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Abstract—This paper presents a deep learning based multi-
label attack detection approach for the distributed control in
AC microgrids. The secondary control of AC microgrids is
formulated as a constrained optimization problem with voltage
and frequency as control variables which is then solved using
a distributed primal-dual gradient algorithm. The normally
distributed false data injection (FDI) attacks against the proposed
distributed control are then designed for the distributed gener-
ator’s output voltage and active/reactive power measurements.
In order to detect the presence of false measurements, a deep
learning based attack detection strategy is further developed. The
proposed attack detection is formulated as a multi-label classi-
fication problem to capture the inconsistency and co-occurrence
dependencies in the power flow measurements due to the presence
of FDI attacks. With this multi-label classification scheme, a
single model is able to identify the presence of different attacks
and load change simultaneously. Two different deep learning
techniques are compared to design the attack detector, and the
performance of the proposed distributed control and the attack
detector is demonstrated through simulations on the modified
IEEE 34-bus distribution test system.

I. INTRODUCTION

Microgrids are formed when distributed generators (DGs),
energy storage systems, and loads are clustered as a single con-
trollable entity to operate either independently or in conjunc-
tion with the main grid [1]-[3]. Microgrids can provide strong
support to the grid by alleviating stresses, reducing feeder
losses, and improving reliability, efficiency, and scalability
[1]. For microgrid control, either centralized or distributed
approach can be adopted [4]. In centralized control, a high-
bandwidth, point-to-point communication is required between
the central controller and local DG control units [1], which
increases the communication and computational costs [1], [5].
The central controller also suffers from the risk of single point
of failure [5]. By contrast, the distributed control that utilizes a
sparse communication network provides a promising solution
[1], [2], in which each DG only has access to the information
of itself and its neighboring DGs [6], reducing computational
complexity and the requirements on communication network,
and improving scalability, reliability, and resiliency to faults
and unknown system parameters [1].

For the distributed control of AC microgrids, the droop-
free distributed control has recently been proposed [1], [2]
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which successfully achieves the objectives of average voltage
regulation and active-reactive power sharing among the DGs.
However, the control formulation in [1], [2] relies on extensive
use of PI controllers and may not always theoretically guaran-
tee convergence. Thus a generalized distributed control frame-
work based on a formally formulated optimization problem is
required for optimally coordinating the voltage regulation and
power sharing objectives in AC microgrid control.

Furthermore, despite the advantages of distributed control,
cyber-physical security has become a major concern [7], [8].
Due to a lack of central authority and relatively low security
levels, distributed controllers are more susceptible to cyber
attacks than their centralized counterparts. A malicious entity
may inject false measurements to the exchanged data by
attacking the nodes or the communication links [7]. Due to the
collaborative nature of state update in the distributed control,
a simple cyber attack such as false data injection (FDI) attack
on an agent may make the controller deviate from the optimal
solution or even make the system unstable [9].

The authors in [10] present FDI attacks on both the nodes
and communication links in a droop-controlled microgrid
and a mitigation approach based on the convergence of dual
variables is developed. To mitigate the impact of FDI attack
on frequency synchronization of AC microgrids, a distributed
observer based attack detection strategy has been studied in
[5]. The authors in [11] consider the application of a time-
varying communication graph for FDI attack detection and
mitigation purpose. In [12], Kullback Leibler (KL) divergence
criteria is proposed for detecting FDI attacks. In [8], a dis-
tributed robust state estimation approach is integrated with the
distributed control to enhance the attack resilience.

Experiments have demonstrated that data-driven deep learn-
ing algorithms can identify abnormal activities that cannot be
detected by conventional bad data detection [13]. Various deep
learning algorithms have been proposed to identify FDI attacks
[14]-[16]. Detecting these attacks in real-time usually involves
preprocessing historical sensor data for offline training and
then using the trained model for new data in an online manner
using multivariate data streams [13], [17]. This multivariate
time series data scheme presents a challenge for classification
[18]. Although different attack detection strategies are pro-
posed for microgrids, application of multi-label deep learning
based detection approach is relatively new [19].

