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Abstract

Shape completion, the problem of inferring the complete

geometry of an object given a partial point cloud, is an im-

portant problem in robotics and computer vision. This pa-

per proposes the Graph Attention Shape Completion Net-

work (GASCN), a novel neural network model that solves

this problem. This model combines a graph-based model

for encoding local point cloud information with an MLP-

based architecture for encoding global information. For

each completed point, our model infers the normal and ex-

tent of the local surface patch which is used to produce

dense yet precise shape completions. We report experiments

that demonstrate that GASCN outperforms standard shape

completion methods on a standard benchmark drawn from

the Shapenet dataset.

1. Introduction

It is often desirable to be able to infer the geometry of

objects in a scene based on a small number of sensor mea-

surements. This is known as the shape completion problem

where the system infers the complete geometry of an ob-

ject based on a partially observed point cloud, such as that

produced by a depth sensor. In particular, shape comple-

tion could be useful in the context of robotic manipulation

where a robotic system could use the inferred geometry of

the objects in a scene to create geometric plans that solve

desired tasks. Compared to other approaches to scene re-

construction that estimate the pose of specific objects, a crit-

ical advantage of shape completion methods is that they can

be used to infer the geometry of novel objects, not just a

closed set of previously modeled objects.

There are two main types of approaches to shape com-

pletion: one based on the point cloud representation and

the second based on voxel grids or signed distance func-

tions. Point clouds are a convenient choice because they

can be created easily from the output of depth sensors

or LIDAR and several methods use point cloud represe-

nations [36, 35, 8, 17]. However, these methods are all

limited by the fact that they cannot use 3D convolutions

because the point cloud representation does not explicitly

encode information about the local connectivity of each

point. An alternative is to create shape completion algo-

rithms based on a voxel grid or signed distance function

(SDF) representation [22, 12, 24]. Here, we can use 3D

convolutions to obtain higher shape completion accuracy,

as in GRNet [32]. However, the memory requirements for

voxel grids or SDFs are cubic in the resolution of the grid

and therefore it severely limits the resolution at which the

method can be applied.

In contrast to the methods above, this paper proposes

GASCN, a shape completion approach that operates on a

graph rather than a point cloud or voxel grid. Since con-

verting a point cloud into a mesh can itself be challenging,

we use a graph attention approach [26] where each point in

the cloud is associated with a unique graph that connects it

with its neighbors. Another key element of our approach

is a densification step that converts a coarse reconstruction

into a fine reconstruction by deforming a fine 2D grid to

each coarse point via a learned surface normal and vari-

ance. The novel features of our approach relative to prior

shape completion work are the following:

1. Our encoder utilizes the graph attention layer to en-

code local context information for further combina-

tion with the global structure information whereas

prior work on shape completion typically uses a Point-

Net [20] encoder or 3D convolutions on voxels [31].

This enables us to take point cloud input while still en-

coding using graph convolutions.

2. Our decoder contains a novel densification procedure

that maps a dense planar grid to a local region around

each point in a coarse shape completion. This enables

us to produce a dense completion while keeping the

network complexity manageable.

We compare our model with several other recent ap-

proaches from the literature [35, 36, 25] and find that it out-

performs on a standard shape completion baseline task.
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2. Related Work

The problem of inferring 3D structures from RGB and

depth camera images has been studied for decades. A

classic but powerful non-learning method uses the Itera-

tive Closest Point (ICP) [1] algorithm to align a tem-

plate model from a large dataset with the observed point

cloud. BEOs [3] constructs a new representation space with

VBPCA [2] basis, where the best corresponding point to the

partial input could be found. Some other works [21, 10, 16]

deform the template model to synthesize shapes that are

more consistent with the observations. These methods are

often sensitive to noise and require large datasets as well as

expensive computation time.

Recent learning-based approaches complete the 3D

structure with a parameterized model, often a deep neu-

ral network, directly from the observation. It allows a

fast inference and great generalization. Some datasets like

ShapeNet [5] and YCB [4] enable learning on sufficient ex-

amples to generate visually compelling shapes. The most

common structure for a shape completion network consists

of an encoder that maps the partial observation to a latent

vector and a decoder that produces the complete 3D shape

given the latent vector. The learning method differs based

on the different representation methods of a 3D object.

Voxel-based methods [24, 31, 12] voxelize point clouds

into binary voxels, where 3D convolutional neural networks

can be applied. Recently, GRnet [32] proposed a novel grid-

ding mechanism to encode the neighbors’ information into

the vertices of each voxel. These methods are often compu-

tation expensive and limited to quantization effects due to

the voxel representation.

