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ABSTRACT

The pending extensive rice expansion in northeastern Asia, especially in northeast China, affects regional climate
by altering both biogeochemical and biophysical processes. While the biogeochemical effects (e.g., CO2, CHy4) of
rice expansion have attracted plenty of attention, its biophysical effects have not been well documented, espe-
cially its influences on diurnal and seasonal land surface temperature (LST). In this study, we used a pair-wise
comparison approach to examine biophysical effects of paddy rice expansion at different temporal scales
(diurnal and seasonal) in northeast China, based on satellite-derived biophysical proxies and a high-resolution
crop map in 2017. We found that the daily mean LST of rice paddies was 0.5 °C lower than that of corn and
soybean fields during the growing season (from May to September), as a result of daytime cooling (-1.8 and
-2.0 °C) and nighttime warming (0.8 and 1.1 °C), which subsequently led to a narrower diurnal LST range (-2.6
and -3.0 °C) than in upland crops (i.e. corn and soybean). The cooling effects were stronger in the early period of
the growing season (May and June) than in the late season (July to September). Using a temperature response
model, we found that the nonradiative processes (i.e., evapotranspiration and sensible heat) dominated the LST
response in paddy rice, while the radiative process (i.e., albedo) played a secondary role. The daytime cooling
and nighttime warming implies that we need to consider the unsymmetrical diurnal LST dynamics when eval-
uating the short-term effects of paddy rice expansion. Stronger cooling effects in the early growing season has to
be accounted for when modeling its biophysical impacts at seasonal scale. This study explained the local climate
effects of rice expansion through the biophysical mechanism with both radiative and nonradiative controls on the
surface energy balance, which can contribute to improved modeling of biophysical effects of land use change.

1. Introduction

(mainly corn and soybean) fields have been converted into rice paddies,
causing an increase of paddy rice area in the region by 3.68 million ha

Anthropogenic land use change plays a critical role in climate change
processes and mitigation (Zhou et al., 2016; IPCC, 2019; Yu et al.,,
2020a; Zhou et al., 2020). In recent decades, a remarkable paddy rice
expansion in the high latitudes of northeastern Asia has received much
attention (Liu et al., 2010; Dong et al., 2015, 2016). One hotspot of
paddy rice expansion in this region is northeast China (Wang et al.,
2011; shi et al., 2013; Zhang et al., 2017). Considerable upland crop

* Corresponding authors.

from 2000 to 2017 (Xin et al., 2020), which makes the region known as
China’s new rice bowl. This unprecedented expansion of paddy rice on
upland crops has significant ecological, environmental, and climatic
consequences, but has been rarely examined in detail (Fu et al., 2020;
Luo et al., 2020; Singha et al., 2020).

Land use changes alter both biogeochemical factors (e.g., carbon
stocks and greenhouse gas emissions) and energy partitioning (e.g.,
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albedo and evapotranspiration) (Peng et al., 2017; Elias et al., 2020;
Huang et al., 2020). Numerous studies have revealed effects of land
conversion on the biogeochemical process, for example, afforestation
and conservation of forests significantly increase carbon uptake (Huang
et al. 2018a; Windisch et al., 2021) while expansion of wetlands in-
creases CO5 and CH4 emissions rapidly (Wei and Wang, 2017; Hemes
et al., 2018). At the local and regional scale, biophysical factors could
play an important role in affecting temperature in comparison to solely
biogeochemical factors (Peng et al., 2014; Zhao and Jackson, 2016).
However, to date, the climate effects of land use change, for example
paddy rice expansion, mainly focus on the biogeochemical processes
manifested as greenhouse gas emissions (Xu et al., 2011; (Liu et al.,
2019c); Hwang et al., 2020), while few studies have investigated its
biophysical processes.

The underlying biophysical impact of land use change on climate has
been mostly unraveled for certain land use types including afforestation,
global greening, and wetland reclamation (Cao et al., 2019; (Liu et al.,
2019d); Prevedello et al., 2019; Chen et al., 2020; Jin et al., 2020; Wang
et al., 2020; Yuan et al., 2020). In these studies, biophysical impacts,
generally measured in land surface temperature (LST), were mainly
affected by variations of surface physical characteristics (such as leaf
area index, turbulent flux, soil moisture, etc.). However, variations of
biophysical indicators caused by conversion from upland crops to paddy
rice have not been fully examined yet, despite a considerable paddy rice
expansion in northeast China (Xin et al., 2020). Similar to flooded fields
with low vegetation cover, paddy rice fields are regarded as a type of
artificial wetlands (Yu and Liu 2019). The energy exchange of paddy rice
fields is thus similar to that of wetlands (Liu et al., 2019a; Nocco et al.,
2019). Shen et al. (2020) showed that the loss of marshlands and forests
increased local LST by altering local albedo and evapotranspiration
(ET). The two types of conversions, from marshland to paddy rice and
from marshland to upland field crops, were found to have different ef-
fects on LST. Moreover, the conversion from upland field crops to paddy
rice decreased the LST, resembling the cooling effects of wetlands ((Liu
et al., 2019b)).