Our major contributions can be summarized as follows.



1) We formulate the secondary control of AC microgrids
as a constrained optimization problem with voltage and
frequency as control variables. A distributed solving
algorithm is developed based on the primal-dual gradient
algorithm. Then FDI attacks against the proposed dis-
tributed control are designed for the DG output voltage,
active power, and reactive power measurements.

2) We further formulate the FDI attack detection as a
multi-label classification problem by considering the
inconsistency and co-occurrence dependencies. The mul-
tivariate time series of power flow measurements are
preprocessed and fed into deep learning models for
feature extraction and attack detection. The advantage
is that a single model is able to identify the presence of
different attacks and load change simultaneously.

The remainder of this paper is organized as follows. Primal-
dual gradient based distributed control and the FDI attack
models are presented in Section II. The proposed deep learning
based attack detection strategy is discussed in Section III.
Validation through simulations is then presented in Section IV.
Finally, the conclusions with our future research goal are
presented in Section V.

II. DISTRIBUTED CONTROL AND FDI ATTACK
A. Cyber-Physical Representation of AC Microgrids

Let the buses be those at the output of the LC filter of
each DG. The remaining buses in the network are eliminated
by Kron reduction. Denote the bus admittance matrix of the
reduced network by Y. The linearized approximation of the
active and reactive power utilization ratios of DG 7 is [20]:
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where N is the number of DGs, v; and 6; are the voltage
magnitude and phase angle of bus j, G;; and B;; are the real
and imaginary parts of the admittance matrix Y, and P; and
@, are the active and reactive power limits of DG 1.

For distributed control implementation we consider a sparse
communication network that is modeled as a directed graph
G = {V,&} in which nodes are represented as the agents
and edges are the communication links connecting nodes. The
communication network can be represented by an adjacency
matrix A = [a;;] € RV*N where a;; > 0 if there is a
connection between node ¢ and j and a;; = O otherwise. It is
assumed that G has a spanning tree and a balanced Laplacian
matrix [1], [2].

B. Secondary Control Problem Formulation

The design objectives of the secondary control of AC
microgrids include: 1) regulating frequency back to nominal
frequency, 2) regulating the average voltage of the output
buses of all inverters to the rated voltage, and 3) achieving

proportional active and reactive power sharing among all
inverters. Thus the following optimization problem is defined
for DG 1:
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where v" is the rated voltage in per unit and wy is the rated
frequency, 7 > 0 is a constant, v = [vy,vs,--- ,vn]| " is the
DG output voltage vector, w = [wy,ws, -+ ,wy] ' is the DG
frequency vector, and N; is the set of neighbors of DG 7 in G.
Note that the linearized approximation in (1)—(2) is adopted
in order to get a convex optimization problem.

Let h(v) = 1Tv/N — v*. The Lagrange function for the
optimization problem in (3) can be defined as:

Li(v,w) = fi + pih, “4)

where ; is the Lagrange multiplier for the equality constraint.
In this Lagrange function we need the output voltage from all
DGs to compute the global average which may not be locally
available due to the distributed implementation of the control.
To address this problem a distributed average voltage estimator
is implemented in the paper. Specifically, the average voltage
of all inverter output buses, 1" v[n]/N, can be estimated by
DG ¢ = 1,...,N as v¥[n] using the following distributed
observer based on dynamic consensus [1]:
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where At is the step size. It has been proven in [1] that for
Vi=1,2,---, N, v} converges to a consensus value which
is the true global average voltage when the communication
network has a spanning tree and a balanced Laplacian matrix.

C. Distributed Control Algorithm

In order to implement the proposed distributed control we
need to evaluate the gradient of the Lagrange function L; with
respect to v; and w; as follows:
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Algorithm 1 Primal-dual gradient based distributed control
algorithm for DG 1

Initialization: Set v;[0] = v, w;[0] = W™, 6;[0] =

oS 1;[0] = 0, and v2V[0] = v;[0]. Set n = 0.

