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Abstract— Recent work on robot learning with visual obser-
vations has shown great success in solving many manipulation
tasks. While visual observations contain rich information about
the environment and the robot, they can be unreliable in
the presence of visual noise or occlusions. In these cases, we
can leverage tactile observations generated by the interaction
between the robot and the environment. In this paper, we
propose a framework for learning manipulation policies that
fuse visual and tactile feedback. The control problems consid-
ered in this work are to localize a gripper with respect to the
environment image and navigate to desired states. Our method
uses a learned Bayes filter to estimate the state of a gripper
by conditioning the tactile observations on the environment
image. We use deep reinforcement learning for solving the
localization and navigation problems provided with the belief
of the gripper’s state and the environment image. We compare
our method against two baselines where the agent uses tactile
observation directly with a recurrent neural network or uses a
point estimate of the state instead of the full belief state. We
also transfer the policies to the real world and validate them
on a physical robot.

I. INTRODUCTION

It is not yet clear how best to leverage force and tactile
measurements in order to improve the performance and
reliability of robotic manipulation. Compared with camera
images, tactile and force data contain much less information
per measurement. However, some types of information like
whether the robot is contacting the environment and how
much force is applied is difficult to estimate based on visual
information alone. Ideally, we would like to combine visual
and tactile/force information, leveraging the strengths of
each. However, it is not clear how to accomplish this. Re-
cently, we proposed an approach that uses sequential Bayes
filtering to estimate robot position based on tactile/force data
relative to an reference visual image of the scene [1]. Here, it
is assumed that a reference image is obtained prior to tactile
interaction that shows the overall scene. As force/tactile
information is perceived, a conditional Bayes filter estimates
robot pose relative to the reference image. This approach is
particularly useful in unstructured domains containing novel
objects. If we were to attempt to estimate the pose and shape
of all potentially relevant objects in a scene using tactile/force
data alone, this would require us to track a probability
distribution over a very high dimensional space. The visually
conditioned localization method described above avoids the
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high dimensional estimation problem by partitioning the state
space into world state that is represented by the reference
image and robot state that is estimated using filtering.

This paper addresses a key question in this setting —
given initial uncertainty about the position of a robot in
a scene, can we learn a policy that enables the robot to
localize itself or to reach a desired position as quickly as
possible? In contrast to prior work that studies this problem
in the unconditioned setting (i.e. studying this problem as a
POMDP), we learn policies that are conditioned on visual
input. Compared to a setting where the policy is trained for
in a specific manipulation setting, this is a harder learning
problem because our agent must learn to localize or navigate
in an arbitrary environment. One perspective on this is that
we are casting robotic manipulation as a mixed observability
Markov decision process (a MOMDP [2]) rather than a
POMDP, as in e.g. [3]. The state of the world is assumed to
be fully observed (in the form of the reference image) and
the robot position is partially observed via the tactile/force
measurements.

We approach the problem by applying standard deep rein-
forcement learning (RL) methods to the MOMDP problem.
The state of the RL agent is taken to be the combination of
the reference image and the belief state of robot pose with
respect to that image as estimated by the visually conditioned
sequential Bayes filter. We evaluate the approach in a setting
where a robot manipulator must localize itself through force
interactions with objects and navigate to desired goals to
solve manipulation tasks. To this end, we designed three
experiments: an active localization task, a navigation task
where the objective is to reach to a desired state, and a
drawer opening task where the aim is to place the gripper
on drawer handle and open it under visual and kinematic
noise. We compare our belief state approach with two
alternative approaches in simulation: a baseline that replaces
the full belief state with a point estimate, and a baseline that
replaces the belief state with recurrent neural network (GRU)
components. In both cases, we find that the belief based
approach significantly outperforms on all the tasks. Finally,
we demonstrate that the simulated results translate well to
a real robotic setting. The code and videos are available at
https://sites.google.com/view/vctm/.

