arxX1v:2201.07937v1 [cs.CV] 20 Jan 2022

GASCN: Graph Attention Shape Completion Network

Haojie Huang

Ziyi Yang

Robert Platt

Northeastern University
360 Huntington Avenue, Boston, MA 02115, United States

{huang.haoj; yang.ziyi2} @northeastern.edu; rplatt@ccs.neu.edu

Abstract

Shape completion, the problem of inferring the complete
geometry of an object given a partial point cloud, is an im-
portant problem in robotics and computer vision. This pa-
per proposes the Graph Attention Shape Completion Net-
work (GASCN), a novel neural network model that solves
this problem. This model combines a graph-based model
for encoding local point cloud information with an MLP-
based architecture for encoding global information. For
each completed point, our model infers the normal and ex-
tent of the local surface patch which is used to produce
dense yet precise shape completions. We report experiments
that demonstrate that GASCN outperforms standard shape
completion methods on a standard benchmark drawn from
the Shapenet dataset.

1. Introduction

It is often desirable to be able to infer the geometry of
objects in a scene based on a small number of sensor mea-
surements. This is known as the shape completion problem
where the system infers the complete geometry of an ob-
ject based on a partially observed point cloud, such as that
produced by a depth sensor. In particular, shape comple-
tion could be useful in the context of robotic manipulation
where a robotic system could use the inferred geometry of
the objects in a scene to create geometric plans that solve
desired tasks. Compared to other approaches to scene re-
construction that estimate the pose of specific objects, a crit-
ical advantage of shape completion methods is that they can
be used to infer the geometry of novel objects, not just a
closed set of previously modeled objects.

There are two main types of approaches to shape com-
pletion: one based on the point cloud representation and
the second based on voxel grids or signed distance func-
tions. Point clouds are a convenient choice because they
can be created easily from the output of depth sensors
or LIDAR and several methods use point cloud represe-
nations [36, 35, 8, 17]. However, these methods are all

limited by the fact that they cannot use 3D convolutions
because the point cloud representation does not explicitly
encode information about the local connectivity of each
point. An alternative is to create shape completion algo-
rithms based on a voxel grid or signed distance function
(SDF) representation [22, 12, 24]. Here, we can use 3D
convolutions to obtain higher shape completion accuracy,
as in GRNet [32]. However, the memory requirements for
voxel grids or SDFs are cubic in the resolution of the grid
and therefore it severely limits the resolution at which the
method can be applied.

In contrast to the methods above, this paper proposes
GASCN, a shape completion approach that operates on a
graph rather than a point cloud or voxel grid. Since con-
verting a point cloud into a mesh can itself be challenging,
we use a graph attention approach [26] where each point in
the cloud is associated with a unique graph that connects it
with its neighbors. Another key element of our approach
is a densification step that converts a coarse reconstruction
into a fine reconstruction by deforming a fine 2D grid to
each coarse point via a learned surface normal and vari-
ance. The novel features of our approach relative to prior
shape completion work are the following:

1. Our encoder utilizes the graph attention layer to en-
code local context information for further combina-
tion with the global structure information whereas
prior work on shape completion typically uses a Point-
Net [20] encoder or 3D convolutions on voxels [31].
This enables us to take point cloud input while still en-
coding using graph convolutions.

2. Our decoder contains a novel densification procedure
that maps a dense planar grid to a local region around
each point in a coarse shape completion. This enables
us to produce a dense completion while keeping the
network complexity manageable.

We compare our model with several other recent ap-
proaches from the literature [35, 36, 25] and find that it out-
performs on a standard shape completion baseline task.

2. Related Work

The problem of inferring 3D structures from RGB and
depth camera images has been studied for decades. A
classic but powerful non-learning method uses the Itera-
tive Closest Point (ICP) [!] algorithm to align a tem-
plate model from a large dataset with the observed point
cloud. BEOs [3] constructs a new representation space with
VBPCA [2] basis, where the best corresponding point to the
partial input could be found. Some other works [21, 10, 16]
deform the template model to synthesize shapes that are
more consistent with the observations. These methods are
often sensitive to noise and require large datasets as well as
expensive computation time.

