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A B S T R A C T   

The pending extensive rice expansion in northeastern Asia, especially in northeast China, affects regional climate 
by altering both biogeochemical and biophysical processes. While the biogeochemical effects (e.g., CO2, CH4) of 
rice expansion have attracted plenty of attention, its biophysical effects have not been well documented, espe
cially its influences on diurnal and seasonal land surface temperature (LST). In this study, we used a pair-wise 
comparison approach to examine biophysical effects of paddy rice expansion at different temporal scales 
(diurnal and seasonal) in northeast China, based on satellite-derived biophysical proxies and a high-resolution 
crop map in 2017. We found that the daily mean LST of rice paddies was 0.5 ◦C lower than that of corn and 
soybean fields during the growing season (from May to September), as a result of daytime cooling (-1.8 and 
-2.0 ◦C) and nighttime warming (0.8 and 1.1 ◦C), which subsequently led to a narrower diurnal LST range (-2.6 
and -3.0 ◦C) than in upland crops (i.e. corn and soybean). The cooling effects were stronger in the early period of 
the growing season (May and June) than in the late season (July to September). Using a temperature response 
model, we found that the nonradiative processes (i.e., evapotranspiration and sensible heat) dominated the LST 
response in paddy rice, while the radiative process (i.e., albedo) played a secondary role. The daytime cooling 
and nighttime warming implies that we need to consider the unsymmetrical diurnal LST dynamics when eval
uating the short-term effects of paddy rice expansion. Stronger cooling effects in the early growing season has to 
be accounted for when modeling its biophysical impacts at seasonal scale. This study explained the local climate 
effects of rice expansion through the biophysical mechanism with both radiative and nonradiative controls on the 
surface energy balance, which can contribute to improved modeling of biophysical effects of land use change.   

1. Introduction 

Anthropogenic land use change plays a critical role in climate change 
processes and mitigation (Zhou et al., 2016; IPCC, 2019; Yu et al., 
2020a; Zhou et al., 2020). In recent decades, a remarkable paddy rice 
expansion in the high latitudes of northeastern Asia has received much 
attention (Liu et al., 2010; Dong et al., 2015, 2016). One hotspot of 
paddy rice expansion in this region is northeast China (Wang et al., 
2011; Shi et al., 2013; Zhang et al., 2017). Considerable upland crop 

(mainly corn and soybean) fields have been converted into rice paddies, 
causing an increase of paddy rice area in the region by 3.68 million ha 
from 2000 to 2017 (Xin et al., 2020), which makes the region known as 
China’s new rice bowl. This unprecedented expansion of paddy rice on 
upland crops has significant ecological, environmental, and climatic 
consequences, but has been rarely examined in detail (Fu et al., 2020; 
Luo et al., 2020; Singha et al., 2020). 

Land use changes alter both biogeochemical factors (e.g., carbon 
stocks and greenhouse gas emissions) and energy partitioning (e.g., 
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albedo and evapotranspiration) (Peng et al., 2017; Elias et al., 2020; 
Huang et al., 2020). Numerous studies have revealed effects of land 
conversion on the biogeochemical process, for example, afforestation 
and conservation of forests significantly increase carbon uptake (Huang 
et al. 2018a; Windisch et al., 2021) while expansion of wetlands in
creases CO2 and CH4 emissions rapidly (Wei and Wang, 2017; Hemes 
et al., 2018). At the local and regional scale, biophysical factors could 
play an important role in affecting temperature in comparison to solely 
biogeochemical factors (Peng et al., 2014; Zhao and Jackson, 2016). 
However, to date, the climate effects of land use change, for example 
paddy rice expansion, mainly focus on the biogeochemical processes 
manifested as greenhouse gas emissions (Xu et al., 2011; (Liu et al., 
2019c); Hwang et al., 2020), while few studies have investigated its 
biophysical processes. 

The underlying biophysical impact of land use change on climate has 
been mostly unraveled for certain land use types including afforestation, 
global greening, and wetland reclamation (Cao et al., 2019; (Liu et al., 
2019d); Prevedello et al., 2019; Chen et al., 2020; Jin et al., 2020; Wang 
et al., 2020; Yuan et al., 2020). In these studies, biophysical impacts, 
generally measured in land surface temperature (LST), were mainly 
affected by variations of surface physical characteristics (such as leaf 
area index, turbulent flux, soil moisture, etc.). However, variations of 
biophysical indicators caused by conversion from upland crops to paddy 
rice have not been fully examined yet, despite a considerable paddy rice 
expansion in northeast China (Xin et al., 2020). Similar to flooded fields 
with low vegetation cover, paddy rice fields are regarded as a type of 
artificial wetlands (Yu and Liu 2019). The energy exchange of paddy rice 
fields is thus similar to that of wetlands (Liu et al., 2019a; Nocco et al., 
2019). Shen et al. (2020) showed that the loss of marshlands and forests 
increased local LST by altering local albedo and evapotranspiration 
(ET). The two types of conversions, from marshland to paddy rice and 
from marshland to upland field crops, were found to have different ef
fects on LST. Moreover, the conversion from upland field crops to paddy 
rice decreased the LST, resembling the cooling effects of wetlands ((Liu 
et al., 2019b)). 

