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Abstract— Recent work on robot learning with visual obser-
vations has shown great success in solving many manipulation
tasks. While visual observations contain rich information about
the environment and the robot, they can be unreliable in
the presence of visual noise or occlusions. In these cases, we
can leverage tactile observations generated by the interaction
between the robot and the environment. In this paper, we
propose a framework for learning manipulation policies that
fuse visual and tactile feedback. The control problems consid-
ered in this work are to localize a gripper with respect to the
environment image and navigate to desired states. Our method
uses a learned Bayes filter to estimate the state of a gripper
by conditioning the tactile observations on the environment
image. We use deep reinforcement learning for solving the
localization and navigation problems provided with the belief
of the gripper’s state and the environment image. We compare
our method against two baselines where the agent uses tactile
observation directly with a recurrent neural network or uses a
point estimate of the state instead of the full belief state. We
also transfer the policies to the real world and validate them
on a physical robot.

I. INTRODUCTION

It is not yet clear how best to leverage force and tactile

measurements in order to improve the performance and

reliability of robotic manipulation. Compared with camera

images, tactile and force data contain much less information

per measurement. However, some types of information like

whether the robot is contacting the environment and how

much force is applied is difficult to estimate based on visual

information alone. Ideally, we would like to combine visual

and tactile/force information, leveraging the strengths of

each. However, it is not clear how to accomplish this. Re-

cently, we proposed an approach that uses sequential Bayes

filtering to estimate robot position based on tactile/force data

relative to an reference visual image of the scene [1]. Here, it

is assumed that a reference image is obtained prior to tactile

interaction that shows the overall scene. As force/tactile

information is perceived, a conditional Bayes filter estimates

robot pose relative to the reference image. This approach is

particularly useful in unstructured domains containing novel

objects. If we were to attempt to estimate the pose and shape

of all potentially relevant objects in a scene using tactile/force

data alone, this would require us to track a probability

distribution over a very high dimensional space. The visually

conditioned localization method described above avoids the
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high dimensional estimation problem by partitioning the state

space into world state that is represented by the reference

image and robot state that is estimated using filtering.

This paper addresses a key question in this setting –

given initial uncertainty about the position of a robot in

a scene, can we learn a policy that enables the robot to

localize itself or to reach a desired position as quickly as

possible? In contrast to prior work that studies this problem

in the unconditioned setting (i.e. studying this problem as a

POMDP), we learn policies that are conditioned on visual

input. Compared to a setting where the policy is trained for

in a specific manipulation setting, this is a harder learning

problem because our agent must learn to localize or navigate

in an arbitrary environment. One perspective on this is that

we are casting robotic manipulation as a mixed observability

Markov decision process (a MOMDP [2]) rather than a

POMDP, as in e.g. [3]. The state of the world is assumed to

be fully observed (in the form of the reference image) and

the robot position is partially observed via the tactile/force

measurements.

We approach the problem by applying standard deep rein-

forcement learning (RL) methods to the MOMDP problem.

The state of the RL agent is taken to be the combination of

the reference image and the belief state of robot pose with

respect to that image as estimated by the visually conditioned

sequential Bayes filter. We evaluate the approach in a setting

where a robot manipulator must localize itself through force

interactions with objects and navigate to desired goals to

solve manipulation tasks. To this end, we designed three

experiments: an active localization task, a navigation task

where the objective is to reach to a desired state, and a

drawer opening task where the aim is to place the gripper

on drawer handle and open it under visual and kinematic

noise. We compare our belief state approach with two

alternative approaches in simulation: a baseline that replaces

the full belief state with a point estimate, and a baseline that

replaces the belief state with recurrent neural network (GRU)

components. In both cases, we find that the belief based

approach significantly outperforms on all the tasks. Finally,

we demonstrate that the simulated results translate well to

a real robotic setting. The code and videos are available at

https://sites.google.com/view/vctm/.

II. RELATED WORK

A. Localization with Touch

The early work of [4], [5], [6], [7], [8], [9] are the

first examples of object pose estimation using Bayes filters.

These methods aim to find the location of the object using

fingertip contact sensing with fixed observation and transition



functions. Liang et al. [10] focus on a similar problem

but also consider the motion dynamics of the object while

manipulating in hand. Pfanne et al. [11] combines tactile

feedback with visual feedback to improve the object localiza-

tion accuracy. Similarly, [12] fuses visual and tactile sensing

to estimate not only object poses but also the end-effector

pose. In this setting, the object and the gripper must be in the

scene of the camera which might not be always possible due

to occlusions by the arm or the gripper. It is important to rely

only on tactile feedback during the object-robot interactions

to avoid occlusions. Although these methods work well in

practice, they are not generalized to novel objects due to

their reliance on prior knowledge of the objects. With the

recent progress in the high-resolution tactile sensors (e.g.

