[4Fe-4S]?* form using a two-electron reductive coupling (57). It was proposed that the
[4Fe-4S]J?* form could cycle back to the [2Fe-2S]?* form by dioxygen catalyzed cleavage,
but this has not been experimentally demonstrated. Whether these cluster dynamics have
a physiological role is unknown.

The number of carriers varies within different bacterial species. For instance, E.
coli synthesizes at least six carriers (the A-type carriers (IscA, SufA, ErpA) and NfuA,
GrxD, Mrp) while Bacillus subtilis and Staphylococcus aureus only have two
characterized carriers (SufA and Nfu). Strains lacking one or more Fe-S cluster carrier
can often maintain the assembly of Fe-S proteins, suggesting that, in general, the carriers
have a degree of functional overlap (53, 58). Note, however, that erpA is essential under
aerobic growth in E. coli (9).

The number of targets exceeds the number of carriers raising questions about the
dynamic and specificity of the delivery network. While in vitro transfer assays have
provided evidence that carriers can transfer clusters to apo-proteins, they did not reveal
substantial insights into substrate specificity (55). In E. coli, the six carriers are not
synthesized to the same levels, and expression varies upon growth state and condition,
suggesting that genetic control is key for orchestrating functional redundancy (59). We
briefly discuss some of these intermediate actors below.

3.1. A-type carriers. A-type carriers are predicted to bind Fe-S clusters using
three cysteine ligands. An X-ray structure of Thermosynechococcus elongatus IscA
ligating a [2Fe-2S] cluster is illustrated in Figure 3A (60). The three cysteinyl ligands (C37,
C101, and C103) to the Fe-S cluster are highlighted. Phylogenetic analysis allowed
researchers to divide the A-type carriers (ATC) into two groups: ATC-I and ATC-II (53).
Further functional studies showed that ATC-l proteins directly interact with the apo-
proteins, while the ATC-II proteins associate with the scaffold (53). In E. coli, ErpA
belongs to the ATC-I family and IscA and SufA are of the ATC-II family. ErpA interacts
physically with apo-proteins, whereas SufA and IscA, to an appreciable degree, do not.
This suggests that the ATC-II carriers pass their Fe-S clusters to ATC-I for delivery to
their final destinations (61). However, this simple view, mostly derived from normal growth

conditions, might change under stress conditions. Indeed, SufA is predicted to interact
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directly with targets in such conditions, while ErpA could also interact with another type
of carrier, NfuA, to form a stress-resistant heteromer (61). Fe-S clusters on holo-ErpA,
holo-IscA, and holo-SufA are equally stable in the presence of dioxygen; however, the
addition of the Fe-S cluster carrier NfuA to holo-ErpA nearly doubled the half-life of the
ErpA Fe-S cluster (61). These data suggest that NfuA and ErpA may work in conjunction
to form an oxidant-resistant Fe-S cluster delivery system. Altogether, the associations
between NfuA and ErpA, as well as ErpA and apo-target proteins, supports the
hypothesis that, under balanced aerobic conditions, ErpA conducts the last step of Fe-S
cluster delivery in E. coli. As a matter of fact, with the exception of SoxR, in vivo
maturation of all target proteins studied depended upon ErpA (see below) (62).

3.2. Nfu-type carriers. The C-terminal domain of the A. vinelandii NifU Fe-S
cluster scaffold is referred to as Nfu (Figure 3B). The Nfu domain was demonstrated to
bind and transfer a [4Fe-4S]?* cluster to an apo-protein (63). An alternate protein, named
NfuA, contains a C-terminal domain with homology to the Nfu-domain of NifU, and an N-
terminal domain with homology to an A-type carrier (Figure 3C). The NfuA A-type domain
is referred to as “degenerated” because it lacks a cysteine required for Fe-S cluster
ligation (64, 65). The C-terminal Nfu domain, but not the “degenerated” A-type domain,
binds a [4Fe-4S]?* cluster and can transfer this cluster to apo-proteins. The Fe-S cluster
bound by holo-NfuA is more stable in the presence of dioxygen than that of holo-A-type
carriers suggesting a role for NfuA under oxidative stress conditions (61). Consistent with
this hypothesis, strains lacking nfuA are defective in maturating Fe-S proteins facing
oxidative stress (64, 65). Both the Nfu and A-type domains are necessary for NfuA
function in vivo (64, 65). The A-type domain was demonstrated to function in targeting
NfuA to apo-proteins (66, 67).