II. RELATED WORK

A. Localization with Touch

The early work of [4], [5], [6], [7], [8], [9] are the
first examples of object pose estimation using Bayes filters.
These methods aim to find the location of the object using
fingertip contact sensing with fixed observation and transition



functions. Liang et al. [10] focus on a similar problem
but also consider the motion dynamics of the object while
manipulating in hand. Pfanne et al. [11] combines tactile
feedback with visual feedback to improve the object localiza-
tion accuracy. Similarly, [12] fuses visual and tactile sensing
to estimate not only object poses but also the end-effector
pose. In this setting, the object and the gripper must be in the
scene of the camera which might not be always possible due
to occlusions by the arm or the gripper. It is important to rely
only on tactile feedback during the object-robot interactions
to avoid occlusions. Although these methods work well in
practice, they are not generalized to novel objects due to
their reliance on prior knowledge of the objects. With the
recent progress in the high-resolution tactile sensors (e.g.
GelSight [13] or OmniTact [14]), a series of work focus
on visual-tactile localization of objects. Li et al. [15] use
the GelSight sensor to localize the pose of a USB stick by
using the RANSAC algorithm. Izatt et al. [16] combines the
GelSight sensor information with point clouds and performs
the Iterative Closest Point (ICP) method for tracking the
pose of the object. The objective of all the work described
above is to localize the pose of an object with respect to the
gripper. The dual of this problem is to localize the gripper
with respect to the environment. Platt et al. [17] localizes
the pose of a robotic hand with respect to a flexible piece
of plastic textured. Similarly, [18] propose to use a visual-
tactile sensor to match the features of the sensor reading
with the pre-generated features of a fixed environment image
to localize the gripper. The feature matching is done by
the scale-invariant feature transform (SIFT) method [19]. In
both of these works, the environment is fixed and known
beforehand and the localization cannot generalize to new
objects or environments. On the other hand, our method is
able to generalize to a variety of scenes and unseen objects.
We achieve this by conditioning the belief updates on the
image of the environment taken prior to the interactions.

B. Differentiable Bayes Filters

In a partially observable environment, the agent does not
have access to the full state information, instead, it receives
a type of observation from the environment that relates
to the underlying state. For example, a robot might use
images of objects to grasp them in place of their exact
geometries and poses. Bayes filters are a family of well-
established algorithms that can estimate the agent’s state
from observations and track it over time [20]. A Bayes
filter works by maintaining a belief of the state and recur-
sively update the belief using the observation and transition
functions. Recent line work has shown that one can learn
the observation and transition functions if they are not
known. Jonschkowski and Brock [21] proposed an end-to-
end learnable Bayes filter that represents the belief with
a histogram. Jonschkowski et al. [22] and Karkus et al.
[23] concurrently introduced differentiable particle filters for
continuous states. A learnable Kalman filter with Gaussian
belief is presented by Haarnoja et al. [24]. Similarly, Karl
et al. [25] and Watter et al. [26] proposed to learn latent

spaces with Gaussian beliefs. All the methods mentioned
above report their results in simulated environments with a
focus on agent localization. In contrast, we focus on touch
localization and reaching tasks, furthermore, our models are
trained in simulation and transferred to the real world.

C. RL under Partial Observability

Deep reinforcement learning has shown great success for
solving many robotic tasks in the last few years, however,
policy learning under partial observability is still an open
challenge. There are two common approaches to handling
this problem in the literature. The first is to use recurrent
neural networks for learning policies over histories over
observations and actions. Hausknecht et al. [27] introduced
Deep Recurrent Q-Network (DRQN) which is an exten-
sion of the DQN algorithm [28] where the Q-function is
constructed using Long Short Term Memory (LSTM) lay-
ers [29]. This idea is later applied to on-policy methods [30]
as well as model-based deep RL [31], [32]. The second
approach is to use beliefs where the RL agent would get the
current belief at every time step. Karkus et al. [33] combines
the QMDP planner (an approximate POMDP solver [34])
with a differentiable Histogram filter to solve several par-
tially observable tasks and show strong results compared
to recurrent networks. Chaplot et al. [35] and Gottipati et
al. [36] took a similar approach where they learned policies
with belief inputs for solving active localization problem for
mobile robots. Recently, a work by Wirnshofer et al. [37]
showed promising results for contact-rich tasks under partial
observability. Their method uses a particle filter to track the
positions and velocities of the system and train a DQN agent
with belief as input. In our work, we follow the second
approach because as it has shown in the literature, using
an algorithmic prior such as Bayes filters can provide faster
learning and increase the performance when compared to
recurrent networks. In our experiments, we validate this
hypothesis as well. While these methods mostly focus on
learning policies for visual localization in simulated envi-
ronments, we focus on the problems of localizing a robotic
gripper and reaching to desired goals with touch feedback.

