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Abstract: This paper presents the results of a community survey that was designed to better under-
stand the effects of permafrost degradation and coastal erosion on civil infrastructure. Observations
were collected from residents in four Arctic coastal communities: Point Lay, Wainwright, Utqiagvik,
and Kaktovik. All four communities are underlain by continuous ice-rich permafrost with varying
degrees of degradation and coastal erosion. The types, locations, and periods of observed permafrost
thaw and coastal erosion were elicited. Survey participants also reported the types of civil infrastruc-
ture being affected by permafrost degradation and coastal erosion and any damage to residential
buildings. Most survey participants reported that coastal erosion has been occurring for a longer pe-
riod than permafrost thaw. Surface water ponding, ground surface collapse, and differential ground
settlement are the three types of changes in ground surface manifested by permafrost degradation
that are most frequently reported by the participants, while houses are reported as the most affected
type of infrastructure in the Arctic coastal communities. Wall cracking and house tilting are the most
commonly reported types of residential building damage. The effects of permafrost degradation and
coastal erosion on civil infrastructure vary between communities. Locations of observed permafrost
degradation and coastal erosion collected from all survey participants in each community were
stacked using heatmap data visualization. The heatmaps constructed using the community survey
data are reasonably consistent with modeled data synthesized from the scientific literature. This
study shows a useful approach to coproduce knowledge with Arctic residents to identify locations of
permafrost thaw and coastal erosion at higher spatial resolution as well as the types of infrastructure
damage of most concern to Arctic residents.

Keywords: permafrost thaw; coastal erosion; civil infrastructure; community survey; co-production
of knowledge; Arctic
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1. Introduction

The Arctic system is moving into an unprecedented state as a result of climate change;
key observational indicators of such changes include sea-ice decline and warming of per-
mafrost [1]. Permafrost temperatures in Arctic Alaska have increased by 1-3 °C in recent
decades [2] and are projected to continue to increase during the rest of this century [3]. The
increase in ground temperatures and the extent of permafrost degradation will strongly
depend on the future rate at which atmospheric greenhouse gas concentrations increase [3].
Even if these concentrations increase only moderately (such as the Representative Concen-
tration Pathway (RCP) 4.5 greenhouse gas emissions scenario), up to 67% of the near-surface
permafrost in Alaska is predicted to thaw by the end of this century [4]. Observations
suggest that the rate of erosion along permafrost coastlines has been accelerating due
to sea-ice decline and a longer period of open water [5-8], and an increase in sea water
temperature [5,9]. Degradation and erosion of permafrost have caused irreversible damage
to coastal infrastructure and facilities, resulting in high repair costs across Arctic Alaska.
For example, in September 2017, Utqiagvik was hit by an Arctic winter storm resulting in
over $6 million damage to public infrastructure, and this event was declared a federal disas-
ter [10]. Permafrost degradation is projected to raise maintenance costs for affected public
infrastructure in Alaska by 3.6-6.1 billion U.S. dollars by 2030 and another 5.6-7.6 billion
U.S. dollars by 2080 [11].

Potential impacts of permafrost degradation and coastal erosion on civil infrastructure
have been long discussed in the literature [12-17]. Coastal erosion along permafrost
coastlines and the subsequent land loss and flooding also result in widespread damage to
civil infrastructure [18-23]. Uneven surfaces created by differential thaw settlement can
affect the functionality and serviceability of underground or aboveground power lines and
pipeline systems for water, sewage, and fuel. However, the extent and severity of these
effects are not accurately known. Across the Arctic, infrastructure developers currently
rely on data that are outdated, sparse, and do not include state-of-the-art knowledge.
To date, pan-Arctic geohazard mapping has only been conducted at a relatively coarse
spatial resolution (e.g., 1 km in [13]). Detailed information about the types of infrastructure
damage, and the current state of repair, maintenance, and adaptions at the spatial resolution
of meter scale are often not systematically archived. Such high-resolution state-of-practice
information is important as it enables engineers and planners to establish and customize
the infrastructure planning and designs for each individual village.