PointNet [20] is a pioneer in using the MLP-based ap-

proach to learn point clouds. It combined pointwise multi-

layer perceptrons with a max-pooling aggregation func-

tion to achieve invariance to permutation and robustness

to perturbation. After PointNet, FoldingNet [35] proposed

a folding-based decoder that deforms a 2D grid onto the

3D surface of a point cloud. Following previous works,

PCN [36] proposed the coarse-to-fine procedure to densify

the point cloud. AtlasNet [8] and MSN [17] generated a

collection of parametric surface elements based on Fold-

ingNet’s decoder. Besides, some work [15, 30] combined

MLPs with GANs [7], and some [22] integrated it with re-

inforcement learning. However, these approaches just ag-

gregated the global information from the whole point cloud

without focusing on the local information of each point’s

neighbors, and neither did they take the various local prop-

erties of different points into account during the generation

process.

Compared with MLP-based approaches, graph-based

methods could extract local information of each point. Most

recent graph-based convolution methods [14, 11, 26] op-

erated on groups of spatially close neighbors. ECC [23]

is the first one to apply graph convolutions to point cloud

classification. After that, DGCNN [29] proposed a more

generalized edge convolution method with dynamic graph

updates to encode the local neighborhood information for

point clouds. Inspired by DGCNN, DCG [27] introduced

this method to point cloud completion following a coarse-

to-fine fashion. However, the edge convolution is compu-

tationally expensive in large graphs. After Graph Attention

Network [26], GAC [28] inherited its ideas and applied at-

tention mechanism to the point cloud segmentation area. To

the best of our knowledge, we are the first to directly com-

bine the graph-level local information with the global struc-

ture information in the encoder as well as utilize surface

normals to incorporate pointwise local properties for shape

completion.

3. Method

Figure 1 below is an overview of our network, which

follows an encoder-decoder architecture. It takes a par-

tial point cloud with a variable number of points as input,

pinput and generates a complete dense point cloud as out-

put, pfinal.

The encoder (Figure 2) uses a graph attention network

(GAT) [26] to reason about the local geometry of the input

cloud and MLPs to reason about global geometry.

GAT [26] is used to learn the graph-level local informa-

tion and MLPs are used to encode the global information.

Following a coarse-to-dense procedure, our decoder first de-

codes a sparse point cloud Pc and then samples each point’s

neighbors to densify Pc. To make the densifying process

flexible and adaptive to different local geometries, we de-

code surface normals and the scale factor σ by our normal

decoder and sigma decoder to adjust the orientation and the

size of each point’s neighborhood.

3.1. Encoder

Since each region of a point cloud could have different

geometries, all the global information without the local in-

formation would result in averaging over all point features

and thus undermining the completions. In order to solve it,

our encoder is built on the graph representation of partial

point clouds. We encode each node feature with its neigh-

bors’ information, its mapped Cartesian feature, and two

different types of global vectors to maximize the utilization

of local information and global information.

3.1.1 Build Graph for Point Cloud

Given a point cloud consisting of m points, denoted as

P = {p1, p2, ..., pm} with pi ∈ R
3, we form a directed

graph G = (V,E) representing the point cloud structure,

where V = {1, ...,m} and E ⊆ V × V . We define

H = {h1, h2, ..., hm} with hi ∈ R
D as a set of node



Figure 1: The architecture of GASCN. It has a graph-based

encoder that integrates each point’s local information with

the point cloud’s global structure information. The decod-

ing process utilizes surface normals and coarse points to ro-

tate and translate adaptive 3D grids to densify coarse point

clouds.

features corresponding to each point, where D is the di-

mension of the node features. Each node feature is initial-

ized with hi = (xi, yi, zi), where (xi, yi, zi) is the Carte-

sian coordinates of point pi. Moreover, we build subgraphs

{Gi}i=1,2,...,m ⊆ G for all nodes as k-nearest neighbor [19]

graphs from node features H by connecting the correspond-

ing point pi with its k-nearest spatial neighbors. Besides,

the subgraphs include self-loops to preserve each node’s

own information.

As a result, the whole graph for the point cloud com-

prises m directed subgraphs and each point is assigned as

the destination node of a subgraph. Each of them seems

like a patch on the surface of a 3D object, similar to the

kernel window in 2D convolution.

3.1.2 Local Convolution: GAT

Although points in the point cloud are independent, there

must exist certain hidden relationships to maintain the local

surface geometry. GAT [26] provides an attentive mecha-

nism to learn it. Given the graph G and point features H of

a partial point cloud, we apply the GAT layer to aggregate

each node’s neighborhood information.

First, we conduct a linear transformation for the embed-

ding feature hi of the node i with a shared learnable weight

Figure 2: Graph-based Encoder of GASCN model. It en-

codes each node feature with its neighbors’ information

Fgraph by graph attention layer, its mapped Cartesian fea-

ture Fcart by point-wise MLP, and two types of global vec-

tors, ggraph and gcart, extracted from the max-pooling op-

eration.

matrix W and then compute a pair-wise unnormalized at-

tention score eij with a learnable vector a between the two

neighbors i and j (|| is the concatenation operation).

zi = Whi (1)

eij = LeakyReLU(aT (zi||zj)) (2)

After that, our network normalizes the attention score on

each node’s neighbors and aggregates the embeddings from

neighbors with the normalized attention score, and applies

a nonlinear activation function.