Three additional bacterial proteins consisting solely of a Nfu domain have been
described. Nfu was necessary for the proper maturation of the Fe-S protein photosystem
complex | (PS1) in Synechococcus and the maturation of several Fe-S proteins in
Staphylococcus aureus and Helicobacter pylori (58, 68, 69). Holo-Nfu is a dimer with a
bridging [2Fe-2SJ** or [4Fe-4S)?* cluster. Holo-Nfu could activate apo-PS1 and apo-

aconitase. A S. aureus nfu mutant had decreased virulence in murine models of infection
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and decreased survival in neutrophils. A H. pylori nfu mutant was defective in colonizing
murine stomachs.

3.3. Mrp-type carriers. Genetic studies identified apbC, encoding a member of
the Mrp class, as necessary to maturate the Fe-S enzymes ThiH and/or ThiC in
Salmonella enterica (70). Biochemical studies demonstrated that ApbC can bind and
effectively transfer Fe-S clusters to apo-proteins (71). ApbC is a dimer and each monomer
contains two cysteines separated by two amino acids (C-X-X-C motif). These cysteines
are thought to provide four ligands, two from each monomer, for ligation of a [4Fe-4S]
cluster that bridges the dimer interface. Mrp proteins contain Walker A and B ATP
hydrolysis motifs. An ApbCk11ea variant was defective in ATP hydrolysis and inactive in
vivo. The addition of ATP did not accelerate ApbC-directed cluster transfer in vitro and
the ApbCkitea variant proficiently transferred Fe-S clusters. These data led to the
hypothesis that ATP hydrolysis is required for loading ApbC with an Fe-S cluster [85].
ApbC was required for growth on the carbon source tricarballylate presumably because
it functions in assembling the Fe-S enzyme ftricarballylate reductase (TcuB) (72). The
absence of ApbC could be bypassed by increasing expression of iscU, or by decreasing
tricarballylate influx, and thereby preventing tricarballylate accumulation which inhibits
isocitrate dehydrogenase (73, 74).

3.4. Monothiol glutaredoxins. As the name suggests, monothiol glutaredoxins
lack the traditional dithiol C-X-X-C motif and instead have a C-G-F-S motif. The E. coli
grxD encodes a monothiol glutaredoxin (75). Combining a grxD mutation with an iscU
mutation resulted in synthetic lethality, suggesting that GrxD functions in conjunction with
the SUF machinery to assembly Fe-S proteins (E. coli must have functional SUF or ISC
for viability (7)). GrxD purified from E. coli contained a [2Fe-2S] cluster. To chemically
reconstitute an Fe-S cluster on apo-GrxD the reaction mixture required glutathione (GSH)
(76). GrxD binds a [2Fe-2S] cluster that bridges a homodimer interface using one cysteine
ligand from each monomer and GSH thiolates provide two additional ligands (77). Holo-
GrxD homodimer can transfer an Fe-S cluster to apo-Fdx forming the [2Fe-2S] holo-Fdx.
GrxD was recently shown to cooperate with NfuA in the maturation of the Fe-S enzyme
MiaB (78).
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E. coli BolA is an ortholog of Saccharomyces cerevisiae Fra2, which forms a
heterodimer with a monothiol glutaredoxin to bind a [2Fe-2S] cluster [89, 92]. When
purified from E. coli, BolA co-purifies with GrxD and vice versa. An Fe-S cluster could not
be reconstituted on BolA; however, an Fe-S cluster could be reconstituted on the BolA-
GrxD heterodimer and the cluster could be transferred to apo-Fdx (76). E. coli bolA and
grxD mutants do not phenocopy one another suggesting that they can also function

independently.

4. Auxiliary factors utilized in iron-sulfur protein maturation.

Several loci have been identified that function in the assembly of Fe-S proteins but
are not considered part of the core Fe-S cluster biosynthetic apparatus. These factors are
not typically found within operons encoding for the core ISC, SUF, or NIF machineries.