To understand the impacts of permafrost degradation and coastal erosion on civil
infrastructure at the local community level, it is important to collaborate with residents in
Arctic coastal communities to coproduce knowledge. Studies that incorporated knowledge
co-production with Arctic communities have the potential to warrant a sustainable Arctic
system, foster mutual understanding, and transform science and society [24,25]. Depending
on study objectives, various degrees of community engagement and participation have been
used for evaluating climate-sensitive processes in an Arctic environment [26]. Bronen et al.
suggested that researchers can coproduce knowledge with indigenous residents to support
community-based adaptations through integration of indigenous knowledge and physical
sciences [27]. Such collaboration can facilitate more culturally relevant and inclusive
planning processes and enhance decision-making in each community [27]. Arctic residents
have the most detailed local knowledge of how permafrost degradation and coastal erosion
have affected Arctic civil infrastructure. Hence, it is most effective to collaborate with
local knowledge holders to identify types of civil infrastructure affected by permafrost
degradation and coastal erosion and to assess the damage, repair, and maintenance of the
infrastructure.

In this study, we collaborated with residents in four Arctic coastal villages in the
North Slope Borough, Alaska, through a community survey. The original plan involved
community meetings as well as a survey, but COVID-19 made that extremely unadvisable,
and the project could not be delayed indefinitely. As a result, an online community survey
was developed. Statistical analysis was conducted on the types of civil infrastructure



J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 3 of 27

J. Mar. Sci. Eng. 2022, 10, 422

infrastructure that were reported as most affected by permafrost thaw and coastaberosion.
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also included to provide more (and potentially more valuable) information. Participants
were allowed to skip questions that they did not want to answer.

The questionnaire was designed by the researchers at the University of Alaska Fair-
banks and Pennsylvania State University, with consultation with the Cold Climate Housing
Research Center in Fairbanks, Alaska. As shown in Table 1, there are three categories
of questions in this survey: permafrost degradation, coastal erosion, and infrastructure
damage and repair. The participants identified changes in ground surface manifested by
permafrost degradation in and around their communities. The options provided in the
questionnaire included surface water ponding, sinkholes, ground surface collapse, differen-
tial ground settlement along roads and gravel pads, and others. The periods during which
these changes have been happening were also recorded; the options include <6 months,
0.5-1 year, 1-3 years, 3-5 years, 5-10 years, and >10 years. Participants also indicated
the infrastructure types affected by permafrost degradation. The options include houses,
runways, schools, ice cellars, water and sewer lines, and others. Effects of permafrost
degradation on residential buildings, buried pipelines, utilidors, and roads were reported
in the survey. Detailed information such as damage type, damage location, repair method,
and effectiveness of repair methods was also recorded. For the questions related to coastal
erosion, participants identified events of coastal erosion, periods during which coastal ero-
sion has been happening, types of civil infrastructure affected, and types of erosion control
measures implemented and their effectiveness. Participants were able to provide their
plans if permafrost degradation and coastal erosion continue to happen. They identified
the locations of permafrost degradation and coastal erosion on provided maps with three
different scales of approximately 600 km, 40 km, and 8 km.

Table 1. Descriptions of survey questions.

Categories Survey Questions

Observation of permafrost degradation
Time period of permafrost degradation

Permafrost thaw . Types of infrastructure affected by permafrost degradation
Plans for preventing impacts of permafrost thaw
Indication of areas of permafrost thaw

Observation of coastal erosion
Time period of coastal erosion
. Types of civil infrastructure affected by coastal erosion
Coastal erosion . Measures and efforts to control coastal erosion
Effectiveness of erosion control
. Plans for preventing impacts of coastal erosion
Indication of areas of coastal erosion

. Effects on residential buildings (damage types, repair
methods, and effectiveness of repair methods)

. Effects on buried pipelines and utilidors (damage types and
locations, repair methods, and effectiveness of
repair methods)

. Effects on roads (damage types and locations, repair
methods, and effectiveness of repair methods)

Infrastructure damage
and repair

3.2. Participants

In this study, the survey participants were at least 18 years old. They could choose to
complete the questionnaire for both the communities where they reside and also those that
they are familiar with. The survey was anonymous, and no digital footprint was collected.
Personal contact information was collected only if the participants wished to be entered in
prize drawings, and the survey was separated from the prize draw sign-up form. This study
was approved by the Institutional Review Board of the Pennsylvania State University and
the University of Alaska Fairbanks. All survey investigators had completed the Social and
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Behavioral Human Subjects Research training by the Collaborative Institutional Training
Initiative (CITI) Program before the survey was launched. As shown in Table 2, a total
of 153 survey responses were collected; 126 of them were complete. While the remaining
27 responses were partially complete, the responses were still included and analyzed for
this study. Table 2 shows a breakdown of the total number of survey responses (including
partially and fully completed surveys) and the number of completed responses for each
community. The survey participation rate varies from 2.3 to 39.0% of the adult population
(i.e., individuals who are at least 18 years old) in each community, based on the 2019
community populations estimated by the United States Census Bureau.