Recent learning-based approaches complete the 3D
structure with a parameterized model, often a deep neu-
ral network, directly from the observation. It allows a
fast inference and great generalization. Some datasets like
ShapeNet [5] and YCB [4] enable learning on sufficient ex-
amples to generate visually compelling shapes. The most
common structure for a shape completion network consists
of an encoder that maps the partial observation to a latent
vector and a decoder that produces the complete 3D shape
given the latent vector. The learning method differs based
on the different representation methods of a 3D object.

Voxel-based methods [24, 31, 12] voxelize point clouds
into binary voxels, where 3D convolutional neural networks
can be applied. Recently, GRnet [32] proposed a novel grid-
ding mechanism to encode the neighbors’ information into
the vertices of each voxel. These methods are often compu-
tation expensive and limited to quantization effects due to
the voxel representation.

PointNet [20] is a pioneer in using the MLP-based ap-
proach to learn point clouds. It combined pointwise multi-
layer perceptrons with a max-pooling aggregation func-
tion to achieve invariance to permutation and robustness
to perturbation. After PointNet, FoldingNet [35] proposed
a folding-based decoder that deforms a 2D grid onto the
3D surface of a point cloud. Following previous works,
PCN [36] proposed the coarse-to-fine procedure to densify
the point cloud. AtlasNet [8] and MSN [17] generated a
collection of parametric surface elements based on Fold-
ingNet’s decoder. Besides, some work [15, 30] combined
MLPs with GANs [7], and some [22] integrated it with re-
inforcement learning. However, these approaches just ag-
gregated the global information from the whole point cloud
without focusing on the local information of each point’s
neighbors, and neither did they take the various local prop-
erties of different points into account during the generation
process.

Compared with MLP-based approaches, graph-based
methods could extract local information of each point. Most
recent graph-based convolution methods [14, 11, 26] op-
erated on groups of spatially close neighbors. ECC [23]

is the first one to apply graph convolutions to point cloud
classification. After that, DGCNN [29] proposed a more
generalized edge convolution method with dynamic graph
updates to encode the local neighborhood information for
point clouds. Inspired by DGCNN, DCG [27] introduced
this method to point cloud completion following a coarse-
to-fine fashion. However, the edge convolution is compu-
tationally expensive in large graphs. After Graph Attention
Network [26], GAC [28] inherited its ideas and applied at-
tention mechanism to the point cloud segmentation area. To
the best of our knowledge, we are the first to directly com-
bine the graph-level local information with the global struc-
ture information in the encoder as well as utilize surface
normals to incorporate pointwise local properties for shape
completion.

3. Method

Figure 1 below is an overview of our network, which
follows an encoder-decoder architecture. It takes a par-
tial point cloud with a variable number of points as input,
Dinput and generates a complete dense point cloud as out-
put, p final-

The encoder (Figure 2) uses a graph attention network
(GAT) [26] to reason about the local geometry of the input
cloud and MLPs to reason about global geometry.

GAT [26] is used to learn the graph-level local informa-
tion and MLPs are used to encode the global information.
Following a coarse-to-dense procedure, our decoder first de-
codes a sparse point cloud P, and then samples each point’s
neighbors to densify P,. To make the densifying process
flexible and adaptive to different local geometries, we de-
code surface normals and the scale factor o by our normal
decoder and sigma decoder to adjust the orientation and the
size of each point’s neighborhood.

3.1. Encoder

Since each region of a point cloud could have different
geometries, all the global information without the local in-
formation would result in averaging over all point features
and thus undermining the completions. In order to solve it,
our encoder is built on the graph representation of partial
point clouds. We encode each node feature with its neigh-
bors’ information, its mapped Cartesian feature, and two
different types of global vectors to maximize the utilization
of local information and global information.