4.1. SufT. The sufT gene is often associated with suf operons (defined by having
sufB and sufC) in bacterial and archaeal genomes (79). Typically, SufT proteins, such as
those encoded by S. aureus and B. subtilis, are composed entirely of a domain of
unknown function 59 (DUF59). Larger proteins containing a DUF59 domain have roles in
Fe-S cluster assembly, including the eukaryotic cytosolic Fe-S cluster assembly (CIA)
factor CIA2, which functions in the maturation of nuclear and cytosolic Fe-S proteins (80-
82). S. aureus strains lacking SufT have decreased activities of Fe-S enzymes during
conditions requiring a high demand for Fe-S clusters. The phenotypes associated with
the AsufT and Anfu mutations were synergistic (79, 83). Moreover, overproduction of Nfu
mitigated the phenotypes of the AsufT strain. These data suggest that SufT functions in
Fe-S carriage and has some degree of functional overlap with Nfu; however, Fe-S cluster
binding by SufT remains elusive. SufT was reported to be essential in Mycobacterium
tuberculosis (84).

4.2. Low molecular weight (LMW) thiols. The role of LMW thiols in Fe-S protein
assembly is likely multifaceted and they could function in all four steps of Fe-S protein
assembly: biogenesis, trafficking, assembly, and repair. In eukaryotes, glutathione (GSH)
has been associated with the synthesis and trafficking of Fe-S clusters from the

mitochondrion to the cytosol (85, 86). In bacteria, genetic and biochemical studies
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demonstrated a role for GSH in assembling Fe-S proteins, in addition to its roles in
maintaining proper intracellular redox (87). GSH can act as an Fe buffer by binding non-
incorporated cytosolic Fe (88, 89). GSH can also provide electrons to reduce Fe®* to
Fe?* (90). GSH, in conjunction with monothiol glutaredoxins, delivers Fe-S clusters to the
apoprotein targets (77, 91, 92). GSH can bind and deliver Fe-S clusters in vitro, but the
in vivo relevance of this chemistry is unknown (93). GSH can also reduce oxidized protein
cysteine residues before Fe-S cluster insertion.

Many microorganisms, including S. aureus, do not produce GSH but instead
produce the LMW thiol bacillithiol (BSH) (94). A S. aureus strain defective in producing
BSH exhibits phenotypes similar to cells lacking Fe-S cluster carriers including decreased
activities of Fe-S dependent enzymes (95). The phenotypes of a BSH minus strain were
suppressed by multicopy expression of sufA or nfu, but not by overexpression of the SUF
system. These data suggest that the phenotypes of a BSH minus strain were not the
result of faulty de novo Fe-S synthesis, but rather defective assembly or repair of Fe-S
proteins (96). A strain lacking BSH did not appear to suffer from decreased ROS
metabolism, but a protective role for BSH in buffering against metal ion poisoning of Fe-
S enzymes or the maturation machinery has not been ruled out (97).

4.3. Folic acid-binding protein (YgfZ). E. coli YgfZ (COG0354) is a homolog of
yeast |1ba57p, which is a mitochondrial protein that participates in the assembly of
mitochondrial Fe-S proteins (98). A AygfZ mutant strain has decreased activities of
selected Fe-S enzymes including MiaB and is sensitive to ROS stress (99). YgfZ binds
tetrahydrofolate (THF) and an E. coli strain lacking the ability to synthesize folate has
similar MiaB activity as a AygfZ mutant suggesting that folate, as well as YgfZ, is utilized
in assembling some Fe-S proteins. The COG0354 proteins are paralogous to enzymes
that utilize THF to accept formaldehyde units leading to the hypothesis that YgfZ functions
to remove one-carbon units that deleteriously affect the functions of Fe-S proteins (100).

4.4. Repair of iron clusters (RIC) proteins. The E. coli ytfE encodes a RIC protein
that has increased expression during nitric oxide stress (101). The expression of yifE is
directly controlled by NsrR, which directly responds to nitric oxide (NO*) levels (102, 103).
An E. coli ytfE mutant is sensitive to NO* or H202 stress and Fe-S enzymes have

decreased activities after cell-free extracts from the ytfE mutant are treated with hydrogen
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peroxide (H202) or NO*. Importantly, damaged Fe-S proteins had a slower rate of repair
in the ytfE mutant (104). YtfE, and its homologs, are di-Fe hemerythrin-like proteins (105,
106). The Fe atoms of holo-YtfE are labile and can be used as an Fe source for Fe-S
cluster synthesis in vitro (107). These findings resulted in renaming these proteins as
“repair of iron clusters (RIC)”. The mechanism by which RIC proteins may repair damaged
Fe-S clusters is unknown. YtfE interacts with the Fe scavenger Dps in vivo, and their
corresponding genes have genetic interactions. These findings led to the hypothesis that
Dps may be providing Fe to YtfE to be used for the repair of damaged Fe-S clusters (108).
In S. aureus, ytfE (scdA) and dps protect against H202 damage and are both
transcriptionally regulated by SrrAB which responds to electron flux through respiratory
pathways (109, 110).