Remote sensing observations and surface energy models are power-
ful tools for investigating biophysical changes caused by land use
change. Some studies explored redistribution of surface energy caused
by land cover change using site-level meteorological data, which often
suffer in spatial discontinuity compared to those incorporating remote
sensing data (Huang et al. 2018b; Nocco et al., 2019). However, even
with continuous data from remote sensing, studies encompassing
multi-year analyses usually do not discriminate the contributions of land
use change from the effects caused by interannual climate dynamics,
also termed as climate background (Pan et al., 2020). The pair-wise
comparison approach (Wang et al., 2018; Abera et al., 2020) or the
“Observation Minus Reanalysis” approach (Kalnay and Cai 2003) can
separate the effects from land use change and climate background and
have been widely used to quantify the relative contribution of land use
change. However, it has not been applied in the impact analyses of
paddy rice expansion. Additionally, to date, studies focused on the
impact of land use change on LST are mostly based on coarse land cover
maps (e.g., 1-km resolution), while crop maps with more detailed in-
formation (e.g., 10-m spatial resolution) are necessary for a better un-
derstanding of the LST driving mechanism (Du et al., 2019;(Yu et al.,
2020c) ). Furthermore, the influence of land use change on daily tem-
perature could vary in daytime and nighttime. Peng et al. (2014) showed
the divergent effects of daytime and nighttime LST on afforestation in
China. However, the diurnal and seasonal characteristics of the impacts
of paddy rice expansion on LST are seldom considered, hampering our
understanding of the effects of emerging rapid rice expansion on the
land surface energy budget and local climate in China’s new rice bowl.

The objective of this study is to provide observational evidence from
satellite remote sensing on the effects of the rapid paddy rice expansion
on LST and explore the driving mechanism. We examined the effects of
paddy rice expansion on LST based on satellite observations and a high-
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resolution (10-m) crop map derived from Sentinel-2 imagery (You and
Dong, 2020; You et al., 2021), by using a pair-wise comparison in
northeast China. Results were analyzed at both diurnal and seasonal
scales. Energy redistribution factor (f), an indicator of land surface en-
ergy flow via latent and sensible heat transfer (Bright et al., 2017), and
albedo were subsequently examined for explanation of temperature
change mechanism, based on the climatic reanalysis and remote sensing
datasets.

2. Materials and methods
2.1. Study area

Northeast China is a cold-humid region that extends from 38.713° N
to 53.546° N in latitude and from 121.146° E to 123.620° E in longitude.
The region is composed of Heilongjiang, Jilin, Liaoning Provinces, and
the east part of the Inner Mongolia Autonomous Region. The climatic
conditions here are temperate humid or sub-humid continental monsoon
climate (Liu et al., 2018). Since the 1950s, the rapid land use transition,
with farmlands expanding, made cultivated land the dominant land use
type of the region (Yan et al., 2018). In Heilongjiang province, for
example, the increased rice area from 1951 to 2018 accounted for 8.44%
of the province’s total area (Hu et al., 2021). In particular, paddy fields
increased 1.78 times from 1982 to 2015 in Sanjiang Plain which is the
main paddy rice base in Heilongjiang Province. Within the last two
decades, upland crop planting in the study area has been strikingly
reclaimed into paddy rice planting with an average annual increase rate
of 2.0 x 10° ha per year (Xin et al., 2020) due to higher profitability and
elevated hydrothermal conditions, especially in Sanjiang Plain where
the paddy fields increased by 60% from 2000 (4.77 x 10° ha) to 2014
(7.63 x 10° ha) (Dong et al., 2016). Fig. 1 illustrates the location and the
distribution of major crop types of the region in 2017 (You et al., 2021).

Crop growth in northeast China was separated significantly in stages,
which is distinguished among different crop types (Table 1). Generally,
rice paddy was flooded from early to mid stages in May, and the field
surface contained substantial water from the beginning of the flooding
period until the tillering period. While corn and soybean were both in
the initial stage from mid May to early June, and the land surface was
represented by bare soil mostly. Thus, surface biophysical characteris-
tics altered notably along with rice expansion due to the transformation
of crop phenological stages as well as the change of agricultural
administration, especially between upland fields and rice paddies.

Monthly enhanced vegetation index (EVI) and land surface water
index (LSWI) data highlighted the divergence of surface biophysical
characters between rice paddy and upland crop fields (Xiao et al., 2005).
Relative to the same trends, EVI was affected mainly by the growth
condition of crop leaves. Moreover, larger LSWI was detected on rice
paddy from May to June, which presented higher land surface moisture
conditions than the upland crop fields.