3.1.1 Build Graph for Point Cloud

Given a point cloud consisting of m points, denoted as
P = {p1,p2, ..., pm} with p; € R3, we form a directed
graph G = (V, E) representing the point cloud structure,
where V. = {l,...,m} and E C V x V. We define
H = {hy1,ha,...;hy} with h; € RP as a set of node

Input

Graph-based
Encoder

Y

Global Vector
(gfinal)

Coarse Points

Normal Sigma
(Pc)

| |
Y

4- 3D grid

Decoder
* Refinement I
'

Coarse Points,

Normal and Sigma ¥

Translation|<¢———

\

Densifying
Process

v

Fine points

(P9

Figure 1: The architecture of GASCN. It has a graph-based
encoder that integrates each point’s local information with
the point cloud’s global structure information. The decod-
ing process utilizes surface normals and coarse points to ro-
tate and translate adaptive 3D grids to densify coarse point
clouds.

features corresponding to each point, where D is the di-
mension of the node features. Each node feature is initial-
ized with h; = (x;,y;, 2;), where (x;,y;, z;) is the Carte-
sian coordinates of point p;. Moreover, we build subgraphs
{Gi}i=1,2,....m C G for all nodes as k-nearest neighbor [19]
graphs from node features H by connecting the correspond-
ing point p; with its k-nearest spatial neighbors. Besides,
the subgraphs include self-loops to preserve each node’s
own information.

As a result, the whole graph for the point cloud com-
prises m directed subgraphs and each point is assigned as
the destination node of a subgraph. Each of them seems
like a patch on the surface of a 3D object, similar to the
kernel window in 2D convolution.

3.1.2 Local Convolution: GAT

Although points in the point cloud are independent, there
must exist certain hidden relationships to maintain the local
surface geometry. GAT [26] provides an attentive mecha-
nism to learn it. Given the graph G and point features H of
a partial point cloud, we apply the GAT layer to aggregate
each node’s neighborhood information.

First, we conduct a linear transformation for the embed-
ding feature h; of the node 7 with a shared learnable weight

GAT | maxpool ——p
Fgraph ggraph

cat $ MLP & Global Vector

maxpool (gfinar)
Jeart
maxpool —»@—1

Figure 2: Graph-based Encoder of GASCN model. It en-
codes each node feature with its neighbors’ information
Fyrapn by graph attention layer, its mapped Cartesian fea-
ture F.,,+ by point-wise MLP, and two types of global vec-
tors, ggraph and geqrt, €xtracted from the max-pooling op-
eration.

matrix W and then compute a pair-wise unnormalized at-
tention score e;; with a learnable vector a between the two
neighbors i and j (|| is the concatenation operation).

z; = Wh; 9]

ei; = LeakyReLU (a” (2|2;)) ()

After that, our network normalizes the attention score on
each node’s neighbors and aggregates the embeddings from

neighbors with the normalized attention score, and applies
a nonlinear activation function.

exp(eij)
o —)
T Yk expleir)
hpew = LeakyReLU(Y ayz;) S
JEN(3)

The final result is denoted as Fg,.qp, Whichis anm x d
matrix, where m is the number of points and d is the feature
dimension. The process above maps each node feature from
a 3-dimension xyz coordinate to a d-dimension vector that
contains the information of its neighbors through the graph
attention layer.

3.1.3 Global Information

The global structure information is critical in point cloud
generation, which could be used to distinguish different ob-
jects. We extract two different types of global information,
the global graph vector gy,qpn and the global Cartesian vec-
tor geqr¢. The global graph vector gg,.qpn is given by

9graph = maxp()Ol(Fgraph) (5)

where max-pooling operation concatenates the maximum
value among each feature dimension of F,.,,, to construct
the permutation-invariant global vector ggqph.-

We define the pointwise MLPs in PointNet [20] as Mjy :
R — R4 It maps each point feature from d; -dimension

into a new dy-dimension space using a nonlinear function
M with the shared learnable weights 6. The second global
vector is aggregated by:

Fcart = M6’1 (H) (6)

Geart = maxPOOI(Fcart) (7)

After that, two different feature matrices, Fy,qp, and
F..rt, are concatenated into an augmented feature matrix
F', while two global vectors gg,qpn and geq,¢ are concate-
nated together to produce the augmented global vector g.
We concatenate § to each row of F to get our final feature
matrix F;nq;. So far, each node feature is encoded with
information of its neighbors, its mapped Cartesian feature,
and two types of global vectors. Finally, we extract the final
latent vector g f;nq by:

Gfinal = maxpool(Mp, (Ffinar)) (®)

3.2. Decoder

Regarding the various local properties of different points
during the generation process, our decoder first generates
coarse points, each coarse point’s surface normal, and its
corresponding scale factor o, as shown in Figure 3. It
then samples coarse points’ neighbors with adaptive 3D grid
points and utilizes both surface normals and coarse points to
determine the rotation and the translation, respectively.