Physiological, genetic, and biochemical data suggest that a y{fE mutant has more
NO*-induced damage and reduced activity of the Fe-S cluster utilizing transcription factor
NsrA. Structural data show that YtfE has a hydrophobic channel where NO* could access
the Fe ions and the Fe atoms have been shown to ligate NO* (106, 111). These data
support the hypothesis that YtfE functions in S-trans-nitrosylation or the removal of NO*
from nitrosylated proteins (112). However, Y{fE was not able to release NO* from
nitrosylated fumarase, a [4Fe-4S] requiring dehydratase. Y#fE contributes to Y.

pseudotuberculosis and Haemophilus influenzae pathogenesis (113, 114).

5. Regulation of Iron-Sulfur Cluster Synthesis

Fe-S cluster biosynthesis is controlled by regulators that sense environmental
conditions potentially adverse for Fe-S cluster assembly such as Fe limitation, or oxidative
and nitrosative stress, which affect the stability and integrity of the cofactors. Integrating

these stimuli with Fe-S synthesis ensures demand is met and fitness is maintained.

5.1. The situation in E. coli: adapting to fluctuating conditions and switching
between machineries.
In E. coli, Fe-S cluster biosynthesis is achieved by using two types of machineries,

ISC and SUF, which permit maturation of the same set of apo-proteins under a wide
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breadth of growth conditions. Particularly, genetic control circuits occur that endow E. coli
with the capacity to synthesize one or the other machinery in different growth conditions,
and thereby have the Fe-S cluster biogenesis capacity match the Fe-S demand,
regardless of the growth conditions. Two transcriptional regulators, IscR and Fur, and a
non-coding RNA, RyhB, are key actors in orchestrating this adaptative response, as all
three control, directly or indirectly, expression of the isc and suf operons.

5.1.1. IscR-mediated Fe-S cluster homeostasis control. IscR is a transcription

factor (TF) that belongs to the Rrf2 family of winged helix-turn-helix TFs. It hosts a [2Fe-
2S] cluster, which allows sensing aerobiosis, oxidative stress, iron limitation, and possibly
reactive nitrogen species. Mutagenesis and structural studies have identified residues
Cys92, Cys98, Cys104, and His107 as Fe-S cluster ligands (Figure 4A) (115, 116). A His
ligand is uncommon, and this might render the cluster labile and sensitive to stress
signals. It is particularly useful for the IscR regulator since its activity is not influenced by
the oxidative state of its cluster but is strictly dependent on the presence/absence of the
cluster (116, 117). IscR is found in the apo- and holo-forms and both types can have
regulatory functions (118).

Two types of binding sites, type 1 and 2, are found within IscR-regulated
promoters. Holo-IscR binds type 1 sites and the holo- and apo-forms bind the type 2 sites
(Figure 4B) (115). The type 1 inverted repeat sequence is well conserved and is mainly
found upstream genes encoding Fe-S building proteins (the isc, erpA, and nfuA loci)
(119). The type 2 sequence is an imperfect palindrome and highly degenerated, which
causes large variations in binding affinities between operator regions (119). Interestingly,
while the type 1 sequence containing promoters are all repressed by IscR, genes
preceded by a type 2 sequence can be either repressed or activated by IscR. This does
not correlate with the position of the IscR binding site as shown with the hyaA and the
sufA genes. Both promoters exhibit a type 2 sequence within their -35 consensus
promoter sequence, yet show opposite expression patterns as hyaA expression is
repressed by holo-IscR whereas sufA expression is activated by apo-IscR (119).

In E. coli, iscR is the proximal gene in the isc operon and is separated from the
next gene (iscS) by an unusually long untranslated region that is targeted by RyhB, a

non-coding RNA (see below). Under balanced conditions, IscR is maturated by the ISC
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machinery and holo-IscR acts as a repressor of its own expression, as well as the
expression of downstream isc genes, until equilibrium shifts towards a low level of apo-
IscR. At this point, repression is alleviated, more IscR is synthesized, and the ISC
machinery is produced, resulting in an increased level of holo-IscR in the cell. A feedback
loop is then set up and holo-IscR represses its own expression as well as those of the
following isc genes. Upon an increase in the cellular demand for Fe-S cluster synthesis
(iron limitation, oxidative stress), there is a competition between apo-protein substrates
and newly synthesized apo-IscR for the ISC machinery. Then, apo-IscR accumulates,
and this form activates the expression of the suf operon (120). In summation, IscR
represses transcription of isc and activates suf transcription in its Fe-S-bound and
unbound forms, respectively, directly connecting both cell’'s Fe-S cluster biogenesis
capacity and Fe-S cluster demand (Figure 4C).