2.2. Satellite data processing

Remote sensing data were used to investigate the differences of
surface biophysical factors in three major crops (paddy rice, corn, and
soybean) in northeast China. A range of surface parameters was
compiled as data products, including the MODIS land surface products.
The MODIS data included average 8-day 1-km daytime and nighttime
LSTs (MYD11A2_V6) and daily 16-day 500-m albedo (MCD43A3_V6)
model datasets (Fig. 2). The LST data were derived from Aqua/MODIS
instrument imaging the entire Earth twice a day, at both daytime (local
solar time ~1:30 PM) and nighttime (~01:30 AM). Importantly, these
times are close to those at which the maximum and minimum temper-
atures were expected during a whole day (Duveiller et al., 2018a). Each
pixel value in MYD11A2 V6 represents an average of all the corre-
sponding daily LST pixels within that 8-day period. Pixel artifacts,
caused by cloud, cloud shadow, and other adverse conditions, are not
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Fig. 1. Cropland distribution in northeast China, 2017. (a) Location of the study region in Asia and (b) spatial distribution of major crop types in northeast China
with 1 km spatial resolution, spatially aggregated from the 10-m crop map (You et al., 2021).

Table 1

Crops’ calendars from May to September. Phenological stages of three main crops are elucidated within the early (E), mid (M), and late (L) periods in a month.
Month May Jun Aug Sep
Ten-day E M L E M L M L E M L E M L
Paddy rice 1 2 3 4 5 6 7 8
Corn 1 2 3 4 5 6 7 8
Soybean 1 2 3 4 5 6

Paddy rice: 1-Seeding/Flooding, 2-Transplanting, 3-Reviving, 4-Tillering, 5-Booting, 6-Heading, 7-Milk stage, 8-Mature and harvest.
Corn: 1-Sowing, 2-Seeding/Three leaves, 3-Seven leaves, 4-Stem elongation, 5-Heading, 6-Milk, 7-Mature, 8-Harvest.
Soybean: 1-Sowing, 2-Seeding, 3-The 3rd true leaf, 4-Flowering, 5-Pod setting, 6-Mature and harvest.

produced but represented as null value, which were excluded in our
further analysis. Thus, we filtered all the empty values for the statistical
analyses of the LSTs of different crops. The albedo data included both
directional hemispherical reflectance (black sky albedo) and bihemi-
spherical reflectance (white sky albedo) for a shortwave (0.3-5.0 pm)
broad-spectrum band (Schaaf et al., 2002). To obtain an estimate of real
conditions without information on the fraction of diffuse radiation, we
took the mean of both values in our data analyses (Duveiller et al.,
2018b).

In addition, climate data were also derived from the Famine Early
Warning Systems Network Land Data Assimilation System (FLDAS)
dataset, the TerraClimate monthly reanalysis data, and a 0.5

downscaled dataset with bilinear interpolation for air temperatures at 2
m (Peng, 2019). The TerraClimate monthly reanalysis data was a dataset
of monthly climate and climatic water balance for global terrestrial
surfaces including downward surface shortwave radiation (Abatzoglou
et al.,, 2018). The FLDAS dataset includes information on many
climate-related variables including the monthly downward longwave
radiation flux data, which was usually used in the temperature response
model (McNally et al., 2017). The 0.5 downscaled dataset of air tem-
perature at 2 m was developed with bilinear interpolation and published
in Network Common Data Form (at https://doi.org/10.5281/zenodo.
3185722) (Peng, 2019). Here the monthly mean air temperature was
obtained to estimate the surface energy redistribution factors and to
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Fig. 2. The workflow of this study. Raw datasets marked in cylinders included the average 8-day 1-km daytime and nighttime land surface temperature (MYD11A2)
dataset, the daily 16-day 500-m albedo (MCD43A3_V6) dataset, monthly downward longwave radiation flux (FLDAS), monthly downward longwave radiation flux
(TerraClimate), and the monthly 2-m air temperature dataset. Specific operations used to derive new datasets with different spatial and temporal resolutions are
indicated by descriptions on arrows. The land surface temperature (LST), albedo, and energy redistribution factor (f) of core crops in the study area were analysed

following the workflow.

calculate the divided temperature responses through radiative or non-
radiative processes. All the remote sensing data were resampled to 1-km
spatial resolution for statistical analyses and pair-wise comparison.

Based on our previous studies, a new 10-m crop map with an overall
accuracy of 91% was used (You and Dong, 2020; You et al., 2021). The
crop map was generated by using available Sentinel-2 imagery, inten-
sive ground truth data, and the random forest classifier in the Google
Earth Engine. The resulting map depicts the spatially explicit informa-
tion of the key crops of northeast China. This 10-m crop map was
aggregated to generate three 1-km crop area proportion maps (i.e.,
paddy rice, corn, or soybean) to match the spatial resolution of other
satellite remote sensing data. We then filtered those pixels in which the
single crop type dominated (>80% coverage) the 1-km pixel. Thus, the
resulting filtered pixels have a relatively high proportion of planting
areas for certain crop types which here is considered pure pixels (pure
paddy rice, PP; pure corn, PC; or pure soybean, PS). All the data were
derived from satellite and crop maps for 2017.