Remote sensing observations and surface energy models are power
ful tools for investigating biophysical changes caused by land use 
change. Some studies explored redistribution of surface energy caused 
by land cover change using site-level meteorological data, which often 
suffer in spatial discontinuity compared to those incorporating remote 
sensing data (Huang et al. 2018b; Nocco et al., 2019). However, even 
with continuous data from remote sensing, studies encompassing 
multi-year analyses usually do not discriminate the contributions of land 
use change from the effects caused by interannual climate dynamics, 
also termed as climate background (Pan et al., 2020). The pair-wise 
comparison approach (Wang et al., 2018; Abera et al., 2020) or the 
“Observation Minus Reanalysis” approach (Kalnay and Cai 2003) can 
separate the effects from land use change and climate background and 
have been widely used to quantify the relative contribution of land use 
change. However, it has not been applied in the impact analyses of 
paddy rice expansion. Additionally, to date, studies focused on the 
impact of land use change on LST are mostly based on coarse land cover 
maps (e.g., 1-km resolution), while crop maps with more detailed in
formation (e.g., 10-m spatial resolution) are necessary for a better un
derstanding of the LST driving mechanism (Du et al., 2019;(Yu et al., 
2020c) ). Furthermore, the influence of land use change on daily tem
perature could vary in daytime and nighttime. Peng et al. (2014) showed 
the divergent effects of daytime and nighttime LST on afforestation in 
China. However, the diurnal and seasonal characteristics of the impacts 
of paddy rice expansion on LST are seldom considered, hampering our 
understanding of the effects of emerging rapid rice expansion on the 
land surface energy budget and local climate in China’s new rice bowl. 

The objective of this study is to provide observational evidence from 
satellite remote sensing on the effects of the rapid paddy rice expansion 
on LST and explore the driving mechanism. We examined the effects of 
paddy rice expansion on LST based on satellite observations and a high- 

resolution (10-m) crop map derived from Sentinel-2 imagery (You and 
Dong, 2020; You et al., 2021), by using a pair-wise comparison in 
northeast China. Results were analyzed at both diurnal and seasonal 
scales. Energy redistribution factor (f), an indicator of land surface en
ergy flow via latent and sensible heat transfer (Bright et al., 2017), and 
albedo were subsequently examined for explanation of temperature 
change mechanism, based on the climatic reanalysis and remote sensing 
datasets. 

2. Materials and methods 

2.1. Study area 

Northeast China is a cold-humid region that extends from 38.713◦ N 
to 53.546◦ N in latitude and from 121.146◦ E to 123.620◦ E in longitude. 
The region is composed of Heilongjiang, Jilin, Liaoning Provinces, and 
the east part of the Inner Mongolia Autonomous Region. The climatic 
conditions here are temperate humid or sub-humid continental monsoon 
climate (Liu et al., 2018). Since the 1950s, the rapid land use transition, 
with farmlands expanding, made cultivated land the dominant land use 
type of the region (Yan et al., 2018). In Heilongjiang province, for 
example, the increased rice area from 1951 to 2018 accounted for 8.44% 
of the province’s total area (Hu et al., 2021). In particular, paddy fields 
increased 1.78 times from 1982 to 2015 in Sanjiang Plain which is the 
main paddy rice base in Heilongjiang Province. Within the last two 
decades, upland crop planting in the study area has been strikingly 
reclaimed into paddy rice planting with an average annual increase rate 
of 2.0 × 105 ha per year (Xin et al., 2020) due to higher profitability and 
elevated hydrothermal conditions, especially in Sanjiang Plain where 
the paddy fields increased by 60% from 2000 (4.77 × 106 ha) to 2014 
(7.63 × 106 ha) (Dong et al., 2016). Fig. 1 illustrates the location and the 
distribution of major crop types of the region in 2017 (You et al., 2021). 

Crop growth in northeast China was separated significantly in stages, 
which is distinguished among different crop types (Table 1). Generally, 
rice paddy was flooded from early to mid stages in May, and the field 
surface contained substantial water from the beginning of the flooding 
period until the tillering period. While corn and soybean were both in 
the initial stage from mid May to early June, and the land surface was 
represented by bare soil mostly. Thus, surface biophysical characteris
tics altered notably along with rice expansion due to the transformation 
of crop phenological stages as well as the change of agricultural 
administration, especially between upland fields and rice paddies. 

Monthly enhanced vegetation index (EVI) and land surface water 
index (LSWI) data highlighted the divergence of surface biophysical 
characters between rice paddy and upland crop fields (Xiao et al., 2005). 
Relative to the same trends, EVI was affected mainly by the growth 
condition of crop leaves. Moreover, larger LSWI was detected on rice 
paddy from May to June, which presented higher land surface moisture 
conditions than the upland crop fields. 