Table 2. Number of participants.

Number of Survey Survey Participation Rate

Population

Community Responses (% of Adult Population)
Total Adult! Total 2 Complete Total 2 Complete
Kaktovik 178 118 46 40 39.0 339
Point Lay 227 119 26 23 21.8 19.3
Utgiagvik 4467 2836 66 51 2.3 1.8
Wainwright 494 312 15 12 4.8 3.8
All community 5366 3385 153 126 4.5 3.7

1 Adult is someone who is at least 18 years old. 2 Total is the sum of the numbers of partially and fully
completed surveys.

3.3. Data Analysis

All responses collected in this study were analyzed by community. Then, all responses
were collectively analyzed to investigate the overall trend across the four Arctic coastal
villages. The survey data collected in this study are mostly categorical. A donut chart or a
segmented bar chart is used to represent the breakdown of a category (e.g., various types
of infrastructure affected by permafrost thaw) for each community. For the maps where
participants indicated observations of permafrost thaw and coastal erosion, a heatmap
visualization was created using these data. Heatmap visualization is a graphic method
to represent the frequency of selection on each grid element of an image. In the survey,
participants selected locations where permafrost degradation and coastal erosion were
observed by clicking on the maps. Then, the marked locations or coordinates were recorded
and overlaid across the map as colored areas. Map locations or coordinates with the highest
frequency of participants’ selections are shown in red and those with the lowest frequency
are shown in blue. Heatmap visualization of permafrost degradation and coastal erosion are
compared to the thicknesses of active layer and talik predicted using numerical modeling
as well the community coastal erosion prioritization list curated by [31]. The objective
is to assess whether there are differences between modeled and perceived permafrost
degradation and coastal erosion.

4. Results
4.1. Permafrost Thaw and the Affected Civil Infrastructure

In the survey, 293 data points were collected to analyze changes in the state of per-
mafrost through categorization of visual permafrost-thaw-induced changes on the ground
surface. The number of data points here is different from the total number of participants.
For a given question, survey participants could choose more than one option. For example,
for changes of the ground surface related to permafrost degradation, a participant could
choose three options: surface water ponding, sink holes, and ground collapse. So, the num-
ber of data points is defined as the sum of all options chosen by all participants. Figure 3
presents the percentages of reported observations of how ground surface conditions have
changed in Kaktovik, Point Lay, Utqiagvik, Wainwright, and All, which include data
from all four communities. Survey participants chose from the following options in the
questionnaire: surface water ponding, sinkholes, ground collapse, differential settlement,
and others. Other types of changes in the state of permafrost that were observed by the
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Based on the inventory of civil infrastructure catalogued on OpenStreetMap [34], there
are approximately 220 buildings in Kaktovik, 112 in Point Lay, 1950 in Utqgiagvik, and
280 in Wainwright. There are two schools and one college in Utqiagvik, and one school
each for the other three villages [34]. The total length of roads is 26 km in Kaktovik, 14 km
in Point Lay, 176 km in Utqiagvik, and 21 km in Wainwright [34]. Currently, there is only
one working ice cellar in Kaktovik [35], and none in Point Lay [36]. While, in Utqgiagvik,
there is a total of 71 ice cellars that have been identified [37]. As of 2014, there are 34 ice
cellars (15 in use and 19 abandoned) in Wainwright [38].

The participants provided the types of civil infrastructure that were affected by per-
mafrost thaw; the results are shown in Figure 5. Survey participants selected from the
following options in the questionnaire: house, runway, school, ice cellar, water and sewer
lines, and others. As shown in Figure 5, the most reported infrastructure type is houses
in Kaktovik (31%) and Utqiagvik (28%), runway (26%) in Point Lay, and water and sewer
lines (36%) in Wainwright. Houses (27%) are the category most reported in general. Sur-



J. Mar. Sci. Eng. 2022, 10, 422 8 of 25

J- Mar. Sei. Ry 3082 i i AEE RRASEY other types of civil infrastructure impacted by permafrost thaw, 8 ©f 2
including cemeteries, driveways, walking trails, and cabins.