2.3. Temperature response model

Based on a linearization of the surface longwave radiation term of
the surface energy balance equation, Bright et al. (2017) formulated an
analytical expression to estimate the direct surface temperature
response to land use and cover change. The temperature response model
was widely used in land surface temperature research, to isolate the
contribution to the model-predicted AT from each biophysical factor
associated with land cover conversion (Zhao et al., 2014). To obtain
calculated AT, value that is more closer to the observations, we used the
modified temperature response model which estimated the AT by (1 +

NQA + f+Af) instead of (1 -i—)‘)2 (Liu et al., 2019b):

Ao . —Ao —4o
(i ANEY (Y,

AT, =
g "(1+S)

)AR ) (R; —G)Af €y
where ) is the monthly mean Planck response to the external radiative
forcing at the surface calculated as 1/4e5T° (where ¢ is the monthly
mean surface emissivity approximated as a constant 0.97 based on
previous empirical findings (Song et al., 2014; (Liu et al., 2019b)), T; is
the monthly mean land surface temperature); AG is the change in the
monthly mean heat diffused into/out of the subsurface medium (G is
estimated as 0.14(Ty , - Tqn-1), where n is the time series of the month); f
is the energy redistribution factor which can be calculated using:
Ao

f=g g (R=G) @

where T, is the monthly mean air temperature at 2 m; the Rn* is the
monthly mean apparent net radiation, which could be computed as:

R, =(1—a)xS+L, T, 3

where « is the monthly mean surface albedo; S is the monthly mean
downward shortwave radiation flux, (1-a)*S means net shortwave ra-
diation flux, L, is the monthly mean downward longwave radiation flux,
§ is the Stefen-Boltzmann constant.

Based on the crop map, the monthly mean values of f on the rice
paddy and upland crop fields were calculated separately, then were used
to estimate partial land surface response by radiative or nonradiative
methods, corresponded with values of observed albedo and other factors
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(evapotranspiration, etc.). In this analysis, we assume that R,*, f, and G
are parameters affected by the crop types (rice, corn, or soybean) and are
independent of T (Bright et al., 2017). Thus, the first, second, and third
right-hand terms in Eq. (1) are the response to the surface radiative
forcing from the albedo change (AT alb), the change in heat conducted
by the surface medium (AT, G), and the change in turbulent energy
redistribution (AT f), respectively (Bright et al., 2017). In this study, the
surface medium induced temperature variation was negligible in whole
growing seasons, hence the model calculated AT, cal was presented as
the sum of AT alb and AT f.

2.4. Pair-wise comparison

To quantitatively investigate the impacts of paddy rice expansion on
LST, we used a pair-wise comparison approach ((Liu et al., 2019b)) to
compare PP pixels with adjacent PC or PS pixels, respectively. To
exclude the effects caused by background noises like atmospheric cir-
culation, we considered the following two factors: 1) Minimizing the
influences of spatial heterogeneity caused by atmospheric background,
and 2) covering enough pure pixels of contrasting crop types within the
neighbourhoods (Alkama and Cescatti, 2016; Wang et al., 2018). In this
study, we mainly discussed the comparison based on 5 x 5 km sampling
areas which worked well for the above two rules. Moreover, we also
explored the climatic effects of paddy rice expansion both on a larger
scale (7 x 7 km sampling areas) and smaller scale (3 x 3 km sampling
areas) to demonstrate the robustness of the conclusion we obtained
within 5 x 5 km sampling areas.

Concretely, we divided the entire study area into 5 x 5 km sampling
areas and selected those areas considering the two factors associated

Agricultural and Forest Meteorology 315 (2022) 108820

with atmospheric circulation, with two compared crop type conversions
(PP and PC, or PP and PS) and a small elevation range (~+100 m). In
total, we selected 212 and 63 sample areas to compare PP and PC, or PP
and PS, respectively. Within each sample area, the adjacent PC and PS
pixels were selected to pair with PP pixels, providing an opportunity to
compare different LST indicators (daytime LST, nighttime LST, daily
mean LST, and diurnal LST range (DTR)) and other biophysical proxies.
Daily mean LSTs were estimated from the arithmetic mean of maximum
(daytime) and minimum (nighttime) LSTs. A previous study showed that
the typical physical properties of rice paddy are distinct in different
months and are particularly characterized as standing water in May and
June (Yu and Liu, 2019). To reflect this phenological difference, we
divided the growing season into two stages: May and June (G1), and
July to September (G2). Within each sample area, the daytime, night-
time, daily mean difference in LST (ALSTs) and diurnal LST range
(ADTRs), as well as differences in albedo and f (Aalbedo and Af) be-
tween PP and PC/PS, were calculated based on the arithmetic means of
each crop type respectively. Variations were then assessed at the
monthly and growth stage scales throughout the entire growing season
(May to September). The technical flow of the study is shown in Fig. 2.