(S.1) Update v;[n + 1] based on (9)

(S.2) Update 6;[n + 1] based on (10)

(S.3) Update w;[n + 1] based on (11)

(S.4) Update v2¥[n + 1] based on (5)

(S.5) Update p;[n + 1] based on (12)

(S.6) increase n by 1 and go to (S.1)

Cyber Layer (Communication Network)

[, Ap. 0] [v3". Ap,. 40|

[0, AR, Ao, |

Fig. 1. Information flow of the proposed distributed control.
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where D, is the operator for subgradient with respect to v;.
Using Leibniz’s rule for differentiation under the integral sign
[21], there is:
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We then implement a primal-dual gradient based distributed
algorithm [22] to solve the optimization problem (3). For agent
1 the variable update equations are:
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Note that when the DGs achieve active and reactive power
sharing in steady state the second term on the right-hand side
of (11) becomes zero, which implies that the microgrid will
achieve frequency synchronization in steady state.

The proposed algorithm is presented in Algorithm 1. Fig. 1
shows the information flow of the proposed control algorithm.

D. FDI Attack Against Distributed Control

In this paper we have considered the following three types
of FDI attack models on the DG output voltage, active power,
and reactive power measurements.

1) Attacks on voltage measurements: In this case, the DG
output voltages are randomly changed by injecting an
attack vector ug. The attack vector u’ is a normally
distributed random vector with zero mean and standard
deviation as 20% of the initial voltage. Due to the
presence of attack, the output voltage of the DGs can be
written as v® = v 4+ u?, where v® and v respectively
represent the corrupted and actual measurements.

2) Attacks on active and reactive power measurements: For
the attack on active power P and reactive power Q
measurements, the corrupted measurements P and Q“
can be written as P* = P + up and Q" = Q + ug,
respectively, where up and ug, are normally distributed
random attack vectors with zero mean and standard
deviations as 20% of the initial values.

3) Attacks on voltage, active power, and reactive power
measurements: In this case we have considered the
extreme scenarios in which attack vectors uy, up, and
ug, are injected to the DG output voltage, active power,
and reactive power measurements.

III. DEEP LEARNING BASED MULTI-LABEL ATTACK
DETECTION APPROACH

We propose an effective FDI attacks detection mechanism
using a multi-label classification scheme. In this section,
we present the problem formulation and two different deep
learning models for comparison.

A. Multi-Label Classification Problem Formation

Using one classifier to simultaneously evaluate multiple
classes creates a substantial computational advantage over
using multiple classifiers. For example, a single model can
simultaneously detect anomaly events (i.e., change detection)
and identify the anomaly types (i.e., anomaly diagnosis) after
certain time steps using multivariate time series. Formally, we
define the FDI attacks detection as a problem of multivari-
ate time series classification with multi-label classes. Fig. 2
illustrates the problem setting and the notation. Given the
historical data of n time series with length T, ie., X =
(z1,--- ,xn)T € R™*T, assume there is no anomaly before
T. For the time segment, given a set of labels ), the task is
to classify the data as that of regular behavior or anomaly. In
our problem, the input multivariate time series X are voltage,
active power, reactive power, and frequency, and the output
labels Y € R'** are normal, load change, voltage attack,
and power attack. Note that in the traditional transmission
grid FDI attack detection problem the state estimate and bad
data detection modules are usually applied before the attack
detector. Most of the attack vectors will be filtered out before
receiving by the deep learning based model. In this paper,
the compromised measurements are directly incorporated into
the proposed distributed control. The strong coupling will mix
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Fig. 2. Overall architecture of the proposed deep learning based FDI attack detection as a multi-label classification problem.

the attack patterns in the measurements and increase the attack
detection and classification difficulty.