3.2.1 Coarse Point Cloud and Surface Normal

The coarse output P. is a preliminary generated complete
shape with sparse points. Following previous work [36], we
use three fully connected layers with nonlinear activation
functions to decode the gfinq1 to P, as shown at the top of
Figure 3.

In order to densify completions, some pointwise at-
tributes are needed to generate neighbors. Surface normal
is a good option which contains the local orientation of a
surface. To decode surface normals, we first build a graph
by connecting each coarse point with its nearest neighbors
and apply one graph convolution layer [14] to aggregate
the neighbor information into Cj,.q;. In the meantime, the
global vector gfinq and coarse points P, are mapped re-
spectively by two different MLPs into G ,qp and Cyy,qp. The
surface normal is generated by

Nimd = Md’l (Clocal H Grnap || G?nap) (9)
M¢ (Nimd)
Normal = —2——"% (10)
[Mg, (Nima)||

where the N,,q is the normal internal embedding. The
whole process above is shown in Figure 3.

Global Vector
(gfinar)

|
v v

MLP & MLP &
reshape reshape

Coarse Points
T T
;»?4—1 st
) G

¥ v

MLP | g —{ MLP
Normal Sigma

Figure 3: Decoder Architecture. The coarse points decoder
consists of three fully connected layers. The normal de-
coder takes as inputs the mapped coarse point coordinate
Cmaps its neighbors’ information Cjocq;, and the mapped
global vector G,qp. The sigma decoder takes as inputs
the normal internal embedding N;md, Ciocal, Cmap, and
Gmap, and then applies three pointwise MLP layers to out-
put pointwise-attentive sigmas.

3.2.2 Calculate Neighbors by Surface Normals in
Coarse Point Cloud

Given a point p = (pg,py,p-) and its normal n =
(ng,ny,n.), how could we sample its neighbor points?
Neither sampling X, Y, Z randomly [!7] from a distribu-
tion that would make the output look noisy and the model
hard to train, nor utilize a fixed grid which is inflexible; we
instead mesh an adaptive grid to obtain a set of 3D Carte-
sian coordinates for each coarse point. Our procedure has
four steps: sampling, scaling, rotation, and translation.

1. Obtain neighbors by meshing grid:

(X,Y) = Meshgrid(l,l); Z=10 (11)

(X,Y,Z) is a set of vertices of a square grid of size
l, centered at the origin with surface normal oriented
along Z-axis, forming a plane in 3D space.

2. Scale X,Y with o:
r=0-X;y=0-Y (12)

Each point has a specific scale factor ¢ that is learned
from the neural network, which we will discuss in Sec-

tion 3.2.3. After the scaling, different points are asso-
ciated with planes of different sizes accordingly.

3D Grid Neighbors After Scale and Rotation

Scale

Rotation

Figure 4: After the scale and rotation, we align the ini-
tial 3D-grid neighbors’ surface normal along the decoded
Normal. This process enables our generated grid points to
match local surfaces with different orientations and geome-
tries. (Blue dots are neighbors, the green line indicates the
normal direction, and the red dot is the center.)

3. Rotate the samples to make their surface normals align
along the surface normals we generated, as shown in
Figure 4:

k= Zagis X 10 (13)
6 = arccos (n) (14)

where the k is the rotation axis, z,,;s iS the unit vec-
tor along Z-axis, X is the cross product, 6 is the rota-
tion angle. If k is a zero vector, no rotation is needed.
We use Rodrigues’ Rotation Formula to transform the
axis-angle representation to a rotation matrix 2.

4. Translate the center of the samples to point p. The
samples are centered at the origin (0,0,0) previ-
ously, and we add the generated point’s coordinate
(Pz, Py, P-) to each sample’s coordinate to complete
the translation.

After applying the operations to each point of P,, we
fuse each point’s local surface information with its coordi-
nate to densify the point cloud.