3. Results

3.1. Comparisons of LST between paddy rice and upland field crops
throughout the entire growing season

To quantitatively characterize the impacts of paddy rice expansion
from upland field crops, we performed a pair-wise comparison between
PP and PC/PS, respectively, for different temperature indicators within
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Fig. 3. Differences of average land surface temperatures (LSTs) between paddy rice and upland crops throughout the entire growing season (from May to
September). The differences of (a) daytime, (b) nighttime, and (c) daily mean LST as well as (d) diurnal temperature range (DTR) between pure paddy rice pixels (PP)
and the adjacent pure corn pixels (PC) and pure soybean pixels (PS) in northeast China. The middle lines and the rectangles within boxes represent the median and

average values of ALSTS, respectively.
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each filtered sample area throughout the whole growing season (from
May to September), including daytime LST, nighttime LST, daily mean
LST, and DTR (Fig. 3).

The PP showed lower daytime LST by —1.8 + 1.3 °C and higher
nighttime LST by 0.8 + 0.4 °C compared with PC (Fig. 3a and b), which
demonstrated that the conversion from PC to PP decreased daytime LST
and increased nighttime LST. Similarly, but to a greater extent, the
transition of PP from PS caused more dramatic changes in both daytime
(lower LST of PP than PS by —2.0 + 1.3 °C) and nighttime LST (higher
LST of PP than PS by 1.1 + 0.5 °C) than that from PC.

Comparing to the daytime cooling caused by conversion from PC/PS
to PP, the magnitude of nighttime warming was smaller, with a reduc-
tion in daily mean LST by —0.5 & 0.6 °C and —0.5 + 0.7 °C, respectively
(Fig. 3c). In addition, the small range of DTR for PP was observed in both
comparisons for PC (—2.6 + 1.5 °C) and PS (—3.0 £ 1.5 °C) (Fig. 3d).
These results indicated that throughout the entire growing season, the
LST of PP was lower in the daytime and higher at nighttime than that of
adjacent PC and PS, contributing to lower daily mean LST and smaller
DTR.

At the monthly scale, we found that the average daytime ALSTs
between PP and PC/PS were negative for all months, while nighttime
ALSTs showed opposite warming effects during the whole growing
season (Fig. 4a—d). The asymmetric monthly cycle of variation for LST,
caused by conversion from upland crops to paddy rice, was found both in
the daytime and nighttime. The differences of the daytime ALST
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between PP and PC demonstrated a maximum cooling effect in May by
—3.7 £ 2.4 °C, while the maximum nighttime ALST (1.7 £+ 0.6 °C)
occurred in June. Overall, daily mean ALST between PP and PC were
negative in all months with a maximum difference in May (—1.3 + 1.1
°C) which due to the effects of lower LST in daytime offset the effects of
higher LST in nighttime (Fig. 4a—c). Similar results were found between
PP and PS with a magnitude of —3.8 & 2.4 °C in daytime ALST and 2.0 +
0.9 °C in nighttime ALST, which subsequently led to a slightly smaller
decrease in daily mean ALST (—1.1 + 1.4 °C) in May than that between
PP and PC. Furthermore, Fig. 4d showed that the ADTR reached the
highest values in early months, which was found in May between PP and
PS (—5.3 & 2.6 °C) and in June between PP and PC (5.9 + 2.5 °C).
These findings highlighted the stronger effect of paddy rice expansion
during the early season. Similar results were obtained from the calcu-
lations based on smaller and larger sample areas. In 3 x 3 km sample
areas, the daily mean LST of paddy is cooler than corn or soybean field
by —0.3 £ 0.2 °C (SI Appendix, Fig. S1) during the entire growing sea-
son. Results calculated within 7 x 7 km sample areas showed a —0.5 +
0.4 °C difference of daily mean LST between PP and PC, or PS in the
entire growing season (SI Appendix, Fig. S2).

3.2. Pair-wise comparison between rice paddy and upland field crops in
the different growth stages

The previous results showed that the maximum magnitude of both
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Fig. 4. Differences of monthly average land surface temperatures (LSTs) between paddy rice and upland crops. Differences in the monthly average (a) daytime, (b)
nighttime, (c) daily mean LSTs, and (d) diurnal LST range (DTR) between pure paddy rice pixels (PP) and the adjacent pure corn pixels (PC) and pure soybean pixels
(PS) in northeast China. Shaded areas represent the standard deviation (SD) of all samples.
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daytime cooling and nighttime warming was detected in the early sea-
son, namely May and June. To better understand the changes of LST
caused by surface biophysical characteristics driven by crop phenology,
we analyzed the average ALSTs between the rice paddy and upland field
crops in the early growth stage (G1; i.e., May and June) and the late
growth stage (G2; i.e., July to September), separately (Fig. 5).