Evidence has been provided that the efficiency of ISC proteins, in particular IscU,
would be lowered under stress conditions, opening the possibility that the contribution of
the ISC machinery declines under such conditions and the cell would rather switch from
ISC to SUF, rather than cumulating both (25). Importantly, IscR appears to be a poor
substrate for the SUF system, and therefore, IscR is likely to remain mostly in its apo-
form if the cell thrives under stress conditions (54). The iron responding Fur-RhyB genetic
circuit also favors such a switch (see below).

5.1.2. Iron-mediated control of Fe-S biogenesis by Fur and RyhB. Iron availability

is sensed by the transcriptional regulator Fur, which represses synthesis of the non-
coding RNA, RyhB, among others. Because both Fur and RyhB regulate the expression
of the isc and suf operons, directly or indirectly, they are likely to contribute to the switch
between the ISC and SUF machineries as a mode of adaptation to iron bioavailability.
Holo-Fur acts as a repressor of suf operon transcription. Under iron limiting conditions,
the Fe?* cofactor of Fur is lost, and repression is alleviated, providing an opportunity for
IscR-dependent suf operon expression (121). Meanwhile, ryhB, which is also repressed
by holo-Fur, is expressed and targets the intergenic region between iscR and iscS,
causing translation inhibition of the downstream iscSUA genes, and probably mRNA
decay whereas a stem-loop structure forms enabling stabilization of the upstream iscR

messenger moiety (Figure 4C) (122). Under these conditions, apo-IscR accumulates and
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activates expression of the sufoperon. Consequently, iron limitation enhances expression
of the suf operon by both alleviating Fur repression and favoring apo-IscR activation,
while expression of the iscSUA is shut off by RyhB-mediated translation inhibition and
possibly poor activity of the encoded IscU scaffold protein. It should be noted that a recent
study suggests that Fur senses iron homeostasis by binding a [2Fe-2S] cluster instead of
Fe?* as it is currently suggested (123). If this observation were to be confirmed in vivo, it
would link the Fur repressing activity to both iron availability and Fe-S biogenesis, in which
case the interplay between IscR and Fur would be an important issue to decipher in vivo.

5.1.3 Switching the Fe-S cluster synthesis machineries under redox stress. The

OxyR transcriptional regulator activates the expression of suf genes in response to H202
(Figure 4C). The OxyR binding site is located far upstream from the sufA promoter
(operon sufABCDSE), and the OxyR-dependent activation requires the binding activity of
IHF to bring the OxyR site closer to the -10 and -35 promoter elements (124). OxyR and
apo-IscR mediated activations have been found to be additive (120). Thus, because
oxidative stress could well favor the shift from holo-IscR to apo-IscR, it is possible, that
under such conditions, E. coli cumulates synthesis of both ISC, following alleviation of
IscR repression, and SUF, following activation by OxyR. However, oxidative stress is
known to lower iron bioavailability (by oxidizing Fe?* to Fe3*). This could alleviate holo-
Fur-dependent repressions, leading to ryhB expression and subsequently isc repression,
thereby preventing the accumulation of both systems. Moreover, IscU activity was
reported to be altered by oxidative stress (25). Thus, under oxidative stress, a genetic
switch, like that observed under iron limiting conditions, might prevail. Expression of the
suf operon is also repressed by the [4Fe-4S] cluster containing transcription factor NsrR
under normal growth conditions. Under nitrosative stress, the Fe-S cluster is lost, and
NsrR-dependent repression is alleviated (125). Again, because IscR could shift from holo
to apo under such redox stress conditions, a shift between the machinery could take
place.

5.1.4. Switching between machineries promotes antibiotic tolerance. One

phenotypic consequence of the stress-controlled switch between the ISC and SUF
systems is enhanced resistance to aminoglycoside antibiotics (126). The uptake of

aminoglycosides is dependent upon the proton motive force (PMF), and therefore, the
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bactericidal activity of these antibiotics is proportional to respiration efficiency.
Mechanistic causes of the aminoglycoside tolerance resulting from iron limitation are: (i)
down and up regulation of ISC and SUF, respectively, by the IscR- and Fur/RyhB-
dependent controls described above, (ii) inefficient maturation of Respiratory Complexes
| and Il by the SUF system resulting in decreased respiratory efficiency, and (iii) Fur/RyhB-
dependent downregulation of Complex | and Il synthesis (126, 127).