GelSight [13] or OmniTact [14]), a series of work focus

on visual-tactile localization of objects. Li et al. [15] use

the GelSight sensor to localize the pose of a USB stick by

using the RANSAC algorithm. Izatt et al. [16] combines the

GelSight sensor information with point clouds and performs

the Iterative Closest Point (ICP) method for tracking the

pose of the object. The objective of all the work described

above is to localize the pose of an object with respect to the

gripper. The dual of this problem is to localize the gripper

with respect to the environment. Platt et al. [17] localizes

the pose of a robotic hand with respect to a flexible piece

of plastic textured. Similarly, [18] propose to use a visual-

tactile sensor to match the features of the sensor reading

with the pre-generated features of a fixed environment image

to localize the gripper. The feature matching is done by

the scale-invariant feature transform (SIFT) method [19]. In

both of these works, the environment is fixed and known

beforehand and the localization cannot generalize to new

objects or environments. On the other hand, our method is

able to generalize to a variety of scenes and unseen objects.

We achieve this by conditioning the belief updates on the

image of the environment taken prior to the interactions.

B. Differentiable Bayes Filters

In a partially observable environment, the agent does not

have access to the full state information, instead, it receives

a type of observation from the environment that relates

to the underlying state. For example, a robot might use

images of objects to grasp them in place of their exact

geometries and poses. Bayes filters are a family of well-

established algorithms that can estimate the agent’s state

from observations and track it over time [20]. A Bayes

filter works by maintaining a belief of the state and recur-

sively update the belief using the observation and transition

functions. Recent line work has shown that one can learn

the observation and transition functions if they are not

known. Jonschkowski and Brock [21] proposed an end-to-

end learnable Bayes filter that represents the belief with

a histogram. Jonschkowski et al. [22] and Karkus et al.

[23] concurrently introduced differentiable particle filters for

continuous states. A learnable Kalman filter with Gaussian

belief is presented by Haarnoja et al. [24]. Similarly, Karl

et al. [25] and Watter et al. [26] proposed to learn latent

spaces with Gaussian beliefs. All the methods mentioned

above report their results in simulated environments with a

focus on agent localization. In contrast, we focus on touch

localization and reaching tasks, furthermore, our models are

trained in simulation and transferred to the real world.

C. RL under Partial Observability

Deep reinforcement learning has shown great success for

solving many robotic tasks in the last few years, however,

policy learning under partial observability is still an open

challenge. There are two common approaches to handling

this problem in the literature. The first is to use recurrent

neural networks for learning policies over histories over

observations and actions. Hausknecht et al. [27] introduced

Deep Recurrent Q-Network (DRQN) which is an exten-

sion of the DQN algorithm [28] where the Q-function is

constructed using Long Short Term Memory (LSTM) lay-

ers [29]. This idea is later applied to on-policy methods [30]

as well as model-based deep RL [31], [32]. The second

approach is to use beliefs where the RL agent would get the

current belief at every time step. Karkus et al. [33] combines

the QMDP planner (an approximate POMDP solver [34])

with a differentiable Histogram filter to solve several par-

tially observable tasks and show strong results compared

to recurrent networks. Chaplot et al. [35] and Gottipati et

al. [36] took a similar approach where they learned policies

with belief inputs for solving active localization problem for

mobile robots. Recently, a work by Wirnshofer et al. [37]

showed promising results for contact-rich tasks under partial

observability. Their method uses a particle filter to track the

positions and velocities of the system and train a DQN agent

with belief as input. In our work, we follow the second

approach because as it has shown in the literature, using

an algorithmic prior such as Bayes filters can provide faster

learning and increase the performance when compared to

recurrent networks. In our experiments, we validate this

hypothesis as well. While these methods mostly focus on

learning policies for visual localization in simulated envi-

ronments, we focus on the problems of localizing a robotic

gripper and reaching to desired goals with touch feedback.