Daytime LST of PP was lowered by 3.4 + 2.2 °C than PC, and 3.4 +
2.1 °C than PS in G1, while differences in G2 were —0.7 4+ 0.9 °C and
—0.9 £ 0.9 °C, respectively (Fig. 5a). In contrast, nighttime ALST was
1.4 £ 0.6 °C between PP and PC, and was 1.7 & 0.9 °C between PP and
PS in G1, with notably larger differences in G2 (0.3 + 0.4 °C and 0.6 +
0.4 °C), respectively (Fig. 5b). Daytime cooling together with nighttime
warming that are demonstrated by the ALST ultimately led to a decrease
in the diurnal variation of LST (ADTR) (Fig. 5d). The magnitude of
ADTR reduction was substantially larger in G1 (—4.8 + 2.6 °C and —5.2
+2.4°C)thanin G2 (—-1.0 £ 1.0°Cand 1.4 + 1.0 °C). The average daily
mean ALST was negative in both G1 and G2, with a larger reduction in
G1 than in G2 between PP and PC (-1.0 £ 1.0 °C and —0.2 £+ 0.5 °C)
(Fig. 5¢). A similar variation of daily mean ALST was found between PP
and PS in both G1 (—-0.9 + 1.1 °C) and G2 (—0.2 + 0.4 °C). It is note-
worthy that both paddy rice transitions from corn and soybean had
remarkably more prominent impacts on LST in G1 (May and June) than
in G2 (July to September). Further inspection of evapotranspiration and
albedo with paddy rice expansion might provide plausible explanations
for the daytime and nighttime LST changes.

Agricultural and Forest Meteorology 315 (2022) 108820
3.3. Biophysical mechanism of LST variation

To further understand the underlying mechanism of LST variation
caused by the conversion from upland field crops to paddy rice, we
calculated the energy redistribution factor (f) and the estimated ALSTs
based on the temperature response model (Eq. (1)) driven with gridded
observations observed by remote sensing approaches.

Pair-wise comparison of albedo and f between PP and the adjacent
PC (Fig. 6a-b) or PS (Fig. 6¢-d) illustrated that conversion from upland
field crops to paddy rice led to change in geophysical forcings of surface
energy. The albedo is typically higher in the upland field compared to
paddy in most of the growing season. Specifically, the AAlbedo between
PP and PC were negative from May to July (Fig. 6a), with the maximum
magnitude of difference represented in June (—0.044 + 0.022). Results
were opposite in August and September with positive AAlbedo. The
period with negative AAlbedo between PP and PS was longer (from May
to August) than that between PP and PC during the growing season, with
the largest difference of —0.033 + 0.023 in June (Fig. 6¢). Generally,
higher values of f imply a greater efficiency to dissipate energy from the
surface by its intrinsic biophysical properties. Monthly heterogeneity of f
was detected in all three crops that showed in Fig. 6b and Fig.6d.
Throughout the growing season, the mean value elevated initially (May
and June) and then decreased rapidly in the late season (August and
September) with a maximum value in July. Collectively, a markedly
higher value of monthly mean f on paddy than upland field was detected
during the entire growing season, although the seasonal patterns are
similar.

3 ) ) o«
(a) ADay_LST in G1 and G2 (b) ANight_LST in G1 and G2
—_ - 4L
[/ U S
3 _ _
31 . - B —_
5 N S 2} - :
ut o p .
9 °r i
1 = B
) ) T I_T_I
o o 1 + z i:“lzl 'T'
< a 0pF----F-------- B e e e
12 | 1k B
15 1 1 1 1 2 1 | 1 1
PP-PC_G1 PPPS_G1 PP-PC_G2 PP-PS_G2 PP-PC_G1 PP-PS_G1 PP-PC_G2 PP-PS_G2
4~ 6
(c)AMean_LST in G1 and G2 (d) ADTR in G1 and G2
3 |
2
— - - -
ob---F oI I --------- Fo----
S S I,,TG T !?I
- : Sk
3 5 a J- J. ﬂ L
c " M 1 .
[ 2 - E [ ¥
2 l o °r
< <]
4F 7 9l
12 L . -
1 1 1 1 L 1 1 1
PP-PC_G1 PP-PS_G1 PP-PC_G2 PP-PS_G2 PPPC_G1 PP-PS_G1 PP-PC_G2 PP-PS_G2

Fig. 5. Differences of land surface temperature (LSTs) between paddy rice and upland crops both at early (from May to June) and late (from July to September)
growth stages. Differences in the (a) daytime, (b) nighttime, (c) daily mean LSTs, and (d) diurnal LST range (DTR) between pure paddy rice pixels (PP) and the
adjacent pure corn pixels (PC) and pure soybean pixels (PS) in early growth stage G1 (May and June) and late growth stage G2 (July to September). The middle lines
and the rectangles within boxes represent the median and average values of ALSTs, respectively.
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(b) Monthly mean f of rice and corn
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Fig. 6. Monthly mean albedo and energy redistribution factor (f). The monthly mean value of albedo (a and c) and f (b and d) for rice, corn, and soybean within
adjacent sample areas. Lightly shaded areas in panels represent the standard deviation (SD) of all samples.