2.2. Satellite data processing 

Remote sensing data were used to investigate the differences of 
surface biophysical factors in three major crops (paddy rice, corn, and 
soybean) in northeast China. A range of surface parameters was 
compiled as data products, including the MODIS land surface products. 
The MODIS data included average 8-day 1-km daytime and nighttime 
LSTs (MYD11A2_V6) and daily 16-day 500-m albedo (MCD43A3_V6) 
model datasets (Fig. 2). The LST data were derived from Aqua/MODIS 
instrument imaging the entire Earth twice a day, at both daytime (local 
solar time ~1:30 PM) and nighttime (~01:30 AM). Importantly, these 
times are close to those at which the maximum and minimum temper
atures were expected during a whole day (Duveiller et al., 2018a). Each 
pixel value in MYD11A2_V6 represents an average of all the corre
sponding daily LST pixels within that 8-day period. Pixel artifacts, 
caused by cloud, cloud shadow, and other adverse conditions, are not 
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produced but represented as null value, which were excluded in our 
further analysis. Thus, we filtered all the empty values for the statistical 
analyses of the LSTs of different crops. The albedo data included both 
directional hemispherical reflectance (black sky albedo) and bihemi
spherical reflectance (white sky albedo) for a shortwave (0.3–5.0 µm) 
broad-spectrum band (Schaaf et al., 2002). To obtain an estimate of real 
conditions without information on the fraction of diffuse radiation, we 
took the mean of both values in our data analyses (Duveiller et al., 
2018b). 

In addition, climate data were also derived from the Famine Early 
Warning Systems Network Land Data Assimilation System (FLDAS) 
dataset, the TerraClimate monthly reanalysis data, and a 0.5′

downscaled dataset with bilinear interpolation for air temperatures at 2 
m (Peng, 2019). The TerraClimate monthly reanalysis data was a dataset 
of monthly climate and climatic water balance for global terrestrial 
surfaces including downward surface shortwave radiation (Abatzoglou 
et al., 2018). The FLDAS dataset includes information on many 
climate-related variables including the monthly downward longwave 
radiation flux data, which was usually used in the temperature response 
model (McNally et al., 2017). The 0.5′ downscaled dataset of air tem
perature at 2 m was developed with bilinear interpolation and published 
in Network Common Data Form (at https://doi.org/10.5281/zenodo. 
3185722) (Peng, 2019). Here the monthly mean air temperature was 
obtained to estimate the surface energy redistribution factors and to 

Fig. 1. Cropland distribution in northeast China, 2017. (a) Location of the study region in Asia and (b) spatial distribution of major crop types in northeast China 
with 1 km spatial resolution, spatially aggregated from the 10-m crop map (You et al., 2021). 

Table 1 
Crops’ calendars from May to September. Phenological stages of three main crops are elucidated within the early (E), mid (M), and late (L) periods in a month.  

Month May Jun Jul Aug Sep 
Ten-day E M L E M L E M L E M L E M L 

Paddy rice 1 2 3 4 5 6 7 8 
Corn  1 2 3 4 5 6 7 8 
Soybean   1 2 3 4 5 6 

Paddy rice: 1-Seeding/Flooding, 2-Transplanting, 3-Reviving, 4-Tillering, 5-Booting, 6-Heading, 7-Milk stage, 8-Mature and harvest. 
Corn: 1-Sowing, 2-Seeding/Three leaves, 3-Seven leaves, 4-Stem elongation, 5-Heading, 6-Milk, 7-Mature, 8-Harvest. 
Soybean: 1-Sowing, 2-Seeding, 3-The 3rd true leaf, 4-Flowering, 5-Pod setting, 6-Mature and harvest. 
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calculate the divided temperature responses through radiative or non
radiative processes. All the remote sensing data were resampled to 1-km 
spatial resolution for statistical analyses and pair-wise comparison. 

Based on our previous studies, a new 10-m crop map with an overall 
accuracy of 91% was used (You and Dong, 2020; You et al., 2021). The 
crop map was generated by using available Sentinel-2 imagery, inten
sive ground truth data, and the random forest classifier in the Google 
Earth Engine. The resulting map depicts the spatially explicit informa
tion of the key crops of northeast China. This 10-m crop map was 
aggregated to generate three 1-km crop area proportion maps (i.e., 
paddy rice, corn, or soybean) to match the spatial resolution of other 
satellite remote sensing data. We then filtered those pixels in which the 
single crop type dominated (>80% coverage) the 1-km pixel. Thus, the 
resulting filtered pixels have a relatively high proportion of planting 
areas for certain crop types which here is considered pure pixels (pure 
paddy rice, PP; pure corn, PC; or pure soybean, PS). All the data were 
derived from satellite and crop maps for 2017. 

2.3. Temperature response model 

Based on a linearization of the surface longwave radiation term of 
the surface energy balance equation, Bright et al. (2017) formulated an 
analytical expression to estimate the direct surface temperature 
response to land use and cover change. The temperature response model 
was widely used in land surface temperature research, to isolate the 
contribution to the model-predicted ΔT from each biophysical factor 
associated with land cover conversion (Zhao et al., 2014). To obtain 
calculated ΔTs value that is more closer to the observations, we used the 
modified temperature response model which estimated the ΔTs by (1 +

f)(1 + f+Δf ) instead of (1 + f)2 (Liu et al., 2019b): 

ΔTs =
λ0

(1 + f )
ΔR∗

n +
−λ0

(1 + f )
ΔG +

−λ0

(1 + f )(1 + f + Δf )

(
R∗

n − G
)
Δf (1)  

where λ0 is the monthly mean Planck response to the external radiative 
forcing at the surface calculated as 1/4εsδTs

3 (where εs is the monthly 
mean surface emissivity approximated as a constant 0.97 based on 
previous empirical findings (Song et al., 2014; (Liu et al., 2019b)), Ts is 
the monthly mean land surface temperature); ΔG is the change in the 
monthly mean heat diffused into/out of the subsurface medium (G is 
estimated as 0.14(Ta,n - Ta,n-1), where n is the time series of the month); f 
is the energy redistribution factor which can be calculated using: 

f =
λ0

Ts − Ta
(Rn − G) − 1 (2)  

where Ta is the monthly mean air temperature at 2 m; the Rn* is the 
monthly mean apparent net radiation, which could be computed as: 

R∗
n = (1 − α) ∗ S + L↓ − δT4

a (3)  

where α is the monthly mean surface albedo; S is the monthly mean 
downward shortwave radiation flux, (1-α)*S means net shortwave ra
diation flux, L↓ is the monthly mean downward longwave radiation flux, 
δ is the Stefen-Boltzmann constant. 