I1I. BACKGROUND

Partial Observability: If the agent does not have ac-
cess to the complete state information, the problem can
be formulated as a partially observable Markov Decision
Process (POMDP) [38]. A POMDP is defined as a tuple
(S, A, T,R,Q,0) where S, A, and ) are the state, action,
and observation spaces, respectively. The agent acts in the
environment by taking an action a;—; € A and move from
the previous state s;_1; € S to the next state s; € S by
following the state-transition function 7 (s, az_1,8;-1) =
p(st|st—1,a1—1). After each transition, the agent receives
an observation o, € ) and a reward r; € R provided
by the reward function R(s;). The observation function
O(ot, 8t,a1—1) = p(ot|st,as—1) defines the probability of
receiving the observation o; after taking action a;—; and
landing in state s;.
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The depth image and the tactile feedback are fed into their encoders. The output of these encoders are concatenated and passed through the

likelihood decoder which generates the observation probability map. The transition layer predicts the belief at next time step which is then multiplied with
the observation probability to produce the updated belief. Finally, the belief, the depth image and the goal state are fed into the policy.

Bayes Filters: In order to address the partial observabil-
ity, an agent can estimate a probability distribution over
the state space (also called belief) using recursive Bayes
filters [20]. A Bayes filter estimates the belief over states by
conditioning on the past observations and actions: bel(s;) =
p(St|ar+—1,01.¢). The belief is updated at each time step by
taking the prediction step and observation update step:

bel(s) = nO(o4, st, ar-1) Z T (stsat—1,s¢-1)bel(s1—1)
st—1E€S

Observation Update Prediction Update

where 7 is the normalization factor.

Goal Conditioned RL: In goal-conditioned RL, each
episode starts with sampling an initial state sy ~ py and goal
state g ~ p, where py is the initial state distribution and p,
is the goal distribution [34]. The goal stays fixed throughout
the episode. The objective is to find a goal-conditioned policy
m(a¢|st, g) that maximize the expected discounted return:
E. [ZtT;Ol Y'R(st, g)] where T is the maximum horizon and
, v € [0,1] is the discount factor, and R (s, g) is the goal-
conditioned reward function.

IV. PROBLEM STATEMENT
A. Setting of the Problems

We assume we are given an environment that includes a set
of objects with unknown geometry and locations, a robotic
hand that moves in a parallel plane, and a depth camera
looking towards the objects. As the hand moves in a plane,
the fingers make contact with the objects, thereby displacing
the fingers and producing force or tactile measurements. A
simulation of this scenario is shown in Fig. 2. Our objective
will be either to localize the hand or to reach a desired
position with respect to the depth image. The position of
the hand in the plane above the table is a point in RZ.

The depth image is an image [ with size H x W. The
tactile/force observation is o € ). In our setting, o is a short
sequence of 7 hand joint velocity measurements in O = R”
produced by an actively compliant hand [39], however, our
framework allows o to be virtually any sort of force/tactile
measurement. We model this system as a discrete-time mixed
observability Markov decision process (i.e. a MOMDP) [2].
In the MOMDP, some elements of state are fully observed
on each time step while others are partially observed. In our
case, we consider the depth image I to be fully observed
and the hand position in the plane to be partially observed.
To simplify things slightly, we will model hand position as
s € ZHIXIWI the position of the corresponding pixel in 1.

B. Problems

There are two problems associated with the MOMDP
that we are interested in solving. The first is the inference
problem (which is explored in our previous work [1]) where
we infer hand position p(s¢|hi.¢, ) given the depth image I
and hy.; = (o¢,a4—1,...,a1,01), a history of observations
and actions. The second is a control problem where we
must find a policy 7(a¢|hi.4,I) that optimizes a reward
function. Below, we explore the control problems in the
force/tactile setting. We say that these problems are “visually
conditioned” because we condition on the depth image 1.

Definition 1: Visually Conditioned Active Tactile Local-
ization. Given a depth image I of a novel scene, find a policy
m(a¢)hy.t, I) that localizes the gripper in a minimum number
of time steps.