Another illustration of the link between switching machinery and antibiotic
tolerance is demonstrated in the case of fluoroquinolones. Exposing E. coli to phenazine
methosulfate (PMS), a redox cycling compound that causes oxidative stress and
NAD(P)H exhaustion, yielded an enhanced tolerance to norfloxacin, a DNA gyrase
inhibitor (62). Under PMS exposure, E. coli switches to the SUF system, which can target
Fe-S clusters to the transcriptional activator SoxR. The Fe-S cluster bound to SoxR gets
oxidized and allows SoxR to activate soxS transcription. SoxS then activates expression

of acrAB, encoding an efflux pump, which exports fluoroquinolones out of the cell.

5.2. A feed forward loop mediated by IscR and RyhB.

Acting at both transcription and translation initiation permits finely tuned gene
expression. An example is given by the dual control afforded by IscR and RyhB on the
expression of erpA in E. coli. As mentioned above, E. coli synthesizes multiple Fe-S
carriers and whether they have a degree of functional redundancy has been a matter of
debate. Transcription of erpA is repressed by holo-IscR while erpA mRNA translation is
negatively regulated by RyhB (59). These data led to the hypothesis that ErpA is
synthesized neither under Fe replete conditions (repression by IscR) nor Fe limitation
conditions (inhibition by RyhB). This double control allows ErpA synthesis within a window
of intermediate Fe concentrations. The added value of this double control is that ErpA is
synthesized under conditions in which neither of the two other A-type carriers, SufA and
IscA, are fully synthesized. This control ensures a continuing presence of at least one

carrier throughout fluctuating iron concentrations (59).

5.3. IscR as a sensor of the anaerobic/aerobic switch.
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Regulation of gene transcription often involves multiple transcriptional regulators,
which might compete (or synergize) for closely located operator sites and modify the
importance of each other's influence. The influence of IscR on alternate regulators is well
documented by an unexpected role of IscR in cell-to-cell variability during the shift from
dioxygen respiration to trimethyl amine oxide (TMAO) respiration. The genes that encode
TMAO reductase are under the transcriptional control of the TorT/TorS/TorR three-
component regulatory system (128, 129). In the presence of dioxygen, torT/S expression
is repressed by IscR and the level of TorT/S is so low that a stochastic effect prevails
leading to cell-to-cell variability in TMAO reductase synthesis. In contrast, under anoxic
TMAO-respiring conditions, IscR titers decrease, and torT/S expression is derepressed.
Levels of TorT/S are now high enough to cancel any effect from stochasticity in gene
expression. Therefore, IscR is determining in this “regulated stochasticity” by acting
upstream in the cascade, controlling the level of TorT/S, and mediating the oxygen

regulation of cell-to-cell variability (130).

5.4. The role of IscR in pathogenic bacteria

IscR is widely conserved and was studied in several bacteria including the
pathogens Erwinia chrysanthemi (18), Pseudomonas aeruginosa (131), Burkholderia
mallei (132), Vibrio vulnificus (133), Salmonella enterica (134), and Yersinia
pseudotuberculosis (135). Because Fe-S-based biology is central to cellular
bioenergetics and metabolism, it is expected to be important for bacterial fitness and
multiplication within its host. Moreover, both iron limitation and oxidative stress are
conditions met by pathogens during host colonization suggesting that IscR may be
instrumental in coordinating adaption.

Less expected, however, was that IscR would directly control the synthesis of key
virulence determinants as it was reported in both S. enterica and Yersinia
pseudotuberculosis. Both pathogens rely on type 3 secretion systems (T3SS) utilized to
inject effectors in the host cells and IscR controls synthesis of T3SS in both bacterial
species. S. enterica synthesizes two T3SS, referred to SPI1 and SPI2. SPI1 is required
for the passage of the bacterium across the epithelial border while SPI2 is required to