Based on the crop map, the monthly mean values of f on the rice 
paddy and upland crop fields were calculated separately, then were used 
to estimate partial land surface response by radiative or nonradiative 
methods, corresponded with values of observed albedo and other factors 

Fig. 2. The workflow of this study. Raw datasets marked in cylinders included the average 8-day 1-km daytime and nighttime land surface temperature (MYD11A2) 
dataset, the daily 16-day 500-m albedo (MCD43A3_V6) dataset, monthly downward longwave radiation flux (FLDAS), monthly downward longwave radiation flux 
(TerraClimate), and the monthly 2-m air temperature dataset. Specific operations used to derive new datasets with different spatial and temporal resolutions are 
indicated by descriptions on arrows. The land surface temperature (LST), albedo, and energy redistribution factor (f) of core crops in the study area were analysed 
following the workflow. 
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(evapotranspiration, etc.). In this analysis, we assume that Rn*, f, and G 
are parameters affected by the crop types (rice, corn, or soybean) and are 
independent of Ts (Bright et al., 2017). Thus, the first, second, and third 
right-hand terms in Eq. (1) are the response to the surface radiative 
forcing from the albedo change (ΔTs_alb), the change in heat conducted 
by the surface medium (ΔTs_G), and the change in turbulent energy 
redistribution (ΔTs_f), respectively (Bright et al., 2017). In this study, the 
surface medium induced temperature variation was negligible in whole 
growing seasons, hence the model calculated ΔTs_cal was presented as 
the sum of ΔTs_alb and ΔTs_f. 

2.4. Pair-wise comparison 

To quantitatively investigate the impacts of paddy rice expansion on 
LST, we used a pair-wise comparison approach ((Liu et al., 2019b)) to 
compare PP pixels with adjacent PC or PS pixels, respectively. To 
exclude the effects caused by background noises like atmospheric cir
culation, we considered the following two factors: 1) Minimizing the 
influences of spatial heterogeneity caused by atmospheric background, 
and 2) covering enough pure pixels of contrasting crop types within the 
neighbourhoods (Alkama and Cescatti, 2016; Wang et al., 2018). In this 
study, we mainly discussed the comparison based on 5 × 5 km sampling 
areas which worked well for the above two rules. Moreover, we also 
explored the climatic effects of paddy rice expansion both on a larger 
scale (7 × 7 km sampling areas) and smaller scale (3 × 3 km sampling 
areas) to demonstrate the robustness of the conclusion we obtained 
within 5 × 5 km sampling areas. 

Concretely, we divided the entire study area into 5 × 5 km sampling 
areas and selected those areas considering the two factors associated 

with atmospheric circulation, with two compared crop type conversions 
(PP and PC, or PP and PS) and a small elevation range (~±100 m). In 
total, we selected 212 and 63 sample areas to compare PP and PC, or PP 
and PS, respectively. Within each sample area, the adjacent PC and PS 
pixels were selected to pair with PP pixels, providing an opportunity to 
compare different LST indicators (daytime LST, nighttime LST, daily 
mean LST, and diurnal LST range (DTR)) and other biophysical proxies. 
Daily mean LSTs were estimated from the arithmetic mean of maximum 
(daytime) and minimum (nighttime) LSTs. A previous study showed that 
the typical physical properties of rice paddy are distinct in different 
months and are particularly characterized as standing water in May and 
June (Yu and Liu, 2019). To reflect this phenological difference, we 
divided the growing season into two stages: May and June (G1), and 
July to September (G2). Within each sample area, the daytime, night
time, daily mean difference in LST (ΔLSTs) and diurnal LST range 
(ΔDTRs), as well as differences in albedo and f (Δalbedo and Δf) be
tween PP and PC/PS, were calculated based on the arithmetic means of 
each crop type respectively. Variations were then assessed at the 
monthly and growth stage scales throughout the entire growing season 
(May to September). The technical flow of the study is shown in Fig. 2. 

3. Results 

3.1. Comparisons of LST between paddy rice and upland field crops 
throughout the entire growing season 

To quantitatively characterize the impacts of paddy rice expansion 
from upland field crops, we performed a pair-wise comparison between 
PP and PC/PS, respectively, for different temperature indicators within 

Fig. 3. Differences of average land surface temperatures (LSTs) between paddy rice and upland crops throughout the entire growing season (from May to 
September). The differences of (a) daytime, (b) nighttime, and (c) daily mean LST as well as (d) diurnal temperature range (DTR) between pure paddy rice pixels (PP) 
and the adjacent pure corn pixels (PC) and pure soybean pixels (PS) in northeast China. The middle lines and the rectangles within boxes represent the median and 
average values of ΔLSTs, respectively. 
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each filtered sample area throughout the whole growing season (from 
May to September), including daytime LST, nighttime LST, daily mean 
LST, and DTR (Fig. 3). 