As incoming solar radiation was assumed to be similar between
adjacent PP and PC or PS pixels, larger albedo implied stronger reflec-
tance of radiation from the surface and more energy dissipation that may
control the incoming energy in the surface energy balance. Conversely,
the higher values of f may correspond to greater efficiency by the
vegetated ecosystem to dissipate energy from the surface due to its
intrinsic biophysical properties (Bright et al., 2017). The partition of the
response by AT into contributions from changes to individual mecha-
nisms (temperature change induced by albedo and energy redistribution
factor) was calculated based on the temperature response model, as well
as the comparison between the calculated AT; (AT cal) and the AT
derived from remote sensing data (AT, r) (Fig. 7).

In most of the months during the growing season, cooling effects
dominate the LST response by comparison between rice and upland
crops, owing to a negative Af signal outweighing a positive Aalbedo
signal. The difference between albedo induced AT; (ATgalb) and f
induced AT (ATsf) were acute especially in the early growth period
(G1). In May, for instance, lower albedo on paddy rice warming the
surface at about 1.44 °C and 1.08 °C compared with corn (Fig. 7a) and
soybean (Fig. 7c) separately. While the effects of nonradiative processes,
including evapotranspiration and turbulent heat exchange, can lead to a
-5.01 °C and —4.98 °C cooling compared to corn and soybean, respec-
tively. In total, AT cal was negative from May to September illustrating

the cooling effect of rice compared to both corn and soybean, especially
in G1 (May and June). Fig. 7b and Fig.7 d) showed that the model
calculated AT, was consistent with the AT, derived from remote sensing
data (MODIS data). RSME and R? of these two estimated AT, between PP
and PC (RMSE=0.11, R2:0.993), or PS (RMSE=0.09, R?=0.996) were
calculated in parallell, indicating that the two elements (AT alb and
ATy f) of the temperature responses can better reflect the radiative and
nonradiative process in regulating LST. Consistency of two estimated
AT, between PP and PC, or PS maintained both on a larger and smaller
scale (SI Appendix, Figs. S3 and S4).

4. Discussion
4.1. The driving mechanism of regional LST change

Surface albedo and energy redistribution factor (f) are crucial factors
in land surface biophysical process research (Zhou et al., 2016; Abera
etal., 2020; Zhou et al., 2020). Generally, the decrease of albedo results
in extra energy absorption and warms the land surface, which is man-
ifested by an increase of LST. On the contrary, an increase of f means
more energy dissipation through moisture exchange, which triggers a
cooling effect. Temperature response model synthesizes biophysical
factors and divided the ALST into separate ingredients namely radiative
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(b) Estimated AT between rice and corn
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Fig. 7. AT; partition based on temperature response model and correlation with AT, derived from MODIS data. The AT (difference of land surface temperature)
estimated based on the energy balance model (AT; cal), and contribution from albedo change (AT, alb) and energy redistribution factor change (AT, f), compared
between pure paddy rice pixels (PP) and pure corn pixels (PC) (a), and pure soybean pixels (PS) (c). Correlations between AT derived from remote sensing data
(AT.r) and AT cal based on LST comparison between PP and PC (b), and PS (d).

ALST (induced by albedo alteration) and nonradiative ALST (induced by
energy redistribution change), which is beneficial to understanding
temperature change mechanisms via land cover transition. As demon-
strated, we found the biophysical energy changes accompanying farm-
land transformations, namely cooling down of nonradiative process or
heating up of the radiative process, and the combination of these two
ingredients contributed to a net cooling effect of average daily LST in
G1. These results are consistent with previous studies that examined the
climate effects of marshland loss (Shen et al., 2020), irrigation (Krish-
nankutty Ambika and Mishra, 2019), and paddy rice expansion that is
based on multi-year data (Pan et al., 2020).

However, the response model of climatic feedback could be more
complex and compounded by multiple factors. Furthermore, the effects
of albedo and f on LST are local and may vary with latitude (Prevedello
et al., 2019). Attribution analyses of biophysical process feedback of
land use conversions to climate have demonstrated that pathways of
effects are multiple and might go beyond simple albedo or f change
(Schwaab et al., 2020;(Yu et al., 2020b) ; Zhang et al., 2020; Zheng et al.,
2020). The ALST caused by the change of f demonstrated the compre-
hensive effects of aerodynamic resistance, the Bowen ratio (that affected
by both sensible heat flux and latent heat flux), total heat transfer
resistance, and so on (Wang et al., 2020). Indeed, the more specific

distributions to each factor, such as the distributions between sensible
heat flux and latent heat flux are not evaluated. Aerodynamic resistance,
for instance, is found to play an important role in regulating energy
flows between the land surface and the atmosphere (Zhao et al., 2015;
Moon et al., 2020), attributed to the alteration of sensible heat flux
caused by aerodynamic roughness change (Lee et al., 2011). It is also
demonstrated as the dominant factor of biophysical impacts on climate
in the Earth greening process (Chen et al., 2020). The regional climatic
condition could also alter the biophysical processes, which make the
surface biophysical processes more regional relative to the biogeo-
chemical processes (Zhao and Jackson, 2016; Zhao et al., 2019).
Furthermore, the LST alone is not sufficient for understanding
near-surface energy transformation and atmospheric circulation, which
is essential to understand air temperature (Ikawa et al., 2021) and
should be explored deeper in the future. As a preliminary analysis by
variation of albedo and f, here, we merely supported a coarse biophys-
ical mechanism explanation of LST change based on large scale remote
sensing data, while a comprehensive analysis of multi-factor influence
mechanisms is indispensable in further studies.
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4.2. The divergence of time scale in surface biophysical processes study