establish a S. enterica-containing vacuole in macrophages. The spi locus includes hilD,
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encoding a major virulence regulator, which controls its own synthesis and that of
effectors. A type 2 IscR binding site is present upstream of hilD and IscR binding was
proposed to interfere with HilD positive autoregulation, thereby lowering virulence (134).
Consistently, an iscU mutant, which has a high level of apo-IscR, exhibited reduced
invasion capacity in epithelial cells and attenuated virulence in a murine model of
infection. Conversely, an iscR mutant was hyper-invasive in HelLa cells (134). In Y.
pseudotuberculosis 1scR binds a type 2 motif within the promoter of a gene encoding the
transcription factor LcrF. The lcrF gene is located in the virulence plasmid pYV that also
encodes a T3SS. LcrF regulates transcription of the T3SS secreted effectors genes, and
thereby, virulence. IscR was essential for T3SS-dependent secretion and an iscR mutant
was deficient in colonization of the Peyer’s patches, spleen, and liver in murine models
(135). In V. vulinificus IscR directly activates expression of the vwvhBA genes encoding a
cytolysin in response to host-derived signals such as nitrosative stress and iron starvation
(136). In E. coli some fimbriae genes are directly regulated by IscR, such as cfaA and
fimE (137, 138). And lastly, IscR has been shown to coordinate oxidative stress
resistance during pathogenesis in Pseudomonas aeruginosa and Xanthomonas

campestris (131, 139).

5.5. Regulation of Fe-S biogenesis by SufR.

SufR, first described in Cyanobacteria, is another Fe-S biogenesis-dedicated
transcriptional regulator (140). Interestingly, while Cyanobacteria have the two main Fe-
S biogenesis machineries, ISC and SUF (and sometimes the NIF system dedicated to
nitrogenase maturation), the IscR regulator only regulates transcription of the isc locus.
The expression of the suf locus is under the transcriptional control of its own regulator,
SufR. SufR belongs to the DeoR family of helix-loop-helix regulators. Its DNA binding
domain is located in the N-terminal portion of the protein and it has a non-conventional
Fe-S binding site in the C-terminal portion (C-X12-C-X13-C-X14-C) where a [4Fe-4S] cluster
is coordinated (141). Holo-SufR is a repressor of the suf locus, thereby down-regulating
its own expression. It binds a perfect palindromic sequence (CAAC-N6-GTTG) that is
highly conserved in the promoter regions of suf loci in Cyanobacteria (141). SufR

regulatory activity is sensitive to redox stress, oxidative stress, and iron starvation (140,
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141). It is interesting to note that the SUF system appears to be the most important in
Cyanobacteria and all the genes of the suf locus are essential. This could be why a
dedicated regulator controls suf expression. Most of the Gram-positive bacteria possess
only the SUF system; however, SufR seems to be under-represented with only two
examples described in Actinobacteria: Mycobacterium tuberculosis and Streptomyces
avermitilis (142, 143). How the suflocus is regulated in most of the Gram-positive bacteria
lacking SufR is unknown.

Overall, IscR, and to a lower extent SufR, appear to have primary functions as
regulators of Fe-S biosynthesis. IscR is conserved among the bacterial species producing
an ISC machinery and coordinates Fe-S biosynthesis with other cellular functions
including pathogenesis. In contrast, SufR was only found in Cyanobacteria and some
Actinobacteria and is dedicated to regulating the suf locus. Both regulators coordinate
Fe-S biogenesis to Fe-S bioavailability, and they are assisted in this task by stress specific
regulators such as Fur for iron availability, OxyR for oxidative stress, and NsrR for

nitrosative stress.

6. Iron-sulfur protein assembly as an anti-pathogen target.

The susceptibility of bacteria to host-distributed chemicals such as copper (Cu)
ions, ROS, and RNS, which act, in part, to poison the Fe-S cluster requiring proteins,
implies that higher eukaryotes have evolved to prevent bacterial growth by targeting Fe-
S protein assembly (5, 144, 145). High-density transposon screens or directed
mutagenesis studies suggest that the assembly of Fe-S proteins is essential for many
human bacterial pathogens (6). Importantly, microbes synthesize Fe-S clusters using
machineries that are functionally similar but biochemically distinct from the machineries
used by higher eukaryotes. Bacteria defective in maturating Fe-S proteins have
decreased virulence or fithess in models of infection (6, 58, 146). An inability to assemble
Fe-S proteins affects numerous metabolic pathways resulting in metabolic chaos. These
facts imply that Fe-S protein assembly is a viable target for antimicrobial therapy.