The PP showed lower daytime LST by −1.8 ± 1.3 ◦C and higher 
nighttime LST by 0.8 ± 0.4 ◦C compared with PC (Fig. 3a and b), which 
demonstrated that the conversion from PC to PP decreased daytime LST 
and increased nighttime LST. Similarly, but to a greater extent, the 
transition of PP from PS caused more dramatic changes in both daytime 
(lower LST of PP than PS by −2.0 ± 1.3 ◦C) and nighttime LST (higher 
LST of PP than PS by 1.1 ± 0.5 ◦C) than that from PC. 

Comparing to the daytime cooling caused by conversion from PC/PS 
to PP, the magnitude of nighttime warming was smaller, with a reduc
tion in daily mean LST by −0.5 ± 0.6 ◦C and −0.5 ± 0.7 ◦C, respectively 
(Fig. 3c). In addition, the small range of DTR for PP was observed in both 
comparisons for PC (−2.6 ± 1.5 ◦C) and PS (−3.0 ± 1.5 ◦C) (Fig. 3d). 
These results indicated that throughout the entire growing season, the 
LST of PP was lower in the daytime and higher at nighttime than that of 
adjacent PC and PS, contributing to lower daily mean LST and smaller 
DTR. 

At the monthly scale, we found that the average daytime ΔLSTs 
between PP and PC/PS were negative for all months, while nighttime 
ΔLSTs showed opposite warming effects during the whole growing 
season (Fig. 4a–d). The asymmetric monthly cycle of variation for LST, 
caused by conversion from upland crops to paddy rice, was found both in 
the daytime and nighttime. The differences of the daytime ΔLST 

between PP and PC demonstrated a maximum cooling effect in May by 
−3.7 ± 2.4 ◦C, while the maximum nighttime ΔLST (1.7 ± 0.6 ◦C) 
occurred in June. Overall, daily mean ΔLST between PP and PC were 
negative in all months with a maximum difference in May (−1.3 ± 1.1 
◦C) which due to the effects of lower LST in daytime offset the effects of 
higher LST in nighttime (Fig. 4a–c). Similar results were found between 
PP and PS with a magnitude of −3.8 ± 2.4 ◦C in daytime ΔLST and 2.0 ±
0.9 ◦C in nighttime ΔLST, which subsequently led to a slightly smaller 
decrease in daily mean ΔLST (−1.1 ± 1.4 ◦C) in May than that between 
PP and PC. Furthermore, Fig. 4d showed that the ΔDTR reached the 
highest values in early months, which was found in May between PP and 
PS (−5.3 ± 2.6 ◦C) and in June between PP and PC (−5.9 ± 2.5 ◦C). 
These findings highlighted the stronger effect of paddy rice expansion 
during the early season. Similar results were obtained from the calcu
lations based on smaller and larger sample areas. In 3 × 3 km sample 
areas, the daily mean LST of paddy is cooler than corn or soybean field 
by −0.3 ± 0.2 ◦C (SI Appendix, Fig. S1) during the entire growing sea
son. Results calculated within 7 × 7 km sample areas showed a −0.5 ±
0.4 ◦C difference of daily mean LST between PP and PC, or PS in the 
entire growing season (SI Appendix, Fig. S2). 

3.2. Pair-wise comparison between rice paddy and upland field crops in 
the different growth stages 

The previous results showed that the maximum magnitude of both 

Fig. 4. Differences of monthly average land surface temperatures (LSTs) between paddy rice and upland crops. Differences in the monthly average (a) daytime, (b) 
nighttime, (c) daily mean LSTs, and (d) diurnal LST range (DTR) between pure paddy rice pixels (PP) and the adjacent pure corn pixels (PC) and pure soybean pixels 
(PS) in northeast China. Shaded areas represent the standard deviation (SD) of all samples. 
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daytime cooling and nighttime warming was detected in the early sea
son, namely May and June. To better understand the changes of LST 
caused by surface biophysical characteristics driven by crop phenology, 
we analyzed the average ΔLSTs between the rice paddy and upland field 
crops in the early growth stage (G1; i.e., May and June) and the late 
growth stage (G2; i.e., July to September), separately (Fig. 5). 

Daytime LST of PP was lowered by 3.4 ± 2.2 ◦C than PC, and 3.4 ±
2.1 ◦C than PS in G1, while differences in G2 were −0.7 ± 0.9 ◦C and 
−0.9 ± 0.9 ◦C, respectively (Fig. 5a). In contrast, nighttime ΔLST was 
1.4 ± 0.6 ◦C between PP and PC, and was 1.7 ± 0.9 ◦C between PP and 
PS in G1, with notably larger differences in G2 (0.3 ± 0.4 ◦C and 0.6 ±
0.4 ◦C), respectively (Fig. 5b). Daytime cooling together with nighttime 
warming that are demonstrated by the ΔLST ultimately led to a decrease 
in the diurnal variation of LST (ΔDTR) (Fig. 5d). The magnitude of 
ΔDTR reduction was substantially larger in G1 (−4.8 ± 2.6 ◦C and −5.2 
± 2.4 ◦C) than in G2 (−1.0 ± 1.0 ◦C and 1.4 ± 1.0 ◦C). The average daily 
mean ΔLST was negative in both G1 and G2, with a larger reduction in 
G1 than in G2 between PP and PC (−1.0 ± 1.0 ◦C and −0.2 ± 0.5 ◦C) 
(Fig. 5c). A similar variation of daily mean ΔLST was found between PP 
and PS in both G1 (−0.9 ± 1.1 ◦C) and G2 (−0.2 ± 0.4 ◦C). It is note
worthy that both paddy rice transitions from corn and soybean had 
remarkably more prominent impacts on LST in G1 (May and June) than 
in G2 (July to September). Further inspection of evapotranspiration and 
albedo with paddy rice expansion might provide plausible explanations 
for the daytime and nighttime LST changes. 