Kaktovik (n=43) Point Lay (n=26) Utgiagvik (n=60)
Wainwright (n=11) All (n=140)
M Less than 6 months
M 6 months to 1 year
[ 1to 3years
3to 5years
M 5to 10years
B More than 10 years
J. Mar. Sci. ERig@03% 0, XDORRH 51z e%bc;; et msReriods ohpsrmaloRthvindured around urface changes 1t is thespy

sample size.

Based on the inventory of civil infrastructure catalogued on OpenStreetMap [34

Kaktovik (n=thene are approximaisiyt 24 bmgt;pgs in Kaktovik L]&ﬁggyﬁogn}.j_w} 1950 in Utqiagvik
and 280 in Wainwright, T4 gain Utgiagvik, and on

gl each for the g 0 km in Kaktovik
rrently, ther
6]. While, i

identified [3
right [38].

aktovik (31%) and UtqiagviK (28%), runway (26%) in Point Lay, and water and sewe
Wainwright (ni2és) (36%) in Wainwrig‘HHHEﬁié@); (27%) are the category most reported in general. Sur
- e 8s of civil infrastructure impacted by permafrost thaw

resentative Concentratios
mwrl%ht have the thickes
d GFthis century, th
for the ot!eP‘l'W@ communities, Kaktovik an
_ ion (i.e,, model results in 2020), in communitie
e experlence more s¢ ost thaw (i.e., Point Lay and Wainwright), runway
and water andfsewler }fmes are types of c1f\f/11 mfrastructufre most reported On lthe othe
Figure 5. Types of cﬁ@%@f?@&%s St e misen gl e o e RS e
rlgrlcg {Sé%gggl Ie selvelee Eerﬁnafr%s&(f sluPaf_]il(a%tahk formati etween 2020 anc

Table 3 pres 8 glg F ase 1 actl Lgi_‘lay and subaeria ormation e een

apfed from
2020 and 2100 for_the four communities e results in Table 3 were ‘nredw’rpd ’rhrm]crh

simulations using physically Raggd ﬂl@éﬁlﬂ@%‘iﬂ)‘%ﬁb@ mq#m%)@éhmﬁlfﬂﬁﬁs by 210(

Community (m)

Natural Gravel Natural Gravel Natural Gravel
Kaktovik 0.26-0.7 1.0-1.2 1.3-1.4 1.6-1.7 0-5.5 1.3-7.3
Point Lay 0.8-1.5 1.3-1.9 0.7-0.9 1.0-1.2 13.0-13.0 16.0-16.0
Utgiagvik 0.3-0.8 1.1-1.2 1.0-1.0 1.3-1.7 0.3-7.3 1.7-9.0
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Kaktovik (n=19)

000

Wainwright (n=8)

M Less than 6 months
B 6 months to 1 year
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Pathway 8.5 [3]. The modeled data show that Point Lay and Wainwright have the thickest
active layer for both natural and gravelly land in 2020. By the end of this century, the active
layer thickness is relatively higher for the other two communities, Kaktovik and Utqiagvik.
Looking at the current situation (i.e., model results in 2020), in communities that experience
more severe permafrost thaw (i.e., Point Lay and Wainwright), runways and water and
sewer lines are types of civil infrastructure most reported. On the other hand, houses are
the type of civil infrastructure most frequently reported in communities that experience
relatively less severe permafrost thaw.

Table 3. Modeled increase in active layer thickness and subaerial talik formation between 2020 and
2100 (RCP 8.5) (adapted from [3]).

Active Layer in 2020 (m) Active Layer in 2100 (m) Talik Thickness by 2100 (m)
Community
Natural Gravel Natural Gravel Natural Gravel
Kaktovik 0.26-0.7 1.0-1.2 1.3-14 1.6-1.7 0-5.5 1.3-7.3
Point Lay 0.8-1.5 1.3-1.9 0.7-0.9 1.0-1.2 13.0-13.0 16.0-16.0
Utgiagvik 0.3-0.8 1.1-1.2 1.0-1.0 1.3-1.7 0.3-7.3 1.7-9.0
Wainwright 0.6-0.9 1.2-1.4 0.8-1.7 0.8-1.7 0-9.4 0.4-11.5

4.2. Permafrost Coastal Erosion and the Affected Civil Infrastructure

For the four Arctic coastal villages in general (see all in Figure 6 and Table 4), most
survey participants (31%) reported that coastal erosion has been occurring for one to
three years. For Kaktovik, Point Lay, and Wainwright, the outcomes are similar, and
most participants (42%, 42%, and 37%, respectively) reported that they have observed
one to three years of coastal erosion occurring in their communities. In Utqiagvik, most

. Mar. Sci. Eng. 2022, 10, x FOR PEEM%WH’CS (41%) reported that they have observed more than 10 years of coastal %os%oﬁ

in addltlon to the coasthnes

Point Lay (n=12) Utgiagvik (n=39)

All (n=78)
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Table 4. Comparison of the most reported types of civil infrastructure affected by permafrost thaw
and coastal erosion and their reported time periods.