Definition 2: Visually Conditioned Tactile Navigation.
Given a depth image I of a novel scene, find a policy
m(a¢|hy.t,I) that reaches a goal position in a minimum
number of time steps.



(a) Drawer Opening Environment

(b) Localization and Navigation Environment

Fig. 2. The simulation environments for the localization, navigation and drawer opening tasks. The trained agents can open a drawer with different types
of handles (a), and localize or navigate to a desired position on a tabletop with novel objects (b).

V. METHODS

We solve the active localization and navigation problems
by formulating the MOMDP as a belief MDP, where the
belief state is a probability distribution over the underlying
state, bt = p(st|h1;t, I)

A. Visually Conditioned Tactile Localization

In order to formulate the belief MDP, we first need to be
able to track belief state, b; = p(s¢|h1.t, [). We accomplish
this by following the method developed in our prior work [1]
where we train visually conditioned process and observation
models independently of each other and then combine them
using sequential Bayes filtering. We represent the observation
and the transition functions as layers of neural networks and
train them from data generated in simulation. Let fo(-) be a
neural network that takes the environment image, tactile ob-
servation and the action as input and generates the likelihood
probabilities of the current observation, i.e. fo(oy,ar,I) =
p(ot|se,ar, I). Let f7(-) be a neural network that takes the
previous belief and the action as input and predicts the belief
at the next timestep, i.e. f7(bel(s;—1),a;_1) = bel(s;). The
state space is defined as the projected pixel coordinates of the
gripper in the environment image: s; = (ps,p,) € ZH*W
where H is the height and W is the width of the image, I.
The belief is encoded as a H x W matrix and computed as:

bel(s;) =nfo(or,ar, I) © far(bel(si—1),ar)

where © is element-wise multiplication. Note that the ob-
servation function is conditioned on the environment image.
This way, our method can generalize over novel configura-
tions (shapes, sizes, and positions) of objects. The neural
network that represents the observation function fo is based
on the U-net architecture [40] and consists of 3 modules: the
image encoder, the observation encoder and the likelihood
decoder. The image of the environment and the tactile
feedback are fed into their encoders. The outputs of these
encoders are concatenated and fed into the likelihood decoder
to generate likelihood maps. For the transition function, we
use a single 2-D convolutional layer which predicts the next
belief. The predicted belief and the likelihood map are then
multiplied element-wise and normalized to produce the belief
at the next time step. The flowchart of the framework can
be seen in Fig 1.

B. Policy Learning

We choose Proximal Policy Optimization (PPO) algo-
rithm [41] for learning our policies due to its robustness
to hyper-parameters and sample efficiency. The PPO simul-
taneously learns a stochastic policy and a value function
approximation. To avoid large policy updates, which can
cause performance drops, the PPO method limits the policy
changes by clipping the objective function. We use the
network architecture from [30] both for the policy and the
value function. The weights of the policy and the value
function are shared and optimized together.

Environment: We developed a simulation environment using
the MuJoCo physics engine [42]. We use a gripper with
hydro-static linear actuators [39] which allows us to set the
finger joint stiffness to low values. This way, the gripper
can interact with the objects without moving them. A depth
camera is positioned towards the objects and captures the
environment image prior to tactile interaction. In order too
find the pixel coordinates of the gripper, we first transform
the pose of the gripper base to the camera frame and then
project it into pixel coordinates: p = M, Mo P, Where
M;n: and M., are intrinsic and extrinsic camera matrices,
respectively, p = (pg,py) is the pixel coordinates of the
gripper, and P,, is the 3D position of the gripper’s base in
the environment.

Tasks: We evaluate our method on three manipulation tasks:

Active Localization: In this task, the gripper is positioned
over a table and moves in a plane parallel to the table. (see
Fig. 2) The objective is to localize the gripper in a minimum
number of steps. The input the PPO agent is a 2-dimensional
image where the first channel is the depth image of the
environment taken prior to the interaction and the second
channel is belief at current time step: 7 (a|bel(s:), I). Since
the agent has no prior information about the location of
gripper, the initial belief is uniform distribution over the state
space: bel(sg) = ﬁVs € S. At each episode, we randomize
the positions, shapes and sizes of the tabletop objects.