3.3. Biophysical mechanism of LST variation 

To further understand the underlying mechanism of LST variation 
caused by the conversion from upland field crops to paddy rice, we 
calculated the energy redistribution factor (f) and the estimated ΔLSTs 
based on the temperature response model (Eq. (1)) driven with gridded 
observations observed by remote sensing approaches. 

Pair-wise comparison of albedo and f between PP and the adjacent 
PC (Fig. 6a-b) or PS (Fig. 6c-d) illustrated that conversion from upland 
field crops to paddy rice led to change in geophysical forcings of surface 
energy. The albedo is typically higher in the upland field compared to 
paddy in most of the growing season. Specifically, the ΔAlbedo between 
PP and PC were negative from May to July (Fig. 6a), with the maximum 
magnitude of difference represented in June (−0.044 ± 0.022). Results 
were opposite in August and September with positive ΔAlbedo. The 
period with negative ΔAlbedo between PP and PS was longer (from May 
to August) than that between PP and PC during the growing season, with 
the largest difference of −0.033 ± 0.023 in June (Fig. 6c). Generally, 
higher values of f imply a greater efficiency to dissipate energy from the 
surface by its intrinsic biophysical properties. Monthly heterogeneity of f 
was detected in all three crops that showed in Fig. 6b and Fig.6d. 
Throughout the growing season, the mean value elevated initially (May 
and June) and then decreased rapidly in the late season (August and 
September) with a maximum value in July. Collectively, a markedly 
higher value of monthly mean f on paddy than upland field was detected 
during the entire growing season, although the seasonal patterns are 
similar. 

Fig. 5. Differences of land surface temperature (LSTs) between paddy rice and upland crops both at early (from May to June) and late (from July to September) 
growth stages. Differences in the (a) daytime, (b) nighttime, (c) daily mean LSTs, and (d) diurnal LST range (DTR) between pure paddy rice pixels (PP) and the 
adjacent pure corn pixels (PC) and pure soybean pixels (PS) in early growth stage G1 (May and June) and late growth stage G2 (July to September). The middle lines 
and the rectangles within boxes represent the median and average values of ΔLSTs, respectively. 

W. Liu et al.                                                                                                                                                                                                                                      



Agricultural and Forest Meteorology 315 (2022) 108820

8

As incoming solar radiation was assumed to be similar between 
adjacent PP and PC or PS pixels, larger albedo implied stronger reflec
tance of radiation from the surface and more energy dissipation that may 
control the incoming energy in the surface energy balance. Conversely, 
the higher values of f may correspond to greater efficiency by the 
vegetated ecosystem to dissipate energy from the surface due to its 
intrinsic biophysical properties (Bright et al., 2017). The partition of the 
response by ΔTs into contributions from changes to individual mecha
nisms (temperature change induced by albedo and energy redistribution 
factor) was calculated based on the temperature response model, as well 
as the comparison between the calculated ΔTs (ΔTs_cal) and the ΔTs 
derived from remote sensing data (ΔTs_r) (Fig. 7). 

In most of the months during the growing season, cooling effects 
dominate the LST response by comparison between rice and upland 
crops, owing to a negative Δf signal outweighing a positive Δalbedo 
signal. The difference between albedo induced ΔTs (ΔTs_alb) and f 
induced ΔTs (ΔTs_f) were acute especially in the early growth period 
(G1). In May, for instance, lower albedo on paddy rice warming the 
surface at about 1.44 ◦C and 1.08 ◦C compared with corn (Fig. 7a) and 
soybean (Fig. 7c) separately. While the effects of nonradiative processes, 
including evapotranspiration and turbulent heat exchange, can lead to a 
–5.01 ◦C and –4.98 ◦C cooling compared to corn and soybean, respec
tively. In total, ΔTs_cal was negative from May to September illustrating 

the cooling effect of rice compared to both corn and soybean, especially 
in G1 (May and June). Fig. 7b and Fig.7 d) showed that the model 
calculated ΔTs was consistent with the ΔTs derived from remote sensing 
data (MODIS data). RSME and R2 of these two estimated ΔTs between PP 
and PC (RMSE=0.11, R2=0.993), or PS (RMSE=0.09, R2=0.996) were 
calculated in parallell, indicating that the two elements (ΔTs_alb and 
ΔTs_f) of the temperature responses can better reflect the radiative and 
nonradiative process in regulating LST. Consistency of two estimated 
ΔTs between PP and PC, or PS maintained both on a larger and smaller 
scale (SI Appendix, Figs. S3 and S4). 