Most Reported Types of Civil Infra-

Most Reported Time Periods
structure

Towne
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Table 4. Comparison of the most reported types of civil infrastructure affected by permafrost thaw
and coastal erosion and their reported time periods.

Most Reported Types of Civil Infrastructure Most Reported Time Periods
Towns
Affected by Affected b.y Coastal Permafrost Thaw Coastal Erosion
Permafrost Thaw Erosion
Kaktovik Houses (31%) Houses (23%) <6 months (40%) 1-3 years (42%)
Point La; Runways (26%) Ice cellars (27%) 0.5-1 year (31%) 1-3 years (42%)
y y 1-3 years (31%) Y
Utgiagvik Houses (28%) Houses (31%) 1-3 years (27%) >10 years (41%)
Water and sewer <6 months (28%)
Wainwright . o Houses (25%) 0.5-1 year (27%) 1-3 years (37%)
lines (36%) o,
1-3 years (27%)
All Houses (27%) Houses (27%) 1-3 years (27%) 1-3 year (31%)

Coastal erosion in Arctic communities has impacted the serviceability of various types
of civil infrastructure. In addition to houses, runways, schools, ice cellars, and water
and sewer lines as shown in Figure 7, coastal erosion also affects cultural heritage sites,
docks, and walking trails according to the survey participants; these three types of civil
infrastructure are grouped as “Others” in Figure 7. Respondents also reported that coastal
erosion resulted in flooding, shallow waterways due to erosion, land loss along coastal cliffs
and riverbanks, and effects on hunting activities. For coastal erosion, the most reported type
of affected civil infrastructure also varies across the communities. As shown in Figure 7, it

) is ice cellars (27%) in Point Lay. For Kaktovik, Utqiagvik, Wainwright, and All, houses are
J- Mar. Sci. Eng. 2022, 10, x FOR PEERREVIEI) reported type (23%, 31%, 25%, and 27%, respectively). Table 4 compares the' b3l
commonly reported types of infrastructure affected by permafrost thaw and coastal erosion.
Among the four communities, Kaktovik and Utqiagvik have a similar type of infrastructure
(iie., houses) that is reportedlly affected the most by permeafrost: fhamw @md aostz ercsion. In
the four Arctic coastal villages in general (see All in Table 4), houses are the most commonly
reported infrastructure type affected by hotth pemetfostttawanticcassih beostoon.

Kaktovik (n=51) Point Lay (n=30) Utgiagvik (n=90)
Wainwright (n=20) All (n=191)

B Houses
B Runway
M School
Ice cellars
B Water and sewer lines
W Others

Figure 7. Types of civil infrastructure that are affected by coastal erosion. n is the sample size.
Figure 7. Types of civil infrastructure that are affected by coastal erosion. 7 is the sample size.

Overall, 66% of the respondents reported that they have seen damages to houses
caused by permafrost thawing as shown in Figure 8a. More specifically, the percentages of
those who reported damage are 72% in Kaktovik, 56% in Point Lay, 65% in Utqiagvik, and
64% in Wainwright. Among the participants who reported that they have seen damages to
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Figure 7. Types of civil infrastructure that are affected by coastal erosion. 7 is the sample size.
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Given that houses are the most commonly reported infrastructure type affected by
both permafrost thaw and coastal erosion, details about the types of damage to residential
buildings inquired in the survey are reported in Table 5. These detailed damages include
cracking of walls, broken windows, doors that could not close, water accumulation around
piles or posts, jacking up of piles, sinking of piles or post-on-pad, breaking of pipes, tilting
of houses, failure of adjustable supports for elevated foundation, breaking of post-on-pad
for elevated foundation, heaving or sinking of soil underneath slab-on-grade, ground
subsidence at or near the houses, and others. To summarize, cracking of walls is the most
common type of residential building damage experienced by residents in the Arctic coastal
villages with it ranked first in Kaktovik, Utqiagvik, and Wainwright. While tilting of houses
is the second most common type of damage overall, it ranked first in Utqiagvik, second in
Kaktovik, and third in Point Lay and Wainwright. These two types of damage are due to
ground thaw consolidation upon permafrost thawing.