Navigation: The navigation task has the same environment
setup except that the goal is now to reach a desired pixel.
To that end, the agent receives an additional one-hot image
representing the goal state: 7(a;|bel(s;), g, ). The goal state
is sampled from a uniform distribution at the beginning of
each episode. Similar to the active localization task, the belief
is initialized uniform over the state space.
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Drawer Opening: The goal of this task is to learn a
policy that can open a drawer by placing the gripper on the
handle. Similar to tasks above, the gripper moves in a plane
parallel to the front surface of the drawer. Imagine a scenario
where a mobile manipulator tries to open a drawer but due
to noise from the visual detection of the handle and noise
from the manipulator kinematics, the gripper is placed in a
wrong position. In this case, the gripper can leverage tactile
observations to reach the correct position of the handle. To
realize this scenario, we first place the gripper in the correct
position of the handle, then, we move the drawer by injecting
noise up to 15cm in each direction. At each episode, we
randomize the type of drawer handle and its sizes. The types
of handles used in this task can be seen in Fig. 2. The initial
belief is uniform over a set of 11 x 11 square states centered
at the actual position of the gripper.

Actions: On each time step, the robot selects an action
a € {NORTH, SOUTH, EAST, WEST} which moves the hand a
short distance in the corresponding direction in the plane. In
the case of drawer opening task, the agent has an additional
action to command the gripper to grasp the handle and
pull back to open the drawer. The gripper moves 5 pixels
(approximately S5cm) in the corresponding direction with
constant velocity. At each pixel movement, the belief is
updated using the observation and transition function. The
last belief is returned to the PPO agent.

Rewards: We use sparse reward functions where the agent
gets a reward of 1 if the task is achieved and gets 0 otherwise.
At any time during the task, the predicted state can be
found as the point with the highest probability in the belief
§ = argmax(bel(s;)). For the active localization task, the
reward function defined as: r; = 1 if |s; — §;|; < € and for
the navigation task the reward function defined as: r, = 1
if |s; — gl1 < € where ¢ is the goal state, and € is the
error threshold. The drawer opening tasks gets a reward of
1 if the drawer is successfully opened. We simply check
this condition by distance of the drawer before and after
opening the drawer. The episode is terminated if one of the
following conditions is met: the goal is reached, the gripper
went out of the scene, or the maximum time limit is reached.
The error threshold are selected as ¢ = 1 for the active
localization task and e = 3 for the navigation task. Note that
1 pixel is approximately lcm in distance. The task horizon
for the active localization and the navigation tasks is 32 steps
whereas it is 16 steps for the drawer opening task.
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VI. EXPERIMENTS

We first do a series of experiments in simulation to inves-
tigate our method’s performance, generalization capabilities,
and robustness to the noise of transition and observation
functions. Later, we deploy our method on a real robot
to show that the models trained in the simulation can be
transferred to the real world without domain randomization
or fine-tuning on real world data.

A. Simulation Experiments

We compare our method (which we call PPO-Belief)

against three baselines. First is PPO-GRU in which the
PPO agent uses a recurrent network. For this baseline, we
use the same architecture with PPO-Belief for encoding
the environment and goal images. The output features of
this encoder are then concatenated with the tactile feedback
and fed into an gated recurrent unit (GRU) [43] layer. In
order to estimate the position of the gripper, we sill do the
belief updates, however, the PPO-GRU agent does not have
access to the belief and directly uses tactile observations. The
second baseline is Random-Belief where the agent randomly
selects actions at each time step and use belief to estimate
the state. This baseline is only compared for the active
localization task. The final baseline is PPO-Predict which
is similar to PPO-Belief but instead of belief as the input,
the agent takes a one-hot image of the predicted state. This
baseline shows the importance of having the uncertainty as
an input modality for solving these tasks. The Fig. 3 shows
performance of the agents over course of training for all
the tasks. As can be seen from the training curves, the
PPO-Belief agent outperforms the baselines and converges
to higher returns.
Generalization Experiments: To further investigate our
method’s generalization performance, we ran 10000 episodes
for the active localization and navigation tasks under three
different scenarios after training is completed. The scenarios
are 1. an uncluttered scene where there are 4 primitive
objects; 2. a cluttered scene where there are 10 primitive
objects; 3. a mesh scene where there are 20 mesh objects
from the 3DNet object dataset [44]. Note that we train our
policies only on the uncluttered scene.