III. BACKGROUND

Partial Observability: If the agent does not have ac-

cess to the complete state information, the problem can

be formulated as a partially observable Markov Decision

Process (POMDP) [38]. A POMDP is defined as a tuple

(S,A, T ,R,Ω,O) where S,A, and Ω are the state, action,

and observation spaces, respectively. The agent acts in the

environment by taking an action at−1 ∈ A and move from

the previous state st−1 ∈ S to the next state st ∈ S by

following the state-transition function T (st, at−1, st−1) =
p(st|st−1, at−1). After each transition, the agent receives

an observation ot ∈ Ω and a reward rt ∈ R provided

by the reward function R(st). The observation function

O(ot, st, at−1) = p(ot|st, at−1) defines the probability of

receiving the observation ot after taking action at−1 and

landing in state st.
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Fig. 4. Belief Sequence - As the gripper interacts with the objects (bottom row) the belief becomes less uncertain (top row) over time.

TABLE I

ACTIVE LOCALIZATION RESULTS OVER 10000 EPISODES

Mean Episode Rewards
Uncluttered Cluttered Mesh

PPO-Belief 95.13± 0.21 91.86± 0.27 86.02± 0.34

PPO-GRU 85.65± 0.35 80.44± 0.39 76.20± 0.42

Mean Episode Lengths
Uncluttered Cluttered Mesh

PPO-Belief 8.46 8.27 12.06

PPO-GRU 11.83 13.05 18.04

TABLE II

NAVIGATION RESULTS OVER 10000 EPISODES

Mean Episode Rewards
Uncluttered Cluttered Mesh

PPO-Belief 88.95± 0.31 89.59± 0.30 86.77± 0.33

PPO-GRU 76.44± 0.42 75.23± 0.43 73.81± 0.28

Mean Episode Lengths
Uncluttered Cluttered Mesh

PPO-Belief 9.82 8.81 10.41

PPO-GRU 12.33 12.29 16.40

report the mean success rate and the mean episode length in

Table I and Table II for the active localization and navigation

tasks, respectively. Our method outperforms both of the

baselines in all scenarios. It can generalize to new positions

and sizes of the primitive objects. Moreover, it still performs

well for mesh objects with arbitrary shapes.

Noise Analysis: We also conduct a series of experiments

to investigate how our method performs under observation

and transition noise. For the transition function noise, the

gripper would move in a direction other than commanded

with a probability of nt sampled from a uniform distribution

nt ∼ U(0, 1). For the observation noise, we add a noise no to

the tactile observations sampled from a Gaussian distribution

no ∼ N (µ, σ2) where we keep the mean µ as zero and vary

the standard deviation σ. In Table III, we report the task

success rate under different degrees of noise for the active

localization and navigation tasks over 10000 episodes.

B. Real World Experiments

We transferred the policies trained for the active localiza-

tion and navigation tasks in simulation to the real world for

TABLE III

PERFORMANCE UNDER NOISE

Transition Noise (nt) Active Localization Navigation

0.01 93.54± 0.24 85.57± 0.35
0.05 86.93± 0.33 76.69± 0.42
0.1 78.25± 0.41 64.06± 0.47
0.2 60.72± 0.48 43.49± 0.49

Observation Noise (σ) Active Localization Navigation

0.05 94.38± 0.23 86.78± 0.33
0.1 94.38± 0.23 86.46± 0.34
0.2 90.49± 0.29 81.64± 0.38
0.3 84.43± 0.36 74.89± 0.43

real robot experiments. The gripper is attached to a Universal

Robot arm and it is moved with a Jacobian-based velocity

controller. A Structure depth sensor is placed over the table.

The depth image is pre-processed to filter out outlier pixels.

We also applied a low-pass filter to the finger joint velocities

to get rid of the noise. The experiment setup and the objects

used in the real world experiments can be seen in Fig. 4.

We use a total of 10 objects whose shape can be primitive

or arbitrary. At the beginning of each episode, 2 objects are

randomly selected and placed on the table. For both of the

tasks, we ran 10 episodes and the error threshold is set to 3

pixels. For the active localization task, the gripper was able

to localize 9 out of 10 runs. For the navigation task, the

gripper was able to reach the goal for every run. In Fig 4,

we show the belief and the gripper’s position over time for

a single run of the active localization task.

VII. CONCLUSIONS

We present methods for learning policies that can localize

and navigate a robotic gripper to solve manipulation tasks

under sensor noise. Our simulation results show that this

approach outperforms recurrent-based methods which are

commonly used for partially observable tasks. Moreover, we

showed that these policies can work under transition and

observation noise and they can generalize to novel environ-

ment with unseen objects. When transferred to real world,

the policies were able to work without domain randomization

or fine tuning. For future work, we would like to explore

other manipulation tasks that can take advantage of fusion

of tactile and visual modalities.
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