3.2.3 Scale Factor o

o is the scale factor learned from our sigma network shown
in Figure 3 to scale the samples. For each point in P, there
is a o corresponding to it. It makes the neighbor genera-
tion be flexible and attentive. Using a table as an instance,
the corner points or edge points may have smaller o, while
points on a flat plane should have a larger o since they have
more confidence in sampling neighbors with a wider grid.
In our work, o is pointwise attentive and learned by

logo = My, (Nimd || Clocal H Cmap || Gma,p) (15)

3.2.4 Deformation and Refinement

So far, our network generates a dense set of points, P;. In
order to deform the 3D-grid points and ensure robust per-
formance, each point is concatenated with the correspond-
ing coarse point, which serves as its positional embedding.
We then map the feature to a high-dimension space and
project them back to 3D space by three points-wise MLPs
and Leaky-Relu activation function [33]. We intuitively de-
note the improved dense point clouds as fine point clouds,
Py, which marks the end of our forward propagation.

3.3. Loss

Since the point cloud is an unordered set, we use the
permutation-invariance loss, Chamfer Distance (CD) [6],
to measure the distance between our output and the ground
truth. CD (16) calculates the average closest point distance
between two sets of point clouds. It has two terms to force
the output to be closed to as well as cover the ground truth.

CDloss(Slv 52) = min ||.T - y||2

1
‘Sl| YyES>2
€S (16)

1
+= > min [ly — 2|
‘SQ| weyeh rES1

Our network generates two outputs: Coarse points P,
fine points Py, and each output corresponds to a CD loss
with respect to the ground truth.

Loss = CDjoss (P, Pyt) + « CDyoss (Pr, Pye) (17)

where « is a hyperparameter and Py; are ground truth
points.

4. Experiments

This section describes our dataset and the training pro-
cess first, and then compares our methods with several
strong baselines. Afterward, we present the ablation study
results, followed by experiment on real-sensor data. Fol-
lowing previous works [36, 25, 32], Chamfer Distance
serves as our quantitative evaluation metric for baseline
comparison and ablation study.

4.1. Datasets and Implementation Details

ShapeNet PCN. The ShapeNet dataset [5] for point
cloud completion is derived from PCN [36], consisting of
30,974 3D models from 8§ categories. The ground truth
point clouds containing 16,384 points are uniformly sam-
pled on mesh surfaces. The partial point clouds are gen-
erated by randomly sampling 8 camera poses to capture 8
depth images for each CAD model and backing-projecting
the 2.5D depth images to 3D, and thus own a variant number
of points.

Model Airplane Cabinet Car Chair Lamp Sofa Table Watercraft | Overall
FoldingNet 10.74 19.31 21.03 21.89 1993 19.82 2255 18.31 19.20
GRnet 9.16 1798 1496 1234 10.66 1456 13.84 11.05 13.06
TopNet 7.12 1454 13.19 1365 11.51 12.80 12.88 10.13 12.05
PCN 6.51 1443 11.81 1090 10.32 10.92 14.58 8.96 11.05
Ours 4.71 11.69 9.67 844 691 831 10.02 6.69 8.31

Table 1: Point completion results comparison on ShapeNet using Chamfer Distance (CD) with L2 norm computed on 16,384

points and multiplied by 103. The best results are highlighted in bold.

Partial Input FoldingNet

GRNet

TopNet

Figure 5: Visual Results Comparison. A partial point cloud is given and our method generates better complete point clouds.

ShapeNet Bottle. We built a small dataset for ablation
study and our future work in manipulator grasping follow-
ing ShapeNet PCN. It contains 498 bottle-shaped objects
such as water bottles, jars, spray bottles, etc. Each object is
also used to generate eight partial observations with a flexi-
ble number of points and one ground truth point cloud with
9,216 points. 80% of the models are used for training, 10%
for evaluation and 10% for testing.

YCB Dataset. It consists of objects of daily life with
different shapes, sizes, and textures. The dataset provides
mesh models and RGB-D scans of the objects.

We select the following setting based on our implemen-
tations and dataset. During constructing the graph represen-
tation of the point cloud, each point is connected with its 20
neighbors. KDTree [18] was used for fast retrieval of near-
est neighbors. We first generate a coarse point cloud with
1,024 points and link each point with its 5 nearest neigh-
bors. A 4 x 4 grid initialized with [equals to 0.1 is used
to sample 16 neighbors for each coarse point. As a result,
our model consumes an input with a variable number of
points and generates the coarse output with 1,024 points and
fine output with 16,384 points. We trained the networks for
200 epochs with a decaying learning rate initialized at 10~*
and Adam optimizer [13], with a batch size of 32 on Four

Method FN GRnet | TopNet | PCN Ours

Params | 2.40M | 76.7M | 3.27M | 6.85M | 9.60M

Table 2: Number of trainable model parameters

NVIDIA GeForce RTX 2080Ti GPUs. It takes about 78
hours to complete 100 epochs. The average inference time
for one instance is 0.075 seconds on a single GPU.