Previous assessments of climatic effects on land use and land cover
change are diverse depending on different time scales ranging from daily
to decades (Alkama and Cescatti, 2016; Zeng et al., 2017; Duveiller
et al., 2020; Lan et al., 2020; Yu et al., 2020a). These studies have
already conveyed an overall finding that the magnitude of variation
demonstrated seasonally asymmetric characteristics of biophysical fac-
tors. Results from equidistant time scale (e.g., monthly) studies often
have competing and diverging conclusions. Simply studying longer pe-
riods may lead to a non-significant result of variation, while analyses on
a fine-scale may suffer from random error (Liao et al., 2018; Abera et al.,
2020). Thus, studies merely based on an equidistant time scale have
little implication for the application of biophysical effects in climate
models.

Past research focused on how irrigation affects climate suggests that
irrigation enhances local warming with greater nocturnal warming ef-
fects than daytime cooling effects (Chen and Jeong, 2018). This result
demonstrated the unsynchronized diurnal temperature response to the
irrigation, which emphasized the necessity of diurnal dynamaic ana-
lyses. What’s more, the biophysical process changes are directly deter-
mined by the physical characteristics of the surface to a large extent,
especially on farmland which is modulated by crop phenology and
agricultural management (Houspanossian et al., 2017; Duveiller et al.,
2018a;(Liu et al., 2019¢) ). Changes in these surface physical charac-
teristics are heterogeneous over the growing season. Rice paddy, for
instance, has prominent differences amongst surface characteristics
between the first two months (G1; May and June) and the later months
(G2; July to September) of the growing season due to the phenology of
rice growth and agricultural practices (water flooding and soaking in
early-stage).

Comparing to previous studies (Du et al., 2019; Pan et al., 2020), we
covered deeper analyses on unsynchronized diurnal LST effects of paddy
rice expansion, as well as devided study periods based on the two growth
stages (G1 and G2) of unequal length, which considering not only the
significant variation of surface biophysical proxies over time, but also
the mechanism explanation by surface physical characteristic changes.
Thus, to obtain results that are more accurate and provide practical
significance on the biophysical effect of land use change on climate, it is
necessary to consider the time scale that is influenced by surface bio-
physical characteristic variation more than isometric time division
(Duveiller et al., 2018b; Chen et al., 2020; Duveiller et al., 2020). The
method is also of relevant significance in climate model studies that
consider the process of land use change.

Moreover, the pair-wise comparison in this study revealed the
intrinsic characteristic differences between paddy rice and the upland
crop using one year of data (2017), which infers what will happen to LST
if other upland crops transition to paddy rice cultivation. The high-
resolution crop map allows more accurate pure pixel selection in this
study, but cannot support the long-time series analyses for now due to
limited crop maps at this spatial scale. A direct temporal trend of LST in
the rice expansion areas would also be essential in the future when the
multiple temporal crop maps are available.

5. Conclusion

This study provided evidence of the cooling impacts of paddy rice
expansion and its seasonal variations at a local scale by using a space-
for-time substitution method. The daily mean LST of rice paddy dur-
ing the growing season (May to September) was lower when compared
to that of corn and soybean fields, as a result of daytime cooling and
nighttime warming, which subsequently led to a narrower diurnal LST
range. Furthermore, the cooling effects were more prominent in the
early growth stage (G1; May and June) than the late growth stage (G2;
July to September). The lower albedo and higher energy redistribution
factors were observed on paddy rice in the early season compared to the
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upland crops. Normally, the higher values of f typically imply a greater
efficiency to dissipate energy from the surface, while lower albedo
means more net radiative energy absorption. Thus, the detected cooling
effects were attributed to the domination of surface temperature
response of nonradiative mechanisms aided by the radiatively induced
temperature responses. Similar results were found both using larger (7
x 7 km sampling areas) and smaller (3 x 3 km sampling areas) sampling
area scales (SI Appendix, Figs. S1-S4), which demonstrated the
robustness of conclusions. This study indicates the cooling effects of
paddy rice expansion and its seasonal variation, which could provide a
reference for climate change researchers in paddy expansion areas in
northeastern Asia and contribute to model biophysical effects of land use
changes. However, the underlying climatic feedback mechanism with
more systematic and in-depth quantification of their effects is still
imperative. In addition, the implications of a larger scale and the remote
impacts of such biophysical changes through near-surface energy
transfer and atmospheric circulation should be considered in future
studies.
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