As soil temperature increases, melting of ice in permafrost often leads to ground thaw
consolidation or ground surface subsidence. Given the permafrost heterogeneity across a
region, the difference in settlement from one location to another (also known as differential
settlement) can cause damage to roads and buried pipelines or utilidors. As shown in
Figure 9a, 26% of the participants reported that they have seen or are aware of damages
to roads in Kaktovik, 40% in Point Lay, 53% in Utqiagvik, and 36% in Wainwright. For
damages to buried pipelines or utilidors as presented in Figure 9b, 17% of the participants
reported that they have seen such damage in Kaktovik. The percentages of participants who
reported such observation are 16%, 35%, and 36% in Point Lay, Utqiagvik, and Wainwright,
respectively. Overall, 41% of the participants have seen damages to roads and 26% of them
have seen damages to buried pipelines or utilidors in these four coastal communities. More
participants have seen damages to roads than pipelines or utilidors.

An increase in soil temperature also causes permafrost coasts to be more susceptible
to erosion, resulting in coastal land loss. In this survey, participants reported if they
have observed any coastal erosion events and whether there have been any measures
implemented to prevent coastal erosion. Among all participants in the four Arctic coastal
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villages, 61% reported the observation of coastal erosion (in Figure 10a), 52% reported that
erosion control measures have been implemented (in Figure 10b), but only 70% considered
the implemented measures effective (in Figure 10c). These survey results are consistent with
findings in [39] showing that some types of coastal erosion prevention measures, except
for rock revetments, are ineffective. Revetments, although effective, require maintenance
throughout their service life given that they can be easily displaced or destroyed by more
extreme storm events [39].

Table 5. Types of damage to residential buildings reported by survey respondents. # is the
sample size.

Communities
Types of Damage Kaktovik  PointLay Utqiagvik Wainwright All
(n =135) (n=72) (n =181) (n=18) (n = 406)
Cracking of walls 17% 11% 14% 22% 15%
Tilting of houses 12% 11% 14% 17% 13%
Doors that could not close 9% 14% 12% 11% 11%
Surrounding water 9% 10% 10% 6% 10%
accumulation
Broken windows 11% 7% 7% 22% 9%
Nearby ground subsidence 6% 8% 5% 0% 6%
Jacking up of piles 4% 4% 7% 6% 6%
Sinking of piles or 3% 4% 4% 6% 4%
post-on-pad
Breaking of pipes 6% 6% 5% 6% 5%
Failure of adjustable
supports for elevated 6% 1% 7% 6% 5%
foundation
Breaking of post—on—pad for 7% 8% 3% 0% 59,
elevated foundation
Heaving or sinking of soil o o o o o
J. Mar. Sci. Eng. 2022, 10, x FOR PEER Ri#&Meath slab-on-grade 10% 14% 8% 0% 9% of 27
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Figure 9. Observations of damage to (a) roads and (b) buried pipelines or utilidors caused by per-
mafrost thawing.
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The only inconsistency noted in this study is the results for Kaktovik. It is a community
that requires monitoring according to USACE [31], but the percentage of residents who
reported observations of coastal erosion is the lowest when compared to those in the other
three communities. This is likely due to the high effectiveness of coastal erosion measures
implemented in Kaktovik; 100% of the residents who have observed the implementation of
coastal erosion control measures reported that the measures are effective (in Figure 10c).
This inconsistency indicates that, while Kaktovik was supposed to experience severe coastal
erosion, the issues have been mitigated using effective control measures. As a result, less
participants have observed or are aware of coastal erosion in Kaktovik.

Table 6. Measured rates of erosion (community prioritization was adapted from [31]).