4.2. Baselines and Performance Comparison

Here, we compare our model against four baselines that
work on point cloud completion.

1. FoldingNet: It encodes each point’s neighbor infor-
mation by flattening the covariance matrix and pro-
posed a folding-based decoder that deforms a 2D fixed
grid onto the 3D surface of a point cloud [35].

2. TopNet: It proposes a decoder following a hierarchical
rooted tree structure to generate points [25].

3. GRnet: A recent method that uses 3D voxels as inter-
mediate representations for point clouds [32].

4. PCN: The representative of point completion methods
following the coarse-to-fine fashion [36].

Quantitative results in Table 1 and Table 2 indicate our
method could achieve better performance over all eight cat-
egories while still maintain a reasonable number of param-
eters. As shown in Figure 5, our completion results could
recover a more detailed geometry than others. It proves the
advantage of our proposed method that extracts both the lo-
cal information and the global structure information from
the observations and the strength of generating various lo-
cal geometries.

4.3. Ablation Study

In order to investigate our encoder and decoder’s perfor-
mance separately, we train four different neural networks
for the ablation study on the ShapeNet Bottle. A 3 x 3 grid is
used to generate 9,216 points. We evaluate the performance
on the validation dataset every 20 epochs during training.

1. Model A: Removing surface normal and adaptive 3D
grid from our decoder (same as PCN’s decoder).

2. Model B: Removing GAT from our encoder (same as
PCN’s encoder).

Evaluation Loss Curve
0.010

—— PCN

0.009 4

0.008 4

0.007 4

cd loss

0.006 4

0.005 4

0.004

20 40 60 80 100 120 140 160 180 200
epoch

Figure 6: CD loss during evaluation. The vertical axis is the
CD loss, and the horizontal axis is the epoch number. We
evaluate the performance every 20 epochs on the validation
dataset.

As shown in Figure 6, both our encoder and decoder
converge fast and outperform PCN’s encoder and decoder.
Without GAT in the encoder, the performance is decreased
by 8%; without surface normals and scale factor o, the
performance is decreased by 10%. It further indicates our
encoder’s benefit, which combines local information with
global information, and our decoder’s power, which utilizes
surface normals and adaptive grid sizes.

We also investigated using multiple GAT layers to en-
code local information, while the test results show no im-
provement but the deterioration of the performance. We
speculate the main reason is that two graph attention lay-
ers allow each point to communicate with more neighbors,

Sensory input Completion Ground truth

Depth image

Figure 7: Experimental results on YCB objects, showing
completions for a mustard bottle and a banana, respectively.
We extract the point clouds (second column) from the raw
depth images (first column), and feed them into the model to
generate the completions (third column). The ground truth
meshes are shown in the last column.

which will lead it to lose the property of local convolution,
and hence be difficult to learn efficiently with the attention
mechanism.

4.4. Experiment on Sensory Data

We test our model on YCB objects with a reasonable re-
constructed mesh (70 in total), as shown in Figure 7. We
first build a small simulation dataset using the same strat-
egy mentioned in ShapeNet Bottle. After training our model
for 150 epochs, we test it on sensory point clouds extracted
from raw registered depth images. Our model achieves an
average chamfer distance of 9.9834 x 10~2 on depth im-
ages of the first camera view of each object from the YCB
dataset. It is worth noting that the real sensor data is nosier
and occasionally suffers from missing geometry features
compared to the simulated data.

5. Discussion
5.1. Nearest Neighbor Distance for Each Point

Since Chamfer Distance only provides the average per-
formance for the whole point cloud [34], to analyze our re-
sults in detail, we illustrate each point’s nearest neighbor
distance to the ground truth in Figure 8. The generated
points are rendered by their closest distances to the ground
truth. As it suggests, each point maintains a relatively small
distance to the closest point in the ground truth.