B. Data Preparation and Preprocessing

Features are extracted from the recorded multivariate time
series, which are first preprocessed through a series of nonlin-
ear transformations described as follows.

o Concatenation: There are four time series matrices that
represent the four features for classification and six time
series in each matrix that represent each of the six DGs.
All of these time series are concatenated to create a
multivariate time series feature matrix with 24 rows.

o Downsampling: Each 22-s simulation contains data that
was sampled twice every 0.0001s. This data is down
sampled to 100 samples per second.

e Window Slicing: The data matrix is segmented into
windows of 24 by 500, which is (6 DGs x 4 features) by
500 time points. This is done using the window slicing
technique in [23], where a window of the specified size
slides across the time dimension of the data matrix with
no overlap, effectively segmenting the time series.

o Labeling: The four labels are normal, load change, attack
on voltage, attack on power. The samples from the first
30 s before the event are labelled as normal. The samples
15 s after the event is introduced are labelled according
to the occurring events.

C. Deep Learning Models

Time series classification, especially that of multivariate
nature, is an ongoing topic of research in machine learning.
The classifiers have to be able to extract and effectively
process the temporal qualities of the data. In this paper,
the InceptionTime [24] which is considered to be the state-
of-the-art for time series classification model is compared
with the baseline ResNet model [25]. The basic structure
of these models is depicted in Fig. 2. Both feature residual
connections that are comprised of 1D convolutions and batch
normalization. Inception has six residual blocks with max
pooling and features a bottleneck layer while ResNet has three
residual blocks with no pooling or bottleneck. The residual
block layer connects to a global average pooling layer which
then feeds to a dense fully connected network. The sigmoid
function is employed at the output layer and the nonbinary

values are transformed to binary using Matthew’s correlation
coefficient threshold calibration.

The data set consists of 1200 samples that are split with
33% reserved for testing. Glorot’s uniform initialization is
employed for all models. The training is done using mini-
batch size of 15. The loss function is minimized for model
optimization. The multi-label classification scheme minimizes
the total loss—the sum of the binary cross-entropy loss func-
tion over each of the four labels in all training samples:

c
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where C' = 4 is the class/label number, O; is the predicted
label of output node i, and T; is the target label. The op-
timization is processed by a variant of Stochastic Gradient
Descent (SGD), Adam, and the learning rate (with a minimum
of 0.0001) is reduced by a factor of 0.5 each time the model’s
training loss has not improved for 10 consecutive epochs.
Swish Activation Function Traditionally, both the Inception-
Time and ResNet models use the ReLu activation function
between convolutional layers. This function was created in an
attempt to rectify the vanishing gradient problem exhibited
by logistic functions such as sigmoid and hyperbolic tangent.
While rectifying the vanishing gradient, ReLu suffers from
the “dying ReLu” problem due to the lack of gradient in
the negative region, where the function is equal to 0. The
swish activation function has been proposed as an alternate
to the ReLU. The Swish creates a sigmoidal shape gradient
in the negative region, where the sigmoidal shape can be
tuned or trained using the parameter  in the swish function
as f(z) = z - sigmoid(Bx), where 5 = 1 is used in these
experiments. This function has been shown to outperform the
ReLu function in many situations [26]. The InceptionTime and
ResNet models were modified to use the Swish function and
the results are compared to the ReLu variants.

IV. PERFORMANCE EVALUATION

A. Test System and Control Performance

The distributed control based on the proposed Algorithm 1
is tested on the modified IEEE 34-bus distribution test system
shown in Fig. 3. This system has 6 DGs and 9 loads. The
line parameters are adopted from [27]. The simulations are
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Fig. 3. Modified IEEE 34-bus distribution test system. Blue circles indicate
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the proposed control is shown on the left-hand side.
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Fig. 4. DG output voltages, active/reactive power, and frequency: (a) Without
FDI attack and only load change is applied at 30s; (b) Both FDI attack on
voltage, active power, and reactive power measurements and load change are
applied at 30 s.

performed in Matlab without including the detailed zero-level
control of the inverters. The communication network used in
the proposed distributed control is shown on the left-hand side
of Fig. 3. The v, 7, and 7y in (9), (11), and (12) are respectively
selected as 0.000075, 0.000075, and 0.0001.