4. Discussion 

4.1. The driving mechanism of regional LST change 

Surface albedo and energy redistribution factor (f) are crucial factors 
in land surface biophysical process research (Zhou et al., 2016; Abera 
et al., 2020; Zhou et al., 2020). Generally, the decrease of albedo results 
in extra energy absorption and warms the land surface, which is man
ifested by an increase of LST. On the contrary, an increase of f means 
more energy dissipation through moisture exchange, which triggers a 
cooling effect. Temperature response model synthesizes biophysical 
factors and divided the ΔLST into separate ingredients namely radiative 

Fig. 6. Monthly mean albedo and energy redistribution factor (f). The monthly mean value of albedo (a and c) and f (b and d) for rice, corn, and soybean within 
adjacent sample areas. Lightly shaded areas in panels represent the standard deviation (SD) of all samples. 
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ΔLST (induced by albedo alteration) and nonradiative ΔLST (induced by 
energy redistribution change), which is beneficial to understanding 
temperature change mechanisms via land cover transition. As demon
strated, we found the biophysical energy changes accompanying farm
land transformations, namely cooling down of nonradiative process or 
heating up of the radiative process, and the combination of these two 
ingredients contributed to a net cooling effect of average daily LST in 
G1. These results are consistent with previous studies that examined the 
climate effects of marshland loss (Shen et al., 2020), irrigation (Krish
nankutty Ambika and Mishra, 2019), and paddy rice expansion that is 
based on multi-year data (Pan et al., 2020). 

However, the response model of climatic feedback could be more 
complex and compounded by multiple factors. Furthermore, the effects 
of albedo and f on LST are local and may vary with latitude (Prevedello 
et al., 2019). Attribution analyses of biophysical process feedback of 
land use conversions to climate have demonstrated that pathways of 
effects are multiple and might go beyond simple albedo or f change 
(Schwaab et al., 2020;(Yu et al., 2020b) ; Zhang et al., 2020; Zheng et al., 
2020). The ΔLST caused by the change of f demonstrated the compre
hensive effects of aerodynamic resistance, the Bowen ratio (that affected 
by both sensible heat flux and latent heat flux), total heat transfer 
resistance, and so on (Wang et al., 2020). Indeed, the more specific 

distributions to each factor, such as the distributions between sensible 
heat flux and latent heat flux are not evaluated. Aerodynamic resistance, 
for instance, is found to play an important role in regulating energy 
flows between the land surface and the atmosphere (Zhao et al., 2015; 
Moon et al., 2020), attributed to the alteration of sensible heat flux 
caused by aerodynamic roughness change (Lee et al., 2011). It is also 
demonstrated as the dominant factor of biophysical impacts on climate 
in the Earth greening process (Chen et al., 2020). The regional climatic 
condition could also alter the biophysical processes, which make the 
surface biophysical processes more regional relative to the biogeo
chemical processes (Zhao and Jackson, 2016; Zhao et al., 2019). 
Furthermore, the LST alone is not sufficient for understanding 
near-surface energy transformation and atmospheric circulation, which 
is essential to understand air temperature (Ikawa et al., 2021) and 
should be explored deeper in the future. As a preliminary analysis by 
variation of albedo and f, here, we merely supported a coarse biophys
ical mechanism explanation of LST change based on large scale remote 
sensing data, while a comprehensive analysis of multi-factor influence 
mechanisms is indispensable in further studies. 

Fig. 7. ΔTs partition based on temperature response model and correlation with ΔTs derived from MODIS data. The ΔTs (difference of land surface temperature) 
estimated based on the energy balance model (ΔTs_cal), and contribution from albedo change (ΔTs_alb) and energy redistribution factor change (ΔTs_f), compared 
between pure paddy rice pixels (PP) and pure corn pixels (PC) (a), and pure soybean pixels (PS) (c). Correlations between ΔTs derived from remote sensing data 
(ΔTs_r) and ΔTs_cal based on LST comparison between PP and PC (b), and PS (d). 
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4.2. The divergence of time scale in surface biophysical processes study 

Previous assessments of climatic effects on land use and land cover 
change are diverse depending on different time scales ranging from daily 
to decades (Alkama and Cescatti, 2016; Zeng et al., 2017; Duveiller 
et al., 2020; Lan et al., 2020; Yu et al., 2020a). These studies have 
already conveyed an overall finding that the magnitude of variation 
demonstrated seasonally asymmetric characteristics of biophysical fac
tors. Results from equidistant time scale (e.g., monthly) studies often 
have competing and diverging conclusions. Simply studying longer pe
riods may lead to a non-significant result of variation, while analyses on 
a fine-scale may suffer from random error (Liao et al., 2018; Abera et al., 
2020). Thus, studies merely based on an equidistant time scale have 
little implication for the application of biophysical effects in climate 
models. 

Past research focused on how irrigation affects climate suggests that 
irrigation enhances local warming with greater nocturnal warming ef
fects than daytime cooling effects (Chen and Jeong, 2018). This result 
demonstrated the unsynchronized diurnal temperature response to the 
irrigation, which emphasized the necessity of diurnal dynamaic ana
lyses. What’s more, the biophysical process changes are directly deter
mined by the physical characteristics of the surface to a large extent, 
especially on farmland which is modulated by crop phenology and 
agricultural management (Houspanossian et al., 2017; Duveiller et al., 
2018a;(Liu et al., 2019c) ). Changes in these surface physical charac
teristics are heterogeneous over the growing season. Rice paddy, for 
instance, has prominent differences amongst surface characteristics 
between the first two months (G1; May and June) and the later months 
(G2; July to September) of the growing season due to the phenology of 
rice growth and agricultural practices (water flooding and soaking in 
early-stage). 