5.2. Generalization Ability

When testing on the ShapeNet Bottle dataset, we found
some interesting results. Figure 9 shows our generation
process for a shampoo bottle and a coke can with a straw.
There is no straw-like object but some shampoo bottles in
the training dataset, and our network could still reason out
the geometry of the straw, though it resembles the shampoo

chair table

(a) CD 0.0061 (b) CD 0.0090

Figure 8: Nearest Neighbor Distance for Each Point. The
top row shows our generated outputs, and the bottom row
shows the ground truth. The points are rendered by their
closest distances to the ground truth.

header to some degree. This phenomenon shows that our
model could predict a reasonable shape for the unseen part
of the input point cloud, which indicates the generalization

ability of our proposed method.
Partial

Coarse Fine Ground Truth

Figure 9: Illustration of Generalization Ability of GASCN:
first, we take a partial point cloud as input and output coarse
point clouds, and then do the coarse-to-fine refinement. The
top row and the bottom row show the generation process of
a shampoo bottle and a coke can with a straw, respectively.
Though there is no straw in our training data, our model
generates a similar geometry for the unseen part of the par-
tial observation during testing.

5.3. Point Cloud Registration

Many tasks in robotics could benefit from dense com-
plete point clouds. We illustrate its advantage on the point
cloud registration. Specifically, we ran ICP [1] for two dif-
ferent partial observations from one object and compared its
results with their corresponding complete fine points. Our
experiment indicated that our generated complete points

(b) MSE: 0.0657

(c) MSE: 1.2068

(d) MSE: 0.0836

Figure 10: Improvement on Point Cloud Registration. The
left column shows registrations for partial observations, and
the right column shows registration for their corresponding
complete fine points.

have fewer errors since they have significant overlaps com-
pared to the partial observations. It is worth noting that our
model could enormously increase the utilization of observa-
tions in many downstream tasks, especially where both the
completions and surface normals are needed.

6. Conclusion

In this work, we studied how to infer the complete 3D ge-
ometry from an incomplete observation. Our motivation is
to combine local information with global information in our
encoder and take the pointwise local property into account
during our generation. To achieve the target, we utilized the
graph attention layer for encoding local context information
and utilized MLPs and max-pooling to aggregate the global
structure information. To decode the latent vector properly,
we inversed the process of calculating surface normal from
points and utilized adaptive 3D grids to obtain neighbors. In
our future work, we will investigate combining shape com-
pletion with grasp pose detection [9] in robotics.

Acknowledgement

This work was supported in part by NSF 1724257,
NSF 1724191, NSF 1763878, NSF 1750649, and NASA
80ONSSCI19K1474.

References

[1] Paul J Besl and Neil D McKay. Method for registration of
3-d shapes. In Sensor fusion IV: control paradigms and data
structures, volume 1611, pages 586—606. International Soci-
ety for Optics and Photonics, 1992.

[2] Christopher M Bishop. Pattern recognition and machine
learning. springer, 2006.

[3] Benjamin Burchfiel and George Dimitri Konidaris. Bayesian
eigenobjects: A unified framework for 3d robot perception.

(4]

(5]

(6]

(7]

8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

In Robotics: Science and Systems, volume 7, page 2017,
2017.

Berk Calli, Arjun Singh, James Bruce, Aaron Walsman, Kurt
Konolige, Siddhartha Srinivasa, Pieter Abbeel, and Aaron M
Dollar. Yale-cmu-berkeley dataset for robotic manipulation
research. The International Journal of Robotics Research,
36(3):261-268, 2017.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository. Technical Report arXiv:1512.03012 [cs.GR],
Stanford University — Princeton University — Toyota Tech-
nological Institute at Chicago, 2015.

Haogiang Fan, Hao Su, and Leonidas J Guibas. A point set
generation network for 3d object reconstruction from a single
image. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 605-613, 2017.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. arXiv
preprint arXiv:1406.2661, 2014.

Thibault Groueix, Matthew Fisher, Vladimir G Kim,
Bryan C Russell, and Mathieu Aubry. A papier-maché ap-
proach to learning 3d surface generation. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 216-224, 2018.