Community Community Prioritization Percentage of Residents Who Consistency with
(USACE 2009) Observed Coastal Erosion USACE
Kaktovik Monitoring 49% Inconsistent
Point Lay Minimal erosion 50% Consistent
Utqiagvik Priority action 75% Consistent
Wainwright Minimal erosion 67% Consistent

4.3. Heatmap Visualization of Reported Locations of Permafrost Thaw and Coastal Erosion

Permafrost thaw and coastal erosion are two land degradation processes driven by
climate warming. Although each community is affected by both permafrost thaw and
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coastal erosion, the extents of the processes vary across the four communities. In this
study, survey participants provided locations where coastal erosion and permafrost thaw
were observed. Figures 11-14 show the heatmaps of permafrost-thaw-induced ground
surface disturbance and coastal erosion in Utqiagvik, Kaktovik, Wainwright, and Point Lay,
respectively. The heatmaps are created by stacking map locations or coordinates marked by
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residents indicated locations in the ocean. We speculate that Arctic residents intended to
indicate issues related to sea-ice decline and its impacts on hunting activities.
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4.4. Planning in the Events of Continued Permafrost Degradation and Coastal Erosions

Residents living in the Arctic coastal villages are concerned about the events of contin-
ued permafrost degradation and coastal erosion. Two main questions arise from the survey
when the respondents were asked what information would be helpful for them to plan
for the future: (1) what are the effects of climate change on the community, and (2) what
should be done? As presented in Table 7, information that is deemed important, according
to the survey participants, for planning for the future can be categorized into five aspects:
(1) natural environment, (2) built environment, (3) cultural awareness, (4) education and
communication, and (5) policy.

Table 7. Important information or action for planning in the events of continued permafrost degrada-
tion and coastal erosion (according to the survey participants).

Important Information or Action for Planning in the Events of Continued Permafrost Degradation

Category and Coastal Erosion

Environmental impacts caused by coastal erosion control structures (e.g., metal tanks) and
underground utilidors
Salt content of permafrost
Land management
. Sea level rise
Release of greenhouse gases due to permafrost thawing
Ancient bacteria and viruses and microbial activity
. Climate forecast
Real-time monitoring of ground temperature and permafrost thaw
Sea-ice coverage
. Surface erosion
Wetland ecosystem

Natural environment

. Emergency shelters in subsistence areas
Permanent solutions to the impacts of permafrost degradation and coastal erosion
Stabilization methods for structures and utility services
. Community and critical structure relocation
Permanent and effective coastal erosion control structures
Solutions to prevent roads from being washed out by erosion and storm surge
. Effects of permafrost degradation on civil infrastructure
Frequent maintenance and repair

Built environment

Cultural awareness . Archeological remains (e.g., mammoth)

. Outreach to local college students and young generation
Awareness of environmental protection and water conservation
Community education on how to response to home damaged by permafrost degradation and
coastal erosion

Education and . Education (on climate warming, environment protection, zero carbon emission)
communication . Involvement of the tribal organizations in community planning
. Information availability on social media platforms

Community meetings
Awareness of impacts of permafrost degradation and coastal erosion in Arctic coastal villages

. Records or pictures of permafrost change for a more effective communication
Funding
. Flood insurance

Coastal zonation and management
Wetland protection and restoration
. Scientifically supported management
Increased government input
Diversified investment mechanisms
. Low-emission vehicles
Improved environmental governance
Quantitative evaluation systems for coastal wetland degradation and restoration

Policy
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5. Discussions

This study represents an initial examination of the use of a community survey to
coproduce knowledge with residents in Arctic coastal communities to support the integra-
tion of indigenous knowledge and the knowledge of physical sciences and engineering.
Monitoring of natural environment and civil infrastructure is the focus of this study. The
survey data collected can be further utilized by researchers and engineers to prioritize and
solve the most important and urgent issues. As shown in Table 5, types of damages to
residential buildings can be ranked according to their frequencies being reported. Note
that the priorities may not be the same across communities. By identifying the issues most
concerned by residents, fields of research interest can be narrowed during the investigation
of fundamental mechanisms of engineering issues related to permafrost thaw and coastal
erosion. For example, tilting of houses, cracking of walls, doors that could not close, broken
windows resemble issues related to thaw consolidation, creep, and differential settlement
in the spatial dimension. However, the data and results from this study are not meant to be
the sole basis but rather one of the many facets for deciding the infrastructure planning in
these communities.

This study also tested the effectiveness of heatmap data visualization tools in integrat-
ing local knowledge with measured physical data. With only 153 participants in this survey,
the heatmaps still reveal valuable information that can aid engineers and researchers in
their decision-making process for establishing monitoring stations and experimental sites.
When comparing these survey heatmaps to computed results from physically based models,
engineers or researchers will be able to either reassess the assumptions in their work or
identify gaps between perceived and computed data and provide relevant outreach to the
community to aid the decision-making or planning of the communities.