Comparing to previous studies (Du et al., 2019; Pan et al., 2020), we 
covered deeper analyses on unsynchronized diurnal LST effects of paddy 
rice expansion, as well as devided study periods based on the two growth 
stages (G1 and G2) of unequal length, which considering not only the 
significant variation of surface biophysical proxies over time, but also 
the mechanism explanation by surface physical characteristic changes. 
Thus, to obtain results that are more accurate and provide practical 
significance on the biophysical effect of land use change on climate, it is 
necessary to consider the time scale that is influenced by surface bio
physical characteristic variation more than isometric time division 
(Duveiller et al., 2018b; Chen et al., 2020; Duveiller et al., 2020). The 
method is also of relevant significance in climate model studies that 
consider the process of land use change. 

Moreover, the pair-wise comparison in this study revealed the 
intrinsic characteristic differences between paddy rice and the upland 
crop using one year of data (2017), which infers what will happen to LST 
if other upland crops transition to paddy rice cultivation. The high- 
resolution crop map allows more accurate pure pixel selection in this 
study, but cannot support the long-time series analyses for now due to 
limited crop maps at this spatial scale. A direct temporal trend of LST in 
the rice expansion areas would also be essential in the future when the 
multiple temporal crop maps are available. 

5. Conclusion 

This study provided evidence of the cooling impacts of paddy rice 
expansion and its seasonal variations at a local scale by using a space- 
for-time substitution method. The daily mean LST of rice paddy dur
ing the growing season (May to September) was lower when compared 
to that of corn and soybean fields, as a result of daytime cooling and 
nighttime warming, which subsequently led to a narrower diurnal LST 
range. Furthermore, the cooling effects were more prominent in the 
early growth stage (G1; May and June) than the late growth stage (G2; 
July to September). The lower albedo and higher energy redistribution 
factors were observed on paddy rice in the early season compared to the 

upland crops. Normally, the higher values of f typically imply a greater 
efficiency to dissipate energy from the surface, while lower albedo 
means more net radiative energy absorption. Thus, the detected cooling 
effects were attributed to the domination of surface temperature 
response of nonradiative mechanisms aided by the radiatively induced 
temperature responses. Similar results were found both using larger (7 
× 7 km sampling areas) and smaller (3 × 3 km sampling areas) sampling 
area scales (SI Appendix, Figs. S1–S4), which demonstrated the 
robustness of conclusions. This study indicates the cooling effects of 
paddy rice expansion and its seasonal variation, which could provide a 
reference for climate change researchers in paddy expansion areas in 
northeastern Asia and contribute to model biophysical effects of land use 
changes. However, the underlying climatic feedback mechanism with 
more systematic and in-depth quantification of their effects is still 
imperative. In addition, the implications of a larger scale and the remote 
impacts of such biophysical changes through near-surface energy 
transfer and atmospheric circulation should be considered in future 
studies. 
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Houspanossian, J., Giménez, R., Jobbágy, E., Nosetto, M., 2017. Surface albedo raise in 
the South American Chaco: combined effects of deforestation and agricultural 
changes. Agric. For. Meteorol. 232, 118–127. 

Hu, X., Chen, M., Liu, D., Li, D., Jin, L., Liu, S., Cui, Y., Dong, B., Khan, S., Luo, Y., 2021. 
Reference evapotranspiration change in Heilongjiang Province, China from 1951 to 
2018: the role of climate change and rice area expansion. Agric. Water Manage. 253, 
106912. 

Huang, B., Hu, X., Fuglstad, G.-A., Zhou, X., Zhao, W., Cherubini, F., 2020. Predominant 
regional biophysical cooling from recent land cover changes in Europe. Nat. 
Commun. 11 (1), 1066. 

Huang, L., Zhai, J., Liu, J., Sun, C., 2018a. The moderating or amplifying biophysical 
effects of afforestation on CO2-induced cooling depend on the local background 
climate regimes in China. Agric. For. Meteorol. 260-261, 193–203. 

Huang, L., Zhai, J., Sun, C.Y., Liu, J.Y., Ning, J., Zhao, G.S., 2018b. Biogeophysical 
forcing of land-use changes on local temperatures across different climate regimes in 
China. J. Clim. 31 (17), 7053–7068. 

Hwang, Y., Ryu, Y., Huang, Y., Kim, J., Iwata, H., Kang, M., 2020. Comprehensive 
assessments of carbon dynamics in an intermittently-irrigated rice paddy. Agric. For. 
Meteorol. 285-286, 107933. 

Ikawa, H., Kuwagata, T., Haginoya, S., Ishigooka, Y., Ono, K., Maruyama, A., Sakai, H., 
Fukuoka, M., Yoshimoto, M., Ishida, S., Chen, C.P., Hasegawa, T., Watanabe, T., 
2021. Heat-mitigation effects of irrigated rice-paddy fields under changing 
atmospheric carbon dioxide based on a coupled atmosphere and crop energy-balance 
model. Boundary Layer Meteorol. 179 (3), 447–476. 

IPCC, 2019: Climate Change and Land: an IPCC special report on climate change, 
desertification, land degradation, sustainable land management, food security, and 
greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo 
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