αij =
exp(eij)∑

k∈N(i) exp(eik)
(3)

hnew
i = LeakyReLU(

∑

j∈N(i)

αijzj) (4)

The final result is denoted as Fgraph which is an m × d

matrix, where m is the number of points and d is the feature

dimension. The process above maps each node feature from

a 3-dimension xyz coordinate to a d-dimension vector that

contains the information of its neighbors through the graph

attention layer.

3.1.3 Global Information

The global structure information is critical in point cloud

generation, which could be used to distinguish different ob-

jects. We extract two different types of global information,

the global graph vector ggraph and the global Cartesian vec-

tor gcart. The global graph vector ggraph is given by

ggraph = maxpool(Fgraph) (5)

where max-pooling operation concatenates the maximum

value among each feature dimension of Fgraph to construct

the permutation-invariant global vector ggraph.

We define the pointwise MLPs in PointNet [20] as Mθ :
R

d1 → R
d2 . It maps each point feature from d1-dimension



into a new d2-dimension space using a nonlinear function

M with the shared learnable weights θ. The second global

vector is aggregated by:

Fcart = Mθ1(H) (6)

gcart = maxpool(Fcart) (7)

After that, two different feature matrices, Fgraph and

Fcart, are concatenated into an augmented feature matrix

F̄ , while two global vectors ggraph and gcart are concate-

nated together to produce the augmented global vector ḡ.

We concatenate ḡ to each row of F̄ to get our final feature

matrix Ffinal. So far, each node feature is encoded with

information of its neighbors, its mapped Cartesian feature,

and two types of global vectors. Finally, we extract the final

latent vector gfinal by:

gfinal = maxpool(Mθ2(Ffinal)) (8)

3.2. Decoder

Regarding the various local properties of different points

during the generation process, our decoder first generates

coarse points, each coarse point’s surface normal, and its

corresponding scale factor σ, as shown in Figure 3. It

then samples coarse points’ neighbors with adaptive 3D grid

points and utilizes both surface normals and coarse points to

determine the rotation and the translation, respectively.

3.2.1 Coarse Point Cloud and Surface Normal

The coarse output Pc is a preliminary generated complete

shape with sparse points. Following previous work [36], we

use three fully connected layers with nonlinear activation

functions to decode the gfinal to Pc, as shown at the top of

Figure 3.

In order to densify completions, some pointwise at-

tributes are needed to generate neighbors. Surface normal

is a good option which contains the local orientation of a

surface. To decode surface normals, we first build a graph

by connecting each coarse point with its nearest neighbors

and apply one graph convolution layer [14] to aggregate

the neighbor information into Clocal. In the meantime, the

global vector gfinal and coarse points Pc are mapped re-

spectively by two different MLPs into Gmap and Cmap. The

surface normal is generated by

Nimd = Mφ1
(Clocal ||Cmap ||Gmap) (9)

Normal =
Mφ2

(Nimd)

||Mφ2
(Nimd)||

(10)

where the Nimd is the normal internal embedding. The

whole process above is shown in Figure 3.

Figure 3: Decoder Architecture. The coarse points decoder

consists of three fully connected layers. The normal de-

coder takes as inputs the mapped coarse point coordinate

Cmap, its neighbors’ information Clocal, and the mapped

global vector Gmap. The sigma decoder takes as inputs

the normal internal embedding Nimd, Clocal, Cmap, and

Gmap, and then applies three pointwise MLP layers to out-

put pointwise-attentive sigmas.

3.2.2 Calculate Neighbors by Surface Normals in

Coarse Point Cloud

Given a point p = (px, py, pz) and its normal n =
(nx, ny, nz), how could we sample its neighbor points?

Neither sampling X,Y, Z randomly [17] from a distribu-

tion that would make the output look noisy and the model

hard to train, nor utilize a fixed grid which is inflexible; we

instead mesh an adaptive grid to obtain a set of 3D Carte-

sian coordinates for each coarse point. Our procedure has

four steps: sampling, scaling, rotation, and translation.

1. Obtain neighbors by meshing grid:

(X,Y ) = Meshgrid(l, l); Z = 0 (11)

(X,Y, Z) is a set of vertices of a square grid of size

l, centered at the origin with surface normal oriented

along Z-axis, forming a plane in 3D space.

2. Scale X,Y with σ:

x = σ ·X; y = σ · Y (12)

Each point has a specific scale factor σ that is learned

from the neural network, which we will discuss in Sec-
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