To show the generalization capabilities over object config-
urations, we randomly sample sizes and positions of objects
at the beginning of each episode. For the 3DNet scene, 5
objects are randomly selected and placed on the table. We
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Fig. 4. Belief Sequence - As the gripper interacts with the objects (bottom row) the belief becomes less uncertain (top row) over time.

TABLE 1
ACTIVE LOCALIZATION RESULTS OVER 10000 EPISODES

TABLE III
PERFORMANCE UNDER NOISE

Mean Episode Rewards Transition Noise (1) Active Localization Navigation
Uncluttered Cluttered Mesh 0.01 93.54 +0.24 85.57 +0.35
PPO-Belief | 95.13 +£ 0.21 91.86 + 0.27 86.02 +£0.34 0.05 86.93 £ 0.33 76.69 £ 0.42
PPO-GRU 85.65 + 0.35 80.44 £ 0.39 76.20 +0.42 0.1 78.25 £0.41 64.06 £ 0.47
Mean Episode Longths 0.2 60.72 £ 0.48 43.49 £+ 0.49

Uncluttered Cluttered Mesh Observation Noise (o) Active Localization Navigation
PPO-Belief 8.46 827 12.06 0.05 94.38 + 0.23 86.78 + 0.33
PPO-GRU 11.83 13.05 18.04 0.1 94.38 £0.23 86.46 £ 0.34
0.2 90.49 £ 0.29 81.64 £ 0.38
0.3 84.43 £ 0.36 74.89 £ 0.43

TABLE II

NAVIGATION RESULTS OVER 10000 EPISODES

Mean Episode Rewards
Uncluttered Cluttered Mesh
PPO-Belief | 88.95+ 0.31 89.59 £ 0.30 86.77 +£0.33
PPO-GRU 76.44 4+ 0.42 75.23 +0.43 73.81 £ 0.28
Mean Episode Lengths
Uncluttered Cluttered Mesh
PPO-Belief 9.82 8.81 10.41
PPO-GRU 12.33 12.29 16.40

report the mean success rate and the mean episode length in
Table I and Table II for the active localization and navigation
tasks, respectively. Our method outperforms both of the
baselines in all scenarios. It can generalize to new positions
and sizes of the primitive objects. Moreover, it still performs
well for mesh objects with arbitrary shapes.

Noise Analysis: We also conduct a series of experiments
to investigate how our method performs under observation
and transition noise. For the transition function noise, the
gripper would move in a direction other than commanded
with a probability of n; sampled from a uniform distribution
ng ~ U(0, 1). For the observation noise, we add a noise 7, to
the tactile observations sampled from a Gaussian distribution
ne ~ N (i, %) where we keep the mean i as zero and vary
the standard deviation o. In Table III, we report the task
success rate under different degrees of noise for the active
localization and navigation tasks over 10000 episodes.

B. Real World Experiments

We transferred the policies trained for the active localiza-
tion and navigation tasks in simulation to the real world for

real robot experiments. The gripper is attached to a Universal
Robot arm and it is moved with a Jacobian-based velocity
controller. A Structure depth sensor is placed over the table.
The depth image is pre-processed to filter out outlier pixels.
We also applied a low-pass filter to the finger joint velocities
to get rid of the noise. The experiment setup and the objects
used in the real world experiments can be seen in Fig. 4.
We use a total of 10 objects whose shape can be primitive
or arbitrary. At the beginning of each episode, 2 objects are
randomly selected and placed on the table. For both of the
tasks, we ran 10 episodes and the error threshold is set to 3
pixels. For the active localization task, the gripper was able
to localize 9 out of 10 runs. For the navigation task, the
gripper was able to reach the goal for every run. In Fig 4,
we show the belief and the gripper’s position over time for
a single run of the active localization task.

VII. CONCLUSIONS

We present methods for learning policies that can localize
and navigate a robotic gripper to solve manipulation tasks
under sensor noise. Our simulation results show that this
approach outperforms recurrent-based methods which are
commonly used for partially observable tasks. Moreover, we
showed that these policies can work under transition and
observation noise and they can generalize to novel environ-
ment with unseen objects. When transferred to real world,
the policies were able to work without domain randomization
or fine tuning. For future work, we would like to explore
other manipulation tasks that can take advantage of fusion
of tactile and visual modalities.
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