As an example, a small molecule called ‘882 decreased the activity of aconitase in

vivo, but not in vitro (147). A “pull-down” assay using immobilized ‘882 as bait found that
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it associates with SufBCD. SufC associated with ‘882 with a Kq for ‘882 of ~3 uM. These
data led to the hypothesis that ‘882 inhibited Fe-S protein assembly by inhibiting Suf-
dependent Fe-S cluster synthesis. The Suf system has also been proposed to be a target
for other non-bacterial pathogens including Toxoplasma gondii and Plasmodium
falciparum (148). For the latter, the molecule D-cycloserine, which can form a covalent
adduct with PLP, can inhibit the cysteine desulfurase SufS resulting in growth inhibition
(149).

7. Future directions.

New Fe-S cluster assembly factors are continually being discovered lending
support to the hypothesis that additional factors exist and that our current knowledge is
incomplete. To move forward, we need to broaden our approaches by using newly
available techniques and expand the organisms studied. Studies using E. coli and A.
vinelandii have provided the bulk of the information about how bacteria assemble Fe-S
proteins. These Gram-negative organisms are relatively unique in the fact that they have
more than one biosynthetic system, which are, for the most part, functionally redundant.
In contrast, very few studies have been conducted on Fe-S cluster assembly in Gram-
positive bacteria, which typically encode only one Fe-S cluster biosynthesis system.

Several questions remain about Fe-S protein maturation and its regulation. The Fe
and electron donors for Fe-S cluster synthesis and repair remain elusive. We also do not
fully understand the mechanism by which Suf synthesizes Fe-S clusters, or the functions
of many factors utilized for maturating Fe-S proteins. We need to increase our
understanding of how the Fe-S cluster assembly machinery is integrated with metabolic
pathways that require Fe-S proteins. It is not well understood if Fe-S cluster carriers
transfer Fe-S clusters to all apo-targets with the same efficacy or if there is an apo-protein
hierarchy driven by carrier specificity. Understanding this integration will provide insights
into metabolite balance and the consequences of decreasing metabolic flux through a
pathway that requires an Fe-S protein since it is a costly process for the cells (150). This
knowledge will not only be important for medicine and the development of specific anti-

pathogen targets, but also for scientists using organisms to conduct green chemistry.
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Inefficient Fe-S protein maturation, such as in organisms engineered to produce biofuels,
fix dinitrogen, or generate secondary metabolites, could decrease the yields and the

efficiency of desired processes, ultimately decreasing profits and productivity (151).
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Figure Legends.

Figure 1. General mechanism of bacterial Fe-S protein assembly. Monoatomic Fe?* and
S0 are combined with electrons on a proteinaceous molecular scaffold forming an Fe-S
cluster. The Fe-S cluster is transferred to one or more carrier proteins before being
transferred to an apo-protein forming a holo-protein. Reactive oxygen species (ROS) can
either damage the Fe-S cluster, which can subsequently be repaired, or destroy it,

resulting in apo-protein formation.

Figure 2. Iron-sulfur cluster synthesis. Panel A. Structure of IscU from Thermus
thermophiles (PDB: 2qg4). The grey ball is a Zn(ll) ion and the three ligating cysteines
are highlighted. Panel B. The structure of SufBC2D from Escherichia coli (PDB: 5awf).
SufC is shown in green and SufB and SufD are shown in purple and tan, respectively.
Panel C. Working models for ISC and SUF-directed iron-sulfur protein maturation in

Escherichia coli.

Figure 3. Iron-sulfur cluster carriage. Panel A. structure of the A-type carrier IscA from
Thermosynechococcus elongatus (PDB: 1x0g) with [2Fe-2S] cluster bound. Panel B.
Structure of Nfu from Staphylococcus epidermidis (PDB: 1xhj). The cysteine thiols that
are proposed iron-sulfur cluster ligands are highlighted. Panel C. A schematic

representation of iron-sulfur cluster scaffolds and carriers.

Figure 4. Regulation of iron-sulfur cluster synthesis in Escherichia coli. Panel A. An X-
ray structure of apo-IscR monomer with the proposed Fe-S cluster ligands (C92A, C98A,
C104A, and H107) are highlighted in red (PDB: 4hf1). Note that in this IscR variant the
ligating cysteines have been changed to alanines. Panel B. An X-ray structure of dimeric
apo-IscR bound to the hya promoter which is a type 2 binding site (PDB: 4hf1). Each
monomer is differently colored (blue and pink). Panel C. Model for the regulation of ISC

and SUF expression in Escherichia coli.
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