For the data preparation we generated 110 test cases for
each of the scenarios—load change, voltage attack under
load change, active/reactive power attack under load change,
and voltage, active-reactive power attack under load change.
For applying load change we consider a normally distributed
random change with zero mean and standard deviation as 20%
of the initial loads.

Fig. 4 shows the DG output voltages, active/reactive power
sharing, and output frequencies under the proposed distributed
control. In Fig. 4a, we apply a load change at 30 s without any
FDI attack. In Fig. 4b we apply both load change and FDI

attack on voltage and active/reactive power measurements at
30s. For Figs. 4a and 4b we consider the same load change
but obtain different steady states due to the presence of FDI
attack. The FDI attack can mislead the microgrid operator as
normal load change events and is challenging to detect using
existing approaches. This motivates us to investigate the deep-
learning based multi-label attack detection approaches.

B. Deep Learning Performance Metrics

We evaluate the results with precision, recall, and F1
score, which are typical multi-label classification performance
metrics to evaluate deep learning based models. The precision
is the ratio tp/(tp + fp) where tp is the number of true
positives and fp the number of false positives. The precision
is intuitively the ability of the classifier not to label as positive
a sample that is negative. The recall is the ratio ¢p/(tp + fn)
where tp is the number of true positives and fn the number
of false negatives. The recall is intuitively the ability of the
classifier to find all the positive samples. F1 score can be
interpreted as a weighted average of the precision and recall:

Fl—2 Precision x Recall

Precision + Recall’ (14)
where F1 micro is calculated globally by counting the total true
positives, false negatives and false positives while F1 macro
is calculated for each label, and find their unweighted mean.

The relative trade-off between tp rate and fp rate is depicted
using AUC, the area under the ROC. This measure shows how
good the model is at making correct predictions. An AUC
closer to 1 signifies excellent performance. The micro-average
and macro-average ROC curves over all labels are plotted to
assess the multi-label performance. Further analysis is done
on the performance of single labels.

C. FDI Attack Detection Results

The ResNet and Inception models are both tested for their
abilities to distinguish between load change only and attack
only scenarios. Both models are above 99% accurate in this
case. The following results show how well the models can
identify attacks when they are coordinated with load changes.

The three performance metrics are compared among the
models with the results shown in Table I. As can be observed,
the implementation of the Swish activation function signifi-
cantly improves the overall accuracy of the models. This shows
that more samples have all labels correctly classified when
using Swish.

TABLE I
MODEL PERFORMANCE RESULTS

Model Activation | Precision (%) | Recall (%) | F1 (%)
Inception ReLU 91.03 95.31 87.13
ResNet ReLU 95.97 95.12 96.84
Inception Swish 97.06 96.27 97.87
ResNet Swish 97.13 97.84 96.45
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Inception and ResNet with Swish.

The ROC curves are shown in Fig. 5. All models have macro
and micro average AUC greater than or equal to 0.92, showing
very good performance over multiple labels. The individual
labels show that the power attack detection was slightly worse
than the rest of the labels. The performance of Inception and
ResNet is comparable, but ResNet is shown to have better
performance in both the ReLu and Swish models. ResNet with
Swish is the best performing model with the highest overall
accuracy at 91%. The ResNet model also trains twice as fast
as the Inception due to less residual connections, making it a
more desirable model'.

V. CONCLUSION

In this paper, we propose a deep-learning based attack
detection strategy for distributed control of AC microgrids. A
distributed primal-dual gradient based algorithm is developed
to control the distributed generators in the microgrid and
random FDI attack vectors are injected to the DG output volt-
age and active/reactive power measurements. A deep learning
based multi-label attack detection technique is developed to
detect the presence of attacks which gives a high accuracy for
attack detection. In our future work, we will incorporate the
physical model and domain knowledge of the microgrid into
the data-driven deep-learning model to improve accuracy.
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