Nonetheless, the community survey has its limitations. For example, the changes in
sea level and wave action due to climate warming could not be quantified in this study. The
physical mechanisms responsible for the infrastructure failure also could not be explored
using the community survey. It is important to complement a community survey using
other scientific methods to advance the coproduction of knowledge. Recommendations for
future studies were provided in Table 8.

Table 8. Recommendations for future knowledge coproduction.

Indigenous Investigation

Scientific Investigation Knowledge Coproduction

Observe and report locations
experiencing permafrost degradation
(e.g., active layer thickening and talik

formation) and coastal erosion, and
produce heatmaps using survey data

Produce high-resolution (i.e., 1 m)
permafrost degradation and coastal
erosion maps using physically based
models or remote sensing

Compare heatmaps with permafrost
degradation maps to investigate whether
areas of highly reported cases of
permafrost degradation and coastal
erosion correlate with areas most severely
impacted by climate warming

Observe environmental changes
(e.g., snow distribution and thickness in
undisturbed tundra and near residential

areas and storm events) in different
communities impacted by various
degrees of permafrost degradation and
coastal erosion

Produce high-resolution (i.e., 1 m)
permafrost degradation and coastal
erosion maps for different communities
impacted by various degrees of
permafrost degradation and
coastal erosion

Compare results of indigenous and
scientific investigations across
communities to investigate the individual
and collective effects of site selection
(e.g., site topography and geology), snow
distribution, and anthropogenic
disturbance on permafrost degradation
and coastal erosion

Observe and report infrastructure
damage and maintenance and repair for
different types of civil infrastructure and
foundation systems, and advise effective

adaptations of civil infrastructure and
foundation systems based on
personal experience

Investigate the failure mechanisms of
various types of civil infrastructure and
foundation systems using physically
based numerical models

Evaluate the performance of different
types of foundations and compare
scientific results with the experience of
Arctic residents to coproduce knowledge
for adapting foundations of
civil infrastructure
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6. Conclusions

Due to climate warming, permafrost thaw and coastal erosion are two degradation
processes that severely affect the stability and serviceability of civil infrastructure in most
Arctic coastal villages. Permafrost degradation and coastal erosion are indeed slow-moving
disasters, as described by one of the survey participants. Although results vary across the
four Arctic coastal communities, the following generalized findings can be drawn from
the study.

1. Surface water ponding, ground collapse, and differential settlement are three types of
permafrost-thaw-induced changes most reported by the participants.

2. Most participants have observed shorter periods (i.e., <0.5 year; 0.5-1 year; 1-3 years)
of permafrost thaw but longer periods (i.e., 1-3 years; >10 years) of coastal erosion in
their communities, indicating coastal erosion has been happening for a longer period
than permafrost thaw and there is increased awareness of permafrost degradation in
recent years.

3. Houses are the most reported type of infrastructure affected by both permafrost thaw
and coastal erosion.

4. Wall cracking and house tilting are two types of damages to residential buildings
most reported by survey participants.

5. 66% of the participants reported that they have seen damages to residential buildings,
but only 31% of them have seen repair to the damages.

6.  41% of the participants reported that they have seen damages to roads, while 26% of
them have seen damages to buried pipelines and utilidors. There are more reported
cases of damage to roads than to buried pipelines and utilidors.

7. 61% of the survey participants reported observations of coastal erosion. 52% of the
survey participants reported that measures have been implemented to control coastal
erosion, but only 70% considered the implemented measures effective. The results
indicate that not all areas affected by coastal erosion have the issues mitigated and
some implemented measures are ineffective.

8.  Survey participants deemed the information in the following five aspects as crucial
for their community planning for continued climate warming: natural environment,
built environment, cultural awareness, education and communication, and policy.

This study shows that information provided by Arctic residents is critical and should
be integrated with scientific and engineering research and policy making to prioritize the
most urgent and important issues related to the performance of civil infrastructure under
continued climate warming. The heatmap visualization tool is effective in the selections of
permafrost, coastline, and civil infrastructure monitoring stations.

Supplementary Materials: The questionnaires for Point Lay, Wainwright, Utqiagvik, and Kaktovik
can be downloaded at: https://www.mdpi.com/article/10.3390/jmse10030422/s1.
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