Marcus Gualtieri, Andreas Ten Pas, Kate Saenko, and Robert
Platt. High precision grasp pose detection in dense clutter.
In 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 598—-605. IEEE, 2016.
Saurabh Gupta, Pablo Arbelaez, Ross Girshick, and Jiten-
dra Malik. Aligning 3d models to rgb-d images of cluttered
scenes. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2015.
William L Hamilton, Rex Ying, and Jure Leskovec. Induc-
tive representation learning on large graphs. arXiv preprint
arXiv:1706.02216, 2017.

Xiaoguang Han, Zhen Li, Haibin Huang, Evangelos
Kalogerakis, and Yizhou Yu. High-resolution shape com-
pletion using deep neural networks for global structure and
local geometry inference. In Proceedings of the IEEE inter-
national conference on computer vision, pages 85-93, 2017.
Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Thomas N Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Chun-Liang Li, Manzil Zaheer, Yang Zhang, Barnabas Poc-
zos, and Ruslan Salakhutdinov. Point cloud gan. arXiv
preprint arXiv:1810.05795, 2018.

Dongping Li, Tianjia Shao, Hongzhi Wu, and Kun Zhou.
Shape completion from a single rgbd image. /EEE transac-
tions on visualization and computer graphics, 23(7):1809—
1822, 2016.

Minghua Liu, Lu Sheng, Sheng Yang, Jing Shao, and Shi-
Min Hu. Morphing and sampling network for dense point

(18]

(19]

[20]

(21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

cloud completion. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 11596-11603,
2020.

Marius Muja and David G Lowe. Fast approximate nearest
neighbors with automatic algorithm configuration. VISAPP
(1), 2(331-340):2, 2009.

Leif E Peterson. K-nearest neighbor.
4(2):1883, 2009.

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July
2017.

Jason Rock, Tanmay Gupta, Justin Thorsen, JunYoung
Gwak, Daeyun Shin, and Derek Hoiem. Completing 3d
object shape from one depth image. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 24842493, 2015.

Muhammad Sarmad, Hyunjoo Jenny Lee, and Young Min
Kim. Rl-gan-net: A reinforcement learning agent controlled
gan network for real-time point cloud shape completion. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 5898-5907, 2019.
Martin Simonovsky and Nikos Komodakis. Dynamic edge-
conditioned filters in convolutional neural networks on
graphs. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3693-3702, 2017.
David Stutz and Andreas Geiger. Learning 3d shape com-
pletion from laser scan data with weak supervision. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1955-1964, 2018.

Lyne P. Tchapmi, Vineet Kosaraju, Hamid Rezatofighi, Ian
Reid, and Silvio Savarese. Topnet: Structural point cloud de-
coder. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2019.
Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph at-
tention networks. arXiv preprint arXiv:1710.10903, 2017.
Kaiqi Wang, Ke Chen, and Kui Jia. Deep cascade generation
on point sets. In IJCAI, volume 2, page 4, 2019.

Lei Wang, Yuchun Huang, Yaolin Hou, Shenman Zhang, and
Jie Shan. Graph attention convolution for point cloud se-
mantic segmentation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10296-10305, 2019.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1-12, 2019.

Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T Free-
man, and Joshua B Tenenbaum. Learning a probabilistic
latent space of object shapes via 3d generative-adversarial
modeling. arXiv preprint arXiv:1610.07584, 2016.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1912-1920, 2015.

Scholarpedia,

(32]

(33]

(34]

[35]

(36]

Haozhe Xie, Hongxun Yao, Shangchen Zhou, Jiageng Mao,
Shengping Zhang, and Wenxiu Sun. Grnet: gridding resid-
ual network for dense point cloud completion. In European
Conference on Computer Vision, pages 365-381. Springer,
2020.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical
evaluation of rectified activations in convolutional network.
arXiv preprint arXiv:1505.00853, 2015.

Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir
Mech, and Ulrich Neumann. Disn: Deep implicit sur-
face network for high-quality single-view 3d reconstruction.
arXiv preprint arXiv:1905.10711, 2019.

Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-
ingnet: Point cloud auto-encoder via deep grid deformation.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018.

Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and
Martial Hebert. Pcn: Point completion network. In 2078
International Conference on 3D Vision (3DV), pages 728—
737.IEEE, 2018.

